不等式选讲高考真题

合集下载

高考真题不等式选讲专题答案

高考真题不等式选讲专题答案

不等式选讲专题答案1.(2020•全国1卷)已知函数()|31|2|1|f x x x =+--.(1)画出()y f x =的图像;(2)求不等式()(1)f x f x >+的解集.2.(2020•全国2卷)已知函数2()|21|f x x a x a =-+-+.(1)当2a =时,求不等式()4f x 的解集;(2)若()4f x ,求a 的取值范围.3.(2020•全国3卷)设a ,b ,c ∈R ,a +b +c =0,abc =1.(1)证明:ab +bc +ca <0;(2)用max {a ,b ,c }表示a ,b ,c 中的最大值,证明:max {a ,b ,c }4.(2020•江苏卷)设x ∈R ,解不等式2|1|||4x x ++≤.不等式选讲专题答案1.(2020•全国1卷)已知函数()|31|2|1|f x x x =+--.(1)画出()y f x =的图像;(2)求不等式()(1)f x f x >+的解集.【答案】(1)详解解析;(2)7,6⎛⎫-∞- ⎪⎝⎭. 【解析】(1)根据分段讨论法,即可写出函数()f x 的解析式,作出图象;(2)作出函数()1f x +的图象,根据图象即可解出.【详解】(1)因为()3,1151,1313,3x x f x x x x x ⎧⎪+≥⎪⎪=--<<⎨⎪⎪--≤-⎪⎩,作出图象,如图所示:(2)将函数()f x 的图象向左平移1个单位,可得函数()1f x +的图象,如图所示:由()3511x x --=+-,解得76x =-.所以不等式()(1)f x f x >+的解集为7,6⎛⎫-∞- ⎪⎝⎭. 【点睛】本题主要考查画分段函数的图象,以及利用图象解不等式,意在考查学生的数形结合能力,属于基础题.2.(2020•全国2卷)已知函数2()|21|f x x a x a =-+-+.(1)当2a =时,求不等式()4f x 的解集;(2)若()4f x ,求a 的取值范围.【答案】(1)32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭;(2)(][),13,-∞-+∞.【解析】(1)分别在3x ≤、34x <<和4x ≥三种情况下解不等式求得结果;(2)利用绝对值三角不等式可得到()()21f x a ≥-,由此构造不等式求得结果. 【详解】(1)当2a =时,()43f x x x =-+-. 当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤;当34x <<时,()4314f x x x =-+-=≥,无解;当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥; 综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭. (2)()()()()22222121211f x x a x a x ax a a a a =-+-+≥---+=-+-=-(当且仅当221a x a -≤≤时取等号),()214a ∴-≥,解得:1a ≤-或3a ≥, a ∴的取值范围为(][),13,-∞-+∞.【点睛】本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于常考题型.3.(2020•全国3卷)设a ,b ,c ∈R ,a +b +c =0,abc =1.(1)证明:ab +bc +ca <0;(2)用max {a ,b ,c }表示a ,b ,c 中的最大值,证明:max {a ,b ,c }【答案】(1)证明见解析(2)证明见解析.【解析】(1)由2222()2220a b c a b c ab ac bc ++=+++++=结合不等式的性质,即可得出证明;(2)不妨设max{,,}a b c a =,由题意得出0,,0a b c ><,由()222322b c b c bc a a a bcbc +++=⋅==,结合基本不等式,即可得出证明. 【详解】(1)2222()2220a b c a b c ab ac bc ++=+++++=,()22212ab bc ca a b c ∴++=-++ 1,,,abc a b c =∴均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<; (2)不妨设max{,,}a b c a =,由0,1a b c abc ++==可知,0,0,0a b c ><<,1,a b c a bc =--=,()222322224b c b c bc bc bc a a a bc bc bc++++∴=⋅==≥=. 当且仅当b c =时,取等号,a ∴≥,即3max{,,}4abc ..【点睛】本题主要考查了不等式的基本性质以及基本不等式的应用,属于中档题.4.(2020•江苏卷)设x ∈R ,解不等式2|1|||4x x ++≤. 【答案】22,3⎡⎤-⎢⎥⎣⎦【解析】根据绝对值定义化为三个方程组,解得结果【详解】1224x x x <-⎧⎨---≤⎩或10224x x x -≤≤⎧⎨+-≤⎩或0224x x x >⎧⎨++≤⎩ 21x ∴-≤<-或10x -≤≤或203x <≤,所以解集为22,3⎡⎤-⎢⎥⎣⎦【点睛】本题考查分类讨论解含绝对值不等式,考查基本分析求解能力,属基础题.。

高三数学不等式选讲试题

高三数学不等式选讲试题

高三数学不等式选讲试题1.设a、b、c为正数,a+b+9c2=1,则的最大值是,此时a+b+c= .【答案】【解析】由柯西不等式得,所以,当且仅当且,即,所以的最大值是,此时.【考点】柯西不等式.2.已知函数.(1)解不等式:;(2)当时,不等式恒成立,求实数的取值范围.【答案】(1);(2)【解析】(1)由函数,及解不等式,通过将x的区间分为3类可解得结论.(2)由当时,不等式恒成立,令函数.所以原题等价于,由.通过绝对值不等式的公式即可得到函数的最大值,再通过解绝对值不等式可得结论.(1)原不等式等价于:当时,,即.当时,,即当时,,即.综上所述,原不等式的解集为. 4分(2)当时,=所以 7分【考点】1.绝对值不等式.2.恒成立问题.3.分类的数学思想.3.若对任意正实数,不等式恒成立,则实数的最小值为.【答案】【解析】因为对任意正实数,不等式恒成立,所以,因此【考点】不等式恒成立4.设,则的最小值为。

【答案】9【解析】由柯西不等式可知。

5.设a,b,c均为正数,且a+b+c=1,证明:(1)ab+bc+ca≤(2).【答案】(1)见解析;(2)见解析.【解析】(1)由得.由题设得,即.所以3(ab+bc+ca)≤1,即.(2)因为+b≥2a,+c≥2b,+a≥2c,故+(a+b+c)≥2(a+b+c),即≥a+b+c,所以.6.已知函数f(x)=|x-a|,其中a>1.(1)当a=2时,求不等式f(x)≥4-|x-4|的解集;(2)已知关于x的不等式|f(2x+a)-2f(x)|≤2的解集为{x|1≤x≤2},求a的值.【答案】(1){x|x≤1或x≥5}.(2)3【解析】(1)当a=2时, f(x)+|x-4|=当x≤2时,由f(x)≥4-|x-4|得-2x+6≥4,解得x≤1;当2<x<4时, f(x)≥4-|x-4|无解;当x≥4时,由f(x)≥4-|x-4|得2x-6≥4,解得x≥5;所以f(x)≥4-|x-4|的解集为{x|x≤1或x≥5}.(2)记h(x)=f(2x+a)-2f(x),则h(x)=由|h(x)|≤2,解得≤x≤又已知|h(x)|≤2的解集为{x|1≤x≤2}.所以=1且=2于是a=3.7.满足不等式的的取值范围是________.【答案】{或}【解析】不等式等价于,即,故的取值范围是.【考点】解不等式.8.不等式2x2﹣x﹣1>0的解集是()A.B.(1,+∞)C.(﹣∞,1)∪(2,+∞)D.∪(1,+∞)【答案】D【解析】原不等式同解于(2x+1)(x﹣1)>0∴x>1或x<故选:D9.如图,有一块锐角三角形的玻璃余料,欲加工成一个面积不小于cm2的内接矩形玻璃(阴影部分),则其边长(单位:cm)的取值范围是()A.B.C.D.【答案】D【解析】设矩形的另一边长为,由图,三角形相似可知,,解得,则矩形面积,解得,故选D.【考点】1.一元二次不等式的求解.10.下列不等式成立的是()A.log32<log25<log23B.log32<log23<log25C.log23<log32<log25D.log23<log25<log32【答案】B【解析】选B.因为log32<log33=1,log23>log22=1,所以log32<log23,又因为log23<log25,所以log32<log23<log25.11.设a,b∈R,若a-|b|>0,则下列不等式正确的是()A.b-a>0B.a3+b3<0C.a2-b2<0D.b+a>0【答案】D【解析】选D.因为a-|b|>0,所以a>|b|≥0.所以不论b正或b负均有a+b>0.12.已知a,b,c为三角形的三边长,则a2与ab+ac的大小关系是.【答案】a2<ab+ac【解析】因为a,b,c为三角形的三边长,所以a<b+c,又因为a>0,所以a2<a(b+c),即a2<ab+ac.13.实数x,y,z满足x2-2x+y=z-1且x+y2+1=0,试比较x,y,z的大小.【答案】z≥y>x【解析】x2-2x+y=z-1⇒z-y=(x-1)2≥0⇒z≥y;x+y2+1=0⇒y-x=y2+y+1=+>0⇒y>x,故z≥y>x.14.若正数a,b满足ab=a+b+3,则ab的取值范围是.【答案】[9,+∞)【解析】令=t(t>0),由ab=a+b+3≥2+3,则t2≥2t+3,所以t≥3或t≤-1(舍去),所以≥3,ab≥9,当a=b=3时取等号.15.若a,b,c为正数,且a+b+c=1,则++的最小值为()A.9B.8C.3D.【答案】A【解析】选A.因为a,b,c为正数,且a+b+c=1,所以a+b+c≥3,所以0<abc≤,≥27,所以++≥3≥3=9.当且仅当a=b=c=时等号成立.16.已知x+2y+3z=6,则2x+4y+8z的最小值为()A.3B.2C.12D.12【答案】C【解析】选C.因为2x>0,4y>0,8z>0,所以2x+4y+8z=2x+22y+23z≥3=3=3×4=12.当且仅当2x=22y=23z,即x=2y=3z,即x=2,y=1,z=时取等号.17.若记号“*”表示求两个实数a与b的算术平均的运算,即a*b=,则两边均含有运算“*”和“+”,且对任意3个实数a,b,c都能成立的一个等式可以是.【答案】a+(b*c)=(a+b)*(a+c)【解析】由题意知a+(b*c)=a+=,(a+b)*(a+c)==,所以a+(b*c)=(a+b)*(a+c).18.已知x,y均为正数,且x>y,求证:2x+≥2y+3.【答案】见解析【解析】【证明】因为x>0,y>0,x-y>0,2x+-2y=2(x-y)+=(x-y)+(x-y)+≥3=3,所以2x+≥2y+3.19.已知函数f(x)=|x-3|-2,g(x)=-|x+1|+4.若函数f(x)-g(x)≥m+1的解集为R,求m的取值范围.【答案】(-∞,-3]【解析】【解题指南】本题关键是转化题中的条件为求f(x)-g(x)的最小值,求解时结合绝对值三角不等式.f(x)-g(x)=|x-3|+|x+1|-6,解:因为x∈R,由绝对值三角不等式得f(x)-g(x)=|x-3|+|x+1|-6=|3-x|+|x+1|-6≥|(3-x)+(x+1)|-6=4-6=-2,于是有m+1≤-2,得m≤-3,即m的取值范围是(-∞,-3].20.已知函数f(x)=|x-a|.(1)若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数a的值;(2)在(1)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.【答案】(1)a=2(2){m|m≤5}【解析】(1)由f(x)≤3得|x-a|≤3,解得a-3≤x≤a+3.又已知不等式f(x)≤3的解集为{x|-1≤x≤5},所以解得a=2.(2)当a=2时,f(x)=|x-2|,设g(x)=f(x)+f(x+5),于是g(x)=|x-2|+|x+3|≥|(2-x)+(x+3)|=5,当且仅当(2-x)(x+3)≥0即当-3≤x≤2时等号成立.所以实数m的取值范围是{m|m≤5}.21.设a、b∈R+,试比较与的大小.【答案】≥【解析】∵()2-=≥0,∴≥22.若a、b、c∈R+,且a+b+c=1,求++的最大值.【答案】【解析】(1·+1·+1·)2≤(12+12+12)(a+b+c)=3,即++的最大值为23.若a、b∈R+,且a≠b,M=+,N=+,求M与N的大小关系.【答案】M>N【解析】∵a≠b,∴+>2,+>2,∴+++>2+2,即+>+,即M>N.24.已知a>0,求证:-≥a+-2.【答案】见解析【解析】要证-≥a+-2,只需证+2≥a++,只需证a2++4+4≥a2++2+2+2,即证2≥,只需证4≥2,即证a2+≥2,此式显然成立.∴原不等式成立.25.已知函数f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集为[-1,1].(1)求m的值;(2)若a,b,c∈R,且=m,求证:a+2b+3c≥9.【答案】(1)m=1(2)见解析【解析】(1)∵f(x+2)=m-|x|≥0,∴|x|≤m,∴m≥0,-m≤x≤m,∴f(x+2)≥0的解集是[-1,1],故m=1.(2)由(1)知=1,a、b、c∈R,由柯西不等式得a+2b+3c=(a+2b+3c)≥(·+·+·)2=9.26.已知x,y,z∈R+,且x+y+z=1(1)若2x2+3y2+6z2=1,求x,y,z的值.(2)若2x2+3y2+tz2≥1恒成立,求正数t的取值范围.【答案】(1)x=,y=,z=(2)t≥6【解析】(1)∵(2x2+3y2+6z2)()≥(x+y+z)2=1,当且仅当时取“=”.∴2x=3y=6z,又∵x+y+z=1,∴x=,y=,z=.(2)∵(2x2+3y2+tz2)≥(x+y+z)2=1,∴(2x2+3y2+tz2)min=.∵2x2+3y2+tz2≥1恒成立,∴≥1.∴t≥6.27.设a,b,c均为正数,证明:++≥a+b+c.【答案】见解析【解析】证明:方法一:+++a+b+c=(+b)+(+c)+(+a)≥2a+2b+2c,当且仅当a=b=c时等号成立.即得++≥a+b+c.方法二:利用柯西不等式的一般形式得|a1b1+a2b2+a3b3|≤.取a1=,a2=,a3=,b1=,b2=,b3=代入即证.28.已知a,b,c∈(1,2),求证:++≥6.【答案】见解析【解析】证明:∵≥=,≥=,≥=.∴y=++≥++.又由柯西不等式可得[(a-b+1)+(b-c+1)+(c-a+1)](++)≥18,即++≥=6.∴y=6,当且仅当a=b=c=时取到最小值,min原不等式得证.29.“a<4”是“对任意的实数x,|2x-1|+|2x+3|≥a成立”的()A.充分必要条件B.充分不必要条件C.必要不充分条件D.既非充分也非必要条件【答案】B【解析】因为|2x-1|+|2x+3|≥a,所以,根据不等式的几何意义可知,在数轴上点x到点和-的距离之和≥2,所以当a<4时,有<2,所以不等式成立,此时为充分条件要使|2x-1|+|2x+3|≥a恒成立,即恒成立,则有≤2,即a≤4综上,“a<4”是“|2x-1|+|2x+3|≥a成立”的充分不必要条件,故选B.30.已知函数f(x)=|2x-a|+a.若不等式f(x)≤6的解集为{x|-2≤x≤3},则实数a的值为________.【答案】a=1【解析】由|2x-a|+a≤6得,|2x-a|≤6-a,∴a-6≤2x-a≤6-a,即a-3≤x≤3,∴a-3=-2,∴a=1.31.已知a,b,m,n均为正数,且a+b=1,mn=2,则(am+bn)·(bm+an)的最小值为________.【答案】2.【解析】∵a,b,m,n∈R+,且a+b=1,mn=2,∴(am+bn)( bm+an)=abm2+a2mn+b2mn+abn2=ab(m2+n2)+2(a2+b2)≥2ab·mn+2(a2+b2) =4ab+2(a2+b2)=2(a2+b2+2ab)=2(a+b)2=2,当且仅当m=n=时,取“=”.∴所求最小值为2.32.设函数f(x)=|x-1|+|x-2|.(1)画出函数y=f(x)的图象;(2)若不等式|a+b|+|a-b|≥|a|f(x)( a≠0,a,b∈R)恒成立,求实数x的取值范围.【答案】(1)(2)≤x≤【解析】(1)f(x)=图象如图.(2)由|a+b|+|a-b|≥|a|f(x)得≥f(x).又因为≥=2.则有2≥f(x).解不等式2≥|x-1|+|x-2|得≤x≤. 即x的取值范围为≤x≤33. (1)设x≥1,y≥1,证明x+y+≤++xy;(2)1<a≤b≤c,证明loga b+logbc+logca≤logba+logcb+logac.【答案】(1)见解析(2)见解析【解析】(1)由于x≥1,y≥1,要证x+y+≤++xy,只需证xy(x+y)+1≤y+x+(xy)2.因为[y+x+(xy)2]-[xy(x+y)+1]=[(xy)2-1]-[xy(x+y)-(x+y)]=(xy+1)(xy-1)-(x+y)(xy-1)=(xy-1)(xy-x-y+1)=(xy-1)(x-1)(y-1).由条件x≥1,y≥1,得(xy-1)(x-1)(y-1)≥0,从而所要证明的不等式成立.(2)设loga b=x,logbc=y,由对数的换底公式得logca=,logba=,logcb=,logac=xy.于是,所要证明的不等式即为x+y+≤++xy.其中x=loga b≥1,y=logbc≥1.故由(1)可知所要证明的不等式成立.34.若对任意的a∈R,不等式|x|+|x-1|≥|1+a|-|1-a|恒成立,则实数x的取值范围是________.【答案】x≤-或x≥【解析】由|1+a|-|1-a|≤2得|x|+|x-1|≥2,当x<0时,-x+1-x≥2,x≤-;当0≤x≤1时,x+1-x≥2,无解;当x>1时,x+x-1≥2,x≥.综上,x≤-或x≥35.在R上定义运算,若关于的不等式的解集是的子集,则实数a的取值范围是()A.B.C.或D.【答案】D【解析】,设A为关于的不等式的解集,当A为时,则即;当即时,,则即,所以;当即时,,则即,所以;综上可知.【考点】新定义、含参数不等式的解法.36.设实数均不小于1,且,则的最小值是.(是指四个数中最大的一个)【答案】9【解析】设,则,当时上式两等号都能取到,所以的最小值为9.【考点】多元函数最值的求法.37.[选修4 - 5:不等式选讲](本小题满分10分)设,实数满足,求证:.【答案】.【解析】,,又. 10分【考点】本题主要考查绝对值不等式的证明,绝对值不等式的性质。

