高考题基本不等式
高考数学二轮专题——基本不等式九大题型(学生版)

基本不等式及其应用【九大题型】【新高考专用】【题型1基本不等式及其应用】【题型2直接法求最值】【题型3配凑法求最值】【题型4常数代换法求最值】【题型5消元法求最值】【题型6齐次化求最值】【题型7多次使用基本不等式求最值】【题型8利用基本不等式解决实际问题】【题型9与其他知识交汇的最值问题】1.基本不等式及其应用考点要求真题统计考情分析(1)了解基本不等式的推导过程(2)会用基本不等式解决最值问题(3)理解基本不等式在实际问题中的应用2020年天津卷:第14题,5分2021年乙卷:第8题,5分2022年I 卷:第12题,5分2023年新高考I 卷:第22题,12分基本不等式及其应用是每年高考的必考内容,从近几年的高考情况来看,对基本不等式的考查比较稳定,考查内容、频率、题型难度均变化不大,应适当关注利用基本不等式大小判断、求最值和求取值范围的问题;同时要注意基本不等式在立体几何、平面解析几何等内容中的运用.【知识点1基本不等式】1.两个不等式不等式内容等号成立条件重要不等式a 2+b 2≥2ab (a ,b ∈R )当且仅当“a =b ”时取“=”基本不等式ab ≤a +b2(a >0,b >0)当且仅当“a =b ”时取“=”a +b2叫做正数a ,b 的算术平均数,ab 叫做正数a ,b 的几何平均数.基本不等式表明:两个正数的算术平均数不小于它们的几何平均数.2.基本不等式与最值已知x,y都是正数,(1)如果积xy等于定值P,那么当x=y时,和x+y有最小值2P;(2)如果和x+y等于定值S,那么当x=y时,积xy有最大值14S2.温馨提示:从上面可以看出,利用基本不等式求最值时,必须有:(1)x、y>0,(2)和(积)为定值,(3)存在取等号的条件.3.常见的求最值模型(1)模型一:mx+nx≥2mn(m>0,n>0),当且仅当x=n m时等号成立;(2)模型二:mx+nx−a =m(x−a)+nx−a+ma≥2mn+ma(m>0,n>0),当且仅当x−a=n m时等号成立;(3)模型三:xax2+bx+c =1ax+b+cx≤12ac+b(a>0,c>0),当且仅当x=c a时等号成立;(4)模型四:x(n−mx)=mx(n−mx)m≤1m⋅mx+n−mx22=n24m m>0,n>0,0<x<n m,当且仅当x=n2m时等号成立.4.利用基本不等式求最值的几种方法(1)直接法:条件和问题间存在基本不等式的关系,可直接利用基本不等式来求最值.(2)配凑法:利用配凑法求最值,主要是配凑成“和为常数”或“积为常数”的形式.(3)常数代换法:主要解决形如“已知x+y=t(t为常数),求的最值”的问题,先将转化为,再用基本不等式求最值.(4)消元法:当所求最值的代数式中的变量比较多时,通常考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”的形式,最后利用基本不等式求最值.【题型1基本不等式及其应用】1(2023·安徽蚌埠·模拟预测)已知实数a,b,c满足a<b<c且abc<0,则下列不等关系一定正确的是()A.ac<bcB.ab<acC.bc +cb>2 D.ba+ab>22(2023·湖南长沙·一模)已知2m=3n=6,则m,n不可能满足的关系是()A.m+n>4B.mn>4C.m2+n2<8D.(m-1)2+(n-1)2>23(2024·山东枣庄·一模)已知a>0,b>0,则“a+b>2”是“a2+b2>2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4(2023·辽宁·二模)数学命题的证明方式有很多种.利用图形证明就是一种方式.现有如图所示图形,在等腰直角三角形△ABC中,点O为斜边AB的中点,点D为斜边AB上异于顶点的一个动点,设AD=a,BD=b,用该图形能证明的不等式为( ).A.a+b2≥ab a>0,b>0B.2aba+b≤ab a>0,b>0C.a+b2≤a2+b22a>0,b>0D.a2+b2≥2ab a>0,b>0【题型2直接法求最值】1(2023·湖南岳阳·模拟预测)已知函数f x =3-x-2x,则当x<0时,f x 有()A.最大值3+22B.最小值3+22C.最大值3-22D.最小值3-222(2023·北京东城·一模)已知x>0,则x-4+4x的最小值为()A.-2B.0C.1D.223(22-23高三下·江西·阶段练习)3+1 x21+4x2的最小值为()A.93B.7+42C.83D.7+434(23-24高二下·山东潍坊·阶段练习)函数y=3-4x-x(x>0)的最大值为()A.-1B.1C.-5D.5【题型3配凑法求最值】1(2023·山西忻州·模拟预测)已知a>2,则2a+8a-2的最小值是()A.6B.8C.10D.122(2024·辽宁·一模)已知m >2n >0,则m m -2n +mn的最小值为()A.3+22B.3-22C.2+32D.32-23(2023·河南信阳·模拟预测)若-5<x <-1,则函数f x =x 2+2x +22x +2有()A.最小值1B.最大值1C.最小值-1D.最大值-14(23-24高三下·河南·开学考试)已知a >0,b >0,则a +2b +4a +2b +1的最小值为()A.6B.5C.4D.3【题型4常数代换法求最值】1(2024·江苏南通·二模)设x >0,y >0,1x +2y =2,则x +1y 的最小值为()A.32B.22C.32+2 D.32(2024·黑龙江哈尔滨·二模)已知正实数x ,y 满足1x +2y=1,则2xy -3x 的最小值为()A.8B.9C.10D.113(2024·广东湛江·一模)已知ab >0,a 2+ab +2b 2=1,则a 2+2b 2的最小值为()A.8-227B.223C.34D.7-2284(2023·广东广州·模拟预测)已知正实数x ,y 满足2x +y =xy ,则2xy -2x -y 的最小值为()A.2B.4C.8D.9【题型5消元法求最值】1(2024·陕西西安·三模)已知x >0,y >0,xy +2x -y =10,则x +y 的最小值为42-1.2(2023·上海嘉定·一模)已知实数a 、b 满足ab =-6,则a 2+b 2的最小值为12.3(2024·天津河东·一模)若a >0,b >0,ab =2,则a +4b +2b 3b 2+1的最小值为.4(2024·四川德阳·模拟预测)已知正实数x ,y ,z 满足x 2+xy +yz +xz +x +z =6,则3x +2y +z 的最小值是43-2.【题型6齐次化求最值】1(23-24高一上·湖南娄底·期末)已知x >0,则x 2-x +4x 的最小值为()A.5B.3C.-5D.-5或32(23-24高一上·辽宁大连·期末)已知x ,y 为正实数,且x +y =1,则x +6y +3xy的最小值为()A.24B.25C.6+42D.62-33(23-24高二上·安徽六安·阶段练习)设a+b=1,b>0,则1|a|+9|a|b的最小值是()A.7B.6C.5D.44(23-24高三上·浙江绍兴·期末)已知x为正实数,y为非负实数,且x+2y=2,则x2+1x+2y2y+1的最小值为()A.34B.94C.32D.92【题型7多次使用基本不等式求最值】1(2023·河南·模拟预测)已知正实数a,b,满足a+b≥92a+2b,则a+b的最小值为()A.5B.52C.52 D.5222(2023·全国·模拟预测)已知a为非零实数,b,c均为正实数,则a2b+a2c4a4+b2+c2的最大值为()A.12B.24C.22D.343(2024·全国·模拟预测)已知a>0,b>0,c>1,a+2b=2,则1a+2bc+2c-1的最小值为()A.92B.2 C.6 D.2124(23-24高三下·浙江·开学考试)已知a、b、c、d均为正实数,且1a+2b=c2+d2=2,则a+bcd的最小值为()A.3B.22C.3+22D.3+222【题型8利用基本不等式解决实际问题】1(23-24高二下·北京房山·期中)某公园为了美化游园环境,计划修建一个如图所示的总面积为750m2的矩形花园.图中阴影部分是宽度为1m的小路,中间A,B,C三个矩形区域将种植牡丹、郁金香、月季(其中B,C区域的形状、大小完全相同).设矩形花园的一条边长为xm,鲜花种植的总面积为Sm2.(1)用含有x的代数式表示a;(2)当x的值为多少时,才能使鲜花种植的总面积最大?2(23-24高一上·辽宁朝阳·期末)冷链物流是指以冷冻工艺为基础、制冷技术为手段,使冷链物品从生产、流通、销售到消费者的各个环节始终处于规定的温度环境下,以减少冷链物品损耗的物流活动.随着人民食品安全意识的提高及线上消费需求的增加,冷链物流市场规模也在稳步扩大.某冷链物流企业准备扩大规模,决定在2024年初及2025年初两次共投资4百万元,经预测,每年初投资的x百万元在第m(1≤m≤8,且m∈N*)年产生的利润(单位:百万元)G m=mx,m∈N*,1≤m≤44-16-mx2,m∈N*,5≤m≤8,记这4百万元投资从2024年开始的第n年产生的利润之和为f n x .(1)比较f42 与f52 的大小;(2)求两次投资在2027年产生的利润之和的最大值.3(23-24高一上·河南开封·期末)如图,一份印刷品的排版(阴影部分)为矩形,面积为32,它的左、右两边都留有宽为2的空白,上、下两边都留有宽为1的空白.记纸张的面积为S,排版矩形的长和宽分别为x,y.(1)用x,y表示S;(2)如何选择纸张的尺寸,才能使纸张的面积最小?并求最小面积.4(23-24高一上·四川成都·期末)如图所示,一条笔直的河流l(忽略河的宽度)两侧各有一个社区A,B (忽略社区的大小),A社区距离l上最近的点A0的距离是2km,B社区距离l上最近的点B0的距离是1km,且A0B0=4km.点P是线段A0B0上一点,设A0P=akm.现规划了如下三项工程:工程1:在点P处修建一座造价0.1亿元的人行观光天桥;工程2:将直角三角形AA0P地块全部修建为面积至少1km2的文化主题公园,且每平方千米造价为1+92a2亿元;工程3:将直角三角形BB0P地块全部修建为面积至少0.25km2的湿地公园,且每平方千米造价为1亿元.记这三项工程的总造价为W 亿元.(1)求实数a 的取值范围;(2)问点P 在何处时,W 最小,并求出该最小值.【题型9与其他知识交汇的最值问题】1(23-24高三上·江苏南通·阶段练习)已知ΔABC 内接于单位圆,且1+tan A 1+tan B =2,(1)求角C(2)求△ABC 面积的最大值.2(23-24高三上·山东青岛·期末)《九章算术》是我国古代数学名著,它在几何学中的研究比西方早1000多年,在《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵(qian d u );阳马指底面为矩形,一侧棱垂直于底面的四棱锥,鳖膈(bie nao )指四个面均为直角三角形的四面体.如图在堑堵ABC -A 1B 1C 1中,AB ⊥AC .(1)求证:四棱锥B -A 1ACC 1为阳马;(2)若C 1C =BC =2,当鳖膈C 1-ABC 体积最大时,求锐二面角C -A 1B -C 1的余弦值.3(2024·广东珠海·一模)已知A 、B 、C 是ΔABC 的内角,a 、b 、c 分别是其对边长,向量m=a +b ,c ,n =sin B -sin A ,sin C -sin B ,且m ⊥n.(1)求角A 的大小;(2)若a =2,求ΔABC 面积的最大值.4(2024·黑龙江大庆·一模)已知椭圆x 2a 2+y 2b2=1(a >b >0),过点1,32 且离心率为12,A ,B 是椭圆上纵坐标不为零的两点,若AF =λFB λ∈R 且AF ≠FB,其中F 为椭圆的左焦点.(1)求椭圆的方程;(2)求线段AB 的垂直平分线在y 轴上的截距的取值范围.