2017年七年级数学上4.3.3余角和补角同步练习(人教版附答案)
最新精选人教版数学七年级上册第4章4.3.3余角和补角同步练习(解析版)

人教版数学七年级上册第4章 4.3.3余角和补角同步练习一、单选题(共12题;共24分)1、在直线AB上取一点O,过点O作射线OC,OD,使OC⊥OD,当∠AOC=30°时,∠BOD的度数()A、60°B、90°C、120°D、60°或120°2、如图,已知∠B=30°,∠BAC=90°,AD⊥BC于D,∠B=40°,则图中互余的角有()对.A、4对B、5对C、6对D、7对3、下列各图中,∠1与∠2互为余角的是()A、B、C、D、4、下列说法:①35=3×3×3×3×3;②﹣1是单项式,且它的次数为1;③若∠1=90°﹣∠2,则∠1与∠2互为余角;④对于有理数n、x、y(其中xy≠0),若 = ,则x=y.其中不正确的有()A、3个B、2个C、1个D、0个5、如图,把三角板的直角顶点放在直尺的一边上,若∠1=30°,则∠2的度数为()A、60°B、50°C、40°D、30°6、时钟显示为9:30时,时针与分针所夹角度是()A、90°B、100°C、105°D、110°7、如图,直线AB⊥CD于点O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是()A、互为余角B、互为补角C、互为对顶角D、互为邻补角8、如果∠α与∠β是邻补角,且∠α>∠β,那么∠β的余角是()A、B、C、D、不能确定9、已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是()A、相等B、互余C、互补D、互为对顶角10、如果一个角的两边和另一个角的两边互相平行,那么这两个角之间关系为()A、相等B、互补C、相等或互补D、不能确定11、如图,AB∥CD,CE⊥BD,则图中与∠1互余的角有()A、1个B、2个C、3个D、4个12、已知下列命题:①相等的角是对顶角;②互补的角就是平角;③互补的两个角一定是一个锐角,另一个为钝角;④平行于同一条直线的两条直线平行;⑤邻补角的平分线互相垂直.其中真命题的个数为()A、3个B、2个C、1个D、0个二、填空题(共5题;共6分)13、如果两个角互补,并且它们的差是30°,那么较大的角是________.14、若一个角的3倍比这个角补角的2倍还少2°,则这个角等于________.15、如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为________.16、如果∠1+∠2=90°,而∠2与∠3互余,那么∠1与∠3的数量关系是________.17、看图填空,并在括号内说明理由:如图,已知∠BAP与∠APD互补,∠1=∠2,说明∠E=∠F.∵∠BAP与∠APD互补,________∴∠E=∠F.________.三、解答题(共3题;共15分)18、一个锐角的补角等于这个锐角的余角的3倍,求这个锐角?19、如图,在四边形ABCD中,∠A=∠C=90°,∠ABC,∠ADC的平分线分别与AD,BC相交于E,F两点,FG⊥BE于点G,∠1与∠2之间有怎样的数量关系?为什么?20、已知,如图,AC⊥BC,HF⊥AB,CD⊥AB,∠1与∠2互补.求证:DE⊥AC.四、综合题(共3题;共31分)21、如图,若直线AB与直线CD交于点O,OA平分∠COF,OE⊥CD.(1)写出图中与∠EOB互余的角;(2)若∠AOF=30°,求∠BOE和∠DOF的度数.22、如图,∠AGF=∠ABC,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若BF⊥AC,∠2=150°,求∠AFG的度数.23、已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系________;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.答案解析部分一、单选题1、【答案】D【考点】余角和补角,垂线【解析】【解答】解:由OC⊥OD,可得∠DOC=90°,如图1,当∠AOC=30°时,∠BOD=180°﹣30°﹣90°=60°;如图2,当∠AOC=30°时,∠AOD=90°﹣30°=60°,此时,∠BOD=180°﹣∠AOD=120°.故选D【分析】根据题意可知,射线OC、OD可能在直线AB的同侧,也可能在直线AB的异侧,分两种情况进行讨论即可.2、【答案】A【考点】余角和补角,垂线【解析】【解答】解:图中互余的角有:∠B与∠BAD,∠C,∠C与∠DAC,∠E与∠F,共4对.故选A【分析】根据直角三角形两锐角互余和同角的余角相等写出相等的角即可.3、【答案】B【考点】余角和补角【解析】【解答】解:四个选项中,只有选项B满足∠1+∠2=90°,即选项B中,∠1与∠2互为余角.故选B.【分析】如果两个角的和等于90°(直角),就说这两个角互为余角.