高考数学真题:不等式选讲含答案

高考数学真题:不等式选讲含答案

专题十六 不等式选讲 第四十二讲 不等式选讲2019年1.(2019全国I 理23)[选修4—5:不等式选讲](10分) 已知a ,b ,c 为正数,且满足abc =1.证明: (1)222111a b c a b c++≤++; (2)333()()()24a b b c c a +++≥++.2. (2019全国II 理23)[选修4-5:不等式选讲](10分) 已知()|||2|().f x x a x x x a =-+-- (1)当1a =时,求不等式()0f x <的解集; (2)若(,1)x ∈-∞时,()0f x <,求a 的取值范围.3.(2019全国III 理23)[选修4-5:不等式选讲](10分) 设,,x y z ∈R ,且1x y z ++=.(1)求222(1)(1)(1)x y z -++++的最小值;(2)若2221(2)(1)()3x y z a -+-+-≥成立,证明:3a ≤-或1a ≥-.2010-2018年解答题1.(2018全国卷Ⅰ)[选修4–5:不等式选讲](10分)已知()|1||1|f x x ax =+--.(1)当1a =时,求不等式()1f x >的解集;(2)若(0,1)x ∈时不等式()f x x >成立,求a 的取值范围. 2.(2018全国卷Ⅱ) [选修4-5:不等式选讲](10分)设函数()5|||2|=-+--f x x a x . (1)当1a =时,求不等式()0≥f x 的解集;(2)若()1≤f x ,求a 的取值范围.3.(2018全国卷Ⅲ) [选修4—5:不等式选讲](10分)设函数()|21||1|f x x x =++-. (1)画出()y f x =的图像;(2)当[0,)x ∈+∞时,()f x ax b +≤,求a b +的最小值.4.(2018江苏)D .[选修4—5:不等式选讲](本小题满分10分)若x ,y ,z 为实数,且226x y z ++=,求222x y z ++的最小值. 5.(2017新课标Ⅰ)已知函数2()4f x x ax =-++,()|1||1|g x x x =++-.(1)当1a =时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[1,1]-,求a 的取值范围. 6.(2017新课标Ⅱ)已知0a >,0b >,332a b +=,证明:(1)55()()4a b a b ++≥; (2)2a b +≤.7.(2017新课标Ⅲ)已知函数()|1||2|f x x x =+--.(1)求不等式()1f x ≥的解集;(2)若不等式2()f x x x m -+≥的解集非空,求m 的取值范围.8.(2017江苏)已知a ,b ,c ,d 为实数,且224a b +=,2216c d +=,证明8ac bd +≤.9.(2016年全国I 高考)已知函数()|1||23|f x x x =+--.(I )在图中画出()y f x =的图像; (II )求不等式|()|1f x >的解集.10.(2016年全国II )已知函数()1122f x x x =-++,M 为不等式()2f x <的解集. (I )求M ;(II )证明:当a ,b M ∈时,1a b ab +<+. 11.(2016年全国III 高考)已知函数()|2|f x x a a =-+(Ⅰ)当a =2时,求不等式()6f x ≤的解集;(Ⅱ)设函数()|21|g x x =-,当x ∈R 时,()()3f x g x +≥,求a 的取值范围. 12.(2015新课标1)已知函数()|1|2||f x x x a =+--,0a >.(Ⅰ)当1a =时,求不等式()1f x >的解集;(Ⅱ)若()f x 的图像与x 轴围成的三角形面积大于6,求a 的取值范围. 13.(2015新课标2)设,,,a b c d 均为正数,且a b c d +=+,证明:(Ⅰ)若ab >cd a b c d >a b c d >||||a b c d -<- 的充要条件.14.(2014新课标1)若0,0a b >>,且11a b+=. (Ⅰ) 求33a b +的最小值;(Ⅱ)是否存在,a b ,使得236a b +=?并说明理由. 15.(2014新课标2)设函数()f x =1(0)x x a a a++->(Ⅰ)证明:()f x ≥2;(Ⅱ)若()35f <,求a 的取值范围.16.(2013新课标1)已知函数()f x =|21||2|x x a -++,()g x =3x +.(Ⅰ)当a =-2时,求不等式()f x <()g x 的解集; (Ⅱ)设a >-1,且当x ∈[2a -,12)时,()f x ≤()g x ,求a 的取值范围. 17.(2013新课标2)设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤(Ⅱ)2221a b c b c a++≥ 18.(2012新课标)已知函数|2|||)(-++=x a x x f .(Ⅰ)当|3-=a 时,求不等式()3f x 的解集;(Ⅱ)若()|4|f x x -的解集包含]2,1[,求a 的取值范围.19.(2011新课标)设函数()3f x x a x =-+,其中0a >. (Ⅰ)当1a =时,求不等式()32f x x ≥+的解集; (Ⅱ)若不等式()0f x ≤的解集为{}|1x x ≤- ,求a 的值.专题十六 不等式选讲第四十二讲 不等式选讲答案部分2019年1.解析(1)因为2222222,2,2a b ab b c bc c a ac +≥+≥+≥,又1abc =,故有222111ab bc ca a b c ab bc ca abc a b c++++≥++==++.所以222111a b c a b c++≤++. (2)因为, , a b c 为正数且1abc =,故有333()()()a b b c c a +++++≥=3(+)(+)(+)a b b c a c3≥⨯⨯⨯=24.所以333()()()24a b b c c a +++++≥.2.解析(1)当a =1时,()=|1| +|2|(1)f x x x x x ---. 当1x <时,2()2(1)0f x x =--<;当1x ≥时,()0f x ≥. 所以,不等式()0f x <的解集为(,1)-∞. (2)因为()=0f a ,所以1a ≥.当1a ≥,(,1)x ∈-∞时,()=() +(2)()=2()(1)<0f x a x x x x a a x x ----- 所以,a 的取值范围是[1,)+∞.3.解析(1)由于2[(1)(1)(1)]x y z -++++222(1)(1)(1)2[(1)(1)(1)(1)(1)(1)]x y z x y y z z x =-+++++-++++++-2223(1)(1)(1)x y z ⎡⎤≤-++++⎣⎦,故由已知得2224(1)(1)(1)3x y z -++++≥, 当且仅当x =53,y =–13,13z =-时等号成立. 所以222(1)(1)(1)x y z -++++的最小值为43.(2)由于2[(2)(1)()]x y z a -+-+-222(2)(1)()2[(2)(1)(1)()()(2)]x y z a x y y z a z a x =-+-+-+--+--+--2223(2)(1)()x y z a ⎡⎤-+-+-⎣⎦,故由已知2222(2)(2)(1)()3a x y z a +-+-+-, 当且仅当43a x -=,13a y -=,223a z -=时等号成立. 因此222(2)(1)()x y z a -+-+-的最小值为2(2)3a +.由题设知2(2)133a +,解得3a -或1a -.2010-2018年1.【解析】(1)当1a =时,()|1||1|f x x x =+--,即2,1,()2,11,2, 1.--⎧⎪=-<<⎨⎪⎩≤≥x f x x x x故不等式()1f x >的解集为1{|}2x x >.(2)当(0,1)x ∈时|1||1|x ax x +-->成立等价于当(0,1)x ∈时|1|1ax -<成立. 若0≤a ,则当(0,1)x ∈时|1|1-≥ax ; 若0a >,|1|1ax -<的解集为20x a <<,所以21≥a,故02<≤a . 综上,a 的取值范围为(0,2].2.【解析】(1)当1=a 时,24,1,()2,12,26, 2.+-⎧⎪=-<⎨⎪-+>⎩≤≤x x f x x x x可得()0≥f x 的解集为{|23}-≤≤x x . (2)()1≤f x 等价于|||2|4++-≥x a x .而|||2||2|++-+≥x a x a ,且当2=x 时等号成立.故()1≤f x 等价于|2|4+≥a . 由|2|4+≥a 可得6-≤a 或2≥a ,所以a 的取值范围是(,6][2,)-∞-+∞.3.【解析】(1)13,,21()2,1,23, 1.x xf x x xx x⎧-<-⎪⎪⎪=+-<⎨⎪⎪⎪⎩≤≥()y f x=的图像如图所示.(2)由(1)知,()y f x=的图像与y轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当3a≥且2b≥时,()f x ax b+≤在[0,)+∞成立,因此a b+的最小值为5.4.D.【证明】由柯西不等式,得2222222()(122)(22)x y z x y z++++++≥.因为22=6x y z++,所以2224x y z++≥,当且仅当122x y z==时,不等式取等号,此时244333x y z===,,,所以222x y z++的最小值为4.5.【解析】(1)当1a=时,不等式()()f xg x≥等价于2|1||1|40x x x x-+++--≤.①当1x<-时,①式化为2340x x--≤,无解;当11x-≤≤时,①式化为220x x--≤,从而11x-≤≤;当1x >时,①式化为240x x +-≤,从而112x -+<≤. 所以()()f x g x ≥的解集为1{|1}2x x -+-<≤. (2)当[1,1]x ∈-时,()2g x =.所以()()f x g x ≥的解集包含[1,1]-,等价于当[1,1]x ∈-时()2f x ≥. 又()f x 在[1,1]-的最小值必为(1)f -与(1)f 之一, 所以(1)2f -≥且(1)2f ≥,得11a -≤≤. 所以a 的取值范围为[1,1]-.6.【解析】(1)556556()()a b a b a ab a b b ++=+++3323344()2()a b a b ab a b =+-++ 2224()ab a b =+-4≥(2)∵33223()33a b a a b ab b +=+++23()ab a b =++ 23()2()4a b a b +++≤33()24a b +=+,所以3()8a b +≤,因此2a b +≤.7.【解析】(1)3,1()21,123,2x f x x x x -<-⎧⎪=--⎨⎪>⎩≤≤,当1x <-时,()f x 1≥无解;当x -12≤≤时,由()f x 1≥得,x -211≥,解得x 12≤≤当>2x 时,由()f x 1≥解得>2x . 所以()f x 1≥的解集为{}x x 1≥.(2)由()f x x x m -+2≥得m x x x x +---+212≤,而x x x x x x x x +---+--+2212+1+2≤x ⎛⎫ ⎪⎝⎭2355=--+244≤且当32x =时,2512=4x x x x +---+. 故m 的取值范围为5-,4⎛⎤∞ ⎥⎝⎦.8.【解析】证明:由柯西不等式可得:22222()()()ac bd a b c d +++≤,因为22224,16,a b c d +=+= 所以2()64ac bd +≤, 因此8ac bd +≤. 9.【解析】(1)如图所示:(2)()4133212342x x f x x x x x ⎧⎪--⎪⎪=--<<⎨⎪⎪-⎪⎩,≤,,≥,()1f x >.当1x -≤,41x ->,解得5x >或3x <,1x -∴≤. 当312x -<<,321x ->,解得1x >或13x <,113x -<<∴或312x <<,当32x ≥,41x ->,解得5x >或3x <,332x <∴≤或5x >,综上,13x <或13x <<或5x >,()1f x >∴,解集为()()11353⎛⎫-∞+∞ ⎪⎝⎭,,,.10.【解析】(I )当12x <-时,()11222f x x x x =---=-,若112x -<<-;当1122x -≤≤时,()111222f x x x =-++=<恒成立;当12x >时,()2f x x =,若()2f x <,112x <<.综上可得,{}|11M x x =-<<.(Ⅱ)当()11a b ∈-,,时,有()()22110a b -->, 即22221a b a b +>+,则2222212a b ab a ab b +++>++, 则()()221ab a b +>+, 即1a b ab +<+,证毕.11.【解析】(Ⅰ)当2a =时,()|22|2f x x =-+.解不等式|22|26x -+,得13x-.因此,()6f x ≤的解集为{|13}x x-.(Ⅱ)当x R ∈时,()()|2||12|f x g x x a a x +=-++-|212|x a x a -+-+|1|a a =-+,当12x =时等号成立, 所以当x R ∈时,()()3f x g x +等价于|1|3a a-+. ①当1a时,①等价于13a a -+,无解. 当1a >时,①等价于13a a -+,解得2a.所以a 的取值范围是[2,)+∞.12.【解析】(Ⅰ)当1a =时,不等式()1f x >化为|1|2|1|10x x +--->,当1x -≤时,不等式化为40x ->,无解;当11x -<<时,不等式化为320x ->,解得213x <<; 当1x ≥时,不等式化为20x -+>,解得12x <≤. 所以()1f x >的解集为2{|2}3x x <<. (Ⅱ)有题设可得,12,1()312,112,x a x f x x a x a x a x a --<-⎧⎪=+--⎨⎪-++>⎩≤≤,所以函数()f x 图象与x 轴围成的三角形的三个顶点分别为21(,0),(21,0),(,1)3a A B a C a a -++,ABC ∆的面积为22(1)3a +.有题设得22(1)63a +>,故2a >.所以a 的取值范围为(2,)+∞. 13.【解析】(Ⅰ)∵2a b =++2c d =++由题设a b c d +=+,ab cd >得22>.>(Ⅱ)(ⅰ)若||||a b c d -<-,则22()()a b c d -<-, 即22()4()4a b ab c d cd +-<+-.因为a b c d +=+,所以ab cd >>>则22>,即a b c d ++>++ 因为a bc d ,所以ab cd ,于是2222()()4()4()a b a b ab c d cd c d -=+-<+-=-. 因此||||a b c d -<-,>||||a b c d -<-的充要条件.14.【解析】(I11a b =+≥,得2ab ≥,且当a b ==时取等号. 故33ab+≥≥,且当a b ==时取等号.所以33ab +的最小值为(II )由(I)知,23a b +≥≥.由于6>,从而不存在,a b , 使得236a b +=.15.【解析】(I )由0a >,有()f x 111()2x x a x x a a a a a=++-≥+--=+≥. 所以()f x ≥2. (Ⅱ)1(3)33f a a=++-. 当时a >3时,(3)f =1a a+,由(3)f <5得3<a<52.当0<a ≤3时,(3)f =16a a-+,由(3)f <5得12+<a ≤3.综上,a,52+). 16.【解析】(Ⅰ)当a =-2时,不等式()f x <()g x 化为|21||22|30x x x -+---<,设函数y =|21||22|3x x x -+---,y =15, 212, 1236, 1x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩,其图像如图所示,从图像可知,当且仅当(0,2)x ∈时,y <0,∴原不等式解集是{|02}x x <<. (Ⅱ)当x ∈[2a -,12)时,()f x =1a +,不等式()f x ≤()g x 化为13a x ++≤,∴2x a -≥对x ∈[2a -,12)都成立,故2a-≥2a -,即a ≤43,∴a 的取值范围为(-1,43].17.【解析】(Ⅰ)2222222,2,2a b ab b c bc c a ca +≥+≥+≥得222a b c ab bc ca ++≥++由题设得()21a b c ++=,即2222221a b c ab bc ca +++++=.所以()31ab bc ca ++≤,即13ab bc ca ++≤(Ⅱ)∵2222,2,2a b c b a c b a c b c a +≥+≥+≥ ∴222()2()a b c a b c a b c b c a+++++≥++ 即222a b c a b c b c a++≥++ ∴2221a b c b c a++≥ 18.【解析】(1)当3a =-时,()3323f x x x ⇔-+-2323x x x ⎧⇔⎨-+-⎩或23323x x x <<⎧⇔⎨-+-⎩或3323x x x ⎧⇔⎨-+-⎩1x⇔或4x.(2)原命题()4f x x ⇔-在[1,2]上恒成立24x a x x ⇔++--在[1,2]上恒成立 22x ax ⇔---在[1,2]上恒成立30a ⇔-.19.【解析】(Ⅰ)当1a =时,()32f x x ≥+可化为|1|2x -≥.由此可得 3x ≥或1x ≤-.故不等式()32f x x ≥+的解集为{|3x x ≥或1}x ≤-.( Ⅱ) 由()0f x ≤ 得30x a x -+≤,此不等式化为不等式组30x a x a x ≥⎧⎨-+≤⎩ 或30x aa x x ≤⎧⎨-+≤⎩,即4x a a x ⎧⎪⎨⎪⎩≥≤或2x aa x ⎧⎪⎨-⎪⎩≤≤,因为0a >,所以不等式组的解集为{}|2ax x ≤-,由题设可得2a-=1-,故2a =.。

2017-2019年高考真题“不等式”全集(含详细解析)

2017-2019年高考真题“不等式”全集(含详细解析)