一、单选题1(2023·全国·三模)已知a >0,b >0,且a +b =1,则下列不等式不正确的是()A.ab≤14B.a2+b2≥12C.1a+1b+1>2 D.a+b≤12(2024·甘肃定西·一模)x2+7x2+7的最小值为()A.27B.37C.47D.573(2024·辽宁葫芦岛·一模)已知a>0,b>0,a+b=2,则()A.0<a≤1B.0<ab≤1C.a2+b2>2D.1<b<24(2024·浙江嘉兴·二模)若正数x,y满足x2-2xy+2=0,则x+y的最小值是() A.6 B.62C.22D.25(2024·四川成都·模拟预测)若a,b是正实数,且13a+b+12a+4b=1,则a+b的最小值为()A.45B.23C.1D.26(2024·陕西西安·模拟预测)下列说法错误的是()A.若正实数a,b满足a+b=1,则1a +1b有最小值4B.若正实数a,b满足a+2b=1,则2a+4b≥22C.y=x2+3+1x2+3的最小值为433D.若a>b>1,则ab+1<a+b7(2024·黑龙江哈尔滨·一模)已知某商品近期价格起伏较大,假设第一周和第二周的该商品的单价分别为m元和n元(m≠n),甲、乙两人购买该商品的方式不同,甲每周购买100元的该商品,乙每周购买20件该商品,若甲、乙两次购买平均单价分别为a1,a2,则()A.a1=a2B.a1<a2C.a1>a2D.a1,a2的大小无法确定8(2024·四川成都·三模)设函数f x =x3-x,正实数a,b满足f a +f b =-2b,若a2+λb2≤1,则实数λ的最大值为()A.2+22B.4C.2+2D.22二、多选题9(2023·全国·模拟预测)已知实数x,y,下列结论正确的是()A.若x+y=3,xy>0,则x2x+1+y2+1y≥3B.若x>0,xy=1,则12x +12y+8x+y的最小值为4C.若x≠0且x≠-1,则yx<y+1x+1D.若x 2-y 2=1,则2x 2+xy 的最小值为1+3210(2023·重庆沙坪坝·模拟预测)某单位为了激励员工努力工作,决定提高员工待遇,给员工分两次涨工资,现拟定了三种涨工资方案,甲:第一次涨幅a %,第二次涨幅b %;乙:第一次涨幅a +b 2%,第二次涨幅a +b2%;丙:第一次涨幅ab %,第二次涨幅ab %.其中a >b >0,小明帮员工李华比较上述三种方案得到如下结论,其中正确的有()A.方案甲和方案乙工资涨得一样多B.采用方案乙工资涨得比方案丙多C.采用方案乙工资涨得比方案甲多D.采用方案丙工资涨得比方案甲多11(2024·全国·模拟预测)已知a >0,b >0且1a +4b =2,则下列说法正确的是()A.ab 有最小值4B.a +b 有最小值92C.2ab +a 有最小值25D.16a 2+b 2的最小值为42三、填空题12(2024·全国·模拟预测)已知x >1,y >0,且x +2y =2,则1x -1+y 的最小值是.13(2024·上海奉贤·二模)某商品的成本C 与产量q 之间满足关系式C =C q ,定义平均成本C=C q ,其中C =C (q )q ,假设C q =14q 2+100,当产量等于时,平均成本最少.14(2024·全国·模拟预测)记max x 1,x 2,x 3 表示x 1,x 2,x 3这3个数中最大的数.已知a ,b ,c 都是正实数,M =max a ,1a +2b c ,c b,则M 的最小值为.四、解答题15(2023·甘肃张掖·模拟预测)已知正实数x ,y 满足等式1x +3y=2.(1)求xy 的最小值;(2)求3x +y 的最小值.16(2023·全国·模拟预测)已知x,y,z∈0,+∞,且x+y+z=1.(1)求证:yx+zy+xz>1+z-z;(2)求x2+y2+z2+5xy+4yz+4xz的最大值.17(2023·陕西安康·模拟预测)已知函数f x =x+a+x-b.(1)当a=2,b=3时,求不等式f x ≥6的解集;(2)设a>0,b>1,若f x 的最小值为2,求1a +1b-1的最小值.18(23-24高一上·贵州铜仁·期末)2020年初至今,新冠肺炎疫情袭击全球,对人民生命安全和生产生活造成严重影响. 在党和政府强有力的抗疫领导下,我国控制住疫情后,一方面防止境外疫情输入,另一方面逐步复工复产,减轻经济下降对企业和民众带来的损失. 为降低疫情影响,某厂家拟在2022年举行某产品的促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x万件与年促销费用m万元(m≥0)满足x=4-2m+1. 已知生产该产品的固定成本为8万元,生产成本为16万元/万件,厂家将产品的销售价格定为8+16xx万元/万件(产品年平均成本)的1.5倍.(1)将2022年该产品的利润y万元表示为年促销费用m万元的函数;(2)该厂家2022年的促销费用投入多少万元时,厂家的利润最大?19(2023·全国·模拟预测)已知x,y,z∈0,+∞.(1)若x+y=1,证明:4x+4y≤48;(2)若x+y+z=1,证明yx+zy+xz>1+z-z.11。
基本不等式高考真题汇总

基本不等式高考真题汇总1.(2022·福建,5)下列不等式一定成立的是( ) A .lg(x 2+14)>lg x (x >0)B .sin x +1sin x ≥2(x ≠k π,k ∈Z )C .x 2+1≥2|x |(x ∈R ) D.1x 2+1>1(x ∈R ) 解析 取x =12,则lg ⎝ ⎛⎭⎪⎫x 2+14=lg x ,故排除A ;取x =32π,则sin x =-1,故排除B ;取x =0,则1x 2+1=1,故排除D.应选C. 答案 C2.(2022·湖南,10)设x ,y ∈R ,且xy ≠0,则⎝ ⎛⎭⎪⎫x 2+1y 2⎝ ⎛⎭⎪⎫1x 2+4y 2的最小值为________.解析 ∵x ,y ∈R 且xy ≠0, ∴(x 2+1y 2)·(1x2+4y 2)=5+1x 2y2+4x 2y 2≥5+2×2=9,当且仅当1x 2y2=4x 2y 2,即xy =±22时,取得最小值9. 答案 93.(2022·重庆,3)(3-a )(a +6)(-6≤a ≤3)的最大值为( ) A .9B.92C .3D.322解析 ∵-6≤a ≤3,∴3-a ≥0,a +6≥0. 而(3-a )+(a +6)=9, 由基本不等式得:(3-a )+(a +6)≥2(3-a )(a +6), 即9≥2(3-a )(a +6),∴(3-a )(a +6)≤92,并且仅当3-a =a +6,即a =-32时取等号.答案 B4.(2022·重庆,7)已知a >0,b >0,a +b =2,则y =1a +4b的最小值是( )A.72B .4C.92D .5解析 ∵2y =2⎝ ⎛⎭⎪⎫1a +4b =(a +b )⎝ ⎛⎭⎪⎫1a +4b=5+4a b +b a,又∵a >0,b >0, ∴2y ≥5+24a b ·ba=9,∴y min =92,当且仅当b =2a 时“=”成立.答案 C5.(2022·上海,15)若a ,b ∈R ,且ab >0.则下列不等式中,恒成立的是( ) A .a 2+b 2>2ab B .a +b ≥2ab C.1a +1b>2abD.b a +ab≥2解析 由ab >0,可知a 、b 同号.当a <0,b <0时,B 、C 不成立;当a =b 时,由不等式的性质可知,A 不成立,D 成立. 答案 D6.(2022·上海,5)若实数x ,y 满足xy =1,则x 2+2y 2的最小值为________.解析 ∵x 2+2y 2≥2x 2·2y 2=22xy =22,当且仅当x =2y 时取“=”,∴x 2+2y 2的最小值为2 2. 答案 2 27.(2022·天津,14)设a +b =2,b >0,则当a =________时,12|a |+|a |b取得最小值.解析 因为a +b =2,所以a +b2·12|a |+|a |b =a +b22|a |+|a |b =a 4|a |+b 4|a |+|a |b ≥a4|a |+2b 4|a |·|a |b =a4|a |+1, 当a >0时,a 4|a |+1=54,12|a |+|a |b ≥54;当a <0时,a 4|a |+1=34,12|a |+|a |b ≥34,当且仅当b =2|a |时,等号成立.因为b >0,所以原式取最小值时b =-2a .又a +b =2,所以a =-2时,原式取得最小值. 答案 -28.(2022·浙江,16)设x ,y 为实数,若4x 2+y 2+xy =1,则2x +y 的最大值是________. 解析 依题意有(2x +y )2=1+3xy =1+32×2x ×y ≤1+32·⎝ ⎛⎭⎪⎫2x +y 22,得58(2x +y )2≤1,即|2x +y |≤2105. 当且仅当2x =y =105时,2x +y 达到最大值2105. 答案21059.(2022·山东,12)设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy z取得最大值时,2x+1y -2z的最大值为( )A .0B .1C.94D .3解析 由x 2-3xy +4y 2-z =0得x 2-3xy +4y 2z =1≥2x 2·4y 2-3xy z,即xy z≤1,当且仅当x 2=4y 2时成立, 又x ,y 为正实数,故x =2y .此时将x =2y 代入x 2-3xy +4y 2-z =0得z =2y 2, 所以2x +1y -2z =-1y 2+2y=-⎝ ⎛⎭⎪⎫1y -12+1,当1y =1,即y =1时,2x +1y -2x取得最大值为1,故选B.答案 B。
考点04基本不等式(3种核心题型)(学生版) 2025年高考数学大一轮复习核心题型讲与练(新高考版)

考点04基本不等式(3种核心题型+基础保分练+综合提升练+拓展冲刺练)【考试提醒】1.了解基本不等式的推导过程.2.会用基本不等式解决简单的最值问题.3.理解基本不等式在实际问题中的应用.【知识点】1≤a+b 2(1)基本不等式成立的条件:.(2)等号成立的条件:当且仅当时,等号成立.(3)其中叫做正数a,b的算术平均数,叫做正数a,b的几何平均数.2.几个重要的不等式(1)a2+b2≥(a,b∈R).(2)ba+ab≥(a,b同号).(3)ab≤(a,b∈R).(4)a2+b22≥(a,b∈R).以上不等式等号成立的条件均为a=b.3.利用基本不等式求最值(1)已知x,y都是正数,如果积xy等于定值P,那么当x=y时,和x+y有最小值.(2)已知x,y都是正数,如果和x+y等于定值S,那么当x=y时,积xy有最大值.注意:利用基本不等式求最值应满足三个条件“一正、二定、三相等”.【核心题型】题型一 利用基本不等式求最值(1)前提:“一正”“二定”“三相等”.(2)要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式.(3)条件最值的求解通常有三种方法:一是配凑法;二是将条件灵活变形,利用常数“1”代换的方法;三是消元法.命题点1 配凑法【例题1】(2024·辽宁·一模)已知20m n >>,则 2m mm n n+-的最小值为( )A .3+B .3-C .2+D .2【变式1】故选:D (2024·四川德阳·模拟预测)已知正实数x ,y ,z 满足26x xy yz xz x z +++++=,则32x y z ++的最小值是 .【变式2】(2024·内蒙古呼伦贝尔·一模)已知函()3102f x x x =++-的最小值为m .(1)求m 的值;(2)若a ,b 为正数,且a b m +=.【变式3】(2024·黑龙江·二模)已知实数a ,b 且0ab >,则222229aba b a b +++取得最大值时,a b +的值为( )A B .C .-D .