依此定义结合图形即可求解.4、【答案】B【考点】单项式,等式的性质,余角和补角,有理数的乘方【解析】【解答】解:35=3×3×3×3×3,①说法正确,不符合题意;﹣1是单项式,且它的次数为0,②说法错误,符合题意;若∠1=90°﹣∠2,则∠1与∠2互为余角,③说法正确,不符合题意;对于有理数n、x、y(其中xy≠0),若 = ,则x与y不一定线段,④说法错误,符合题意,故选:B.【分析】根据有理数的乘方的意义、单项式的概念、余角的定义、等式的性质进行判断即可.5、【答案】A【考点】余角和补角,平行线的性质【解析】【解答】解:∵∠1=30°,∴∠3=180°﹣90°﹣30°=60°,∵直尺两边互相平行,∴∠2=∠3=60°.故选:A.【分析】根据平角等于180°求出∠3,再根据两直线平行,同位角相等可得∠2=∠3.6、【答案】C【考点】钟面角、方位角【解析】【解答】解:9:30时,时针与分针所夹角度是30× =105°,故选:C.【分析】根据时针与分针相距的份数乘以每份的度数,可得答案.7、【答案】A【考点】余角和补角,对顶角、邻补角【解析】【解答】解:图中,∠2=∠COE(对顶角相等),又∵AB⊥CD,∴∠1+∠COE=90°,∴∠1+∠2=90°.故选:A.【分析】根据图形可看出,∠2的对顶角∠COE与∠1互余,那么∠1与∠2就互余,从而求解.8、【答案】C【考点】余角和补角,对顶角、邻补角【解析】【解答】解:∵∠α与∠β是邻补角,∴∠α+∠β=180°,∴(∠α+∠β)=90°,∴∠β的余角是:90°﹣∠β= (∠α+∠β)﹣∠β= (∠α﹣∠β),故选:C.【分析】根据补角定义可得∠α+∠β=180°,进而得到(∠α+∠β)=90°,然后根据余角定义可得∠β的余角是:90°﹣∠β再利用等量代换可得(∠α+∠β)﹣∠β,然后计算即可.9、【答案】B【考点】余角和补角,对顶角、邻补角,垂线【解析】【解答】解:图中,∠2=∠COE(对顶角相等),又∵AB⊥CD,∴∠1+∠COE=90°,∴∠1+∠2=90°,∴两角互余.故选:B.【分析】根据图形可看出,∠2的对顶角∠COE与∠1互余,那么∠1与∠2就互余.10、【答案】C【考点】余角和补角,平行线的性质【解析】【解答】解:两个角的两边互相平行,如图(1)所示,∠1和∠2是相等关系,如图(2)所示,则∠3和∠4是互补关系.故选:C.【分析】根据两个角的两边互相平行及平行线的性质,判断两角的关系即可,注意不要漏解.11、【答案】C【考点】余角和补角,垂线,平行线的性质【解析】【解答】解:∵CE⊥BD,∴∠CBD=∠EBD=90°,∴∠ABC+∠1=90°,∠1+∠EBF=90°,即∠ABC、∠EBF与∠1互余;∵AB∥CD,∴∠1=∠D,∵∠C+∠D=90°,∴∠C+∠1=90°,即∠C与∠1互余;图中与∠1互余的角有3个,故选:C.【分析】由垂线的定义得出∠ABC+∠1=90°,∠1+∠EBF=90°,得出∠ABC、∠EBF与∠1互余;由平行线的性质和余角关系得出∠C+∠1=90°,得出∠C与∠1互余.12、【答案】B【考点】余角和补角,对顶角、邻补角,平行公理及推论,命题与定理【解析】【解答】解:①对顶角既要考虑大小,还要考虑位置,相等的角不一定是对顶角,故①错误;②互补的角不一定是邻补角,所以不一定是平角,故②错误;③互补的两个角也可以是两个直角,故③错误;④平行于同一条直线的两条直线平行,是平行公理,故④正确;⑤邻补角的平分线的夹角正好是平角的一半,是直角,所以互相垂直,故⑤正确.所以真命题有④⑤两个.故选:B.【分析】根据所学的公理定理对各小题进行分析判断,然后再计算真命题的个数.二、填空题13、【答案】【考点】余角和补角【解析】【解答】解:设较大角为x,则其补角为180°﹣x,由题意得:x﹣(180°﹣x)=30°,解得:x=105°.故答案为:105°.【分析】设较大角为x,则其补角为180°﹣x,根据它们的差是30°可列出方程,解出即可.14、【答案】71.6°【考点】余角和补角【解析】【解答】解:设这个角为x,由题意得,3x=2(180°﹣x)﹣2°,解得,x=71.6°故答案为:71.6°.【分析】设这个角为x,根据题意和补角的概念列出方程,解方程即可.15、【答案】50°【考点】余角和补角,平行线的性质【解析】【解答】解:∵∠1=40°,∴∠3=180°﹣∠1﹣90°=180°﹣40°﹣90°=50°,∵a∥b,∴∠2=∠3=50°.故答案为:50°.【分析】由直角三角板的性质可知∠3=180°﹣∠1﹣90°,再根据平行线的性质即可得出结论.16、【答案】相等【考点】余角和补角【解析】【解答】解:∵∠2与∠3互余,∴∠2+∠3=90°,∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3.故答案为:相等.【分析】根据同角的余角相等解答.17、【答案】已知;同旁内角互补,两直线平行;两直线平行,内错角相等;已知;等量代换;内错角相等,两直线平行;两直线平行,内错角相等【考点】余角和补角,平行线的判定与性质【解析】【解答】证明:∵∠BAP与∠APD互补(已知),∴AB∥CD(同旁内角互补,两直线平行),∴∠BAP=∠APC(两直线平行,内错角相等).