2017-2019年高考真题“不等式”全集(含详细解析)一.选择题(共14小题)1.(2019•天津)设变量x ,y 满足约束条件20,20,1,1,x y x y x y +-⎧⎪-+⎪⎨-⎪⎪-⎩…………则目标函数4z x y =-+的最大值为( ) A .2B .3C .5D .62.(2019•浙江)若实数x ,y 满足约束条件340,340,0,x y x y x y -+⎧⎪--⎨⎪+⎩………则32z x y =+的最大值是( )A .1-B .1C .10D .123.(2019•北京)若x ,y 满足||1x y -…,且1y -…,则3x y +的最大值为( ) A .7-B .1C .5D .74.(2018•天津)设变量x ,y 满足约束条件52410x y x y x y y +⎧⎪-⎪⎨-+⎪⎪⎩…………,则目标函数35z x y =+的最大值为( ) A .6B .19C .21D .455.(2018•北京)设集合{(,)|1A x y x y =-…,4ax y +>,2}x ay -…,则( ) A .对任意实数a ,(2,1)A ∈ B .对任意实数a ,(2,1)A ∉ C .当且仅当0a <时,(2,1)A ∉D .当且仅当32a …时,(2,1)A ∉ 6.(2017•天津)设变量x ,y 满足约束条件2022003x y x y x y +⎧⎪+-⎪⎨⎪⎪⎩…………,则目标函数z x y =+的最大值为( ) A .23B .1C .32D .37.(2017•山东)已知x ,y 满足约束条件3035030x y x y x -+⎧⎪++⎨⎪+⎩………,则2z x y =+的最大值是( )A .0B .2C .5D .68.(2017•山东)若0a b >>,且1ab =,则下列不等式成立的是( ) A .21log ())2a ba ab b +<<+ B .21log ()2ab a b a b<+<+C .21log ()2a b a a b b +<+< D .21log ())2aba b a b +<+< 9.(2017•山东)已知x ,y 满足约束条件250302x y x y -+⎧⎪+⎨⎪⎩………则2z x y =+的最大值是( )A .3-B .1-C .1D .310.(2017•浙江)若x 、y 满足约束条件03020x x y x y ⎧⎪+-⎨⎪-⎩………,则2z x y =+的取值范围是( )A .[0,6]B .[0,4]C .[6,)+∞D .[4,)+∞11.(2017•北京)若x ,y 满足32x x y y x ⎧⎪+⎨⎪⎩………,则2x y +的最大值为( )A .1B .3C .5D .912.(2017•新课标Ⅱ)设x ,y 满足约束条件2330233030x y x y y +-⎧⎪-+⎨⎪+⎩………,则2z x y =+的最小值是() A .15-B .9-C .1D .913.(2017•新课标Ⅲ)设x ,y 满足约束条件326000x y x y +-⎧⎪⎨⎪⎩………则z x y =-的取值范围是( )A .[3-,0]B .[3-,2]C .[0,2]D .[0,3]14.(2017•新课标Ⅰ)设x ,y 满足约束条件3310x y x y y +⎧⎪-⎨⎪⎩………,则z x y =+的最大值为( )A .0B .1C .2D .3二.填空题(共23小题) 15.(2020•上海)不等式13x>的解集为 . 16.(2019•全国)若12log (41)2x ->-,则x 的取值范围是 .17.(2019•上海)已知x ,y 满足002x y x y ⎧⎪⎨⎪+⎩………,则23z x y =-的最小值为 . 18.(2019•上海)若x ,y R +∈,且123y x +=,则yx的最大值为 . 19.(2019•天津)设x R ∈,使不等式2320x x +-<成立的x 的取值范围为 . 20.(2019•天津)设0x >,0y >,24x y +=,则(1)(21)x y xy++的最小值为 .21.(2019•天津)设0x >,0y >,25x y +=的最小值为 .22.(2019•新课标Ⅱ)若变量x ,y 满足约束条件2360,30,20,x y x y y +-⎧⎪+-⎨⎪-⎩………则3z x y =-的最大值是 .23.(2019•北京)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当10x =时,顾客一次购买草莓和西瓜各1盒,需要支付 元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为 .24.(2019•北京)若x ,y 满足2,1,4310,x y x y ⎧⎪-⎨⎪-+⎩………则y x -的最小值为 ,最大值为 .25.(2018•上海)已知实数1x 、2x 、1y 、2y 满足:22111x y +=,22221x y +=,121212x x y y +=,的最大值为 . 26.(2018•浙江)若x ,y 满足约束条件0262x y x y x y -⎧⎪+⎨⎪+⎩………,则3z x y =+的最小值是 ,最大值是 .27.(2018•新课标Ⅲ)若变量x ,y 满足约束条件23024020x y x y x ++⎧⎪-+⎨⎪-⎩………,则13z x y =+的最大值是 .28.(2018•北京)若x ,y 满足12x y x +剟,则2y x -的最小值是 .29.(2018•新课标Ⅱ)若x ,y 满足约束条件25023050x y x y x +-⎧⎪-+⎨⎪-⎩………,则z x y =+的最大值为 .30.(2018•新课标Ⅰ)若x ,y 满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩………,则32z x y =+的最大值为 . 31.(2017•上海)不等式11x x->的解集为 . 32.(2017•天津)若a ,b R ∈,0ab >,则4441a b ab++的最小值为 .33.(2017•新课标Ⅰ)设x ,y 满足约束条件21210x y x y x y +⎧⎪+-⎨⎪-⎩………,则32z x y =-的最小值为 .34.(2017•江苏)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是 . 35.(2017•山东)若直线1(0,0)x ya b a b+=>>过点(1,2),则2a b +的最小值为 . 36.(2017•北京)某学习小组由学生和教师组成,人员构成同时满足以下三个条件: ()i 男学生人数多于女学生人数; ()ii 女学生人数多于教师人数; ()iii 教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为 . ②该小组人数的最小值为 .37.(2017•新课标Ⅲ)若x ,y 满足约束条件0200x y x y y -⎧⎪+-⎨⎪⎩………,则34z x y =-的最小值为 .三.解答题(共3小题)38.(2018•江苏)若x ,y ,z 为实数,且226x y z ++=,求222x y z ++的最小值. 39.(2017•天津)电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x ,y 表示每周计划播出的甲、乙两套连续剧的次数.()I 用x ,y 列出满足题目条件的数学关系式,并画出相应的平面区域; ()II 问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多?40.(2017•江苏)已知a ,b ,c ,d 为实数,且224a b +=,2216c d +=,证明8ac bd +….2017-2019年高考真题“不等式”全集(含详细解析)参考答案与试题解析一.选择题(共14小题)1.(2019•天津)设变量x ,y 满足约束条件20,20,1,1,x y x y x y +-⎧⎪-+⎪⎨-⎪⎪-⎩…………则目标函数4z x y =-+的最大值为( ) A .2B .3C .5D .6【解答】解:由约束条件20,20,1,1,x y x y x y +-⎧⎪-+⎪⎨-⎪⎪-⎩…………作出可行域如图:联立120x x y =-⎧⎨-+=⎩,解得(1,1)A -,化目标函数4z x y =-+为4y x z =+,由图可知,当直线4y x z =+过A 时,z 有最大值为5. 故选:C .2.(2019•浙江)若实数x ,y 满足约束条件340,340,0,x y x y x y -+⎧⎪--⎨⎪+⎩………则32z x y =+的最大值是( )A .1-B .1C .10D .12【解答】解:由实数x ,y 满足约束条件3403400x y x y x y -+⎧⎪--⎨⎪+⎩………作出可行域如图,联立340340x yx y-+=⎧⎨--=⎩,解得(2,2)A,化目标函数32z x y=+为3122y x z=-+,由图可知,当直线3122y x z=-+过(2,2)A时,直线在y轴上的截距最大,z有最大值:10.故选:C.3.(2019•北京)若x,y满足||1x y-…,且1y-…,则3x y+的最大值为() A.7-B.1C.5D.7【解答】解:由||11x yy-⎧⎨-⎩……作出可行域如图,联立110yx y=-⎧⎨+-=⎩,解得(2,1)A-,令3z x y=+,化为3y x z=-+,由图可知,当直线3y x z=-+过点A时,z有最大值为3215⨯-=.故选:C.4.(2018•天津)设变量x ,y 满足约束条件52410x y x y x y y +⎧⎪-⎪⎨-+⎪⎪⎩…………,则目标函数35z x y =+的最大值为( ) A .6B .19C .21D .45【解答】解:由变量x ,y 满足约束条件52410x y x y x y y +⎧⎪-⎪⎨-+⎪⎪⎩…………,得如图所示的可行域,由51x y x y +=⎧⎨-+=⎩解得(2,3)A .当目标函数35z x y =+经过A 时,直线的截距最大, z 取得最大值.将其代入得z 的值为21, 故选:C .5.(2018•北京)设集合{(,)|1A x y x y =-…,4ax y +>,2}x ay -…,则( ) A .对任意实数a ,(2,1)A ∈ B .对任意实数a ,(2,1)A ∉ C .当且仅当0a <时,(2,1)A ∉D .当且仅当32a …时,(2,1)A ∉ 【解答】解:当1a =-时,集合{(,)|1A x y x y =-…,4ax y +>,2}{(,)|1x ay x y x y -=-剠,4x y -+>,2}x y +…,显然(2,1)不满足,4x y -+>,2x y +…,所以A 不正确;当4a =,集合{(,)|1A x y x y =-…,4ax y +>,2}{(,)|1x ay x y x y -=-剠,44x y +>,42}x y -…,显然(2,1)在可行域内,满足不等式,所以B 不正确;当1a =,集合{(,)|1A x y x y =-…,4ax y +>,2}{(,)|1x ay x y x y -=-剠,4x y +>,2}x y -…,显然(2,1)A ∉,所以当且仅当0a <错误,所以C 不正确;故选:D .6.(2017•天津)设变量x ,y 满足约束条件2022003x y x y x y +⎧⎪+-⎪⎨⎪⎪⎩…………,则目标函数z x y =+的最大值为( ) A .23B .1C .32D .3【解答】解:变量x ,y 满足约束条件2022003x y x y x y +⎧⎪+-⎪⎨⎪⎪⎩…………的可行域如图:目标函数z x y =+结果可行域的A 点时,目标函数取得最大值, 由30y x =⎧⎨=⎩可得(0,3)A ,目标函数z x y =+的最大值为:3.故选:D .7.(2017•山东)已知x ,y 满足约束条件3035030x y x y x -+⎧⎪++⎨⎪+⎩………,则2z x y =+的最大值是( )A .0B .2C .5D .6【解答】解:画出约束条件3035030x y x y x -+⎧⎪++⎨⎪+⎩………表示的平面区域,如图所示;由30350x x y +=⎧⎨++=⎩解得(3,4)A -,此时直线1122y x z =-+在y 轴上的截距最大,所以目标函数2z x y =+的最大值为 3245max z =-+⨯=.故选:C .8.(2017•山东)若0a b >>,且1ab =,则下列不等式成立的是( ) A .21log ())2ab a a b b +<<+ B .21log ()2a b a b a b<+<+C .21log ()2a b a a b b +<+< D .21log ())2aba b a b +<+< 【解答】解:0a b >>,且1ab =,∴可取2a =,12b =. 则14a b +=,2112228a b ==,22215log ()(2)(1,2)22a b log log +=+=∈,∴21log ()2a b a b a b<+<+. 故选:B .9.(2017•山东)已知x,y满足约束条件250302x yxy-+⎧⎪+⎨⎪⎩………则2z x y=+的最大值是()A.3-B.1-C.1D.3【解答】解:x,y满足约束条件250302x yxy-+⎧⎪+⎨⎪⎩………的可行域如图:目标函数2z x y=+经过可行域的A时,目标函数取得最大值,由:2250yx y=⎧⎨-+=⎩解得(1,2)A-,目标函数的最大值为:1223-+⨯=.故选:D.10.(2017•浙江)若x、y满足约束条件3020xx yx y⎧⎪+-⎨⎪-⎩………,则2z x y=+的取值范围是()A.[0,6]B.[0,4]C.[6,)+∞D.[4,)+∞【解答】解:x、y满足约束条件3020xx yx y⎧⎪+-⎨⎪-⎩………,表示的可行域如图:目标函数2z x y=+经过C点时,函数取得最小值,由3020x yx y+-=⎧⎨-=⎩解得(2,1)C,目标函数的最小值为:4目标函数的范围是[4,)+∞.故选:D.11.(2017•北京)若x,y满足32xx yy x⎧⎪+⎨⎪⎩………,则2x y+的最大值为()A.1B.3C.5D.9【解答】解:x,y满足32xx yy x⎧⎪+⎨⎪⎩………的可行域如图:由可行域可知目标函数2z x y=+经过可行域的A时,取得最大值,由3xx y=⎧⎨=⎩,可得(3,3)A,目标函数的最大值为:3239+⨯=.故选:D.12.(2017•新课标Ⅱ)设x,y满足约束条件2330233030x yx yy+-⎧⎪-+⎨⎪+⎩………,则2z x y=+的最小值是()A .15-B .9-C .1D .9【解答】解:x 、y 满足约束条件2330233030x y x y y +-⎧⎪-+⎨⎪+⎩………的可行域如图:2z x y =+ 经过可行域的A 时,目标函数取得最小值, 由32330y x y =-⎧⎨-+=⎩解得(6,3)A --,则2z x y =+ 的最小值是:15-. 故选:A .13.(2017•新课标Ⅲ)设x ,y 满足约束条件3260x y x y +-⎧⎪⎨⎪⎩………则z x y =-的取值范围是( )A .[3-,0]B .[3-,2]C .[0,2]D .[0,3]【解答】解:x ,y 满足约束条件32600x y x y +-⎧⎪⎨⎪⎩………的可行域如图: 目标函数z x y =-,经过可行域的A ,B 时,目标函数取得最值, 由03260x x y =⎧⎨+-=⎩解得(0,3)A ,由03260y x y =⎧⎨+-=⎩解得(2,0)B ,目标函数的最大值为:2,最小值为:3-, 目标函数的取值范围:[3-,2]. 故选:B .14.(2017•新课标Ⅰ)设x,y满足约束条件331x yx yy+⎧⎪-⎨⎪⎩………,则z x y=+的最大值为()A.0B.1C.2D.3【解答】解:x,y满足约束条件331x yx yy+⎧⎪-⎨⎪⎩………的可行域如图:,则z x y=+经过可行域的A时,目标函数取得最大值,由33yx y=⎧⎨+=⎩解得(3,0)A,所以z x y=+的最大值为:3.故选:D.二.填空题(共23小题)15.(2020•上海)不等式13x>的解集为1(0,)3.【解答】解:由13x>得13xx->,则(13)0x x->,即(31)0x x-<,解得13x<<,所以不等式的解集是1(0,)3,故答案为:1(0,)3.16.(2019•全国)若12log (41)2x ->-,则x 的取值范围是 15(,)44 .【解答】解:1122log (41)2log 4x ->-=,∴410414x x ->⎧⎨-<⎩,∴1544x <<,x ∴的取值范围为15(,)44.故答案为:15(,)44.17.(2019•上海)已知x ,y 满足002x y x y ⎧⎪⎨⎪+⎩………,则23z x y =-的最小值为 6- . 【解答】解:作出不等式组002x y x y ⎧⎪⎨⎪+⎩………表示的平面区域, 由23z x y =-即23x zy -=,表示直线在y 轴上的截距的相反数的13倍,平移直线230x y -=,当经过点(0,2)时,23z x y =-取得最小值6-, 故答案为:6-.18.(2019•上海)若x ,y R +∈,且123y x +=,则yx的最大值为 98 .【解答】解:132y x =+…∴298y x =…;故答案为:9819.(2019•天津)设x R ∈,使不等式2320x x +-<成立的x 的取值范围为 2(1,)3- .【解答】解:2320x x +-<,将232x x +-分解因式即有: (1)(32)0x x +-<;2(1)()03x x +-<;由一元二次不等式的解法“小于取中间,大于取两边” 可得:213x -<<; 即:2{|1}3x x -<<;或2(1,)3-;故答案为:2(1,)3-;20.(2019•天津)设0x >,0y >,24x y +=,则(1)(21)x y xy ++的最小值为 92.【解答】解:0x >,0y >,24x y +=, 则(1)(21)2212552x y xy x y xy xy xy xy xy++++++===+; 0x >,0y >,24x y +=,由基本不等式有:42x y =+…, 02xy ∴<…, 552xy …, 故:5592222xy ++=…; (当且仅当22x y ==时,即:2x =,1y =时,等号成立), 故(1)(21)x y xy ++的最小值为92;故答案为:92.21.(2019•天津)设0x >,0y >,25x y +=的最小值为【解答】解:0x >,0y >,25x y +=,===;由基本不等式有:64xyxy=当且仅当时,即:3xy=,25x y+=时,即:31xy=⎧⎨=⎩或232xy=⎧⎪⎨=⎪⎩时;等号成立,的最小值为故答案为:22.(2019•新课标Ⅱ)若变量x,y满足约束条件2360,30,20,x yx yy+-⎧⎪+-⎨⎪-⎩………则3z x y=-的最大值是9.【解答】解:由约束条件2360,30,20,x yx yy+-⎧⎪+-⎨⎪-⎩………作出可行域如图:化目标函数3z x y=-为3y x z=-,由图可知,当直线3y x z=-过(3,0)A时,直线在y轴上的截距最小,z有最大值为9.故答案为:9.23.(2019•北京)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当10x =时,顾客一次购买草莓和西瓜各1盒,需要支付 130 元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为 .【解答】解:①当10x =时,顾客一次购买草莓和西瓜各1盒,可得6080140+=(元), 即有顾客需要支付14010130-=(元); ②在促销活动中,设订单总金额为m 元, 可得()80%70%m x m -⨯⨯…, 即有8mx …恒成立, 由题意可得120m …, 可得120158x =…, 则x 的最大值为15元. 故答案为:130,1524.(2019•北京)若x ,y 满足2,1,4310,x y x y ⎧⎪-⎨⎪-+⎩………则y x -的最小值为 3- ,最大值为 .【解答】解:由约束条件2,1,4310,x y x y ⎧⎪-⎨⎪-+⎩………作出可行域如图,(2,1)A -,(2,3)B ,令z y x =-,作出直线y x =,由图可知,平移直线y x =,当直线z y x =-过A 时,z 有最小值为3-,过B 时,z 有最大值1. 故答案为:3-,1.25.(2018•上海)已知实数1x 、2x 、1y 、2y 满足:22111x y +=,22221x y +=,121212x x y y +=,【解答】解:设1(A x ,1)y ,2(B x ,2)y , 1(OA x =,1)y ,2(OB x =,2)y ,由22111x y +=,22221x y +=,121212x x y y +=, 可得A ,B 两点在圆221x y +=上, 且111cos 2OA OB AOB =⨯⨯∠=, 即有60AOB ∠=︒,即三角形OAB 为等边三角形,1AB=,的几何意义为点A ,B 两点 到直线10x y +-=的距离1d 与2d 之和,显然A ,B 在第三象限,AB 所在直线与直线1x y +=平行, 可设:0AB x y t ++=,(0)t >, 由圆心O到直线AB 的距离d =,可得1,解得t1=,+26.(2018•浙江)若x ,y 满足约束条件0262x y x y x y -⎧⎪+⎨⎪+⎩………,则3z x y =+的最小值是 2- ,最大值是 .【解答】解:作出x ,y 满足约束条件0262x y x y x y -⎧⎪+⎨⎪+⎩………表示的平面区域,如图:其中(4,2)B -,(2,2)A . 设(,)3z F x y x y ==+,将直线:3l z x y =+进行平移,观察直线在y 轴上的截距变化, 可得当l 经过点B 时,目标函数z 达到最小值.()4,22z F ∴=-=-最小值.可得当l 经过点A 时,目标函数z 达到最最大值:()2,28z F ==最大值. 故答案为:2-;8.27.(2018•新课标Ⅲ)若变量x ,y 满足约束条件23024020x y x y x ++⎧⎪-+⎨⎪-⎩………,则13z x y =+的最大值是 3 .【解答】解:画出变量x ,y 满足约束条件23024020x y x y x ++⎧⎪-+⎨⎪-⎩………表示的平面区域如图:由2240x x y =⎧⎨-+=⎩解得(2,3)A .13z x y =+变形为33y x z =-+,作出目标函数对应的直线,当直线过(2,3)A 时,直线的纵截距最小,z 最大, 最大值为12333+⨯=,故答案为:3.28.(2018•北京)若x ,y 满足12x y x +剟,则2y x -的最小值是 3 . 【解答】解:作出不等式组对应的平面区域如图: 设2z y x =-,则1122y x z =+, 平移1122y x z =+, 由图象知当直线1122y x z =+经过点A 时, 直线的截距最小,此时z 最小, 由12x y y x +=⎧⎨=⎩得12x y =⎧⎨=⎩,即(1,2)A ,此时2213z =⨯-=, 故答案为:329.(2018•新课标Ⅱ)若x,y满足约束条件25023050x yx yx+-⎧⎪-+⎨⎪-⎩………,则z x y=+的最大值为9.【解答】解:由x,y满足约束条件25023050x yx yx+-⎧⎪-+⎨⎪-⎩………作出可行域如图,化目标函数z x y=+为y x z=-+,由图可知,当直线y x z=-+过A时,z取得最大值,由5230xx y=⎧⎨-+=⎩,解得(5,4)A,目标函数有最大值,为9z=.故答案为:9.30.(2018•新课标Ⅰ)若x ,y 满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩………,则32z x y =+的最大值为 6 . 【解答】解:作出不等式组对应的平面区域如图: 由32z x y =+得3122y x z =-+,平移直线3122y x z =-+,由图象知当直线3122y x z =-+经过点(2,0)A 时,直线的截距最大,此时z 最大,最大值为326z =⨯=, 故答案为:631.(2017•上海)不等式11x x->的解集为 (,0)-∞ . 【解答】解:由11x x->得: 111100x x x->⇒<⇒<, 故不等式的解集为:(,0)-∞, 故答案为:(,0)-∞.32.(2017•天津)若a ,b R ∈,0ab >,则4441a b ab++的最小值为 4 .【解答】解:【解法一】a ,b R ∈,0ab >,∴4441a b ab ++2241a b ab +=144ab ab ab ab=+=…,当且仅当44414a b ab ab ⎧=⎪⎨=⎪⎩,即2222214a b a b ⎧=⎪⎨=⎪⎩,即a =,b 或a =,b =时取“=”; ∴上式的最小值为4.【解法二】a ,b R ∈,0ab >,∴44334141142222a b a b ab b a ab ab a ab ab++=+++=…, 当且仅当44414ab ab ab ⎧=⎪⎨=⎪⎩,即2222214a b ab ⎧=⎪⎨=⎪⎩,即a =,b 或a =,b =时取“=”; ∴上式的最小值为4.故答案为:4.33.(2017•新课标Ⅰ)设x ,y 满足约束条件21210x y x y x y +⎧⎪+-⎨⎪-⎩………,则32z x y =-的最小值为 5- . 【解答】解:由x ,y 满足约束条件21210x y x y x y +⎧⎪+-⎨⎪-⎩………作出可行域如图,由图可知,目标函数的最优解为A , 联立2121x y x y +=⎧⎨+=-⎩,解得(1,1)A -.32z x y ∴=-的最小值为31215-⨯-⨯=-.故答案为:5-.34.(2017•江苏)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是 30 .【解答】解:由题意可得:一年的总运费与总存储费用之和6000644240x x =⨯+⨯=…(万元).当且仅当30x =时取等号. 故答案为:30. 35.(2017•山东)若直线1(0,0)x ya b a b+=>>过点(1,2),则2a b +的最小值为 8 . 【解答】解:直线1(0,0)x ya b a b+=>>过点(1,2),则121a b +=,由12442(2)()2244448a b a b a b a b a b b a b a +=+⨯+=+++=++++=…,当且仅当4a bb a=,即12a =,1b =时,取等号,2a b ∴+的最小值为8,故答案为:8.36.(2017•北京)某学习小组由学生和教师组成,人员构成同时满足以下三个条件: ()i 男学生人数多于女学生人数;()ii 女学生人数多于教师人数; ()iii 教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为 6 . ②该小组人数的最小值为 .【解答】解:①设男学生女学生分别为x ,y 人, 若教师人数为4,则424x y y x >⎧⎪>⎨⎪⨯>⎩,即48y x <<<, 即x 的最大值为7,y 的最大值为6, 即女学生人数的最大值为6.②设男学生女学生分别为x ,y 人,教师人数为z , 则2x y y z z x >⎧⎪>⎨⎪>⎩,即2z y x z <<< 即z 最小为3才能满足条件, 此时x 最小为5,y 最小为4, 即该小组人数的最小值为12, 故答案为:6,1237.(2017•新课标Ⅲ)若x ,y 满足约束条件0200x y x y y -⎧⎪+-⎨⎪⎩………,则34z x y =-的最小值为 1- . 【解答】解:由34z x y =-,得344zy x =-,作出不等式对应的可行域(阴影部分), 平移直线344z y x =-,由平移可知当直线344zy x =-, 经过点(1,1)B 时,直线344zy x =-的截距最大,此时z 取得最小值, 将B 的坐标代入34341z x y =-=-=-, 即目标函数34z x y =-的最小值为1-. 故答案为:1-.三.解答题(共3小题)38.(2018•江苏)若x ,y ,z 为实数,且226x y z ++=,求222x y z ++的最小值.【解答】解:由柯西不等式得2222222()(122)(22)x y z x y z ++++++…, 226x y z ++=,2224x y z ∴++… 是当且仅当122x y z ==时,不等式取等号,此时23x =,43y =,43z =,222x y z ∴++的最小值为439.(2017•天津)电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x ,y 表示每周计划播出的甲、乙两套连续剧的次数.()I 用x ,y 列出满足题目条件的数学关系式,并画出相应的平面区域; ()II 问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多?【解答】(Ⅰ)解:由已知,x ,y 满足的数学关系式为70606005530200x y x y x y x y +⎧⎪+⎪⎪⎨⎪⎪⎪⎩……………,即766062000x y x y x y x y +⎧⎪+⎪⎪-⎨⎪⎪⎪⎩…………….该二元一次不等式组所表示的平面区域如图:(Ⅱ)解:设总收视人次为z 万,则目标函数为6025z x y =+. 考虑6025z x y =+,将它变形为12525z y x =-+,这是斜率为125-,随z 变化的一族平行直线.25z 为直线在y 轴上的截距,当25z取得最大值时,z 的值最大. 又x ,y 满足约束条件,∴由图可知,当直线6025z x y =+经过可行域上的点M 时,截距25z最大,即z 最大. 解方程组766020x y x y +=⎧⎨-=⎩,得点M 的坐标为(6,3).∴电视台每周播出甲连续剧6次、乙连续剧3次时才能使总收视人次最多.40.(2017•江苏)已知a ,b ,c ,d 为实数,且224a b +=,2216c d +=,证明8ac bd +…. 【解答】证明:224a b +=,2216c d +=, 令2cos a α=,2sin b α=,4cos c β=,4sin d β=.8(cos cos sin sin )8cos()8ac bd αβαβαβ∴+=+=-….当且仅当cos()1αβ-=时取等号.因此8ac bd +….另解:由柯西不等式可得:22222()()()41664ac bd a b c d +++=⨯=…,当且仅当a bc d=时取等号.88ac bd ∴-+剟.。