-命题点2 常数代换法【例题2】(2024·江苏南通·二模)设0x >,0y >,122y x+=,则1x y+的最小值为( )A .32B .C .32+D .3【变式1】(2024·四川成都·模拟预测)若,a b 是正实数,且111324a b a b+=++,则a b +的最小值为( )A .45B .23C .1D .2【变式2】(23-24高三上·浙江宁波·期末)已知0,0a b >>,则下列选项中,能使4a b +取得最小值25的为( )A .36ab =B .9ab a b=+C .221a b +=D .2216625a b +=【变式3】(2024·全国·模拟预测)设正实数a ,b 满足2a b +=,则1112+++a b 的最小值为( )A .23B .34C .45D .56命题点3 消元法【例题3】(2024·全国·模拟预测)已知0x >,0y >且1x y +=,则222211x y x y +++的最小值为( )A .15B .25C .35D .45【变式1】(2023·重庆·模拟预测)已知0x >,0y >,且26xy x y ++=,则2x y +的最小值为( ).A .4B .6C .8D .12【变式2】(2023·烟台模拟)已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________.【变式3】(2024·浙江·模拟预测)已知,0,1a b ab >=,求11112S a b=+++的最小值.题型二 基本不等式的常见变形应用基本不等式的常见变形(1)ab ≤22a b +⎛⎫ ⎪⎝⎭≤a 2+b 22.(2)21a +1b≤≤a +b2≤a >0,b >0).【例题4】(2023·全国·三模)已知0a >,0b >,且1a b +=,则下列不等式不正确的是( )A .14ab £B .2212a b +³C .1121a b +>+D1£【变式1】(2023·辽宁·二模)数学命题的证明方式有很多种.利用图形证明就是一种方式.现有如图所示图形,在等腰直角三角形ABC V 中,点O 为斜边AB 的中点,点D 为斜边AB 上异于顶点的一个动点,设AD a =,BD b =,用该图形能证明的不等式为( ).A.)0,02a ba b +³>>B.)20,0aba b a b£>>+C.)0,02a b a b +£>>D.)220,0a b a b +³>>【变式2】(2023·陕西宝鸡·二模)设a ,R b Î,则“2a b +³”是“222a b +³”的( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件【变式3】(2024·全国·模拟预测)已知正项数列{}n a 的前n 项和为n S ,()211n S n +=+,则下列说法正确的是( )A.11a =B .{}n a 是递减数列C .9911(1)8nn na =-=åD .1152n nn a a +++<题型三 基本不等式的实际应用 利用基本不等式求解实际问题时,要根据实际问题,设出变量,注意变量应满足实际意义,抽象出目标函数的表达式,建立数学模型,再利用基本不等式求得函数的最值.【例题5】(2023·湖南岳阳·模拟预测)如图,某人沿围墙CD 修建一个直角梯形花坛ABCD ,设直角边AD x =米,2BC x =米,若12AD AB BC ++=米,问当x = 米时,直角梯形花坛ABCD的面积最大.【变式1】(2024·黑龙江哈尔滨·一模)已知某商品近期价格起伏较大,假设第一周和第二周的该商品的单价分别为m 元和n 元()m n ¹,甲、乙两人购买该商品的方式不同,甲每周购买100元的该商品,乙每周购买20件该商品,若甲、乙两次购买平均单价分别为12,a a ,则( )A .12a a =B .12a a <C .12a a >D .12,a a 的大小无法确定【变式2】(2024·内蒙古呼和浩特·一模)小明在春节期间,预约了正月初五上午去美术馆欣赏油画,其中有一幅画吸引了众多游客驻足观赏,为保证观赏时可以有最大视角,警卫处的同志需要将警戒线控制在距墙多远处最合适呢?(单位:米,精确到小数点后两位)已知该画挂在墙上,其上沿在观赏者眼睛平视的上方3米处,其下沿在观赏者眼睛平视的上方1米处.( )A .1.73B .1.41C .2.24D .2.45【变式3】(2024·广东韶关·二模)在工程中估算平整一块矩形场地的工程量W (单位:平方米)的计算公式是()()44W =+´+长宽,在不测量长和宽的情况下,若只知道这块矩形场地的面积是10000平方米,每平方米收费1元,请估算平整完这块场地所需的最少费用(单位:元)是( )A .10000B .10480C .10816D .10818【课后强化】基础保分练一、单选题1.(2024·河南南阳·一模)已知正实数,x y 满足111x y+=,则43xy x -的最小值为( )A .8B .9C .10D .112.(2023·河南开封·三模)已知0a >,0b >,且1a b +=,a b ¹,则下列不等式成立的是( )A 1122a b<<+B 1122a b<+<C .1122a b +<<D .1122a b+<3.(22-23高三上·湖南长沙·阶段练习)甲、乙两名司机的加油习惯有所不同,甲每次加油都说“师傅,给我加300元的油”,而乙则说“师傅帮我把油箱加满”,如果甲、乙各加同一种汽油两次,两人第一次与第二次加油的油价分别相同,但第一次与第二次加油的油价不同,乙每次加满油箱,需加入的油量都相同,就加油两次来说,甲、乙谁更合算( )A .甲更合算B .乙更合算C .甲乙同样合算D .无法判断谁更合算4.(2024·陕西西安·一模)“中国剩余定理”又称“孙子定理”,最早可见于中国南北朝时期的数学著作《胁子算经》卷下第二十六题,叫做“物不知数”,原文如下:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何现有这样一个相关的问题:被3除余2且被5除余3的正整数按照从小到大的顺序排成一列,构成数列{}n a ,记数列{}n a 的前n 项和为n S ,则260n S n+的最小值为( )A .60B .61C .75D .765.(2023·河南信阳·模拟预测)若51x -<<-,则函数()22222x x f x x ++=+有( )A .最小值1B .最大值1C .最小值1-D .最大值1-6.(2024·四川凉山·二模)已知正数,a b 满足e112a b dx x +=ò,则2aba b+的最大值为( )A B .C D .1二、多选题7.(2024·江苏·一模)已知,x y ÎR ,且123x =,124y =,则( )A .y x >B .1x y +>C .14xy <D <8.(2024·贵州贵阳·一模)已知0,0a b >>,且2a b +=,则( )A .22a b +³B .112a b +³C .22log log 1a b +£D .222a b +³三、填空题9.(2024·云南红河·二模)如图,在棱长均相等的斜三棱柱111ABC A B C -中,111π,3A AB A AC BM BB ÐÐl ===uuuur uuur ,1CN CC m =uuu r uuuu r ,若存在()()0,1,0,1l m ÎÎ,使0AM BN ×=uuuu r uuu r 成立,则l m +的最小值为.10.(2024·江西九江·二模)在ABC V 中,角A ,B ,C 所对的边分别为a ,b ,c .已知A ,B ,C 成等差数列,224a c +=,则ABC V 面积的最大值是 ,()24sin sin 3A C b +=.四、解答题11.(2024·四川广安·二模)已知a ,b ,c 均为正数,且3a b c ++=.(1)是否存在a ,b ,c ,使得()190,5a b c +Î+,说明理由;(2)6.12.(2024·四川成都·二模)已知函数()()23,32f x x g x x =-=--(1)求不等式()()f x g x £的解集N ;(2)设N 的最小数为n ,正数,a b 满足32n a b +=,求223b a a b++的最小值.综合提升练一、单选题1.(·0>,2221a ab b ++=,则222a b + )A B C .34D 2.(2024·辽宁鞍山·二模)已知a ,b 均为锐角,()sin 3sin cos a b a b =+,则tan a 取得最大值时,()tan a b +的值为( )A B C .1D .23.(23-24高三上·浙江金华·期末)若()tan 23tan a a b =-,则()tan a b +的最大值为( )A B .1C .2D 4.(2024·黑龙江齐齐哈尔·二模)早在西元前6世纪,毕达哥拉斯学派已经知道算术中项,几何中项以及调和中项,毕达哥拉斯学派哲学家阿契塔在《论音乐》中定义了上述三类中项,其中算术中项,几何中项的定义与今天大致相同.若221a b +=,则()()4141a b++的最小值为( )A .254B .916C .94D .25165.(2024·陕西西安·一模)已知二次函数()2y x b a x ab =-+-+的图象与x 轴交于A 、B 两点,图象在A 、B 两点处的切线相交于点P .若1ab =,则ABP V 的面积的最小值为( ).A .1B C .2D .46.(2023·山东泰安·模拟预测)在实验课上,小明和小芳利用一个不等臂的天平秤称取药品. 实验一:小明将5克的砝码放在天平左盘,取出一些药品放在右盘中使天平平衡;实验二:小芳将20克的砝码放在右盘,取出一些药品放在天平左盘中使天平平衡,则在这两个实验中小明和小芳共秤得的药品( )A .大于20克B .小于20克C .大于等于20克D .小于等于20克7.(2024·云南楚雄·模拟预测)足球是一项深受人们喜爱的体育运动.如图,现有一个11人制的标准足球场,其底线宽68m AB =,球门宽7.32m EF =,且球门位于底线AB 的中间,在某次比赛过程中,攻方球员带球在边界线AC 上的M 点处起脚射门,当EMF Ð最大时,点M 离底线AB 的距离约为( )A .26.32mB .28.15mC .33.80mD .37.66m8.(23-24高三上·浙江宁波·期末)设实数x ,y 满足32x >,3y >,不等式()()33222338123k x y x y x y --+--≤恒成立,则实数k 的最大值为( )A .12B .24C .D .二、多选题9.(23-24高三上·河北沧州·阶段练习)已知0a >,0b >,且111a b +=,则下列说法正确的有( )A .8ab ³B .4a b +³C .228a b +³D .49a b +³10.(23-24高三上·湖南常德·期末)已知0a b >>,则下列不等式一定成立的是( )A .11a ba b >++B .2ab a b <+C .()ln 2a b ab ++>D .111ln 1ln a b<++11.(2024·全国·模拟预测)已知正实数a ,b ,c 满足111a b c<<,则( )A .c a c b ->-B .b b ca a c->-C .a c -³D 12³三、填空题12.(2024·陕西咸阳·二模)已知总体的各个个体的值由小到大依次为2,4,4,6,a ,b ,12,14,18,20,且总体的平均值为10.则11a b+的最小值为 .13.(2024·辽宁大连·一模)对于任意的正数m ,n ,不等式 312m n m n l+³+成立,则λ的最大值为14.(2024·四川泸州·二模)ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知22233c a b =-,则()tan A B -的最大值为.四、解答题15.(2024·四川成都·二模)已知函数()f x x a b =++,不等式()4f x <的解集为{06}x x <<∣.(1)求实数,a b 的值;(2)函数()f x 的最小值为t ,若正实数,,m n p 满足23m n p t ++=,求1122m p n p+++的最小值.16.(2023·陕西宝鸡·二模)已知函数()221f x x x =-++.(1)求()5f x ³的解集;(2)设()f x 的最小值为m ,若正数a ,b ,c 满足a b c m ++=,求ab ac bc ++的最大值.17.(2024·青海·一模)已知正数,,a b c 满足2a b c ++=.求证:(1)22243a b c ++³;6£.18.(2024·广东·一模)海参中含有丰富的蛋白质、氨基酸、维生素、矿物质等营养元素,随着生活水平的提高,海参逐渐被人们喜爱.