又∵∠1=∠2(已知),∴∠BAP﹣∠1=∠APC﹣∠2(等量代换),即∠3=∠4,∴AE∥PF,(内错角相等,两直线平行),∴∠E=∠F(两直线平行,内错角相等).故答案为:已知;同旁内角互补,两直线平行;两直线平行,内错角相等;已知;等量代换;内错角相等,两直线平行;两直线平行,内错角相等.【分析】先根据题意得出AB∥CD,再由平行线的性质得出∠BAP=∠APC,根据∠1=∠2可得出∠3=∠4,进而得出AE∥PF,据此可得出结论.三、解答题18、【答案】解:设这个角的度数为x°,则根据题意得:180﹣x=3(90﹣x),解得:x=45,即这个锐角为45°.【考点】余角和补角【解析】【分析】设这个角的度数为x°,则根据题意得出180﹣x=3(90﹣x),求出方程的解即可.19、【答案】解:∠1=∠2,理由:∵∠A=∠C=90°,根据四边形的内角和得,∠ADC+∠ABC=180°,∵BE平分∠ABC,DF平分∠ADC,∴∠EBC= ∠ABC,∠2= ∠ADC,∴∠EBC+∠2= ∠ABC+ ∠ADC=90°,∵FG⊥BE,∴∠FGB=90°,∴∠1+∠EBC=90°,∴∠1=∠2【考点】余角和补角,角平分线的性质,多边形内角与外角【解析】【分析】先根据四边形的内角和求出∠ADC+∠ABC=180°,再结合角平分线得出∠EBC+∠2=90°,再利用直角三角形的两锐角互余得出,∠1+∠EBC=90°,即可得出结论.20、【答案】证明:如图所示,∵HF⊥AB,CD⊥AB,∴CD∥HF,∴∠2+∠3=180°,又∵∠1与∠2互补,∴∠2+∠1=180°,∴∠1=∠3,∴DE∥BC,∵AC⊥BC,∴DE⊥AC.【考点】余角和补角,平行线的判定与性质【解析】【分析】根据AC⊥BC,DE⊥AC,易证DE∥BC,那么∠2+∠3=180°,而∠1与∠2互补,从而可证∠1=∠3,即可得出DE∥BC,结合AC⊥BC,易得DE⊥AC.四、综合题21、【答案】(1)解:∵OA平分∠COF,∴∠COA=∠FOA=∠BOD,∵OE⊥CD,∴∠EOB+∠BOD=90°,∴∠COA+∠EOB=90°,∠FOA+∠EOB=90°,∴与∠EOB互余的角是:∠COA,∠FOA,∠BOD(2)解:∵∠AOF=30°,由(1)知∠COA=∠FOA=∠BOD=30°,∴∠DOF=180°﹣∠FOA﹣∠BOD=120°,∵OE⊥CD,∴∠BOE=90°﹣30°=60°【考点】角平分线的定义,余角和补角,对顶角、邻补角,垂线【解析】【分析】(1)由于OA平分∠COF和∠COA与∠BOD是对顶角,得到∠COA=∠FOA=∠BOD,根据垂直定义有∠EOB+∠BOD=90°,根据互为余角的定义即可得到结论;(2)由(1)知∠COA=∠FOA=∠BOD=30°,由平角的意义可求得∠DOF,根据垂直定义可求得∠BOE.22、【答案】(1)解:(1)BF∥DE,理由如下:∵∠AGF=∠ABC,∴GF∥BC,∴∠1=∠3,∵∠1+∠2=180°,∴∠3+∠2=180°,∴BF∥DE;(2)解:∵BF∥DE,BF⊥AC,∴DE⊥AC,∵∠1+∠2=180°,∠2=150°,∴∠1=30°,∴∠AFG=90°﹣30°=60°.【考点】余角和补角,垂线【解析】【分析】(1)由于∠AGF=∠ABC,可判断GF∥BC,则∠1=∠3,由∠1+∠2=180°得出∠3+∠2=180°判断出BF∥DE;(2)由BF∥DE,BF⊥AC得到DE⊥AC,由∠2=150°得出∠1=30°,得出∠AFG的度数23、【答案】(1)∠A+∠C=90°;(2)解:如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,∴∠C=∠CBG,∴∠ABD=∠C;(3)解:如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【考点】余角和补角,平行线的判定与性质【解析】【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)先过点B作BG∥DM,根据同角的余角相等,得出∠ABD=∠CBG,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD=∠C;(3)先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.。
4.3.3余角和补角

(同角的余角相等)
∴∠2 =∠4
(等角的余角相等)
强化练习 图中给出的各角中,哪些互为余角?哪些互为补角?
互为余角:10°和80°,30°和60°; 互为补角:10°和170°,30°和150°,60°和120°, 80°和100°.
知识点2 余角和补角的运用
∠1与∠3互为补角,∠2与∠4互为补角, ∠1=∠2,那么∠3=180°-∠1,∠4=180°-∠2,所 以∠3=∠4.
补充
3 已知∠1与∠2,∠3都互为补角.那么∠2 和∠3的大小有什么关系?
由∠1与∠2和∠3都互为补角,
那么 ∠2=180º-∠1,∠3=180º-∠1, 所以∠2=∠3.