高三数学不等式选讲试题

高三数学不等式选讲试题

高三数学不等式选讲试题1.已知函数.(Ⅰ)解不等式: ;(Ⅱ)当时, 不等式恒成立,求实数a的取值范围.【答案】(1);(2).【解析】本题主要考查绝对值不等式的解法、不等式的性质等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,由于,可以转化为,所以分3种情况,,进行讨论去掉绝对值符号解不等式;第二问,,所以利用不等式的性质得到最大值代入上式,解不等式,得到a的取值范围.试题解析:(Ⅰ)原不等式等价于:当时, ,即;当时, ,即;当时, ,即.综上所述,原不等式的解集为. (5分)(Ⅱ)当时,=所以(10分)【考点】绝对值不等式的解法、不等式的性质.2.不等式的解集是【答案】【解析】原不等式可化为,解得.考点:绝对值不等式解法3.若不等式|x-a|-|x|<2-a2对x∈R恒成立,则实数a的取值范围是。

【答案】【解析】,所以原式恒成立,即,即,解得【考点】不等式恒成立问题4.对于,当非零实数a,b满足,且使最大时,的最小值为 .【答案】【解析】法一:判别式法:令,则,代入到中,得,即……①因为关于的二次方程①有实根,所以,可得,取最大值时,或,当时,,当时,,综上可知当时,法二:柯西不等式:由可得:,当且仅当时取等号,即时,取等号,这时或当时,,当时,,综上可知当时,【考点】柯西不等式.5.(5分)(2011•陕西)(请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)A.(不等式选做题)若不等式|x+1|+|x﹣2|≥a对任意x∈R恒成立,则a的取值范围是.B.(几何证明选做题)如图,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,则AE= .C.(坐标系与参数方程选做题)直角坐标系xoy中,以原点为极点,x轴的正半轴为极轴建极坐标系,设点A,B分别在曲线C1:(θ为参数)和曲线C2:p=1上,则|AB|的最小值为.【答案】(﹣∞,3] 2 1【解析】A.首先分析题目已知不等式|x+1|+|x﹣2|≥a恒成立,求a的取值范围,即需要a小于等于|x+1|+|x﹣2|的最小值即可.对于求|x+1|+|x﹣2|的最小值,可以分析它几何意义:在数轴上点x 到点﹣1的距离加上点x到点2的距离.分析得当x在﹣1和2之间的时候,取最小值,即可得到答案;B.先证明Rt△ABE∽Rt△ADC,然后根据相似建立等式关系,求出所求即可;C.先根据ρ2=x2+y2,sin2+cos2θ=1将极坐标方程和参数方程化成直角坐标方程,根据当两点连线经过两圆心时|AB|的最小,从而最小值为两圆心距离减去两半径.解:A.已知不等式|x+1|+|x﹣2|≥a恒成立,即需要a小于等于|x+1|+|x﹣2|的最小值即可.故设函数y=|x+1|+|x﹣2|.设﹣1、2、x在数轴上所对应的点分别是A、B、P.则函数y=|x+1|+|x﹣2|的含义是P到A的距离与P到B的距离的和.可以分析到当P在A和B的中间的时候,距离和为线段AB的长度,此时最小.即:y=|x+1|+|x﹣2|=|PA|+|PB|≥|AB|=3.即|x+1|+|x﹣2|的最小值为3.即:k≤3.故答案为:(﹣∞,3].B.∵∠B=∠D,AE⊥BC,∠ACD=90°∴Rt△ABE∽Rt△ADC而AB=6,AC=4,AD=12,根据AD•AE=AB•AC解得:AE=2,故答案为:2C.消去参数θ得,(x﹣3)2+y2=1而p=1,则直角坐标方程为x2+y2=1,点A在圆(x﹣3)2+y2=1上,点B在圆x2+y2=1上则|AB|的最小值为1.故答案为:1点评:A题主要考查不等式恒成立的问题,其中涉及到绝对值不等式求最值的问题,对于y=|x﹣a|+|x﹣b|类型的函数可以用分析几何意义的方法求最值.本题还考查了三角形相似和圆的参数方程等有关知识,同时考查了转化与划归的思想,属于基础题.6.不等式的解集为 .【答案】.【解析】解不等式,得,解得,故不等式的解集为.【考点】绝对值不等式的求解7.已知函数.(1)解不等式:;(2)当时,不等式恒成立,求实数的取值范围.【答案】(1);(2)【解析】(1)由函数,及解不等式,通过将x的区间分为3类可解得结论.(2)由当时,不等式恒成立,令函数.所以原题等价于,由.通过绝对值不等式的公式即可得到函数的最大值,再通过解绝对值不等式可得结论.(1)原不等式等价于:当时,,即.当时,,即当时,,即.综上所述,原不等式的解集为. 4分(2)当时,=所以 7分【考点】1.绝对值不等式.2.恒成立问题.3.分类的数学思想.8.阅读:已知、,,求的最小值.解法如下:,当且仅当,即时取到等号,则的最小值为.应用上述解法,求解下列问题:(1)已知,,求的最小值;(2)已知,求函数的最小值;(3)已知正数、、,,求证:.【答案】(1)9;(2)18;(3)证明见解析.【解析】本题关键是阅读给定的材料,弄懂弄清给定材料提供的方法(“1”的代换),并加以运用.主要就是,展开后就可应用基本不等式求得最值.(1);(2)虽然没有已知的“1”,但观察求值式子的分母,可以凑配出“1”:,因此有,展开后即可应用基本不等式;(3)观察求证式的分母,结合已知有,因此有此式中关键是凑配出基本不等式所需要的两项,如与合并相加利用基本不等式有,从而最终得出.(1), 2分而,当且仅当时取到等号,则,即的最小值为. 5分(2), 7分而,,当且仅当,即时取到等号,则,所以函数的最小值为. 10分(3)当且仅当时取到等号,则. 16分【考点】阅读材料问题,“1”的代换,基本不等式.9.(2012•广东)不等式|x+2|﹣|x|≤1的解集为_________.【答案】【解析】∵|x+2|﹣|x|=∴x≥0时,不等式|x+2|﹣|x|≤1无解;当﹣2<x<0时,由2x+2≤1解得x≤,即有﹣2<x≤;当x≤﹣2,不等式|x+2|﹣|x|≤1恒成立,综上知不等式|x+2|﹣|x|≤1的解集为故答案为10.已知函数f(x)=|x-a|,其中a>1.(1)当a=2时,求不等式f(x)≥4-|x-4|的解集;(2)已知关于x的不等式|f(2x+a)-2f(x)|≤2的解集为{x|1≤x≤2},求a的值.【答案】(1){x|x≤1或x≥5}.(2)3【解析】(1)当a=2时, f(x)+|x-4|=当x≤2时,由f(x)≥4-|x-4|得-2x+6≥4,解得x≤1;当2<x<4时, f(x)≥4-|x-4|无解;当x≥4时,由f(x)≥4-|x-4|得2x-6≥4,解得x≥5;所以f(x)≥4-|x-4|的解集为{x|x≤1或x≥5}.(2)记h(x)=f(2x+a)-2f(x),则h(x)=由|h(x)|≤2,解得≤x≤又已知|h(x)|≤2的解集为{x|1≤x≤2}.所以=1且=2于是a=3.11.设a>1>b>-1,则下列不等式中恒成立的是()A.<B.>C.a>b2D.a2>2b【答案】C【解析】选C.令a=2,b=-,验证可得选项A不正确,令a=2,b=,则B不正确,若a=1.1,b=0.9,则D 不正确,对选项C,由-1<b<1得:0≤b2<1,又a>1,故b2<a,故C项正确.12.已知a,b,c为三角形的三边长,则a2与ab+ac的大小关系是.【答案】a2<ab+ac【解析】因为a,b,c为三角形的三边长,所以a<b+c,又因为a>0,所以a2<a(b+c),即a2<ab+ac.13.设x,y∈R,且x+y=5,则3x+3y的最小值为()A.10B.6C.4D.18【答案】D【解析】选D.3x+3y≥2=2=2=18,当且仅当x=y=2.5时,等号成立.14.已知点P(x,y)在经过A(3,0),B(1,1)两点的直线上,那么2x+4y的最小值为()A.2B.4C.16D.不存在【答案】B【解析】选B.过A,B两点的直线方程为y=-(x-3),所以x=3-2y,所以2x+4y=+4y≥4,当且仅当=4y时,等号成立.,x,y为变量,a,b为常数,且a+b=10,+=1,x+y的最小值为18,求a,b.15.已知a,b,x,y∈R+【答案】或【解析】因为x+y=(x+y)=a+b++≥a+b+2=(+)2,=(+)2=18,当且仅当=时取等号.又(x+y)min即a+b+2=18,①又a+b=10,②由①②可得或16.若关于x的不等式|a|≥|x+1|+|x-2|存在实数解,则实数a的取值范围是.【答案】(-∞,-3]∪[3,+∞)【解析】因为f (x)=|x+1|+|x-2|=所以f(x)≥3,要使|a|≥|x+1|+|x-2|有解,故|a|≥3,即a≤-3或a≥3.17.已知a、b、m、n均为正数,且a+b=1,mn=2,求(am+bn)(bm+an)的最小值.【答案】2【解析】利用柯西不等式求解,(am+bn)(an+bm)≥()2=mn·(a+b)2=2·1=2,且仅当即m=n时取最小值2.18.已知x,y,z∈R+,且x+y+z=1(1)若2x2+3y2+6z2=1,求x,y,z的值.(2)若2x2+3y2+tz2≥1恒成立,求正数t的取值范围.【答案】(1)x=,y=,z=(2)t≥6【解析】(1)∵(2x2+3y2+6z2)()≥(x+y+z)2=1,当且仅当时取“=”.∴2x=3y=6z,又∵x+y+z=1,∴x=,y=,z=.=.(2)∵(2x2+3y2+tz2)≥(x+y+z)2=1,∴(2x2+3y2+tz2)min∵2x2+3y2+tz2≥1恒成立,∴≥1.∴t≥6.19.若对恒成立,则实数的取值范围是___________.【答案】【解析】当为偶数时,,而;当为奇数时,,而.所以的取值范围是.【考点】不等式.20.若关于x的不等式的解集为(-1,4),则实数a的值为_________.【答案】【解析】由已知得,,,当时,不等式解集为,故,无解;当时,不等式解集为,故,解得.【考点】绝对值不等式解法.21.已知函数,m∈R,且的解集为.(1)求的值;(2)若,且,求的最小值.+【答案】(1).(2)的最小值为9.【解析】(1)由已知,得到所以根据的解集是,得到.(2)由(1)知,,由柯西不等式即得所求.试题解析:(1)因为,所以.所以又的解集是,故. 5分(2)由(1)知,,由柯西不等式得∴的最小值为9 10分【考点】绝对值不等式解法,柯西不等式.22.已知a,b,c,d均为正实数,且a+b+c+d=1,求证:+++≥.【答案】见解析【解析】证明:因为[(1+a)+(1+b)+(1+c)+(1+d)]·(+++)≥(·+·+·+·)2=(a+b+c+d)2=1,当且仅当===即a=b=c=d=时取等号.又(1+a)+(1+b)+(1+c)+(1+d)=4+(a+b+c+d)=5,所以5(+++)≥1.所以+++≥.23.设不等式|x-2|<a(a∈N*)的解集为A,且∈A,∉A.(1)求a的值;(2)求函数f(x)=|x+a|+|x-2|的最小值.【答案】(1)a=1(2)3.【解析】(1)因为∈A,且∉A,所以<a,且≥a,解得<a≤.又因为a∈N*,所以a=1.(2)因为|x+1|+|x-2|≥|(x+1)-(x-2)|=3,当且仅当(x+1)(x-2)≤0,即-1≤x≤2时取到等号,所以f(x)的最小值为3.24. (1)设x≥1,y≥1,证明x+y+≤++xy;(2)1<a≤b≤c,证明loga b+logbc+logca≤logba+logcb+logac.【答案】(1)见解析(2)见解析【解析】(1)由于x≥1,y≥1,要证x+y+≤++xy,只需证xy(x+y)+1≤y+x+(xy)2.因为[y+x+(xy)2]-[xy(x+y)+1]=[(xy)2-1]-[xy(x+y)-(x+y)]=(xy+1)(xy-1)-(x+y)(xy-1)=(xy-1)(xy-x-y+1)=(xy-1)(x-1)(y-1).由条件x≥1,y≥1,得(xy-1)(x-1)(y-1)≥0,从而所要证明的不等式成立.(2)设loga b=x,logbc=y,由对数的换底公式得logca=,logba=,logcb=,logac=xy.于是,所要证明的不等式即为x+y+≤++xy.其中x=loga b≥1,y=logbc≥1.故由(1)可知所要证明的不等式成立.25.已知函数f(x)=|2x-a|+a.若不等式f(x)≤6的解集为{x|-2≤x≤3},则实数a的值为________.【答案】a=1【解析】由|2x-a|+a≤6得,|2x-a|≤6-a,∴a-6≤2x-a≤6-a,即a-3≤x≤3,∴a-3=-2,∴a=1.26.若正数x,y满足x+3y=5xy,则3x+4y的最小值是().A.B.C.5D.6【答案】C【解析】∵x>0,y>0,由x+3y=5xy,得=5.∴5(3x+4y)=(3x+4y) =13+≥13+2=25.因此3x+4y≥5,当且仅当x=2y时等号成立.∴当x=1,y=时,3x+4y的最小值为5.27.设实数均不小于1,且,则的最小值是.(是指四个数中最大的一个)【答案】9【解析】设,则,当时上式两等号都能取到,所以的最小值为9.【考点】多元函数最值的求法.28.已知(x+1)n=a0+a1(x﹣1)+a2(x﹣1)+a3(x﹣1)3+…+an(x﹣1)n,(其中n∈N*)(1)求a及;(2)试比较Sn与(n﹣2)2n+2n2的大小,并说明理由.【答案】(1)Sn=3n﹣2n(2)当n=1时,3n>(n﹣1)2n+2n2;当n=2,3时,3n<(n﹣1)2n+2n2;当n≥4,n∈N*时,3n>(n﹣1)2n+2n2【解析】(1)令x=1,则a=2n,令x=2,则,∴Sn=3n﹣2n;(3分)(2)要比较Sn与(n﹣2)2n+2n2的大小,即比较:3n与(n﹣1)2n+2n2的大小,当n=1时,3n>(n﹣1)2n+2n2;当n=2,3时,3n<(n﹣1)2n+2n2;当n=4,5时,3n>(n﹣1)2n+2n2;(5分)猜想:当n≥4时n≥4时,3n>(n﹣1)2n+2n2,下面用数学归纳法证明:由上述过程可知,n=4n=4时结论成立,假设当n=k(k≥4)n=k,(k≥4)时结论成立,即3n>(n﹣1)2n+2n2,两边同乘以3 得:3k+1>3[(k﹣1)2k+2k2]=k2k+1+2(k+1)2+[(k﹣3)2k+4k2﹣4k﹣2]而(k﹣3)2k+4k2﹣4k﹣2=(k﹣3)2k+4(k2﹣k﹣2)+6=(k﹣2)2k+4(k﹣2)(k+1)+6>0∴3k+1>[(k+1)﹣1]2k+1+2(k+1)2即n=k+1时结论也成立,∴当n≥4时,3n>(n﹣1)2n+2n2成立.综上得,当n=1时,3n>(n﹣1)2n+2n2;当n=2,3时,3n<(n﹣1)2n+2n2;当n≥4,n∈N*时,3n>(n﹣1)2n+2n2﹣﹣(10分)【考点】用数学归纳法证明不等式;数列的求和;二项式定理的应用点评:本题是中档题,考查与n有关的命题,通过赋值法解答固定项,前n项和,以及数学归纳法的应用,考查逻辑推理能力,计算能力,常考题型29.选修4—5:不等式选讲已知函数(1)若不等式的解集为,求实数a,m的值。