某品牌的海参按大小等级划分为5、4、3、2、1五个层级,分别对应如下五组质量指标值:[300,350),[350,400),[400,450),[450,500),[500,550].从该品牌海参中随机抽取10000颗作为样本,统计得到如图所示的频率分布直方图.(1)质量指标值越高,海参越大、质量越好,若质量指标值低于400的为二级,质量指标值不低于400的为一级.现利用分层随机抽样的方法按比例从不低于400和低于400的样本中随机抽取10颗,再从抽取的10颗海参中随机抽取4颗,记其中一级的颗数为X ,求X 的分布列及数学期望;(2)甲、乙两人计划在某网络购物平台上参加该品牌海参的订单“秒杀”抢购活动,每人只能抢购一个订单,每个订单均由()*2,n n n ³ÎN 箱海参构成.假设甲、乙两人抢购成功的概率均为()215n +,记甲、乙两人抢购成功的订单总数量为Y ,抢到海参总箱数为Z .①求Y 的分布列及数学期望;②当Z 的数学期望取最大值时,求正整数n 的值.19.(2023·四川达州·二模)在ABC V 中,角A 、B 、C 所对的边分别为a 、b 、c ,3cos cos cos cos cos b c a aB C A B C+=+.(1)求tan tan B C ;(2)若3bc =,求ABC V 面积S 的最小值.拓展冲刺练一、单选题1.(2024·辽宁·一模)已知,R a b Î.则“0a >且0b >”是“2ab b a+³”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2.(2024·山东济宁·一模)已知ABC V 的内角,,A B C 的对边分别为,,a b c ,且3a =,cos (2)cos a B c b A =-,则ABC V 面积的最大值为( )A B C .94D .923.(2024·湖北武汉·模拟预测)在三棱锥-P ABC 中,AB =1PC =,4PA PB +=,CA -,且PC AB ^,则二面角P AB C --A B .34C .12D 4.(23-24高三上·江苏镇江·开学考试)某校在校庆期间举办羽毛球比赛,某班派出甲、乙两名单打主力,为了提高两位主力的能力,体育老师安排了为期一周的对抗训练,比赛规则如下:甲、乙两人每轮分别与体育老师打2局,当两人获胜局数不少于3局时,则认为这轮训练过关;否则不过关.若甲、乙两人每局获胜的概率分别为1p ,2p ,且满足1243p p +=,每局之间相互独立.记甲、乙在n 轮训练中训练过关的轮数为X ,若()16E X =,则从期望的角度来看,甲、乙两人训练的轮数至少为( )A .27B .24C .32D .28二、多选题5.(2024·江苏·一模)已知函数()sin 2cos2xf x x=-,则( )A .()f x 的最小正周期为πB .()f x 的图象关于点()π,0对称C .不等式()f x x >无解D .()f x 6.(23-24高三上·江苏连云港·阶段练习)已知0a >,()e 1ln 1ab -=,则( )A .1e b <<B .ln a b >C .e ln 1a b -<D .1b a -<7.(2023·全国·模拟预测)实数a ,b 满足2242a b +=,则( )A .12£abB .a b +的最大值为C .a b é-ÎêëD .()()3328a b a b ++的最大值为92三、填空题8.(2024·四川成都·模拟预测)已知实数00,x y >>,若231x y +=,则21x y +的最小值为 .9.(2024·福建漳州·模拟预测)如图,某城市有一条公路从正西方向AO 通过路口O 后转向西北方向OB ,围绕道路,OA OB 打造了一个半径为2km 的扇形景区,现要修一条与扇形景区相切的观光道MN ,则MN 的最小值为km .四、解答题10.(2023·四川资阳·模拟预测)已知0a >,0b >,且2a b +=.(1)求22a b +的最小值;(2)£.11.(22-23高一下·四川·期末)蜀绣又名“川绣”,与苏绣,湘绣,粤绣齐名,为中国四大名绣之一,蜀绣以其明丽清秀的色彩和精湛细腻的针法形成了自身的独特的韵味,丰富程度居四大名绣之首.1915年,蜀绣在国际巴拿马赛中荣获巴拿马国际金奖,在绣品中有一类具有特殊比例的手巾呈如图所示的三角形状,点D 为边BC 上靠近B 点的三等分点,60ADC Ð=°,2AD =.(1)若45ACD Ð=°,求三角形手巾的面积;(2)当ACAB取最小值时,请帮设计师计算BD 的长.12.(2024·江苏盐城·模拟预测)根据多元微分求条件极值理论,要求二元函数(,)z f x y =在约束条件(,)g x y 的可能极值点,首先构造出一个拉格朗日辅助函数(,,)(,)(,)L x y f x y g x y l l =+,其中l 为拉格朗日系数.分别对(,,)L x y l 中的,,x y λ部分求导,并使之为0,得到三个方程组,如下:(,,)(,)(,)0(,,)(,)(,)0(,,)(,)0x x x y y y L x y f x y g x y L x y f x y g x y L x y g x y l l l l l l =+=ìï=+=íï==î,解此方程组,得出解(,)x y ,就是二元函数(,)z f x y =在约束条件(,)g x y 的可能极值点.,x y 的值代入到(,)f x y 中即为极值.补充说明:【例】求函数22(,)f x y x xy y =++关于变量x 的导数.即:将变量y 当做常数,即:(,)2x f x y x y =+,下标加上x ,代表对自变量x 进行求导.即拉格朗日乘数法方程组之中的,,x y L L L l 表示分别对,,x y λ进行求导.(1)求函数222(,)2f x y x y xy xy =++关于变量y 的导数并求当1x =处的导数值.(2)利用拉格朗日乘数法求:设实数,x y 满足22(,)410g x y x y xy =++-=,求(,)2f x y x y =+的最大值.(3)①若,,x y z 为实数,且1x y z ++=,证明:22213x y z ++³.②设0a b c >>>,求221121025()a ac c ab a a b ++-+-的最小值.。
高考试题分类考点 基本不等式

考点29 基本不等式一、选择题1.(2012·陕西高考理科·T9)在ABC ∆中,角,,A B C 所对边的长分别为,,a b c ,若2222a b c +=,则cos C 的最小值为( )(A)(C)12 (D)12-【解题指南】直接利用余弦定理列出角C 的表达式,再对照已知条件,代换消元,注意保留a ,b ,消去字母c ,再利用基本不等式解答. 【解析】选C.由余弦定理得222cos 2a b c C ab +-=22222()()4a b a b ab +-+=22244a b ab ab ab +=…12=,当且仅当a b =时,min 1(cos )2C =.2.(2012·陕西高考文科·T10)小王从甲地到乙地往返的时速分别为a 和b (a b <),其全程的平均时速为v ,则 ( )(A)a v <<v =2a bv +<(D)2a b v +=【解题指南】根据基本公式:速度=路程时间计算平均速度,然后再根据基本不等式进行判断.【解析】选A. 设甲乙两地的路程为s ,则往返时间分别是1s t a=,2s t b=,所以平均速度是122s v t t =+2s ab s s a ba b==++,因为a b <,所以222ab a aa b a a >=++,2ab a b +,即a v <3.(2012·浙江高考文科·T9)若正数x ,y 满足x+3y=5xy ,则3x+4y 的最小值是( )(A)245 (B)285 (C)5 (D )6【解题指南】构造1进行代换,利用基本不等式可求出最值.【解析】选C.由x+3y=5xy 可得13155y x +=,∴3x+4y =(3x+4y )1355y x ⎛⎫+= ⎪⎝⎭9431213125555555x y y x +++≥+=(当且仅当3x 12y =5y 5x时,等号成立) ,∴3x+4y 的最小值是5.4.(2012·福建高考理科·T5)下列不等式一定成立的是( )(A)21lg()lg (0)4x x x +>>(B)1sin 2(,)sin x x k k Z x π+≥≠∈(C)212||()x x x R +≥∈(D )211()1x R x >∈+【解题指南】运用基本不等式,不等式的性质可以解题,解题时要注意利用基本不等式时等号成立的条件,关注是否可以成立. 【解析】选C. 选项具体分析结论A2211lg()lg(2)lg 44x x x +≥⋅=,当且仅当214x =时,即12x =时取等号不正确B 当sin 0x <时,不可能有1sin 2sin x x+≥ 不正确 C 由基本不等式得221||12||x x x +=+≥ 正确 D因为211x +≥,所以2111x ≤+ 不正确5.(2012·湖北高考理科·T6)设a,b,c,x,y,z 是正数,且a 2+b 2+c 2=10,x 2+y 2+z 2=40,ax+by+cz=20,则a b cx y z ++=++( ) (A)14 (B)13 (C)12 (D )34【解析】选C.设A(a,b,c),B(x,y,z), 则|OA|==, |OB|==2,|AB|====. ∴|OA|+|AB|=|OB|,∴O,A,B 三点共线,且A 为OB 的中点, ∴=2,即(x,y,z)=2(a,b,c),a b c 1a+b+c 1====.x y z 2x+y+z 2∴∴, 6.(2012·湖北高考文科·T9)设a,b,c,∈ R +,则“abc=1”是a b c abc+≤+=+c ”的( )(A)充分条件但不是必要条件 (B)必要条件但不是充分条件 (C)充分必要条件 (D)既不充分也不必要条件 【解析】选A.bc ca ab a b c abc ++=Q.()()()111222b c a c b a bc ca ab abc abc abc +++++++≤=.可知当abc=1时,可推出a b c a b c ++≤++;反之如:a=1,b=4,c=9,a b c a b c +≤++,但abc=1不成立.二、解答题7. (2012·江苏高考·T17)如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程221(1)(0)20y kx k x k =-+>表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标. (1)求炮的最大射程.(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由. 【解析】(1)在221(1)(0)20y kx k x k =-+>中,令y=0,式子221(1)(0)20y kx k x k =-+>可转化为2201kx k =+.因k>0,2202011k x k k k ==++,当且仅当1k k =即1k =时x 取最大值10. 炮的最大射程为10千米.(2)∵0a >,∴炮弹可以击中目标等价于存在0k >,使221(1)=3.220ka k a -+成立,即关于k 的方程2222064=0a kak a -++有正根.由()()222=204640a a a ∆--+≥,得6a ≤.∴当a不超过6千米时,炮弹可以击中目标.。
高考数学《基本不等式》真题练习含答案