小结
如图,可以说 ∠3 是 ∠4 的补 角,或 ∠4是 ∠3 的补角,或 ∠3 和 ∠4 互补.
4 3
思考 1.定义中的“互为”是什么意思?
即每一个角都是另一个角的余角(补角)
2.把下图中∠1与∠ADF分
D
F
离并多次变换位置,如图,
1
这两角还是互为补角吗?
A
两角互余或互补,只与角的度数有关,与位置无关。
灯塔A在货轮O的南偏东60°方向 上,反过来,货轮O在灯塔A的西 什么方向上?
北偏西60°
北
O
东
60°
●A
南
强化练习
如图,射线OA表示的方向 是 北偏西30,° 射线OB表示 的方向是 南偏西45° 或 西南方向 ,射线OC表示的 方向是 南偏东70°.
利用方位角确定点的位置的方法 1. 利用方位角和观测点到点的距离来确定; 2. 利用两个方位角来确定,即找到两个合 适的观测点,然后按指定的方位角画出射 线,交点即为所要确定的点的位置.
4.3.3 余角和补角

课堂导学
知识点2:余角和补角的性质 【例2】如下图,点O是直线ED上一点,且∠AOB=
∠COD=90°. (1)试说明∠AOC=∠BOD; (2)若∠BOD=50°,求∠AOE.
【解析】(1)根据同角的余角性质可解题; (2)利用(1)得∠AOC=∠BOD=50°可求得 ∠AOE的度数.
4.3.3 余角和补角
∵∠1+∠2+∠3+∠4=180°. ∴∠2+∠3=90°,∴∠2与∠3互余.
4.3.3 余角和补角
课堂导学
8.如下图,点A、O、E在同 一条直线上,OB、OC、 OD都是射线,∠1=∠2, ∠1与∠4互为余角. (2)∠3与∠4的大小有何关系?请说明理由.
∠3=∠4 理由:由(1)知∠1+∠4=90°,
课堂导学
10.如上图,下列说法中错误的是( A )
A.OA方向是北偏东30° B.OB方向是北偏西15° C.OC方向是南偏西25° D.OD方向是东南方向
4.3.3 余角和补角
课后巩固
11.已知∠A=65°,则∠A的余角等于( D )
A.115°
B.55°C.35°Fra bibliotekD.25°
12.一个角的度数是40°,那么它的余角的补角度数
课堂导学
【答案】解:(1)∵∠AOB=∠AOC+∠BOC=90°, ∠COD=∠BOD+∠BOC=90°, ∴∠AOC=∠BOD; (2)∵∠COD=90°, ∴∠COE=180°-∠COD=90°, ∵∠BOD=50°,∴∠AOC=50°, ∴∠AOE=∠COE-∠AOC=40°.
【点拔】本题考查了余角和为90°的性质,同角的余 角相等的性质,要熟练掌握.
4.3.3 余角和补角
课堂导学
知识点1:余角和补角的概念 【例1】一个角的补角是它的余角的度数的3倍,则这
【七年级数学】七上数学余角和补角课时练习(附解析新人教版)

【答案】c.
【解析】
试题解析根据题意得,∠A+∠B=180°,
∴∠A的余角为90°-∠A= -∠A,
=(∠A+∠B)-∠A,
=(∠B-∠A).
故选c.
考点余角和补角.
5.若与互为余角,是的2倍,则为( )
(A)x,余角为90°-x,
所以3(90°-x)=180°-x,
【答案】48°.
【解析】
试题分析设这个角的度数为度,则余角为度,根据这个角的余角比这个角的还多即可列方程求解.
试题解析设这个角为,则其余角为,依题意得,解方程得.
考点余角和补角.
19.如图,∠AB=35°,∠Bc=90°,D是∠Ac的平分线,求∠BD的度数.
【答案】275°.
【解析】
试题分析先求出∠Ac的度数,再由角平分线的定义得出∠AD的度数,根据∠BD=∠AD﹣∠AB即可得出结论.
考点余角和补角.
14.若∠A=62°48′,则∠A的余角=.
【答案】27°12′.
【解析】
试题分析根据互为余角的两个角的和为90度作答.
解根据定义∠α的余角度数是90°﹣62°48′=27°12′.
故答案为27°12′.
考点余角和补角.
15.已知点A在点B的北偏东62°,则点B在点A的.
【答案】62°
∴∠β的补角为180°﹣50°=130度.
故填130.
考点余角和补角.
13.若∠α的余角为72°,则∠α的补角大小为度.
【答案】162°.
【解析】
试题分析根据∠α的余角为72°先求出∠α,再求出∠α的补角即可.
解∵∠α的余角为72°,
人教版七年级上4.3.3余角和补角的定义

(2) ∠1 +∠2+ ∠3=90°,则∠1 、∠2、
∠3、互为余角.(
)
两个角的和等于90°(直角), 就说这两个角互为余角,简称互余。
如果∠1+∠2=90°,那么∠1与∠2互为余角
如果∠1与∠2互为余角,那么∠1+∠2=90°
练一练:
1、如图 ∠1+∠2=90°,
⑴∠1与∠2互为 余角 ;
如果∠1+∠2=180°,那么∠1与∠2互为补角
21
21
如果∠1与∠2互为补角,那么∠1+∠2=180°
找朋友:图中给出的各角中,哪些互为余角? 哪些互为补角?