高考数学十年真题专题解析—不等式选讲

高考数学十年真题专题解析—不等式选讲

不等式选讲年份题号考点考查内容2011文理24不等式选讲绝对值不等式的解法2012文理24不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法2013卷1文理24不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷2文理24不等式选讲多元不等式的证明2014卷1文理24不等式选讲基本不等式的应用卷2文理24不等式选讲绝对值不等式的解法2015卷1文理24不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷2文理24不等式选讲不等式的证明2016卷1文理24不等式选讲分段函数的图像,绝对值不等式的解法卷2文理24不等式选讲绝对值不等式的解法,绝对值不等式的证明卷3文理24不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法2017卷1文理23不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷2文理23不等式选讲不等式的证明卷3文理23不等式选讲绝对值不等式的解法,绝对值不等式解集非空的参数取值范围问题2018卷1文理23不等式选绝对值不等式的解法,不等式恒成立参数取值范围问题的解法讲卷2文理23不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷3文理23不等式选讲绝对值函数的图象,不等式恒成立参数最值问题的解法2019卷1文理23不等式选讲三元条件不等式的证明卷2文理23不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷3文理23不等式选讲三元条件最值问题的解法,三元条件不等式的证明2020卷1文理23不等式选讲绝对值函数的图像,绝对值不等式的解法卷2文理23不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷3文理23不等式选讲三元条件不等式的证明考点出现频率2021年预测考点120绝对值不等式的求解23次考4次2021年主要考查绝对值不等式的解法、绝对值不等式的证明,不等式恒成立参数取值范围问题的解法等.考点121含绝对值不等式的恒成立问题23次考12次考点122不等式的证明23次考7次考点120绝对值不等式的求解1.(2020全国Ⅰ文理22)已知函数()3121f x x x =+--.(1)画出()y f x =的图像;(2)求不等式()()1f x f x >+的解集.【解析】(1)∵()3,1151,1313,3x x f x x x x x ⎧⎪+≥⎪⎪=--<<⎨⎪⎪--≤-⎪⎩,作出图像,如图所示:(2)将函数()f x 的图像向左平移1个单位,可得函数()1f x +的图像,如图所示:由()3511x x --=+-,解得76x =-,∴不等式的解集为7,6⎛⎫-∞- ⎪⎝⎭.2.(2020江苏23)设x ∈R ,解不等式2|1|||4x x ++≤.【答案】22,3⎡⎤-⎢⎥⎣⎦【思路导引】根据绝对值定义化为三个不等式组,解得结果.【解析】1224x x x <-⎧⎨---≤⎩ 或10224x x x -≤≤⎧⎨+-≤⎩或0224x x x >⎧⎨++≤⎩,21x ∴-≤<-或10x -≤≤或203x <≤,∴解集为22,3⎡⎤-⎢⎥⎣⎦.3.(2016全国I 文理)已知函数()|1||23|f x x x =+--.(I)在图中画出()y f x =的图像;(II)求不等式|()|1f x >的解集.【解析】(1)如图所示:(2)()4133212342x x f x x x x x ⎧⎪--⎪⎪=--<<⎨⎪⎪-⎪⎩,≤,,≥,()1f x >.当1x -≤,41x ->,解得5x >或3x <,1x -∴≤;当312x -<<,321x ->,解得1x >或13x <,113x -<<∴或312x <<;当32x ≥,41x ->,解得5x >或3x <,332x <∴≤或5x >.综上,13x <或13x <<或5x >,()1f x >∴,解集为()()11353⎛⎫-∞+∞ ⎪⎝⎭ ,,,.4.(2014全国II 文理)设函数()f x =1(0)x x a a a++->(Ⅰ)证明:()f x ≥2;(Ⅱ)若()35f <,求a 的取值范围.【解析】(I)由0a >,有()f x 111()2x x a x x a a a a a=++-≥+--=+≥,∴()f x ≥2.(Ⅱ)1(3)33f a a=++-.当时a >3时,(3)f =1a a+,由(3)f <5得3<a <5212;当0<a ≤3时,(3)f =16a a-+,由(3)f <5得12<a ≤3.综上:a 的取值范围是(152+,5212+).5.(2011新课标文理)设函数()3f x x a x =-+,其中0a >.(Ⅰ)当1a =时,求不等式()32f x x ≥+的解集;(Ⅱ)若不等式()0f x ≤的解集为{}|1x x ≤-,求a 的值.【解析】(Ⅰ)当1a =时,()32f x x ≥+可化为|1|2x -≥,由此可得3x ≥或1x ≤-.故不等式()32f x x ≥+的解集为{|3x x ≥或1}x ≤-.(Ⅱ)由()0f x ≤得30x a x -+≤,此不等式化为不等式组30x ax a x ≥⎧⎨-+≤⎩或30x aa x x ≤⎧⎨-+≤⎩,即4x a a x ⎧⎪⎨⎪⎩≥≤或2x aax ⎧⎪⎨-⎪⎩≤≤,因为0a >,∴不等式组的解集为{}|2a x x ≤-,由题设可得2a-=1-,故2a =.考点121含绝对值不等式的恒成立问题6.(2020全国Ⅱ文理22)已知函数()221f x x a x a =-+-+.(1)当2a =时,求不等式()4f x ≥的解集;(2)若()4f x ≥,求a 的取值范围.【答案】(1)32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭;(2)(][),13,-∞-+∞ .【思路导引】(1)分别在3x ≤、34x <<和4x ≥三种情况下解不等式求得结果;(2)利用绝对值三角不等式可得到()()21f x a ≥-,由此构造不等式求得结果.【解析】(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤;当34x <<时,()4314f x x x =-+-=≥,无解;当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥;综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭.(2)()()()()22222121211f x x a x a x ax a a a a =-+-+≥---+=-+-=-(当且仅当221a x a -≤≤时取等号),()214a ∴-≥,解得:1a ≤-或3a ≥,a ∴的取值范围为(][),13,-∞-+∞ .7.(2019全国II 文理23)[选修4-5:不等式选讲](10分)已知()|||2|().f x x a x x x a =-+--(1)当1a =时,求不等式()0f x <的解集;(2)若(,1)x ∈-∞时,()0f x <,求a 的取值范围.【解析】(1)当a=1时,()=|1| +|2|(1)f x x x x x ---.当1x <时,2()2(1)0f x x =--<;当1x ≥时,()0f x ≥,∴不等式()0f x <的解集为(,1)-∞.(2)因为()=0f a ,∴1a ≥.当1a ≥,(,1)x ∈-∞时,()=() +(2)()=2()(1)<0f x a x x x x a a x x -----∴a 的取值范围是[1,)+∞.8.(2018全国Ⅰ文理)已知()|1||1|f x x ax =+--.(1)当1a =时,求不等式()1f x >的解集;(2)若(0,1)x ∈时不等式()f x x >成立,求a 的取值范围.【解析】(1)当1a =时,()|1||1|f x x x =+--,即2,1,()2,11,2, 1.--⎧⎪=-<<⎨⎪⎩≤≥x f x x x x 故不等式()1f x >的解集为1{|}2x x >.(2)当(0,1)x ∈时|1||1|x ax x +-->成立等价于当(0,1)x ∈时|1|1ax -<成立.若0≤a ,则当(0,1)x ∈时|1|1-≥ax ;若0a >,|1|1ax -<的解集为20x a <<,∴21≥a,故02<≤a .综上,a 的取值范围为(0,2].9.(2018全国Ⅱ文理)设函数()5|||2|=-+--f x x a x .(1)当1a =时,求不等式()0≥f x 的解集;(2)若()1≤f x ,求a 的取值范围.【解析】(1)当1=a 时,24,1,()2,12,26, 2.+-⎧⎪=-<⎨⎪-+>⎩≤≤x x f x x x x 可得()0≥f x 的解集为{|23}-≤≤x x .(2)()1≤f x 等价于|||2|4++-≥x a x .而|||2||2|++-+≥x a x a ,且当2=x 时等号成立.故()1≤f x 等价于|2|4+≥a .由|2|4+≥a 可得6-≤a 或2≥a ,∴a 的取值范围是(,6][2,)-∞-+∞ .10.(2018全国Ⅲ文理)设函数()|21||1|f x x x =++-.(1)画出()y f x =的图像;(2)当[0,)x ∈+∞时,()f x ax b +≤,求a b +的最小值.【解析】(1)13,,21()2,1,23, 1.x x f x x x x x ⎧-<-⎪⎪⎪=+-<⎨⎪⎪⎪⎩≤≥()y f x =的图像如图所示.(2)由(1)知,()y f x =的图像与y 轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当3a ≥且2b ≥时,()f x ax b +≤在[0,)+∞成立,因此a b +的最小值为5.11.(2018江苏)若x ,y ,z 为实数,且226x y z ++=,求222x y z ++的最小值.【解析】由柯西不等式,得2222222()(122)(22)x y z x y z ++++++≥.因为22=6x y z ++,∴2224x y z ++≥,当且仅当122x y z ==时,不等式取等号,此时244333x y z ===,,,∴222x y z ++的最小值为4.12.(2017全国Ⅰ文理)已知函数2()4f x x ax =-++,()|1||1|g x x x =++-.(1)当1a =时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[1,1]-,求a 的取值范围.【解析】(1)当1a =时,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤.①当1x <-时,①式化为2340x x --≤,无解;当11x -≤≤时,①式化为220x x --≤,从而11x -≤≤;当1x >时,①式化为240x x +-≤,从而11712x -+<≤,∴()()f x g x ≥的解集为117{|1}2x x -+-<≤.(2)当[1,1]x ∈-时,()2g x =,∴()()f x g x ≥的解集包含[1,1]-,等价于当[1,1]x ∈-时()2f x ≥.又()f x 在[1,1]-的最小值必为(1)f -与(1)f 之一,∴(1)2f -≥且(1)2f ≥,得11a -≤≤,∴a 的取值范围为[1,1]-.13.(2017全国Ⅲ文理)已知函数()|1||2|f x x x =+--.(1)求不等式()1f x ≥的解集;(2)若不等式2()f x x x m -+≥的解集非空,求m 的取值范围.【解析】(1)3,1()21,123,2x f x x x x -<-⎧⎪=--⎨⎪>⎩≤≤,当1x <-时,()f x 1≥无解;当x -12≤≤时,由()f x 1≥得,x -211≥,解得x 12≤≤;当>2x 时,由()f x 1≥解得>2x .∴()f x 1≥的解集为{}x x 1≥.(2)由()f x x x m -+2≥得m x x x x +---+212≤,而x x x x x x x x +---+--+2212+1+2≤x ⎛⎫ ⎪⎝⎭2355=--+244≤,且当32x =时,2512=4x x x x +---+,故m 的取值范围为5-,4⎛⎤∞ ⎥⎝⎦.14.(2016全国III 文理)已知函数()|2|f x x a a =-+(Ⅰ)当a=2时,求不等式()6f x ≤的解集;(Ⅱ)设函数()|21|g x x =-,当x ∈R 时,()()3f x g x +≥,求a 的取值范围.【解析】(Ⅰ)当2a =时,()|22|2f x x =-+.解不等式|22|26x -+ ,得13x - ,因此()6f x ≤的解集为{|13}x x - .(Ⅱ)当x R ∈时,()()|2||12|f xg x x a a x +=-++-|212|x a x a -+-+ |1|a a =-+,当12x =时等号成立,∴当x R ∈时,()()3f x g x + 等价于|1|3a a -+ .①当1a 时,①等价于13a a -+ ,无解.当1a >时,①等价于13a a -+ ,解得2a .∴a 的取值范围是[2,)+∞.15.(2015全国I 文理)已知函数()|1|2||f x x x a =+--,0a >.(Ⅰ)当1a =时,求不等式()1f x >的解集;(Ⅱ)若()f x 的图像与x 轴围成的三角形面积大于6,求a 的取值范围.【解析】(Ⅰ)当1a =时,不等式()1f x >化为|1|2|1|10x x +--->,当1x -≤时,不等式化为40x ->,无解;当11x -<<时,不等式化为320x ->,解得213x <<;当1x ≥时,不等式化为20x -+>,解得12x <≤.∴()1f x >的解集为2{|2}3x x <<.(Ⅱ)有题设可得,12,1()312,112,x a x f x x a x a x a x a --<-⎧⎪=+--⎨⎪-++>⎩≤≤,∴函数()f x 图象与x 轴围成的三角形的三个顶点分别为21(,0),(21,0),(,1)3a A B a C a a -++,ABC ∆的面积为22(1)3a +.有题设得22(1)63a +>,故2a >.∴a 的取值范围为(2,)+∞.16.(2014全国I 文理)若0,0ab >>,且11a b +=.(Ⅰ)求33a b +的最小值;(Ⅱ)是否存在,a b ,使得236a b +=?并说明理由.【解析】(I)11a b =+≥,得2ab ≥,且当a b ==时取等号.故33ab+≥≥,且当a b ==∴33a b +的最小值为(II)由(I)知,23a b +≥.由于6>,从而不存在,a b ,使得236a b +=.16.(2013全国I 文理)已知函数()f x =|21||2|x x a -++,()g x =3x +.(Ⅰ)当a =-2时,求不等式()f x <()g x 的解集;(Ⅱ)设a >-1,且当x ∈[2a -,12)时,()f x ≤()g x ,求a 的取值范围.【解析】(Ⅰ)当a =-2时,不等式()f x <()g x 化为|21||22|30x x x -+---<,设函数y =|21||22|3x x x -+---,y =15, 212, 1236, 1x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩,其图像如图所示,从图像可知,当且仅当(0,2)x ∈时,y <0,∴原不等式解集是{|02}x x <<.(Ⅱ)当x ∈[2a -,12)时,()f x =1a +,不等式()f x ≤()g x 化为13a x ++≤,∴2x a -≥对x ∈[2a -,12)都成立,故2a -≥2a -,即a ≤43,∴a 的取值范围为(-1,43].17.(2012新课标文理)已知函数|2|||)(-++=x a x x f .(Ⅰ)当|3-=a 时,求不等式()3f x 的解集;(Ⅱ)若()|4|f x x - 的解集包含]2,1[,求a 的取值范围.【解析】(1)当3a =-时,()3323f x x x ⇔-+- 2323x x x ⎧⇔⎨-+-⎩ 或23323x x x <<⎧⇔⎨-+-⎩ 或3323x x x ⎧⇔⎨-+-⎩ 1x ⇔ 或4x .(2)原命题()4f x x ⇔- 在[1,2]上恒成立24x a x x ⇔++-- 在[1,2]上恒成立22x a x ⇔--- 在[1,2]上恒成立30a ⇔- .考点122不等式的证明18.(2020全国Ⅲ文理23)设,,,0,1a b c a b c abc ∈++==R .(1)证明:0ab bc ca ++<;(2)用{}max ,,a b c 表示,,a b c 的最大值,证明:{}3max ,,4a b c ≥【答案】(1)证明见解析(2)证明见解析.【思路导引】(1)根据题设条件,0=++c b a 两边平方,再利用均值不等式证明即可;(2)思路一:不妨设max{,,}a b c a =,由题意得出0,,0a b c ><,由()222322b c b c bc a a a bc bc+++=⋅==,结合基本不等式,即可得出证明.思路二:假设出c b a ,,中最大值,根据反证法与基本不等式推出矛盾,即可得出结论.【解析】(1)证明:().0,02=++∴=++c b a c b a ,0222222=+++++∴ca ac ab c b a 即()222222c b a ca bc ab ++-=++.0,0222<++∴<++∴ca bc ab ca bc ab (2)证法一:不妨设max{,,}a b c a =,由0,1a b c abc ++==可知,0,0,0a b c ><<,1,a b c a bc =--= ,()222322224b c b c bc bc bc a a a bc bc bc++++∴=⋅==≥=,当且仅当b c =时,取等号,a ∴≥,即max{,,}a b c .证法二:不妨设403<<<≤c b a ,则,4,41133>=-->=c b a c ab而1132a b ->--≥>==矛盾,∴命题得证.19.(2019全国I 文理23)已知a ,b ,c 为正数,且满足abc=1.证明:(1)222111a b c a b c++≤++;(2)333()()()24a b b c c a +++≥++.【解析】(1)因为2222222,2,2a b ab b c bc c a ac +≥+≥+≥,又1abc =,故有222111ab bc ca a b c ab bc ca abc a b c ++++≥++==++,∴222111a b c a b c++≤++.(2)因为, , a b c 为正数且1abc =,故有333()()()a b b c c a +++++≥=3(+)(+)(+)a b b c ac 3≥⨯⨯⨯=24.∴333()()()24a b b c c a +++++≥.20.(2019全国III 文理23)设,,x y z ∈R ,且1x y z ++=.(1)求222(1)(1)(1)x y z -++++的最小值;(2)若2221(2)(1)()3x y z a -+-+-≥成立,证明:3a ≤-或1a ≥-.【解析】(1)由于2[(1)(1)(1)]x y z -++++222(1)(1)(1)2[(1)(1)(1)(1)(1)(1)]x y z x y y z z x =-+++++-++++++-2223(1)(1)(1)x y z ⎡⎤≤-++++⎣⎦,故由已知得2224(1)(1)(1)3x y z -++++≥,当且仅当x=53,y=–13,13z =-时等号成立.∴222(1)(1)(1)x y z -++++的最小值为43.(2)由于2[(2)(1)()]x y z a -+-+-222(2)(1)()2[(2)(1)(1)()()(2)]x y z a x y y z a z a x =-+-+-+--+--+--2223(2)(1)()x y z a ⎡⎤-+-+-⎣⎦ ,故由已知2222(2)(2)(1)()3a x y z a +-+-+- ,当且仅当43a x -=,13a y -=,223a z -=时等号成立,因此222(2)(1)()x y z a -+-+-的最小值为2(2)3a +.由题设知2(2)133a + ,解得3a - 或1a - .21.(2017全国Ⅱ文理)已知0a >,0b >,332a b +=,证明:(1)()()554a b a b ++≥;(2)2a b +≤.【解析】(1)556556()()a b a b a ab a b b ++=+++3323344()2()a b a b ab a b =+-++()22244ab a b =+-≥.(2)∵33223()33a b a a b ab b +=+++23()ab a b =++23()2()4a b a b +≤++33()24a b +=+,∴3()8a b +≤,因此2a b +≤.22.(2017江苏)已知a ,b ,c ,d 为实数,且224a b +=,2216c d +=,证明8ac bd +≤.【解析】证明:由柯西不等式可得:22222()()()ac bd a b c d +++≤,因为22224,16,a b c d +=+=∴2()64ac bd +≤,因此8ac bd +≤.23.(2016全国II 文理)已知函数()1122f x x x =-++,M 为不等式()2f x <的解集.(I)求M ;(II)证明:当a ,b M ∈时,1a b ab +<+.【解析】(I)当12x <-时,()11222f x x x x =---=-,若112x -<<-;当1122x -≤≤时,()111222f x x x =-++=<恒成立;当12x >时,()2f x x =,若()2f x <,112x <<.综上可得,{}|11M x x =-<<.(Ⅱ)当()11a b ∈-,,时,有()()22110a b -->,即22221a b a b +>+,则2222212a b ab a ab b +++>++,则()()221ab a b +>+,即1a b ab +<+,证毕.24.(2015全国II 文理)设,,,a b c d 均为正数,且a b c d +=+,证明:(Ⅰ)若ab >cd ,则a b c d +>+;(Ⅱ)a b c d +>+是||||a b c d -<-的充要条件.【解析】(Ⅰ)∵2()2a b a b ab +=++,2()c d c d cd +=++由题设a b c d +=+,ab cd >得22()a b c d >+a b c d +>(Ⅱ)(ⅰ)若||||a b c d -<-,则22()()a b c d -<-,即22()4()4a b ab c d cd +-<+-.因为a b c d +=+,∴ab cd >,由(Ⅰ)得a b c d >(ⅱ)a b c d +>则22(a b c d >+,即a b ab c d cd ++>++因为a b c d +=+,∴ab cd >,于是2222()()4()4()a b a b ab c d cd c d -=+-<+-=-.因此||||a b c d -<-.a b c d +>||||a b c d -<-的充要条件.25.(2013全国II 文理)设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤;(Ⅱ)2221a b c b c a++≥.【解析】(Ⅰ)2222222,2,2a b ab b c bc c a ca +≥+≥+≥得222a b c ab bc ca ++≥++,由题设得()21a b c ++=,即2222221a b c ab bc ca +++++=,∴()31ab bc ca ++≤,即13ab bc ca ++≤.(Ⅱ)∵2222,2,2a b c b a c b a c b c a +≥+≥+≥,∴222()2()a b c a b c a b c b c a +++++≥++,即222a b c a b c b c a ++≥++,∴2221a b c b c a ++≥.。