高考数学《基本不等式》真题练习含答案一、选择题1.函数y =2x +22x 的最小值为( )A .1B .2C .22D .4 答案:C解析:因为2x >0,所以y =2x +22x ≥22x ·22x =22 ,当且仅当2x =22x ,即x =12时取“=”.故选C.2.若a >0,b >0且2a +b =4,则1ab的最小值为( )A .2B .12C .4D .14答案:B解析:∵a >0,b >0,∴4=2a +b ≥22ab (当且仅当2a =b ,即:a =1,b =2时等号成立),∴0<ab ≤2,1ab ≥12 ,∴1ab 的最小值为12.3.下列结论正确的是( )A .当x >0且x ≠1时,lg x +1lg x≥2B .当x ∈⎝⎛⎦⎤0,π2 时,sin x +4sin x的最小值为4 C .当x >0时,x +1x ≥2D .当0<x ≤2时,x -1x无最大值答案:C解析:当x ∈(0,1)时,lg x <0,故A 不成立,对于B 中sin x +4sin x≥4,当且仅当sinx =2时等号成立,等号成立的条件不具备,故B 不正确;D 中y =x -1x在(0,2]上单调递增,故当x =2时,y 有最大值,故D 不正确;又x +1x ≥2x ·1x=2(当且仅当x =1x即x =1时等号成立).故C 正确. 4.下列不等式恒成立的是( )A .a 2+b 2≤2abB .a 2+b 2≥-2abC .a +b ≥2|ab |D .a +b ≥-2|ab | 答案:B解析:对于A ,C ,D ,当a =0,b =-1时,a 2+b 2>2ab ,a +b <2ab ,a +b <-2|ab | ,故A ,C ,D 错误;对于B ,因为a 2+b 2=|a |2+|b |2≥2|a |·|b |=2|ab |≥-2ab ,所以B 正确.故选B.5.若x >0,y >0,x +2y =1,则xy2x +y的最大值为( )A .14B .15C .19D .112答案:C解析:x +2y =1⇒y =1-x 2 ,则xy2x +y =x -x 23x +1 .∵x >0,y >0,x +2y =1,∴0<x <1.设3x +1=t (1<t <4),则x =t -13,原式=-t 2+5t -49t =59 -⎝⎛⎭⎫t 9+49t ≤59 -2481 =19 ,当且仅当t 9 =49t ,即t =2,x =13 ,y =13 时,取等号,则xy 2x +y 的最大值为19 ,故选C.6.已知a >0,b >0,c >0,且a 2+b 2+c 2=4,则ab +bc +ac 的最大值为( )A .8B .4C .2D .1 答案:B解析:∵a 2+b 2≥2ab ,a 2+c 2≥2ac ,b 2+c 2≥2bc ,∴2(a 2+b 2+c 2)≥2(ab +bc +ca ),∴ab +bc +ca ≤a 2+b 2+c 2=4.7.若直线x a +yb=1(a >0,b >0)过点(1,1),则a +b 的最小值等于( )A .2B .3C .4D .5 答案:C解析:因为直线x a +y b =1(a >0,b >0)过点(1,1),所以1a +1b=1.所以a +b =(a +b )·⎝⎛⎭⎫1a +1b =2+a b +b a ≥2+2a b ·b a =4,当且仅当a b =b a 即a =b =2时取“=”,故选C.8.若向量a =(x -1,2),b =(4,y ),a 与b 相互垂直,则9x +3y 的最小值为( ) A .12 B .2 C .3 D .6 答案:D解析:∵a ⊥b ,∴a ·b =(x -1,2)·(4,y )=4(x -1)+2y =0,即2x +y =2, ∴9x +3y =32x +3y ≥232x +y =232 =6,当且仅当2x =y =1时取等号,∴9x +3y 的最小值为6.9.用一段长8 cm 的铁丝围成一个矩形模型,则这个模型面积的最大值为( ) A .9 cm 2 B .16 cm 2 C .4 cm 2 D .5 cm 2 答案:C解析:设矩形模型的长和宽分别为x cm ,y cm ,则x >0,y >0,由题意可得2(x +y )=8,所以x +y =4,所以矩形模型的面积S =xy ≤(x +y )24 =424 =4(cm 2),当且仅当x =y =2时取等号,所以当矩形模型的长和宽都为2 cm 时,面积最大,为4 cm 2.故选C.二、填空题10.已知a ,b ∈R ,且a -3b +6=0,则2a +18b 的最小值为________.答案:14解析:∵a -3b +6=0,∴ a -3b =-6,∴ 2a +18b =2a +2-3b ≥22a ·2-3b =22a -3b=22-6 =14 .当且仅当2a =2-3b ,即a =-3,b =1时,2a +18b 取得最小值为14.11.已知函数f (x )=4x +ax(x >0,a >0)在x =3时取得最小值,则a =________.答案:36解析:∵x >0,a >0,∴4x +a x ≥24x ·ax=4 a ,当且仅当4x =a x ,即:x =a 2 时等号成立,由a2 =3,a =36.12.[2024·山东聊城一中高三测试]已知a >0,b >0,3a +b =2ab ,则a +b 的最小值为________.答案:2+3解析:由3a +b =2ab , 得32b +12a=1, ∴a +b =(a +b )⎝⎛⎭⎫32b +12a =2+b 2a +3a2b ≥2+2b 2a ·3a 2b =2+3 (当且仅当b 2a =3a2b即b =3 a 时等号成立).[能力提升]13.[2024·合肥一中高三测试]若a ,b 都是正数,则⎝⎛⎭⎫1+b a ⎝⎛⎭⎫1+4ab 的最小值为( ) A .7 B .8C .9D .10 答案:C解析:⎝⎛⎭⎫1+b a ⎝⎛⎭⎫1+4a b =5+b a +4ab≥5+2b a ·4a b =9(当且仅当b a =4ab即b =2a 时等号成立).14.(多选)已知a >0,b >0,且a +b =1,则( )A .a 2+b 2≥12B .2a -b >12C .log 2a +log 2b ≥-2D . a + b ≤2 答案:ABD解析:对于选项A ,∵a 2+b 2≥2ab ,∴2(a 2+b 2)≥a 2+b 2+2ab =(a +b )2=1,∴a 2+b 2≥12,正确;对于选项B ,易知0<a <1,0<b <1,∴-1<a -b <1,∴2a -b >2-1=12,正确;对于选项C ,令a =14 ,b =34 ,则log 214 +log 234 =-2+log 234 <-2,错误;对于选项D ,∵2 =2(a +b ) ,∴[2(a +b ) ]2-( a + b )2=a +b -2ab =( a - b )2≥0,∴ a + b ≤2 ,正确.故选ABD.15.(多选)已知a ,b ,c 为正实数,则( )A .若a >b ,则ab <a +c b +cB .若a +b =1,则b 2a +a 2b 的最小值为1C .若a >b >c ,则1a -b +1b -c ≥4a -cD .若a +b +c =3,则a 2+b 2+c 2的最小值为3 答案:BCD解析:因为a >b ,所以a b -a +c b +c =c (a -b )b (b +c ) >0,所以ab >a +c b +c ,选项A 不正确;因为a +b =1,所以b 2a +a 2b =⎝⎛⎭⎫b 2a +a +⎝⎛⎭⎫a 2b +b -(a +b )≥2b +2a -(a +b )=a +b =1,当且仅当a =b =12 时取等号,所以b 2a +a 2b的最小值为1,故选项B 正确;因为a >b >c ,所以a -b >0,b -c >0,a -c >0,所以(a -c )⎝ ⎛⎭⎪⎫1a -b +1b -c =[](a -b )+(b -c )⎝ ⎛⎭⎪⎫1a -b +1b -c =2+b -c a -b +a -b b -c≥2+2b -c a -b ·a -bb -c=4,当且仅当b -c =a -b 时取等号,所以1a -b +1b -c ≥4a -c,故选项C 正确;因为a 2+b 2+c 2=13 [(a 2+b 2+c 2)+(a 2+b 2)+(b 2+c 2)+(c 2+a 2)]≥13(a 2+b 2+c 2+2ab +2bc +2ca )=13 [(a +b )2+2(a +b )c +c 2]=13 (a +b +c )2=3,当且仅当a =b =c =1时等号成立,所以a 2+b 2+c 2的最小值为3,故选项D 正确.16.某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.答案:30解析:一年的总运费为6×600x =3 600x(万元).一年的总存储费用为4x 万元. 总运费与总存储费用的和为⎝⎛⎭⎫3 600x +4x 万元.因为3 600x +4x ≥2 3 600x ·4x =240,当且仅当3 600x =4x ,即x =30时取得等号,所以当x =30时,一年的总运费与总存储费用之和最小.。
基本不等式-高考文科数学专题练习

一、填空题1.已知0<x <1,则x (3-3x )取得最大值时x 的值为________.解析:∵0<x <1,∴x (3-3x )=3x (1-x )≤3[x +(1-x )2]2=34, 此时x =1-x ,∴x =12.答案:122.已知x ,y 为正数,则x 2x +y +y x +2y的最大值为________. 解析:依题意,得x 2x +y +y x +2y =x 2+4xy +y 22x 2+5xy +2y 2=x 2+52xy +y 2+32xy2x 2+5xy +2y 2=12+32xy 2x 2+5xy +2y 2=12+32·12x 2+5xy +2y 2xy=12+32·12x y +2y x +5≤12+32×19=12+16=23,当且仅当x =y 时取等号.答案:233.已知a >0,b >0,则1a +1b +2ab 的最小值是________.解析:1a +1b +2ab ≥2 1ab +2ab ≥4,当且仅当a =b =1时取“=”.答案:44.不等式4x +a ·2x +1≥0对一切x ∈R 恒成立,则a 的取值范围是________.解析:由题可得a ≥-12x -2x 恒成立,由基本不等式可知-12x -2x ≤-2,所以a ≥-2.答案:[-2,+∞)5.当x 2-2x <8时,函数y =x 2-x -5x +2的最小值是________. 解析:由x 2-2x <8,得-2<x <4.设x +2=t ,则t ∈(0,6).y =(t -2)2-(t -2)-5t =t 2-5t +1t =t +1t -5≥2 t ·1t -5=-3.当且仅当t =1时取“=”.答案:-36.x ,y ,z ∈R +,x -2y +3z =0,y 2xz 的最小值是________. 解析:由x -2y +3z =0,得y =x +3z 2,将其代入y 2xz ,得x 2+9z 2+6xz 4xz ≥6xz +6xz 4xz =3,当且仅当x =3z 时取“=”.答案:37.设a >0,b >0,且不等式1a +1b +k a +b≥0恒成立,则实数k 的最小值等于________. 解析:由1a +1b +k a +b≥0得k ≥-(a +b )2ab ,而(a +b )2ab =b a +a b +2≥4(a =b 时取等号),所以-(a +b )2ab ≤-4,因此要使k ≥-(a +b )2ab 恒成立,应有k ≥-4,即实数k 的最小值等于-4.答案:-48.已知m 、n 、s 、t ∈R +,m +n =2,m s +n t =9,其中m 、n 是常数,且s +t 的最小值是49,满足条件的点(m ,n )是圆(x -2)2+(y -2)2=4中一弦的中点,则此弦所在的直线方程为________.解析:因(s +t )(m s +n t )=m +n +tm s +sn t ≥m +n +2mn ,所以m +n +2mn =4,从而mn =1,得m =n =1,即点( 1,1),而已知圆的圆心为(2,2),所求弦的斜率为-1,从而此弦的方程为x +y -2=0.答案:x +y -2=09.从等腰直角三角形纸片ABC 上,剪下如图所示的两个正方形,其中BC =2,∠A =90°,则这两个正方形的面积之和的最小值为________.解析:设两个正方形边长分别为a ,b ,则由题意可得a +b =1,且13≤a ,b ≤23,S =a 2+b 2≥2×(a +b 2)2=12,当且仅当a =b =12时取等号. 答案:12二、解答题10.已知lg(3x )+lg y =lg(x +y +1).