A
10° B 30°
60°
C
D 80°
E
° 100
° 120
F
G
° 150
H
° 170
海塘大坝要修复加固,施工前要求先测 大坝的倾斜角(即图中的∠1),坝底是石块 堆积而成,量角器无法伸入大坝底部测量,聪明 的你有什么简单的方法?
2
1
2
1
1
β
α 1
填表 从上面这张表格中,你还能得到什么信息?
∠α
∠α的余角 ∠α的补角
5° 32° 45° 97° 62°23′
85° 58° 45°
27°37′
175° 148° 135° 83° 117°37′
x
90° x
180° x
注意:只有锐角有余角;
2
⑵∠1的余角是 ∠2 ;
⑶∠1是∠2 的余角。
找朋友
图中给出的各角,哪些互为余角?
10o
30o
50o
60o
40o
4.3.3余角和补角(2)

C.180°
D.140°
练习
(1)电视塔在学校的东北方向,那么学校在电视塔的 西南 ______ 方向. (2)已知点O在点A的南偏东65 °方向,那么点A应在点O的 ( ) A.南偏东65 °方向; B. 北偏东65 °方向; C.北偏西65 °方向; D.北偏西25 °方向; (3)如图,邮局和商店分别在学校的北偏西方向,邮局又在商 邮局 店的北偏东方向.那么,图中A点应该是________,B点应该 学校 商店 是_______,C点应该是______.
C
北 西 东
.B
.A
.C
南
例题
海上,缉私艇发现离它500海里处停着一 艘 可疑船只(如图),立即赶往检查.现请你确定缉 私艇的航线,画出示意图.
北
.A
80 ° 点A在点B的北偏东80°方向
东
点C在点B的南偏东60°方向
可疑船
西
缉私艇
B.
60 °
南
.C
可疑船
灯塔A在灯塔B的南偏西60 ° ,A、B两灯塔相距20 海里.现有一艘轮船C在灯塔B的正北方向、 灯塔A的 北偏东30 °方向.试画图确定 轮船的位置(每10海里 用1厘米长的线段表示)
C ● 10°
●
南
练习
(3)学校、公园和商店在平面图上的标点分别是A、B、C 三点.若公园在学校的南偏西42 ° ,商店在学校的 北偏东50 ° ,请画出图形,并求∠BAC.
北
C. 50 °
西
A. . B
东
42 °解:∠BAC= 42°+90 °+40 °=172 °
南
解:
北
.C
西
A.
.B
人教版初中数学七年级上册第四章4.3.3余角和补角
O
60°
上发现了客轮B.仿照表示灯塔方位的方法,
A
画出表示客轮B方向的射线.并说出你是怎样画出的.
②同时在它南偏西10°、西北(北偏西45°)方向上又分 别发现了货轮C和海岛D.请再画出表示货轮C和海岛D方向的射 线.
如图,A地和B地都是海上观测站,从A地发现它的北偏东 60°方向有一艘船,同时,从B地发现这艘船 在它的北偏东30°方向,你能从图中确定这艘船的位置吗?
练习 : 看谁答得快:
∠α
∠α 的余角
∠α 的补角
30° 54° 90°
62°23′
ⅹ
60 °
150 °
36 °
126 °
00
另 比余外角:大同,(等并9)且0 °角大的90补°角
27 ° 37 ′
117 ° 37 ′
90 x
同一个角的余角和补角什么关系?
1、动手画一画:
1)已知∠α(如图),请利用三角板画的∠α的余角
样的角称为方位角.
方位角的表示习惯上以正北、正南方向为基准来描述物体 的方向. 即用“北偏东多少度”“北偏西多少度” 或者“南偏东多少度”“南偏西多少度”来表示方向.
北 西北
西 O
西南 南
东北 东 东南
北
30°
西
东
O 60°
南
北例4:如图,货轮O在航行过程中,发现灯塔A
在它南偏东60°方向上. ①在它北偏东40°方向
性质3:等角的补角相等
如图,∠1与∠2互余, ∠3与∠4互余,并且∠1= ∠3,
2
1
3
4
请问:∠ 2与∠4相等吗?为什么?你还能得出什么结论?
答:相等。
∵∠1与∠2互余,可得∠2=90°- ∠1 ; 又∠3与∠4互余,可得∠4=90°- ∠3; 且∠1= ∠3,所以90°- ∠1=90°- ∠3 ; ∴∠2= ∠4
人教版七年级数学上册角4.余角和补角
10.如图,∠AOC与∠BOD都是90°,且∠AOB∶∠AOD= 2∶11,求∠AOB与∠BOC的度数. 解:∠AOB=20°,∠BOC=70°
知识点3:表示方向的角 11.(例题4变式)如图,下列说法正确的个数有( D ) ①射线OA表示北偏东30°;②射线OB表示北偏西30°;③射线 OD表示南偏西45°,也叫西南方向;④射线OC表示正南方向. A.1个 B.2个 C.3个 D.4个
4.若∠A的余角等于40°,则∠A的补角等于( C ) A.40° B.50° C.130° D.140° 5.如果一个角的余角等于它本身,那么这个角等于 45° ________;若一个角的补角等于它本身,则这个90角°等于 _______.