高考数学压轴专题新备战高考《不等式选讲》真题汇编及解析

高考数学压轴专题新备战高考《不等式选讲》真题汇编及解析

高考数学《不等式选讲》课后练习一、141.已知集合{|||2}A x x =≥,2{|30}B x x x =->,则A B =I ( ) A .∅B .{|3x x >或2}x ?C .{|3x x >或0}x <D .{|3x x >或0}x <【答案】B 【解析】 【分析】可以求出集合A ,B ,然后进行交集的运算即可. 【详解】∵A ={x |x ≤﹣2,或x ≥2},B ={x |x <0,或x >3}, ∴A ∩B ={x |x ≤﹣2,或x >3}. 故选:B . 【点睛】考查描述法的定义,绝对值不等式和一元二次不等式的解法,以及交集的运算.2.函数y =|x -3|-|x +1|的( ) A .最小值是0,最大值是4 B .最小值是-4,最大值是0 C .最小值是-4,最大值是4 D .没有最大值也没有最小值【答案】C 【解析】因为y =|x -3|-|x +1|4,322,134,1x x x x -≥⎧⎪=--<<⎨⎪≤-⎩,所以最小值是-4,最大值是4,选C.点睛:分段函数的最值由于分段函数在定义域不同的子区间上对应不同的解析式,因而求其最值的常用方法是先求出分段函数在每一个子区间上的最值,然后取各区间上最大值中的最大者作为分段函数的最大值,各区间上最小值中的最小者作为分段函数的最小值.3.若不等式23x a x -≤+对任意[]0,2x ∈恒成立,则实数a 的取值范围是( ) A .()1,3- B .[]1,3-C .()1,3D .[]1,3【答案】B 【解析】 【分析】将不等式去掉绝对值符号,然后变量分离转为求函数的最值问题. 【详解】不等式23x a x -≤+去掉绝对值符号得323x x a x --≤-≤+,即3223x x a x a x --≤-⎧⎨-≤+⎩对任意[]0,2x ∈恒成立,变量分离得333a x a x ≤+⎧⎨≥-⎩,只需min max (33)(3)a x a x ≤+⎧⎨≥-⎩,即31a a ≤⎧⎨≥-⎩所以a 的取值范围是[]1,3- 故选:B 【点睛】本题考查绝对值不等式的解法和恒成立问题的处理方法,属于基础题.4.已知命题p :不等式11x m ->-的解集为R ,命题q :()(52)x f x m =--是减函数,若p ∨q 为真命题,p ∧q 为假命题,则实数m 的取值范围是( ) A .1≤m≤2 B .1≤m<2C .1<m≤2D .1<m<2【答案】B 【解析】 【分析】若p ∨q 为真命题,p ∧q 为假命题,可知p 真q 假或p 假q 真,化简p,q 为真时,对应m 的取值范围,然后按p 真q 假或p 假q 真求解即可. 【详解】若p 为真时,10m -<,即1m < ,若q 为真时,521m ->,即2m <,若p ∨q 为真命题,p ∧q 为假命题,可知p 真q 假或p 假q 真,当p 真q 假时,12m m <⎧⎨≥⎩ ,无解,若p 假q 真时,12m m ≥⎧⎨<⎩,即 12m ≤<,故选B.【点睛】本题主要考查了含且、或命题的真假,及含绝对值不等式恒成立,指数型函数的增减性,属于中档题.5.已知f (x )=|x +2|+|x -4|的最小值为n ,则二项式1nx x ⎛⎫- ⎪⎝⎭展开式中x 2项的系数为( ) A .11 B .20 C .15 D .16 【答案】C 【解析】 【分析】由题意利用绝对值三角不等式求得n=6,在二项展开式的通项公式中,令x 的幂指数等于0,求出r 的值,即可求得展开式中x 2项的系数. 【详解】∵f (x )=|x+2|+|x ﹣4|≥|(x+2)﹣(x ﹣4)|=6,故函数的最小值为6, 再根据函数的最小值为n ,∴n=6. 则二项式(x ﹣1x )n =(x ﹣1x)6 展开式中的通项公式为 T r+1=6r C •(﹣1)r •x 6﹣2r , 令6﹣2r=2,求得r=2,∴展开式中x 2项的系为26C =15, 故选:C . 【点睛】本题主要考查绝对值三角不等式的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数,属于中档题.6.已知,,则使不等式一定成立的条件是A .B .C .D .【答案】D 【解析】因为若,则,已知不等式不成立,所以,应选答案D 。

专题27 不等式选讲丨十年高考数学真题分项汇编(解析版)(共24页)

专题27  不等式选讲丨十年高考数学真题分项汇编(解析版)(共24页)