(1)求xy 的最小值;(2)求x +y 的最小值.解析:由lg(3x )+lg y =lg(x +y +1),得⎩⎨⎧ x >0,y >0,3xy =x +y +1,(1)∵x >0,y >0,∴3xy =x +y +1≥2xy +1,∴3xy -2xy -1≥0,即3(xy )2-2xy -1≥0,∴(3xy +1)(xy -1)≥0,∴xy ≥1,∴xy ≥1,当且仅当x =y =1时,等号成立.∴xy 的最小值为1.(2)∵x >0,y >0,∴x +y +1=3xy ≤3·(x +y 2)2,∴3(x +y )2-4(x +y )-4≥0,∴[3(x +y )+2][(x +y )-2]≥0,∴x +y ≥2,当且仅当x =y =1时取等号,∴x +y 的最小值为2.11.在锐角△ABC 中,已知内角A 、B 、C 所对的边分别为a 、b 、c ,向量m =(2sin(A +C ),3),n =(cos 2B ,2cos 2 B 2-1),且向量m 、n 共线.(1)求角B 的大小;(2)如果b =1,求△ABC 的面积S △ABC 的最大值.解析:(1)∵m ∥n ,∴2sin (A +C )(2cos 2 B 2-1)-3cos 2B =0. 又∵A +C =π-B ,∴2sin B cos B =3cos 2B ,即sin 2B =3cos 2B .∴tan 2B =3,又∵△ABC 是锐角三角形,∴0<B <π2,∴0<2B <π,∴2B =π3,故B =π6.(2)由(1)知:B =π6,且b =1,由余弦定理得b 2=a 2+c 2-2ac cos B ,即a 2+c 2-3ac =1.∴1+3ac =a 2+c 2≥2ac ,即(2-3)ac ≤1,∴ac ≤12-3=2+3,当且仅当a =c =6+22时,等号成立. ∴S △ABC =12ac sin B =14ac ≤2+34.∴△ABC 的面积最大值为2+34.12.为了保护一件珍贵文物,博物馆需要在一种无色玻璃的密封保护罩内充入保护气体.假设博物馆需要支付的总费用由两部分组成:①保护罩的容积大于0.5立方米,罩内该种气体的体积比保护罩的容积少0.5立方米,且每立方米气体的费用为1千元;②需支付一定的保险费用,且支付的保险费用与保护罩容积成反比,当容积为2立方米时,支付的保险费用为8千元.(1)求博物馆支付的总费用y (单位:千元)与保护罩的容积V (单位:立方米)之间的函数关系式;(2)求博物馆支付的总费用y (单位:千元)的最小值;(3)如果要求保护罩为正四棱柱形状,且保护罩的底面(不计厚度)正方形的边长不得少于1. 1米,高规定为2米.当博物馆需支付的总费用不超过8千元时,求保护罩的底面积的最小值(可能用到的数据:8.25≈2.87,结果保留一位小数).解析:(1)依据题意,当保护罩的容积等于V 时,需支付的保险费用为k V (其中k为比例系数,k >0),且当V =2时,k V =8,所以k =16,所以y =1·(V -0.5)+16V =V +16V -0.5(V >0.5).(2)y =V +16V -0.5≥7.5,并且仅当V =16V ,即V =4时等号成立,所以,博物馆支付的总费用的最小值为7.5千元.(3)设S (单位:平方米)为底面正方形的面积,由题意得不等式:V +16V -0.5≤8,V =2S ,代入整理得4S 2-17S +16≤0,解得1.41≈8.5-8.254≤S ≤8.5+8.254≈2.84. 又底面正方形的面积最小不得少于1.1×1.1=1.21,所以,保护罩的底面积的最小值是1.4平方米.。
高考真题与模拟训练 专题14 基本不等式(解析版)

专题14 基本不等式第一部分真题分类1.(2021·江苏高考真题)已知奇函数()f x 是定义在R 上的单调函数,若正实数a ,()()240f a f b +-=则11a +A 3B C .2D .4【答案】B0,所以因为奇函数()f x 是定义在R 上的单调函数,,所以24a b =-,即24a b +=,6,即⎭⎦⎦=,即1,32a b ==时取等号,故选:B2.(2021·C 的最大值为()A .13B .12C .9D .6【答案】C4,则123MF MF ==时,等号成立).故选:C .3.(2021·γ是互不相同的锐角,则在A .0B .1C .2D .3【答案】C【解析】法1故sin cos sin cos sin cos αββγγα++≤α不可能均大于62,故选:C.法2,则cos cos cos ,sin sin sin αβγαβγ>><<,由排列不等式可得:sin cos sin cos sin cos sin cos sin cos sin cos αββγγααγββγα++≤++,α不可能均大于取6α=,3πβ=,γ=2,故选:C.4.(2021·全国高考真题(文))下列函数中最小值为4的是()A 4B CD .4ln ln y x x=+【答案】C【解析】对于A ,()2224133y x x x =++=++≥,当且仅当1x =-时取等号,所以其最小值为3,A 不符合题意;对于B ,因为0sin 1x <≤,4sin 4sin y x x=+≥=2x =时取等号,等号取不到,所以B 不符合题意;对于C20x >,即1x =时取C 符合题意;对于D ,ln y x =()()0,11,+∞ ,而ln x R ∈且ln 0x ≠,如当5y =-,D 不符合题意.故选:C .5.(2019·北京高考真题(理))数学中有许多形状优美、寓意美好的曲线,曲线C 就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C ;③曲线C 所围成的“心形”区域的面积小于3.其中,所有正确结论的序号是A .①B .②C .①②D .①②③【答案】Cy 2222||3341,10,2443x x x y x ⎛⎫-=-- ⎪⎝⎭……,x 可为的整数有0,-1,1,从而曲线22:1C x y x y +=+恰好经过(0,1),(0,-1),(1,0),(1,1), (-1,0),(-1,1)六个整点,结论①正确.由221x y x y +=+得,222212x y x y +++…,所以曲线C 上任意一点到原点的距离都不超过 结论②正确.如图所示,易知()()()()0,1,1,0,1,1,,0,1A B C D -,ABCD 很明显“心形”区域的面积大于2ABCD S ,即“心形”区域的面积大于3,说法③错误.故选C.6.(2020·海南高考真题)已知a >0,b >0,且a +b =1,则()A .2212a b +≥BC 2D 【答案】ABD【解析】对于A ,()222221221a b a a a a +=+-=-+21211222a ⎛⎫⎪⎭+ ⎝≥-=,A 正确;对于B 1122a b-->=B 正确;对于C 当且仅当12a b ==时,等号成立,故C 不正确;对于D2D 正确;故选:ABD7.(2021·天津高考真题)若0 , 0a b >>,则21a b ab ++的最小值为____________.2a212a b b a b b b ∴++≥=+≥=的最小值为.8.(2020·01ab =182b a b++的最小值为_________.【答案】4842a b a b +=+≥=+,当且仅当a b+=4时取等号,结合1ab =,.49.(2020·),则22x y +的最小值是_______.5102x5.∴22x y +.10.(2019·天津高考真题(文))设0x >,0y >(1)(21)x y xy ++的最小值为__________.4,得24x y +=≥,得2xy ≤等号当且仅当2x y =,即2,1x y ==时成立.11.(2021·江苏高考真题)某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y 万元与60吨,最大为110吨.(1)年产量为多少吨时,生产每吨产品的平均成本最低?并求最低平均成本;(2)若每吨产品的平均出厂价为24万元,且产品能全部售出,则年产量为多少吨时,可以获得最大利润?并求最大利润.【答案】(1)年产量为100吨时,平均成本最低为16万元;(2)年产量为110吨时,最大利润为860万元.【解析】(12000245x x=+-=时,即100x =取“=”,符合题意;∴年产量为100吨时,平均成本最低为16万元.(2110,∴当答:年产量为110吨时,最大利润为860万元.12.(2020·全国高考真题(文))设a ,b ,,a +b +c =0,abc =1.(1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c .【答案】(1)证明见解析(2)证明见解析.【解析】(1,0()222120ab bc ca a b c ∴++=-++<;(2)不妨设max{,,}a b c a =,1可知,0,0,0a b c ><<,bc 当且仅当b c =时,取等号,4,即第二部分模拟训练一、单选题1()142f x x x '≥+--,则不A B .()()1,0,e -⋃+∞C .()()0,2,e ⋃+∞D .()()1,02,-⋃+∞【答案】D3是定义在的图像关于点()2,3时,20x ->,时取等号,()2,+∞上单调递增,的图像关于点()2,3中心对称,在()()30ln10f xx⎧->⎪⎨+>⎪⎩,即,解得2x>,,解得10x-<<,,故选:D2,,A B是上、下顶点,P大值为120°,若((,0,M N4PN+的最小值为()A.9B.3C3D.32【答案】D【解析】由题可得,椭圆焦点在y轴上,且当P 为左右顶点时,APB∠取最大值为120°,,又3b=为椭圆焦点,则()441141566PN PMPM PNPN PM PN PM PN⎛⎫⎛⎫+=++=++⎪ ⎪⎪⎪⎝⎭⎝⎭32.故选:D.3.已知正数m ,n 2则32m n +的最小值为()A .24B .18C .16D .12【答案】A2()233232m n m n m n ⎛⎫+=++= ⎪⎝⎭,6n =时取等号.故选:A42F 1F 的直线l 与双曲线的左右两支分别交于A ,B 两点,若△2ABF 为等边三角形,则221b a +的最小值为()AB C .6+D 【答案】Da ,又2BA BF =由双曲线定义知212AF AF a -=,得24AF a =,2,6.故选:D.5.已知平面向量a ,b·1a b =A .1BC .2D 【答案】D【解析】平面向量a ,b∴,时取等号,|的最小值为故选:D .6的图象在1x =A .1BC .3-D .3+【答案】D可得函数()f x 的图象在1x =处的切线斜率为2+a b ,0垂直,可得(0,0)a b >>,即1a ==-时,取得等号,的最小值为3+,.7.已知ABC cos sin 0A a C +=,若角A 的平分线交点,且1AD =,则( )AB 3C D 【答案】C0及正弦定理,得因为(0,180)C ∈︒0,所以,即tan A =,),所以120A =︒.如图,ABC ABD ACD S S S =+ ,c∴()11224b c b c b c c b ⎛⎫+⋅+=++≥+=⎪⎝⎭,当且仅当c b =,bc b c =+,即2c b ==时,等号成立,c 的最小值为4.故选:C.8中,//AB CD ,ADB ∠的最大值为()A B C D .23π【答案】Ba ,则的中点M ,延长AB 到N 点,使BN a =,由平面几何知识MC ,m ,MBC 中,在NBC 中,222)2cos()n a a MBC π=+-⨯⋅-∠,,在ABD △中,又∵22228mn m n a +=…,∴222441cos 282a a ADB mn a ∠==…,ADB故选:B二、填空题9l ,若l 的倾斜角的取值范围是,42ππ⎡⎫⎪⎢⎣⎭,则实数a =______.8【解析】 ,0x >,2ax x=时等号成立,l的倾斜角的取值范10.对于任意的正实数a ,b,则范围为___________.