6.如图,已知点O是直线AB上的一点,∠BOC=40°,OD,OE分 别是∠BOC,∠AOC的平分线. (1)求∠AOE的度数; (2)写出图中与∠EOC互余的角; (3)∠COE有补角吗?若有,请把它找出来,并说明理由. 解:(1)∠AOE=70° (2)图中与∠EOC互余的角有∠COD, ∠BOD (3)∠COE的补角是∠BOE,理由:因为∠AOE= ∠EOC,∠AOE+∠BOE=180°,所以∠COE+∠BOE= 180°,则∠COE的补角是∠BOE
18.已知∠α 与∠β 互余,且∠α 比∠β 小 25°,求 2∠α-15∠β 的值. 解:设∠α 的度数为 x°,则∠β 的度数为(x+25)°,又∠α 与∠β 互余,所以 x+x+25=90,解得 x=32.5,即∠α=32.5°,则∠β =57.5°,所以 2∠α-15∠β=2×32.5°-15×57.5°=53.5°
15.学校、电影院、公园在平面图上分别用点A,B, C表示,电影院在学校的北偏西30°,公园在学校的 南偏东15°,那么平面图上的∠BAC等于___1_6_5_°___. 16.一个角等于它的补角的3倍,则这个角的补角的 余角是___4_5_°_.
数学:4.3.3《余角和补角(1)》学案(人教版七年级上)
数学:4.3.3《余角和补角(1)》学案(人教版七年级上)【学习目标】在具体的现实情境中,认识一个角的余角和补角;【重点难点】正确求出一个角的余角和补角。
【导学指导】一、知识链接思考:(1) 在一副三角板中同一块三角板的两个锐角和等于多少度?(2) 如图1,已知∠1=61°,∠2=29°,那么∠1+∠2= 。
(3) 如 图 2,已知点A 、O 、B 在一直线上 ,∠COD=90°,那么∠1+∠2= 。
二、自主探究1.互为余角的定义:思考:(1) 如图3,已知∠1=62°,∠2=118°,那么 ∠1+∠2=(2) 如图4,A 、O 、B 在同一直线上,∠1+∠2=2图 1 90° 1 2 图 2 1 2 A O B 图 41 2 图 3 C O DO E D C B A2.互为补角的定义:问题1:以上定义中的“互为”是什么意思?问题2:若 ∠1+∠2 +∠3 =180° ,那么∠1、∠2、∠3互为补角吗?3.新知应用:例1:若一个角的补角等于它的余角4倍,求这个角的度数。
例2:如图,∠AOC =∠COB =90°,∠DOE =90°,A 、O 、B 三点在一直线上(1)写出∠COE 的余角,∠AOE 的补角;(2)找出图中一对相等的角,并说明理由;【课堂练习】:课本141页练习1、2、3;【要点归纳】:【拓展训练】:1、一个角的余角比它的补角的31还少 20,求这个角的度数。
2、若α∠和β∠互余,且α∠:β∠=7:2,求α∠、β∠的度数。
【总结反思】:。
初中数学人教版七年级上册4.3.3余角和补角作业课件
9.B 由题意,得∠AOB=90°-60°+90°+10°=30°+90°+10°=130°.
能力练
1. 如图,将一副三角尺按下列位置摆放,使∠α和∠β互余的摆放方式是 ( )
答案
1.A
2. 如图,O为直线AB上一点,OC为一条射线,OD平分∠AOC,OE平分∠BOC,图中互余的 角共有 ( ) A.1对 B.2对 C.4对 D.6对
6. 下列推理错误的是 ( ) A.因为∠1=∠2,∠2=∠3,所以∠1=∠3 B.因为∠1=∠2,∠1+∠2=∠3,所以∠3=2∠1 C.因为∠1+∠2=2∠3,所以∠1=∠3,∠2=∠3 D.因为∠1与∠2互补,∠1=∠3,所以∠2与∠3互补
答案
6.C A项,因为∠1=∠2,∠2=∠3,所以∠1=∠3(等量代换),故A不合题意;B项,因为∠1=∠2, 所以∠3=∠1+∠2=2∠1, 故B不合题意;C项,当∠1+∠2=2∠3时,∠1,∠2不一定等于∠3,故C符合题意;D项,因为∠1 与∠2互补,即∠1+∠2=180°, ∠1=∠3,所以∠3+∠2=180°,即∠2与∠3互补,故D不合题意.