十年(2014-2023)年高考真题分项汇编—不等式选讲目录题型一:含绝对值不等式的解法...........................................................1题型二:不等式的最值...........................................................................8题型三:含绝对值不等式的成立问题....................................................9题型四:含绝对值函数的图像及其应用..............................................10题型五:不等式证明.. (17)(1)当1a =时,求不等式()6f x ≥的解集;(2)若()f x a >-,求a 的取值范围.【答案】(1)(][),42,-∞-+∞ .(2)3,2⎛⎫-+∞ ⎪⎝⎭.解析:(1)当1a =时,()13f x x x =-++,13x x -++表示数轴上的点到1和3-的距离之和,则()6f x ≥表示数轴上的点到1和3-的距离之和不小于6,故4x ≤-或2x ≥,所以()6f x ≥的解集为(][),42,-∞-+∞ .(2)依题意()f x a >-,即3a x a x -+>-+恒成立,333x a x x a a x -++-+=≥++,故3a a +>-,所以3a a +>-或3a a +<,解得32a >-.所以a 的取值范围是3,2⎛⎫-+∞ ⎪⎝⎭.【点睛】解绝对值不等式的方法有零点分段法、几何意义法.2.(2020年高考课标Ⅱ卷理科·第23题)已知函数2()|21|f x x a x a =-+-+.(1)当2a =时,求不等式()4f x 的解集;(2)若()4f x ,求a 的取值范围.【答案】(1)32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭;(2)(][),13,-∞-+∞ .解析:(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤;当34x <<时,()4314f x x x =-+-=≥,无解;当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥;综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭.(2)()()()()22222121211f x x a x a x ax a a a a =-+-+≥---+=-+-=-(当且仅当221a x a -≤≤时取等号),()214a ∴-≥,解得:1a ≤-或3a ≥,a ∴的取值范围为(][),13,-∞-+∞ .【点睛】本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于常考题型.3.(2020江苏高考·第23题)设x ∈R ,解不等式2|1|||4x x ++≤.【答案】22,3⎡⎤-⎢⎥⎣⎦【解析】1224x x x <-⎧⎨---≤⎩ 或10224x x x -≤≤⎧⎨+-≤⎩或0224x x x >⎧⎨++≤⎩21x ∴-≤<-或10x -≤≤或203x <≤,所以解集为22,3⎡⎤-⎢⎥⎣⎦4.(2019·全国Ⅱ·理·第23题)已知函数()()2f x x a x x x a =-+--.()1当1a =时,求不等式()0f x <的解集;()2当(),1x ∈-∞时,()0f x <,求a 的取值范围.【答案】()1(),1-∞;()2[)1,+∞【官方解析】()1当1a =时,()=|1| +|2|(1)f x x x x x ---.当1x <时,2()2(1)0f x x =--<;当1x ≥时,()0f x ≥.所以,不等式()0f x <的解集为(,1)-∞.()2因为()=0f a ,所以1a ≥.当1a ≥,(,1)x ∈-∞时,()=() +(2)()=2()(1)<0f x a x x x x a a x x -----所以,a 的取值范围是[1,)+∞.【分析】()1根据1a =,将原不等式化为()1210x x x x -+--<,分别讨论1x <,12x <≤,2x ≥三种情况,即可求出结果;()2分别讨论1a ≥和1a <两种情况,即可得出结果.【解析】()1当1a =时,原不等式可化为()1210x x x x -+--<;当1x <时,原不等式可化为,即()210x ->,显然成立,此时解集为(),1-∞;当12x <≤时,原不等式可化为()()()1210x x x x -+--<,解得1x <,此时解集为空集;当2x ≥时,原不等式可化为()()()1210x x x x -+--<,即()210x -<,显然不成立;此时解集为空集;综上,原不等式的解集为(),1-∞;()2当1a ≥时,因为(),1x ∈-∞,所以由()0f x <可得()()()20a x x x x a -+--<,即()()10x a x -->,显然恒成立;所以1a ≥满足题意;当1a <时,()()()2,1()21,x a a x f x x a x x a -<⎧⎪=⎨--<⎪⎩≤,因为1a x <≤时,()0f x <显然不能成立,所以1a <不满足题意;综上,a 的取值范围是[)1,+∞.【点评】本题主要考查含绝对值的不等式,熟记分类讨论的方法求解即可,属于常考题型.5.(2019·江苏·第23题)设x ∈R ,解不等式||+|2 1|>2x x -.【答案】见解析【解析】当0x <时,原不等式可化为122x x -+->,解得13x <-;当12x 0≤≤时,原不等式可化为122x x +->,即1x <-,无解;当12x >时,原不等式可化为212x x +->,解得1x >.综上,原不等式的解集为1{|1}3x x x <->或.6.(2015高考数学新课标1理科·第24题)(本小题满分10分)选修4—5:不等式选讲已知函数()12,0f x x x a a =+-->.(Ⅰ)当1a =时,求不等式()1f x >的解集;(Ⅱ)若()f x 的图像与x 轴围成的三角形面积大于6,求a 的取值范围【答案】(Ⅰ)2{|2}3x x <<(Ⅱ)(2,+∞)分析:(Ⅰ)利用零点分析法将不等式f (x )>1化为一元一次不等式组来解;(Ⅱ)将()f x 化为分段函数,求出()f x 与x 轴围成三角形的顶点坐标,即可求出三角形的面积,根据题意列出关于a 的不等式,即可解出a 的取值范围.解析:(Ⅰ)当a =1时,不等式f (x )>1化为|x +1|-2|x -1|>1,等价于11221x x x ≤-⎧⎨--+->⎩或111221x x x -<<⎧⎨++->⎩或11221x x x ≥⎧⎨+-+>⎩,解得223x <<,所以不等式f (x )>1的解集为2{|2}3x x <<.(Ⅱ)由题设可得,12,1()312,112,x a x f x x a x a x a x a --<-⎧⎪=+--≤≤⎨⎪-++>⎩,所以函数()f x 的图像与x 轴围成的三角形的三个顶点分别为21(,0)3a A -,(21,0)B a +,(,+1)C a a ,所以△ABC 的面积为22(1)3a +.由题设得22(1)3a +>6,解得2a >.所以a 的取值范围为(2,+∞).7.(2015高考数学江苏文理·第24题)解不等式|23|2x x ++≥【答案】153x x x ⎧⎫≤-≥-⎨⎬⎩⎭或分析:根据绝对值定义将不等式化为两个不等式组的并集,分别求解即可解析:原不等式可化为3232x x ⎧<-⎪⎨⎪--≥⎩或32332x x ⎧≥-⎪⎨⎪+≥⎩.解得5x ≤-或13x ≥-.综上,原不等式的解集是153x x x ⎧⎫≤-≥-⎨⎬⎩⎭或.8.(2014高考数学课标2理科·第24题)(本小题满分10)选修4-5:不等式选讲.设函数()f x =1(0)x x a a a++->(Ⅰ)证明:()f x ≥2;(Ⅱ)若()35f <,求a 的取值范围.【答案】解析:(Ⅰ)11112x x a x a x x a x a a a a a++-=++-≥++-=+≥,仅当1a =时等号成立,所以()f x ≥2.(Ⅱ)()3f =1133335a a a a++-=-++<当03a <<时,()3f =165a a -+<,解得152a +>当3a ≥时,()3f =15a a +<,解得52a +>综上所述,a 的取值范围为15521(,22+.9.(2017年高考数学新课标Ⅰ卷理科·第23题)[选修4—5:不等式选讲]已知函数()24f x x ax =-++,()11g x x x =++-.(1)当1a =时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[]1,1-,求a 的取值范围【答案】(1)11712x x ⎧-+⎪-≤≤⎨⎬⎪⎪⎩⎭;(2)[]1,1-.【分析】(1)将1a =代入,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤,对x 按1x <-,11x -≤≤,1x >讨论,得出最值的解集;(2)当[1,1]x ∈-时,()2g x =.若()()f x g x ≥的解集包含[1,1]-,等价于当[]1,1x ∈-时,()2f x ≥,则()f x 在[]1,1-的最小值必为()1f -与()1f 之一,所以()12f -≥且()12f ≥,得11a -≤≤,所以a 的取值范围为[]1,1-.【解析】(1)当1a =时,不等式()()f x g x ≥等价于21140x x x x -+++--<①当1x <-时,①式化为2340x x --≤,无解;当11x -≤≤时,①式化为220x x --≤,从而11x -≤≤;当1x >时,①式化为240x x +-≤,从而11712x -+<≤所以不等式()()f x g x ≥的解集为11712xx ⎧-+⎪-≤≤⎨⎬⎪⎪⎩⎭(2)当[]1,1x ∈-时,()2g x =所以()()f x g x ≥的解集包含[]1,1-,等价于当[]1,1x ∈-时,()2f x ≥又()f x 在[]1,1-的最小值必为()1f -与()1f 之一,所以()()1212f f -≥⎧⎪⎨≥⎪⎩,得11a -≤≤.所以a 的取值范围为[]1,1-.10.(2017年高考数学课标Ⅲ卷理科·第23题)[选修4—5:不等式选讲](10分)已知函数()12f x x x =+--.(1)求不等式()1f x ≥的解集;(2)若不等式()2f x x x m ≥-+的解集非空,求m 的取值范围.【答案】(Ⅰ){}1x x ≥;(Ⅱ)5-,4⎛⎤∞ ⎥⎝⎦【解析】(1)因为()3, 11221, 123, 2x f x x x x x x -<-⎧⎪=+--=-≤≤⎨⎪>⎩所以不等式()1f x ≥等价于131x <-⎧⎨-≥⎩或12211x x -≤≤⎧⎨-≥⎩或231x >⎧⎨≥⎩由131x <-⎧⎨-≥⎩⇒x 无解;由1222x x -≤≤⎧⎨≥⎩12x ⇒≤≤;由231x >⎧⎨≥⎩2x ⇒≥综上可得不等式()1f x ≥的解集为[)1,+∞.(2)解法一:先求不等式()2f x x x m ≥-+的解集为空集时m 的取值范围不等式()2f x x x m ≥-+的解集为空集等价于不等式()2m f x x x >-+恒成立记()()2F x f x x x =-+2223, 131, 123, 2x x x x x x x x x ⎧-+-<-⎪-+-≤≤⎨⎪-++>⎩,则()maxm F x >⎡⎤⎣⎦当1x <-时,()()2211131524F x x x x F ⎛⎫=-+-=---<-=- ⎪⎝⎭当12x -≤≤时,()223535312424F x x x x F ⎛⎫⎛⎫=-+-=--+≤=⎪ ⎪⎝⎭⎝⎭当2x >时,()()2211332124F x x x x F ⎛⎫=-++=--+<= ⎪⎝⎭所以()max 3524F x F ⎛⎫==⎡⎤⎪⎣⎦⎝⎭所以不等式()2f x x x m ≥-+的解集为空集时,54m >所以不等式()2f x x x m ≥-+的解集非空时,m 的取值范围为5,4⎛⎤-∞ ⎥⎝⎦.解法二:原式等价于存在x R ∈,使2()f x x x m -+≥成立,即2max [()]f x x x m-+≥设2()()g x f x x x=-+由(1)知2223,1()31,123,2x x x g x x x x x x x ⎧-+-≤-⎪=-+--<<⎨⎪-++≥⎩当1x ≤-时,2()3g x x x =-+-,其开口向下,对称轴112x =>-所以()()11135g x g ≤-=---=-当12x -<<时,()231g x x x =-+-,其开口向下,对称轴为32x =所以()399512424g x g ⎛⎫≤=-+-=⎪⎝⎭当2x ≥时,()23g x x x =-++,其开口向下,对称轴为12x =所以()()24231g x g ≤=-++=综上()max 54g x =⎡⎤⎣⎦所以m 的取值范围为5,4⎛⎤-∞ ⎥⎝⎦.11.(2016高考数学课标Ⅲ卷理科·第24题)选修4—5:不等式选讲已知函数()2f x x a a =-+.(Ⅰ)当2a =时,求不等式()6f x ≤的解集;(Ⅱ)设函数()21g x x =-,当R x ∈时,()()3f x g x +≥,求a 的取值范围.【答案】(Ⅰ){}13x x -≤≤;(Ⅱ)[)2,+∞.【解析】(Ⅰ)当2a =时,()222f x x =-+.解不等式2226x -+≤,得13x -≤≤.因此,()6f x ≤的解集为{}13x x -≤≤.(Ⅱ)当R x ∈时,()()2122121f x g x x a a x x a x a a a +=-++--+-+=-+≥当12x =时等号成立.所以当R x ∈时,()()3f x g x +≥等价于13a a -+≥.①当1a ≤时,①等价于13a a -+≥,无解.当1a >时,①等价于13a a -+≥,解得2a ≥所以的取值范围是[)2,+∞.题型二:不等式的最值1.(2018年高考数学江苏卷·第24题)[选修4—5:不等式选讲](本小题满分10分)若x ,y ,z 为实数,且x +2y +2z =6,求222x y z ++的最小值.【答案】4证明:由柯西不等式,得2222222()(122)(22)x y z x y z ++++≥++.因为22=6x y z ++,所以2224x y z ++≥,当且仅当122x y z ==时,不等式取等号,此时244333x y z ===,,,所以222x y z ++的最小值为4.2.(2014高考数学课标1理科·第24题)选修4—5:不等式选讲若0,0a b >>,且11a b+=.(1)求33a b +的最小值;(2)是否存在,a b ,使得236a b +=?并说明理由.【答案】解析:(111a b=+³,得2ab ³,且当a b ==故33a b +³=,且当a b ==∴33a b +的最小值为.(2)由623a b =+³,得32ab £,又由(1)知2ab ³,二者矛盾,所以不存在,a b ,使得236a b +=成立.3.(2015高考数学陕西理科·第24题)(本小题满分10分)选修4-5:不等式选讲已知关于x 的不等式x a b +<的解集为{}24x x <<.(Ⅰ)求实数a ,b 的值;+的最大值.【答案】(Ⅰ)3a =-,1b =;(Ⅱ)4.分析:(Ⅰ)先由x a b +<可得b a x b a --<<-,再利用关于x 的不等式x a b +<的解集为{}24x x <<可得a ,b,再利用柯西不等式可得的最大值.解析:(Ⅰ)由||x a b +<,得b a x b a --<<-则2,4,b a b a --=⎧⎨-=⎩解得3a =-,1b =(Ⅱ)=≤4==1=,即1t =时等号成立,故max4=.4.(2015高考数学福建理科·第23题)选修4-5:不等式选讲已知0,0,0a b c >>>,函数()||||f x x a x b c =++-+的最小值为4.(Ⅰ)求a b c ++的值;(Ⅱ)求2221149a b c ++的最小值.【答案】(Ⅰ)4;(Ⅱ)87.解析:(Ⅰ)因为(x)|x ||x ||(x )(x )||a |f a b c a b c b c =++++³+-++=++,当且仅当a x b -#时,等号成立,又0,0a b >>,所以|a b |a b +=+,所以(x)f 的最小值为a b c ++,所以a b c 4++=.(Ⅱ)由(1)知a b c 4++=,由柯西不等式得()()22222114912+3+1164923a b a b c c a b c ⎛⎫⎛⎫++++≥⨯⨯⨯=++= ⎪ ⎪⎝⎭⎝⎭,即222118497a b c ++³.当且仅当1132231b ac ==,即8182,,777a b c ===时,等号成立所以2221149a b c ++的最小值为87.题型三:含绝对值不等式的成立问题1.(2018年高考数学课标Ⅱ卷(理)·第23题)[选修4-5:不等式选讲](10分)设函数()5|||2|f x x a x =-+--.(1)当1a =时,求不等式()0f x ≥的解集;(2)若()1f x ≤,求a 的取值范围.【答案】解析:(1)当1a =时,24,1,()2,12,26, 2.x x f x x x x +-⎧⎪=-<⎨⎪-+>⎩≤ ≤可得()0≥f x 的解集为{}|23≤≤x x -.(2)()1f x ≤等价于|||2|4≥x a x ++-.而|||2||2|≥x a x a ++-+,且当2x =时等号成立,故()1f x ≤等价于|2|4≥a +.由|2|4≥a +可得6≤a -或2≥a ,所以a 的取值范围是(][),62,-∞-+∞ .2.(2018年高考数学课标卷Ⅰ(理)·第23题)[选修4–5:不等式选讲](10分)已知()|1||1|f x x ax =+--.(1)当1a =时,求不等式()1f x >的解集;(2)若(0,1)x ∈时不等式()f x x >成立,求a 的取值范围.【答案】解析:(1)当1a =时,()|1||1|f x x x =+--,即2,1,()2,11,2, 1.x f x x x x -≤-⎧⎪=-<<⎨⎪≥⎩故不等式()1f x >的解集为1{|}2x x >.(2)当(0,1)x ∈时|1||1|x ax x +-->成立等价于当(0,1)x ∈时|1|1ax -<成立.若0a ≤,则当(0,1)x ∈时|1|1ax -≥;若0a >,|1|1ax -<的解集为20x a <<,所以21a≥,故02a <≤.综上,a 的取值范围为(0,2].(1)求不等式()f x x <的解集;(2)若曲线()y f x =与x 轴所围成的图形的面积为2,求a .【答案】(1),33a a ⎛⎫⎪⎝⎭(2)2解析:(1)若x a ≤,则()22f x a x a x =--<,即3x a >,解得3a x >,即3ax a <≤,若x a >,则()22f x x a a x =--<,解得3x a <,即3a x a <<,综上,不等式的解集为,33a a ⎛⎫⎪⎝⎭.(2)2,()23,x a x af x x a x a -+≤⎧=⎨->⎩.画出()f x 的草图,则()f x 与x 轴围成ABC ,ABC 的高为3,,0,,022a a a A B ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,所以||=AB a ,所以211||222ABC S AB a a =⋅== ,解得2a =.2.(2023年全国乙卷理科·第23题)已知()22f x x x =+-.(1)求不等式()6f x x ≤-的解集;(2)在直角坐标系xOy 中,求不等式组()60f x yx y ≤⎧⎨+-≤⎩所确定的平面区域的面积.【答案】(1)[2,2]-;(2)8.解析:(1)依题意,32,2()2,0232,0x x f x x x x x ->⎧⎪=+≤≤⎨⎪-+<⎩,不等式()6f x x ≤-化为:2326x x x >⎧⎨-≤-⎩或0226x x x ≤≤⎧⎨+≤-⎩或0326x x x <⎧⎨-+≤-⎩,解2326x x x >⎧⎨-≤-⎩,得无解;解0226x x x ≤≤⎧⎨+≤-⎩,得02x ≤≤,解0326x x x <⎧⎨-+≤-⎩,得20x -≤<,因此22x -≤≤,所以原不等式的解集为:[2,2]-(2)作出不等式组()60f x yx y ≤⎧⎨+-≤⎩表示的平面区域,如图中阴影ABC ,由326y x x y =-+⎧⎨+=⎩,解得(2,8)A -,由26y x x y =+⎧⎨+=⎩,解得(2,4)C ,又(0,2),(0,6)B D ,所以ABC 的面积11|||62||2(2)|822ABC C A S BD x x =⨯-=-⨯--= .3.(2020年高考课标Ⅰ卷理科·第23题)已知函数()|31|2|1|f x x x =+--.(1)画出()y f x =的图像;(2)求不等式()(1)f x f x >+的解集.【答案】(1)详解解析;(2)7,6⎛⎫-∞-⎪⎝⎭.【解析】(1)因为()3,1151,1313,3x x f x x x x x ⎧⎪+≥⎪⎪=--<<⎨⎪⎪--≤-⎪⎩,作出图象,如图所示:(2)将函数()f x 的图象向左平移1个单位,可得函数()1f x +的图象,如图所示:由()3511x x --=+-,解得76x =-.所以不等式()(1)f x f x >+的解集为7,6⎛⎫-∞-⎪⎝⎭.【点睛】本题主要考查画分段函数的图象,以及利用图象解不等式,意在考查学生的数形结合能力,属于基础题.4.(2016高考数学课标Ⅰ卷理科·第24题)(本小题满分10分)选修4—5:不等式选讲已知函数(x)123f x x =+--.(I )画出(x)y f =的图像;(II )求不等式(x)1f >的解集.【答案】(I )见解析(II )()()11353⎛⎫-∞+∞ ⎪⎝⎭,,,【官方解答】(I )()4133212342x x f x x x x x ⎧⎪--⎪⎪=--<<⎨⎪⎪-⎪⎩,≤,,≥,()y f x =如图所示:(II )由()f x 得表达式及图像,当()1f x =时,得1x =或3x =当()1f x =-时,得13x =或5x =故()1f x >的解集为{}13x x <<;()1f x -<的解集为153x x x ⎧⎫<>⎨⎬⎩⎭或()1f x >∴,解集为()()11353⎛⎫-∞+∞ ⎪⎝⎭ ,,,.【民间解答】(I )如上图所示:(II )()4133212342x x f x x x x x ⎧⎪--⎪⎪=--<<⎨⎪⎪-⎪⎩,≤,,≥()1f x >当1x -≤,41x ->,解得5x >或3x <1x -∴≤当312x -<<,321x ->,解得1x >或13x <113x -<<∴或312x <<当32x ≥,41x ->,解得5x >或3x <332x <∴≤或5x >综上,13x <或13x <<或5x >()1f x >∴,解集为()()11353⎛⎫-∞+∞ ⎪⎝⎭ ,,,.5.(2018年高考数学课标Ⅲ卷(理)·第23题)【选修4—5:不等式选讲】(10分)设函数()211f x x x =++-.(1)画出()y f x =的图象;(2)当[)0,x ∈+∞时,()f x ax b ≤+,求a b +的最小值.【答案】【官方解析】(1)()13,212,123,1x x f x x x x x ⎧-<-⎪⎪⎪=+-≤<⎨⎪≥⎪⎪⎩()y f x =的图像如图所示(2)由(1)知,()y f x =的图像与y 轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当3a ≥且2b ≥时,()f x ax b ≤+在[)0,+∞成立,因此a b +的最小值为5.【民间解析】(1)()211f x x x =++-3,112,12132x x x x x x ⎧⎪>⎪⎪=+-≤≤⎨⎪⎪-<-⎪⎩,可作出函数()f x的图象如下图(2)依题意可知()f x ax b ≤+在[)1,+∞上恒成立,在[)0,1上也恒成立当1x ≥时,()3f x x ax b =≤+恒成立即()30a x b -+≥在[)1,+∞上恒成立所以30a -≥,且30a b -+≥,此时3a ≥,3a b +≥当01x ≤<时,()2f x x ax b =+≤+即()120a x b -+-≥恒成立结合3a ≥,可知20b -≥即2b ≥综上可知32a b ≥⎧⎨≥⎩,所以当3a =,2b =时,a b +取得最小值5.题型五:不等式证明1.(2017年高考数学江苏文理科·第24题)[选修4-5:不等式选讲]已知,,,a b c d 为实数,且22224,16,a b c d +=+=证明8.ac bd +≤【答案】解析:证明:由柯西不等式得,直线l 的普通方程为22222()()()ac bd a b c d +++≤.因为224a b +=,2216c d +=,所以2()64ac bd +≤,因此8.ac bd +≤2.(2022年高考全国甲卷数学(理)·第23题)已知a ,b ,c 均为正数,且22243a b c ++=,证明:(1)23a b c ++≤;(2)若2b c =,则113a c+≥.