【答案】,12⎫⎪⎪⎣⎭【解析】法一:转化为斜率先看作3Aab⎛⨯⎝⎭A在故ABk 最小值为相切时取得,5)联0舍)极限思想)范法二:0)当且仅当1x=时取等号,再令22m=+>1,又x→+∞范故答案为:,12⎫⎪⎪⎣⎭11.已知向量||||||1a b c===2c xa yb=+,则x y+的最大值为____.|a与的夹角为60︒,设(1,0)a =,,∴221122x y y ⎛⎫⎛⎫++=⎪ ⎪ ⎪⎝⎭⎝⎭,化简得221x xy y ++=,∴22()()14x y x y xy ++-=…12.在正项等比数列{}n a 1,前三项的和为7,若存使__________.3【解析】依依题意存在*,m n ∈N ,使14a =,16,即1122241112162m n m n m n a qa q a q --+-+-⋅=⋅===,,.n三、解答题131.(1)求不等式()2f x x m +->的解集﹔(2【答案】(12)3.【解析】解:(133x x m x x m m -+-≥-+-=-,当且仅当()()30x x m --≥时,的最小值为12,∴∴()2f x x m +->,等价于3242x x -+->.3时,所求不等式等价于3112x -+>,解得4时,所求不等式等价于,解得3x <,与条件矛盾;当4x ≥133x >,符合题意.综(2422232362a b c m ++==.∴()()2222222623222a b c a c b c ac bc =++=+++≥+..当且仅当1a b c ===±时,3.14x 的不等式(1)若存,使不等式()002f x x m -≥范围;(2有三个不同的实数解,求实数k的取值范围.【答案】(1⎦2【解析】解:(10的解集为∴121,3x x =-=是方程2210ax x b -++=的两个根,14a b =⎧⎨=-⎩,∴存,使不等式()002f x x m -≥成立,[]1,3x ∈上有解,x∴m 的取值范围为(,2⎤-∞--⎦;(2,1xt -=,则12,t t ,其中1201,1t t <<>,或,32k >,或()()023********2h k h k k ⎧⎪=->⎪=--=⎨⎪+⎪<<⎩②,不等式组②无实数解,∴实数k的取值范15.已知()34f x x x =-++.(1的解集;(2k 【答案】(1){}54x x -≤≤;(2)1.【解析】(1,解得,此时54x -≤≤-;3时,当3x ≥,解得4x ≤,此时34x ≤≤.综上所述9的解集为(2)由绝,的最小值为()22222222216191619161 916251494949b a a b b a b a b ⎛⎛⎫⎛⎫+=++=+++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝21,1.16,其中常(1)判断偶性,并说明理由;(2a 的取值范围;(3定义域内的任意x ,都有,则函数()y h x =的图利用以上结论探究()y f x =是否都有对称中心?若是,求出对称中心的坐标();若不是,证明你的结论.【答案】(1)答案见解析;(23【解析】(10时,),.0时,,所以不是奇函数也不是偶函数.(2)原问x1,12⎡⎤⎢⎥⎣⎦有解,则min 122a x x ⎛⎫>+ ⎪⎝⎭,1,12⎡⎤⎢⎥⎣⎦单调递减,52a >,所以a 的取值范围是5(,)2+∞.(3)假设存),则成立,成立3。
新高考数学复习考点知识与题型专题练习7---基本不等式(解析版)

新高考数学复习考点知识与题型专题练习7 基本不等式一、 选择题:本题共8小题,在每小题给出的四个选项中,只有一项是符合题目要求的 二、1. 函数2(2)y x x =-2. (其中02x <<)的最大值是()A .14B .12C .1D .2【答案】D【解析】因为02x <<,可得022x <-<, 所以222(2)2()22x x y x x +-=-≤⨯= ,当且仅当2x x =-时,即1x =时,等号成立,所以函数2(2)y x x =-的最大值是2.故选:D.3. 已知0a >4. ,0b >,且2ab =,那么()A .4a b +≥B .4a b +≤C .224a b +≥D .224a b +≤【答案】C【解析】因为0a >,0b >,由基本不等式可得a b +≥=2224a b ab +≥=,上述两个不等式当且仅当a b ==ABD 选项错误,C 选项正确.故选:C.3.设0<x <1,则4x +11x -的最小值为()A .10B .9C .8D .272【答案】B【解析】01x <<,10x ∴->,()4141111x x x x x x ⎛⎫+=+-⋅+⎡⎤ ⎪⎣⎦--⎝⎭()4141552291x xx x -=+++≥+=+⨯=-当且仅当()411x xx x -=-,即23x =时,等号成立.411x x∴+-的最小值为9.故选:B5. 已知a >1,b >1,记M =11a b+ 6. ,N,则M 与N 的大小关系为() A .M >NB .M =NC .M <ND .不确定【答案】A【解析】因为1,1a b >>,所以11a b M a b ab +=+=≥,当且仅当11a b=取等号,N=>=, 故选:A .5.已知函数()411y x x x =+>-,则函数的最小值等于()A .B .1C .5D .9 【答案】C【解析】因为1x >,所以44(1)11511y x x x x =+=-++≥=--, 当且仅当411x x -=-,即3x =时,等号成立.故选:C.7. 已知实数a >0,b >0,且满足ab ﹣a ﹣2b ﹣2=0,则(a +1)(b +2)的最小值为()8.A .24B .13 C .13D .25【答案】D【解析】因为ab ﹣a ﹣2b ﹣2=0,所以b 22a a +=-,又a >0,b >0,所以22a a +->0,解得a >2,又b 22a a +==-142a+-,所以(a+1)(b+2)=ab+2a+b+2=a+2b+2+2a+b+2=3a+3b+4=3a122 a++-7=3(a﹣2)122a++-131325≥=,当且仅当3(a﹣2)122a=-即a=4时等号成立,即(a+1)(b+2)的最小值为25.故选:D.7.已知x≥5 2,则y=24524x xx-+-有()A.最大值54B.最小值54C.最大值1 D.最小值1【答案】D【解析】y=245 24 x xx-+-=2(2)12(2)x x -+-=11[(2)]22x x -+-,因为x ≥52,所以x -2>0,所以111[(2)]222x x -+≥⋅-当且仅当x -2=12x -,即x =3时取等号.故y 的最小值为1,没有最大值.故选:D9. 已知m >0,n >0,m +n =1且x =m +1m10. ,y =n +1n ,则x +y 的最小值是()A .4B .5C .8D .10【答案】B【解析】依题意有x +y 11m n m n =+++111()m n m n ⎛⎫=+++ ⎪⎝⎭3n mm n =++当且仅当12m n ==时取等号. 故选:B .二、选择题:本题共4小题,在每小题给出的选项中,有多项符合题目要求.9.下列说法正确的是()A .()10x xx +>的最小值是2B 2C 22D .423x x--的最小值是2-【答案】AB【解析】当0x >时,12x x +≥=(当且仅当1x x =,即1x =时取等号),A 正确; 2=20x ≥2≥B 正确; 222==≥=,即23x =-时,等号成立,显然不成立,故C 错误;当1x =时,42323452x x--=--=-<-D 错误. 故选:AB.10.某公司一年购买某种货物800吨,现分次购买,设每次购买x 吨,运费为8万元/次.已知一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和y 最小,则下列说法正确的是() A .当40x =时,y 取得最小值B .当45x =时,y 取得最小值C .min 320y =D .min 360y =【解析】一年购买某种货物800吨,每次购买x 吨,则需要购买800x次,又运费是8万元/次,一年的总存储费用为4x 万元, 所以一年的总运费与总存储费用之和80084y x x =⨯+万元.因为80084320y x x =⨯+≥,当且仅当64004x x =,即40x =时,等号成立, 所以当40x =时,y 取得最小值,min 320y =.故选:AC .11.设正实数m 、n 满足2m n +=,则下列说法中正确的是()A .124m n ->B .mn 的最大值为1C 的最小值为2D .22m n +的最小值为2 【答案】ABD【解析】对于A 选项,因为正实数m 、n 满足2m n +=,则02m <<,()()2222,2m n m m m -=--=-∈-,故21224m n -->=,A 对; 对于B 选项,由基本不等式可得212m n mn +⎛⎫≤= ⎪⎝⎭,当且仅当1m n ==时,等号成立,B 对;对于C 选项,由基本不等式可得()222m n m n =+++=,02,当且仅当1m n ==时,等号成立,C 错;对于D 选项,()()()()222222222224m n m n m n m n mn m n +=+++≥++=+=, 可得222m n +≥,当且仅当1m n ==时,等号成立,D 对.故选:ABD.12.下列推导过程,正确的为()A .因为a 、b 为正实数,所以2b a a b +≥=B .因为x ∈R ,所以2111x >+C .因为0a <,所以44a a +≥D .因为x 、y R ∈,0xy <,所以2x y x y y x y x ⎡⎤⎛⎫⎛⎫+=--+-≤-=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦当且仅当x y =时,等号成立..【答案】AD 【解析】对于A 选项,因为a 、b 为正实数,则b a 、a b为正实数,由基本不等式可得2b a a b +≥=,当且仅当a b =时,等号成立,A 选项正确; 对于B 选项,211x +≥,所以,21011x <≤+,B 选项错误;对于C 选项,当0a <时,()444a a a a ⎡⎤⎛⎫+=--+-≤-=- ⎪⎢⎥⎝⎭⎣⎦, 当且仅当2a =-时,等号成立,C 选项错误;对于D 选项,因为x 、y R ∈,0xy <,则y x 、x y 均为负数,由基本不等式可得2x y x y y x y x ⎡⎤⎛⎫⎛⎫+=--+-≤--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦, 当且仅当x y =时,等号成立,D 选项正确.故选:AD.三、填空题:本题共4小题.13.已知对任意(),0,x y ∈+∞,且23x y +=,11221t x y ≤+++恒成立,则t 的取值范围_______________ 【答案】23t ≤ 【解析】因为,(0,)x y ∈+∞,23x y +=,则2216x y +++=,[]111111212()(2)(21)(11)22162216221y x x y x y x y x y +++=++++=+++++++++12(263≥+=, 当且仅当221122x y y x =++++,即1x y ==时,等号成立; 因此为使11221t x y ≤+++恒成立,只需23t ≤, 故答案为:23t ≤ 14.若0mn >,143m n +=,则m n +的最小值为______ 【答案】3【解析】因为0mn >,143m n+=,所以0m >,0n >, 所以()11531434n m m n m n m n n m ⎛⎫+=+ ⎪⎝⎭⎛⎫+=++ ⎪⎝⎭()115523233⎛≥+=+= ⨯⎝, 当且仅当4143n m m n m n⎧=⎪⎪⎨⎪+=⎪⎩即12m n =⎧⎨=⎩时等号成立, 所以m n +的最小值为3.故答案为:3.15.某商品进货价每件50元,据市场调查,当销售价格(每件x 元)在50<x ≤80时,每天售出的件数P =5210(40)x -,若想每天获得的利润最多,则销售价格每件应定为________元. 