课时3 余角和补角
基础练
知识点1 余角和补角
1. 下列说法正确的是 ( ) A.若∠1+∠2+∠3=180°,则∠1,∠2,∠3互补 B.若∠1+∠2+∠3=90°,则∠1,∠2,∠3互余 C.若∠1+∠2=90°,则∠1与∠2互余 D.若∠1+∠2=90°,则∠1与∠2互补
答案
1.C 如果两个角的和等于90°(直角),就说这两个角互为余角;如果两个角的和等于 180°(平角),就说这两个角互为补角,根据定义,可知选C.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年七年级数学上4.3.3余角和补角同步练习(人教版附答案)人教版数学七年级上册第4章 4.3.3余角和补角同步练习一、单选题(共12题;共24分) 1、在直线AB上取一点O,过点O作射线OC,OD,使OC⊥OD,当∠AOC=30°时,∠BOD的度数() A、60° B、90° C、120° D、60°或120° 2、如图,已知∠B=30°,∠BAC=90°,AD⊥BC于D,∠B=40°,则图中互余的角有()对. A、4对 B、5对 C、6对 D、7对 3、下列各图中,∠1与∠2互为余角的是() A、B、 C、 D、 4、下列说法:①35=3×3×3×3×3;②�1是单项式,且它的次数为1;③若∠1=90°�∠2,则∠1与∠2互为余角;④对于有理数n、x、y(其中xy≠0),若 = ,则x=y.其中不正确的有() A、3个 B、2个 C、1个 D、0个 5、如图,把三角板的直角顶点放在直尺的一边上,若∠1=30°,则∠2的度数为() A、60° B、50° C、40° D、30° 6、时钟显示为9:30时,时针与分针所夹角度是() A、90° B、100° C、105° D、110° 7、如图,直线AB⊥CD于点O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是() A、互为余角 B、互为补角 C、互为对顶角 D、互为邻补角 8、如果∠α与∠β是邻补角,且∠α>∠β,那么∠β的余角是() A、 B、 C、 D、不能确定 9、已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是() A、相等 B、互余 C、互补 D、互为对顶角 10、如果一个角的两边和另一个角的两边互相平行,那么这两个角之间关系为() A、相等 B、互补 C、相等或互补 D、不能确定 11、如图,AB∥CD,CE⊥BD,则图中与∠1互余的角有() A、1个 B、2个 C、3个 D、4个 12、已知下列命题:①相等的角是对顶角;②互补的角就是平角;③互补的两个角一定是一个锐角,另一个为钝角;④平行于同一条直线的两条直线平行;⑤邻补角的平分线互相垂直.其中真命题的个数为()A、3个 B、2个 C、1个 D、0个二、填空题(共5题;共6分) 13、如果两个角互补,并且它们的差是30°,那么较大的角是________. 14、若一个角的3倍比这个角补角的2倍还少2°,则这个角等于________. 15、如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为________. 16、如果∠1+∠2=90°,而∠2与∠3互余,那么∠1与∠3的数量关系是________. 17、看图填空,并在括号内说明理由:如图,已知∠BAP 与∠APD互补,∠1=∠2,说明∠E=∠F.∵∠BAP与∠APD互补,________ ∴∠E=∠F.________.三、解答题(共3题;共15分)18、一个锐角的补角等于这个锐角的余角的3倍,求这个锐角? 19、如图,在四边形ABCD中,∠A=∠C=90°,∠ABC,∠ADC的平分线分别与AD,BC相交于E,F两点,FG⊥BE于点G,∠1与∠2之间有怎样的数量关系?为什么? 20、已知,如图,AC⊥BC,HF⊥AB,CD⊥AB,∠1与∠2互补.求证:DE⊥AC.四、综合题(共3题;共31分) 21、如图,若直线AB与直线CD交于点O,OA平分∠COF,OE⊥CD. (1)写出图中与∠EOB互余的角; (2)若∠AOF=30°,求∠BOE和∠DOF的度数. 22、如图,∠AGF=∠ABC,∠1+∠2=180°. (1)试判断BF 与DE的位置关系,并说明理由; (2)若BF⊥AC,∠2=150°,求∠AFG 的度数. 23、已知AM∥CN,点B为平面内一点,AB⊥BC于B. (1)如图1,直接写出∠A和∠C之间的数量关系________; (2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C; (3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.答案解析部分一、单选题 1、【答案】D 【考点】余角和补角,垂线【解析】【解答】解:由OC⊥OD,可得∠DOC=90°,如图1,当∠AOC=30°时,∠BOD=180°�30°�90°=60°;如图2,当∠AOC=30°时,∠AOD=90°�30°=60°,此时,∠BOD=180°�∠AOD=120°.故选D 【分析】根据题意可知,射线OC、OD可能在直线AB的同侧,也可能在直线AB的异侧,分两种情况进行讨论即可. 2、【答案】A 【考点】余角和补角,垂线【解析】【解答】解:图中互余的角有:∠B与∠BAD,∠C,∠C与∠DAC,∠E与∠F,共4对.故选A 【分析】根据直角三角形两锐角互余和同角的余角相等写出相等的角即可. 