【答案】(1)见解析(2)见解析【解析】(1)证明:由柯西不等式有()()()222222221112a b c a b c ⎡⎤++++≥++⎣⎦,所以23a b c ++≤,当且仅当21a b c ===时,取等号,所以23a b c ++≤;(2)证明:因为2b c =,0a >,0b >,0c >,由(1)得243a b c a c ++=+≤,即043a c <+≤,所以1143a c ≥+,由权方和不等式知()22212111293444a c a c a c a c++=+≥=≥++,当且仅当124a c =,即1a =,12c =时取等号,所以113a c+≥3.(2020年高考课标Ⅲ卷理科·第23题)设a ,b ,c ∈R ,a +b +c =0,abc =1.(1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c .【答案】(1)证明见解析(2)证明见解析.解析:(1)2222()2220a b c a b c ab ac bc ++=+++++= ,()22212ab bc ca a b c ∴++=-++.1,,,abc a b c =∴ 均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<;(2)不妨设max{,,}a b c a =,由0,1a b c abc ++==可知,0,0,0a b c ><<,1,a b c a bc =--= ,()222322224b c b c bc bc bc a a a bc bc bc++++∴=⋅==≥=.当且仅当b c =时,取等号,a ∴≥,即max{,,}a b c .【点睛】本题主要考查了不等式的基本性质以及基本不等式的应用,属于中档题.4.(2019·全国Ⅲ·理·第23题)设,,x y z R ∈,且1x y z ++=.(1)求222(1)(1)(1)x y z -++++的最小值;(2)若2221(2)(1)()3x y z a -+-+-≥成立,证明:3a -≤或1a -≥.【答案】(1)43;(2)见详解.【官方解析】(1)由于2[(1)(1)(1)]x y z -++++222(1)(1)(1)2[(1)(1)(1)(1)(1)(1)]x y z x y y z z x =-+++++-++++++-2223(1)(1)(1)x y z ⎡⎤-++++⎣⎦故由已知得232(1)(1)143()x y z -++++≥,当且仅当511,,333x y z ==-=-时等号成立.所以232(1)(1)(1)x y z -++++的最小值为43.(2)由于2[(2)(1)()]x y z a -+-+-222(2)(1)()2[(2)(1)(1)()()(2)]x y z a x y y z a z a x =-+-+-+--+--+--2223(2)(1)()x y z a ⎡⎤-+-+-⎣⎦故由已知得2222(2)(2)(1)()3a x y z a +-+-+-,当且仅当4122,,333aa a x y z ---===时等号成立.因此222(2)(1)()x y z a -+-+-的最小值为2(2)3a +由题设知2(2)133a +,解得3a -≤或1a -≥.【解法2】柯西不等式法(1)22222222[(1)(1)(1)](111)[(1)(1)(1)](1)4x y z x y z x y z -++++++-++++=+++=≥,故2224(1)(1)(1)3x y z -++++≥,当且仅当511,,333x y z ==-=-时等号成立.所以222(1)(1)(1)x y z -++++的最小值为43.(2)2221(2)(1)()3x y z a -+-+-≥,所以222222[(2)(1)()](111)1x y z a -+-+-++≥.当且仅当4122,,333aa a x y z ---===时等号成立.22222222[(2)(1)()](111)(21)(2)x y z a x y z a a -+-+-++=-+-+-=+成立.所以2(2)1a +≥成立,所以有3a -≤或1a -≥.【点评】本题两问思路一样,既可用基本不等式,也可用柯西不等式求解,属于中档题型.5.(2019·全国Ⅰ·理·第23题)已知a ,b ,c 为正数,且满足1abc =.证明:(1)222111a b c a b c++++≤;(2)333()()()24a b b c c a +++++≥.【答案】解:(1)因为2222222,2,2a b ab b c bc c a ac +++≥≥≥,又1abc =,故有222111ab bc ca a b c ab bc ca abc a b c ++++++==++≥.所以222111a b c a b c++++≤.(2)因为, , a b c 为正数且1abc =,故有333()()()a b b c c a +++++≥3(+)(+)(+)a b b c a c =324⨯⨯⨯=≥所以333()()()24a b b c c a +++++≥.6.(2014高考数学辽宁理科·第24题)(本小题满分10分)选修4-5:不等式选讲设函数()2|1|1f x x x =-+-,2()1681g x x x =-+,记()1f x ≤的解集为M ,()4g x ≤的解集为N .(1)求M ;(2)当x M N ∈ 时,证明:221()[()]4x f x x f x +≤.【答案】(1)[0,43];(2)见解析.解析:(1)由f (x )=2|x ﹣1|+x ﹣1≤1可得1331x x ≥⎧⎨-≤⎩①,或111x x <⎧⎨-≤⎩②.解①求得1≤x ≤43,解②求得0≤x <1.综上,原不等式的解集为[0,43].(2)由g (x )=16x 2﹣8x +1≤4,求得14-≤x ≤34,∴N =[14-,34],∴M ∩N =[0,34].∵当x ∈M ∩N 时,f (x )=1﹣x ,x 2f (x )+x [f (x )]2=xf (x )[x +f (x )]=21142x ⎛⎫-- ⎪⎝⎭≤14,故要证的不等式成立.7.(2014高考数学江苏·第24题)【选修4-5:不等式选讲】已知0,0x y >>,证明:22(1)(1)9x y x y xy ++++≥.【答案】[选修4—4:不等式证明选讲].解析:本小题主要考查本小题满分10分.证法一:因为0,0x y >>,所以210x y ++≥>,故22(1)(1)9x y x y xy ++++≥=.证法二:(柯西不等式)22222(1)(1)(1)(1)(x y x y x y y x y x ++++=++++≥++29xy ≥+=.证法三:因为0,0x y >>,所以212x y x y ++≥+,212y x y x ++≥+.故222(1)(1)(2)(2)2()99x y x y x y y x x y xy xy ++++≥++=-+≥.(江苏苏州褚小光)证法四:因为0,0x y >>,所以212x y x y ++≥+,212y x y x ++≥+.故2222(1)(1)(2)(2)225459x y x y x y y x x y xy xy xy xy ++++≥++=++≥+=.8.(2014高考数学福建理科·第23题)(本小题满分7分)选修4—5:不等式选讲已知定义在R 上的函数21)(+++=x x x f 的最小值为a .(I )求a 的值;(II )若r q p ,,为正实数,且a r q p =++,求证:3222≥++r q p .【答案】选修45-:不等式选讲解析:(I )因为12(1)(x 2)3x x x ++-≥+--=.当且仅当12x -≤≤时,等号成立.所以()f x 的最小值等于3,即3a =.(II )由(I )知3p q r ++=,又因为,,p q r 是正实数,所以22222222111()()(111)()9.p p q r p q r q r ≥⨯+⨯+⨯=++++=++即2223q p r ++≥.9.(2015高考数学新课标2理科·第24题)(本小题满分10分)选修4-5不等式选讲设,,,a b c d 均为正数,且a b c d +=+,证明:(Ⅰ)若ab cd >>(Ⅱ)>a b c d -<-的充要条件.【答案】(Ⅰ)详见解析;(Ⅱ)详见解析.解析:(Ⅰ)因为2a b =++,2c d =++a b c d +=+,ab cd >,得22>>(Ⅱ)(ⅰ)若a b c d -<-,则22()()a b c d -<-.即22()4()4a b ab c d cd +-<+-.因为a b c d +=+,所以ab cd >>+>,则22+>+,即a b ++>c d ++a b c d +=+,所以ab cd >,于是22()()4a b a b ab -=+-2()4c d cd <+-2()c d =-.因此a b c d -<-,综上,>a b c d -<-的充要条件.10.(2015高考数学湖南理科·第18题)设0,0a b >>,且11a b a b+=+.证明:(1)2a b +≥;(2)22a a +<与22b b +<不可能同时成立.【答案】(1)详见解析;(2)详见解析.分析:(1)将已知条件中的式子可等价变形为1=ab ,再由基本不等式即可得证;(2)利用反证法,假设假设22<+a a 与22<+b b 同时成立,可求得10<<a ,10<<b ,从而与1=ab 矛盾,即可得证解析:由abb a b a b a +=+=+11,0>a ,0>b ,得1=ab ,(1)由基本不等式及1=ab ,有22=≥+ab b a ,即2≥+b a ;(2)假设22<+a a 与22<+b b 同时成立,则由22<+a a 及0>a 得10<<a ,同理10<<b ,从而1<ab ,这与1=ab 矛盾,故22<+a a 与22<+b b 不可能成立.11.(2017年高考数学课标Ⅱ卷理科·第23题)[选修4-5:不等式选讲](10分)已知330,0,2a b a b >>+=,证明:(1)33()()4a b a b ++≥;(2)2a b +≤.【答案】【命题意图】不等式证明,柯西不等式【基本解法】(1)解法一:由柯西不等式得:55222222332()()))()4a b a b a b a b ⎡⎤⎡⎤++=+⋅+≥+=⎣⎦⎣⎦解法二:5566553325533()()()2a b a b a b ab a b a b ab a b a b ++=+++=+++-33233332()2()4a b a b a b ≥++-=+=解法三:()()()()()2555533553342a b a b a b a b a b ab a b a b ++-=++-+=+-又0,0a b >>,所以()255332220ab a b a b ab a b+-=-≥.当a b =时,等号成立.所以,()()5540a b a b ++-≥,即55()()4a b a b ++≥.(2)解法一:由332a b +=及2()4a b ab +≤得2222()()()()3a b a b ab a b a b ab ⎡⎤=+⋅+-=+⋅+-⎣⎦2233()()()4()4a b a b a b a b ⎡⎤+≥+⋅+-⎢⎥⎣⎦+=所以2a b +≤.解法二:(反证法)假设2a b +>,则2a b >-,两边同时立方得:3323(2)8126a b b b b >-=-+-,即3328126a b b b +>-+,因为332a b +=,所以261260b b -+<,即26(1)0b -<,矛盾,所以假设不成立,即2a b +≤.解法三:因为332a b +=,所以:()()()3333322333843344a b a b a b aa b ab b a b +-=+-+=+++--()()()()222333a b a b a b a b a b =-+-=-+-.又0,0a b >>,所以:()()230a b a b -+-≤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式选讲综合测试一、选择题:本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合题目要求的.1.若||||a c b -<,则下列不等式中正确的是( ).A .a b c <+B .a c b >-C .||||||a b c >-D .||||||a b c <+2.设0,0,1x y x y A x y +>>=++, 11x y B x y=+++,则,A B 的大小关系是( ). 2.B 11111x y x y x y B A x y x y y x x y+=+>+==++++++++,即A B <. 3.设命题甲:|1|2x ->,命题乙:3x >,则甲是乙的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知,,a b c 为非零实数,则222222111()()a b c a b c++++最小值为( ) . A .7 B .9 C .12 D .184.B 22222222111111()()()(111)9a b c a b c a b c a b c++++≥⋅+⋅+⋅=++=, ∴所求最小值为9.5.正数,,,a b c d 满足a d b c +=+,||||a d b c -<-,则有( ).A .ad bc =B .ad bc <C .ad bc >D .ad 与bc 大小不定5.C 特殊值:正数2,1,4,3a b c d ====,满足||||a d b c -<-,得ad bc >.或由a d b c +=+得222222a ad d b bc c ++=++,∴2222()()22a d b c bc ad +-+=-,(1)由||||a d b c -<-得222222a ad d b bc c -+<-+,(2)将(1)代入(2)得2222bc ad bc ad -<-+,即44bc ad <,∴ad bc >.6.如果关于x 的不等式250x a -≤的非负整数解是0,1,2,3,那么实数a 的取值 范围是( ).A .4580a ≤<B .5080a <<C .80a <D .45a >6.A 250x a -≤,得≤,而正整数解是1,2,3,则34≤<. 7.设,,1a b c >,则log 2log 4log a b c b c a ++的最小值为( ).A.2 B.4 C.6 D.8 7.C log,log,log0a b cb c a>,log2log4log6a b cb c a++≥==.8.已知|23|2x-≤的解集与2{|0}x x ax b++≤的解集相同,则().A.53,4a b==- B.53,4a b=-= C.53,4a b== D.174a b+=8.B由|23|2x-≤解得1522x≤≤,因为|23|2x-≤的解集与2{|0}x x ax b++≤的解集相同,那么12x=或52x=为方程20x ax b++=的解,则分别代入该方程,得1134252550442aa bba b⎧=-++=⎧⎪⎪⎪⇒⎨⎨=⎪⎪++=⎩⎪⎩.9.已知不等式1()()9ax yx y++≥对任意正实数,x y恒成立,则正实数a的最小值为().A.2 B.4 C.6 D.89.B ∵21()()11)a y axx y ax y x y++=+++≥,∴21)9≥,∴4a≥.10.设222,,0,3a b c a b c≥++=,则ab bc ca++的最大值为().A.0 B.1 C.3 D.310.C由排序不等式222a b c ab bc ac++≥++,所以3ab bc ca++≤.11.已知2()3(1)32x xf x k=-+⋅+,当x R∈时,()f x恒为正,则k的取值范围是().A.(,1)-∞- B.(,1)-∞ C.(1,1)- D.(1,1)-11.B 23(1)320x xk-+⋅+>,232(1)3x xk+>+⋅,即23213xxk+>+,得2313xxk+≥>+,即1k<.12.用数学归纳法证明不等式111113123224n n n n+++⋅⋅⋅+>+++(2,)n n N*≥∈的过程中,由n k =逆推到1n k =+时的不等式左边( ).A . 增加了1项)1(21+k B .增加了“)1(21121+++k k ”,又减少了“11+k ” C .增加了2项)1(21121+++k k D .增加了)1(21+k ,减少了11+k 12.B 注意分母是连续正整数.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.13.不等式2||1x x+<的解集为 . 13.{|1}x x <- ∵0x ≠,∴|2|||x x +<,即22(2)x x +<,∴10x +<,1x <-,∴原不等式的解集为{|1}x x <-.14.已知函数2()1f x x ax =-+,且|(1)|1f <,那么a 的取值范围是 .14.13a << 2()1f x x ax =-+,(1)2f a =-,而|(1)|1f <,即|2|1a -<.15.函数212()3(0)f x x x x =+>的最小值为_____________.15.9 22123312()3922x x f x x x x =+=++≥=. 16.若,,a b c R +∈,且1a b c ++=,则c b a ++的最大值是 .162222(111(111)()3a b c ≤++++=.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)3a b c ++≥. 17.证明:∵2222222(111)()()a b c a b c ++++≥++, ∴2222()39a b c a b c ++++≥,3a b c ++≥. 18.(本小题满分10分)无论,x y 取任何非零实数,试证明等式111x y x y+=+总不成立. 18.证明:设存在非零实数11,x y ,使得等式1111111x y x y +=+成立, 则11111111()()y x y x x y x y +++=,∴2211110x y x y ++=,即221113()024y x y ++=, 但是10y ≠,即221113()024y x y ++>,从而得出矛盾. 故原命题成立.19.(本小题满分12分)已知a ,b ,c 为ABC 的三边,求证:2222()a b c ab bc ca ++<++.19.证明:由余弦定理得2222cos bc A b c a =+-,2222cos ac B a c b =+-,2222cos ab C a b c =+-,三式相加得2222cos 2cos 2cos bc A ac B ab C a b c ++=++,而cos 1,cos 1,cos 1A B C ≤≤≤,且三者至多一个可等于1,即2cos 2cos 2cos 222bc A ac B ab C bc ac ab ++<++,所以2222()a b c ab bc ca ++<++.20.(本小题满分12分) 已知,,a b c都是正数,求证:2(3(23a b a b c +++≤. 20.证明:要证2(3(23a b a b c +++≤,只需证a b a b c +-≤++-,即c -≤-移项得c +≥∵,,a b c 都是正数,∴c c +=≥=,∴原不等式成立.21.(本小题满分12分)某单位决定投资3200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米造价40元,两侧墙砌砖,每米造价45元,顶部每平方米造价20元,试问:(1)仓库面积S 的最大允许值是多少(2)为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长21.解:如图,设铁栅长为x 米,一堵砖墙长为y 米,则有S xy =,由题意得40245203200x y xy +⨯+=,应用二元均值不等式, 得32002409020x y xy ≥⋅+12020xy xy =+12020S S =+∴6160S S +≤,即(16)(10)0S S +-≤,∵160S +>,∴100S -≤,∴100S ≤.因此,S 的最大允许值是100平方米,取得此最大值的条件是4090x y =,而100xy =,求得15x =,即铁栅的长应是15米.22.(本小题满分12分)已知()f x 是定义在(0,)+∞上的单调递增函数,对于任意的,0m n >满足()()()f m f n f mn +=,且a ,b (0)a b <<满足|()||()|2|()|2a b f a f b f +==. (1)求(1)f ;(2)若(2)1f =,解不等式()2f x <;(3)求证:322b <<+.22.解:(1)因为任意的,0m n >满足()()()f m f n f mn +=,令1m n ==,则(1)(1)(1)f f f +=,得(1)0f =;(2)()211(2)(2)f x f f <=+=+,而(2)(2)(4)f f f +=, 得()(4)f x f <,而()f x 是定义在(0,)+∞上的单调递增函数,04x <<,得不等式()2f x <的解集为(0,4);(3)∵(1)0f =,()f x 在(0,)+∞上的单调递增,∴(0,1)x ∈时,()(1)0f x f <=,(1,)x ∈+∞时,()(1)0f x f >=.又|()||()|f a f b =,()()f a f b =或()()f a f b =-,∵0a b <<,则()(),()()f a f b f a f b ≠<,∴()()f a f b =-,∴()()()0(1)f a f b f ab f +===,∴1ab =,得01a b <<<.∵|()|2|()|2a b f b f +=,且1b >,12a b +>=,()0,()02a b f b f +>>, ∴()2()2a b f b f +=,∴2()()()[()]222a b a b a b f b f f f +++=+=, 得2()2a b b +=,∴2242b a ab b =++, 即2242b b a --=,而01a <<,∴20421b b <--<,又1b >,∴32b <<答案与解析:备用题:1.已知a b >,c d >,则下列命题中正确的是( ).A .a c b d ->-B .a b d c> C .ac bd > D .c b d a ->- 1.D 令1,0,1,2a b c d ===-=-,可验证知D 成立,事实上我们有a b b a >⇒->-①,c d >②,①﹢②可得c b d a ->-.2.已知,a b R ∈,0h >.设命题甲:,a b 满足||2a b h -<;命题乙:|1|a h -<且|1|b h -<,那么甲是乙的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分条件也不必要条件2.B |1|a h -<,|1|b h -<,则|1||1|2a b h -+-<,而|1||1|||a b a b -+-≥-, 即||2a b h -<;命题甲:||2a b h -<不能推出命题乙:|1|a h -<且|1|b h -<.3.证明11111234212n n ++++⋅⋅⋅+>- ()n N *∈ ,假设n k =时成立,当1n k =+时,左端增加的项数是( ).A .1项B .1k -项C .k 项D .2k 项 3.D 从12121k k +-→-增加的项数是2k .4.如果|2||5|x x a -++>恒成立,则a 的取值范围是 . 4.7a < |2||5|7x x -++≥,而|2||5|x x a -++>恒成立,则7a >,即7a <.5.已知函数()log ()m f x m x =-在区间[3,5]上的最大值比最小值大1,则实数m = .5.36+ 显然0m x ->,而[3,5]x ∈,则5m >,得[3,5]是函数()log ()m f x m x =-的递减区间,max ()log (3)m f x m =-,min ()log (5)m f x m =-,即log (3)log (5)1m m m m ---=,得2630m m -+=, 36m =±,而1m >,则36m =+.6.要制作如图所示的铝合金窗架,当窗户采光面积为一常数S 时(中间横梁面积忽略不计),要使所用的铝合金材料最省,窗户的宽AB 与高AD 的比应为 .6.2:3 设宽AB 为x ,高AD 为y ,则xy S =,所用的铝合金材料为32x y +, 322626x y xy S +≥=,此时32x y =,:2:3x y =. 7.若01a b <<<,试比较1m a a =+与1n b b=+的大小. 7.解:1111()()()()b a m n a b a b a b a b a b ab--=+-+=-+-=-+, 即1()(1)m n a b ab -=--,而01a b <<<,则101,1ab ab<<>, 得10,10a b ab -<-<,即0m n ->,所以m n >. 8.已知0c >,设P :函数xy c =在R 上单调递减,Q :不等式|2|1x x c +->的解集 为R .如果P 和Q 有且仅有一个正确,求c 的取值范围.8.解:∵x y c =在R 上单调递减,∴01c <<,又∵22(2)|2|2(2)x c x c x x c c x c -≥⎧+-=⎨<⎩的最小值是2c , ∴21c >,即12c >, 由题设,当P 为真Q 为假时,有01c <<,且102c <≤, ∴102c <≤;当P 为假Q 为真时,有1c ≥且12c >,∴1c ≥.故c 的取值范围是1(0,][1,)2+∞U .作 者 李传牛 工作单位 海南省海口市第十四中学 邮政编码 570311 联系手机 E--MAIL QQ 交流 2。

相关文档
最新文档