【答案】60【解析】解析设销售价格定为每件x (50<x ≤80)元,每天获得利润为y 元,则y =(x -50)·P =5210(50)(40)x x --, 设x -50=t ,则0<t ≤30,所以y =5210(10)t t +=521020100t t t ++=31010020t t ++5=2500, 当且仅当t =10,即x =60时,y max =2500.故答案为:60.16.已知0a b >>,那么当代数式()24a b a b +-取最小值时,点(),P a b 的坐标为______ 【答案】(2,1)【解析】解:由0a b >>,得0a b ->, 所以22()24b a b a b a b +-⎛⎫-≤= ⎪⎝⎭,当且仅当b a b =-,即2a b =时取等号, 所以()22241616a a b a b a+≥+≥-,其中第一个不等式等号成立的条件为2a b =,第二个不等式等号成立的条件为2216a a =, 所以当()24a b a b +-取最小值时,221620a a a b a b ⎧=⎪⎪=⎨⎪>>⎪⎩,解得21a b =⎧⎨=⎩ 所以点(),P a b 的坐标为(2,1),故答案为:(2,1)四、解答题:本题共6小题.解答应写出文字说明、证明过程或演算步骤.17.已知a ,0b >,且121a b+=,当ab 取最小值时,求a ,b 的值. 【答案】2a =,4b =【解析】由题意知0a >,0b >,由基本不等式,得12a b +≥.因为121a b +=,所以1≥,故8ab ≥. 当且仅当12a b=,即2a =,4b =时等号成立. 因此,ab 取最小值8时,2a =,4b =.18.(1)若正实数x ,y 满足26x y xy ++=,求xy 的最小值;(2)若实数x ,y 满足221x y xy ++=,求x y +的最大值.【答案】(1)18;(2【解析】(1)因为266xy x y =++≥,()0t t >,即26t ≥+,即(0t t -+≥,所以t ≥18xy ≥,当且仅当2x y =且26x y xy ++=,即3x =,6y =时等号成立.所以xy 的最小值为18.(2)()()()22223124x y x y xy x y x y +⎛⎫=+-≥+-=+ ⎪⎝⎭,所以()243x y ≥+,所以x y +≤,当且仅当0x y =>且221x y xy ++=,即x y ==时等号成立.所以x y +19.已知,a b 为正数,求证:)221142a ba b +≥+.【答案】见解析【解析】证明:因为0,0a b >>,所以2148(2)()6662(1b a a b a b a b ++=++≥+=+当且仅当8b a a b=,即b =时,等号成立,因为20a b +>,所以)221142a ba b +≥+. 20.(1)设302x <<,求4x (3-2x )的最大值; (2)已知a >b >c ,求()11()a c a b b c -+--的最小值. 【答案】(1)92;(2)4. 【解析】(1)∵302x <<,∴3-2x >0, ∴4x (3-2x )=2[2x (3-2x )]≤()22329222x x +-⎡⎤=⎢⎥⎣⎦. 当且仅当2x =3-2x ,即34x =时,等号成立. ∴4x (3-2x )的最大值为92. (2)()()()1111()()a c a b b c a b b c a b b c ⎡⎤-+=-+-+⎣⎦---- 2b c a b a b b c--=++-- ∵a >b >c ,∴a -b >0,b -c >0,∴2b c a b b c a b -++≥---, 当且仅当a -b =b -c ,即2b =a +c 时取等号,∴()11()a c a b b c-+--的最小值为4. 21.北京、张家港2022年冬奥会申办委员会在俄罗斯索契举办了发布会,某公司为了竞标配套活动的相关代言,决定对旗下的某商品进行一次评估.该商品原来每件售价为25元,年销售8万件.(1)据市场调査,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(2)为了抓住申奥契机,扩大该商品的影响力,提高年销售量.公司决定立即对该商品进行全面技术革新和营销策略改革,并提高定价到x 元.公司拟投入21(600)6x -万作为技改费用,投入50万元作为固定宣传费用,投入5x 万元作为浮动宣传费用.试问:当该商品改革后的销售量a 至少应达到多少万件时,才可能使改革后的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.【答案】(1)40;(2)a 至少达到10.2万件时,才可能使改革后的销售收入不低于原收入与总投入之和,此时该商品的每件定价为30元.【解析】(1)设每件定价为t 元,依题意得2580.22581t t -⎛⎫-⨯≥⨯ ⎪⎝⎭,整理得26510000t t -+≤,解得:25≤t ≤40.所以要使销售的总收入不低于原收入,每件定价最多为40元.(2)依题意知:当x >25时,不等式()2112585060065ax x x ≥⨯++-+有解,等价于 x >25时,1501165a x x ≥++有解.由于15016x x +≥,当且仅当1501=6x x ,即x =30时等号成立,所以a ≥10.2. 当该商品改革后的销售量a 至少达到10.2万件时,才可能使改革后的销售收入不低于原收入与总投入之和,此时该商品的每件定价为30元.22.已知a ,b ,c 均为正数,a ,b ,c 不全相等.求证:.bc ac ab a b c a b c++>++ 【答案】证明见解析.【解析】证明 ∵a >0,b >0,c >0,∴2bc ac c a b +≥,2ac ab a b c +≥,2bc ab b a c +≥. 当且仅当a=b=c 时上式等号均成立, 又a ,b ,c 不全相等,故上述等号至少有一个不成立. 故三个式子相加,得()22.bc ac ab a b c ab c ⎛⎫++>++ ⎪⎝⎭ ∴.bc ac ab a b c a b c++>++.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
温馨提示:
此题库为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,关闭Word 文档返回原板块。
考点26 基本不等式
一、选择题
1.(2015·四川高考文科·T9)设实数,x y 满足2102146x y x y x y +≤⎧⎪
+≤⎨⎪+≥⎩
,则xy 的最大值为( )
(A)
252 (B) 492
(C) 12 (D)14 【解题指南】利用基本不等式解题
【解析】选A 由条件得:()25y x ≤-。
于是,()2
52525222x x xy x x +-⎛⎫≤-≤= ⎪
⎝⎭。
xy 当且仅当5,52x y =
=时取到最大值252。
经验证,5
,52
x y ==在可行域内。
故选A 。
2..(2015·四川高考理科·T9)如果函数f(x)=21(m-2)x 2
+(n-8)x+1(m ≥0,n ≥0)在区间[21,2]上单调递减,
那么mn 的最大值为 ( ) A.16
B.18
C.25
D.
2
81
【解析】选 B.)(x f '=(m-2)x +n-8=0得28---=m n x .当m>2时,抛物线的对称轴为2
8
---=m n x ,据题意,2
8
---
m n ≥2,即2m+n ≤12. 因为62
22≤+≤n
m mn ,所以m ·
n ≤18,由2m+n=12且2m=n 得m=3,n=6.当m<2时,抛物线开口向下,根据题意得:-2128≤--m n ,即2n+m ≤18,因为92
22≤+≤m
n mn ,所以m ·n ≤281,由2n+m=18且2n=m 得
m=9(舍).要使得mn 取最大值,应有2n+m=18(m<2,n>8),所以m ·n=(18-2n)·n<(18-2×8)×8=16,所以最大值为18.
3.(2015·福建高考文科·T5)
若直线
+=1(a>0,b>0)过点(1,1),则a+b 的最小值等 于 ( ) A.2
B.3
C.4
D.5
【解题指南】利用基本不等式及“1”的代换求解.
【解析】选C.因为直线过点(1,1),所以
11
1=+b
a ,所以b
a
a b b a a b b a b a b a ++=+++=++=+211)11)((,因为0,0>>b a ,所以
4222=⨯+≥++
b
a
a b b a a b ,当且仅当“a=b=2”时等号成立.
4. (2015·陕西高考理科·T9) 设()ln ,0f x x a b =<<,若p f =,(
)2
a b
q f +=,1
(()())2
r f a f b =+,则下列关系式中正确的是 ( )
A.q=r<p
B.q=r>p
C.p=r<q
D.p=r>q
【解题指南】根据对数的运算性质和不等式的基本性质代入求解即可.
【解析】选C.由条件可得p f =),ln (ln 2
1
ln 21)ln(2
1b a ab ab +==
= 1
(()())2
r f a f b =+,)ln (ln 21p b a =+=
由不等式的性质在0<a<b 的条件下,ab b
a >+2
,且函数f(x)=lnx 是增函数,
所以p f =<()2
a b
q f +=,故选项C 正确.
5. (2015·陕西高考文科·T10)设()ln ,0f x x a b =<<,若p f =,(
)2
a b
q f +=,1
(()())2
r f a f b =+,则下列关系式中正确的是 ( )
A.q=r<p
B.q=r>p
C.p=r<q
D.p=r>q
【解题指南】根据对数的运算性质和不等式的基本性质代入求解即可.
【解析】选C.由条件可得p f =),ln (ln 2
1
ln 21)ln(2
1
b a ab ab +==
= 1
(()())2
r f a f b =+,)ln (ln 21p b a =+=
由不等式的性质在0<a<b 的条件下,ab b
a >+2
,且函数f(x)=lnx 是增函数,
所以p f =<()2
a b
q f +=,故选项C 正确.
二、填空题
6.(2015·浙江高考文科·T12)已知函数f(x)=2,1,6
6,1,
x x x x x ⎧≤⎪
⎨+->⎪⎩
则f(f(-2))= ,f(x)的最小值是 .
【解题指南】利用分段函数求值,利用基本不等式求最值.
【解析】f(-2)=(-2)2=4,所以
f(f(-2))=f(4)=4+
-6=-.当x ≤1时,f(x)≥0,当x>1时,f(x)≥
2-6,当
x=,即
x=时取到等号,因为
2-6<0,所以函数的最小值为
2-6.
答案: 1
2
-
6 7.(2015·天津高考文科·T12)已知a>0,b>0,ab=8,则当a 的值为 时,log 2a ·log 2(2b)取得最大值.
【解析】()()()()22
222222
log log 211log log 2log 2log 164,244a b a b ab +⎛⎫⋅≤=== ⎪⎝⎭
当a=2b 时取等号,结合a>0,b>0,ab=8,可得a=4,b=2. 答案:4
8.(2015·山东高考文科·T14)定义运算“⊗”22
y x y x xy
-⊗=:( x,y ∈R,xy ≠0),当x>0,y>0
时,x ⊗y+(2y)⊗x 的最小值为 .
【解题指南】本题以新定义形式考查用基本不等式求最值的基本方法.
【解析】x>0,y>0时, 22224(2)2x y y x x y y x xy yx --⊗+⊗=+22
22x y xy
+=
≥
=
所以所求的最小值为.
答案:.
9.(2015·重庆高考文科·T14)设,0,5,a b a b >+=
则
_________.
【解题指南】因为()()13a b +++
为定值,利用不等式2
x y
+≤
.
【解析】因为,0,5,a b a b >+=所以()()139a b +++=
由不等式2
x y
+≤
22
≤=,
所以
答案:
关闭Word 文档返回原板块。