3、【答案】B 【考点】余角和补角【解析】【解答】解:四个选项中,只有选项B满足∠1+∠2=90°,即选项B中,∠1与∠2互为余角.故选B.【分析】如果两个角的和等于90°(直角),就说这两个角互为余角.依此定义结合图形即可求解. 4、【答案】B 【考点】单项式,等式的性质,余角和补角,有理数的乘方【解析】【解答】解:35=3×3×3×3×3,①说法正确,不符合题意;�1是单项式,且它的次数为0,②说法错误,符合题意;若∠1=90°�∠2,则∠1与∠2互为余角,③说法正确,不符合题意;对于有理数n、x、y (其中xy≠0),若 = ,则x与y不一定线段,④说法错误,符合题意,故选:B.【分析】根据有理数的乘方的意义、单项式的概念、余角的定义、等式的性质进行判断即可. 5、【答案】A 【考点】余角和补角,平行线的性质【解析】【解答】解:∵∠1=30°,∴∠3=180°�90°�30°=60°,∵直尺两边互相平行,∴∠2=∠3=60°.故选:A.【分析】根据平角等于180°求出∠3,再根据两直线平行,同位角相等可得∠2=∠3. 6、【答案】C 【考点】钟面角、方位角【解析】【解答】解:9:30时,时针与分针所夹角度是30× =105°,故选:C.【分析】根据时针与分针相距的份数乘以每份的度数,可得答案. 7、【答案】A 【考点】余角和补角,对顶角、邻补角【解析】【解答】解:图中,∠2=∠COE(对顶角相等),又∵AB⊥CD,∴∠1+∠COE=90°,∴∠1+∠2=90°.故选:A.【分析】根据图形可看出,∠2的对顶角∠COE与∠1互余,那么∠1与∠2就互余,从而求解. 8、【答案】C 【考点】余角和补角,对顶角、邻补角【解析】【解答】解:∵∠α与∠β是邻补角,∴∠α+∠β=180°,∴ (∠α+∠β)=90°,∴∠β的余角是:90°�∠β= (∠α+∠β)�∠β= (∠α�∠β),故选:C.【分析】根据补角定义可得∠α+∠β=180°,进而得到(∠α+∠β)=90°,然后根据余角定义可得∠β的余角是:90°�∠β再利用等量代换可得(∠α+∠β)�∠β,然后计算即可. 9、【答案】B 【考点】余角和补角,对顶角、邻补角,垂线【解析】【解答】解:图中,∠2=∠COE(对顶角相等),又∵AB⊥CD,∴∠1+∠COE=90°,∴∠1+∠2=90°,∴两角互余.故选:B.【分析】根据图形可看出,∠2的对顶角∠COE与∠1互余,那么∠1与∠2就互余. 10、【答案】C 【考点】余角和补角,平行线的性质【解析】【解答】解:两个角的两边互相平行,如图(1)所示,∠1和∠2是相等关系,如图(2)所示,则∠3和∠4是互补关系.故选:C.【分析】根据两个角的两边互相平行及平行线的性质,判断两角的关系即可,注意不要漏解. 11、【答案】C 【考点】余角和补角,垂线,平行线的性质【解析】【解答】解:∵CE⊥BD,∴∠CBD=∠EBD=90°,∴∠ABC+∠1=90°,∠1+∠EBF=90°,即∠ABC、∠EBF与∠1互余;∵AB∥CD,∴∠1=∠D,∵∠C+∠D=90°,∴∠C+∠1=90°,即∠C与∠1互余;图中与∠1互余的角有3个,故选:C.【分析】由垂线的定义得出∠ABC+∠1=90°,∠1+∠EBF=90°,得出∠ABC、∠EBF与∠1互余;由平行线的性质和余角关系得出∠C+∠1=90°,得出∠C与∠1互余. 12、【答案】B 【考点】余角和补角,对顶角、邻补角,平行公理及推论,命题与定理【解析】【解答】解:①对顶角既要考虑大小,还要考虑位置,相等的角不一定是对顶角,故①错误;②互补的角不一定是邻补角,所以不一定是平角,故②错误;③互补的两个角也可以是两个直角,故③错误;④平行于同一条直线的两条直线平行,是平行公理,故④正确;⑤邻补角的平分线的夹角正好是平角的一半,是直角,所以互相垂直,故⑤正确.所以真命题有④⑤两个.故选:B.【分析】根据所学的公理定理对各小题进行分析判断,然后再计算真命题的个数.二、填空题 13、【答案】【考点】余角和补角【解析】【解答】解:设较大角为x,则其补角为180°�x,由题意得:x�(180°�x)=30°,解得:x=105°.故答案为:105°.【分析】设较大角为x,则其补角为180°�x,根据它们的差是30°可列出方程,解出即可. 14、【答案】71.6° 【考点】余角和补角【解析】【解答】解:设这个角为x,由题意得,3x=2(180°�x)�2°,解得,x=71.6° 故答案为:71.6°.【分析】设这个角为x,根据题意和补角的概念列出方程,解方程即可. 15、【答案】50° 【考点】余角和补角,平行线的性质【解析】【解答】解:∵∠1=40°,∴∠3=180°�∠1�90°=180°�40°�90°=50°,∵a∥b,∴∠2=∠3=50°.故答案为:50°.【分析】由直角三角板的性质可知∠3=180°�∠1�90°,再根据平行线的性质即可得出结论. 16、【答案】相等【考点】余角和补角【解析】【解答】解:∵∠2与∠3互余,∴∠2+∠3=90°,∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3.故答案为:相等.【分析】根据同角的余角相等解答. 17、【答案】已知;同旁内角互补,两直线平行;两直线平行,内错角相等;已知;等量代换;内错角相等,两直线平行;两直线平行,内错角相等【考点】余角和补角,平行线的判定与性质【解析】【解答】证明:∵∠BAP与∠APD互补(已知),∴AB∥CD(同旁内角互补,两直线平行),∴∠BAP=∠APC(两直线平行,内错角相等).又∵∠1=∠2(已知),∴∠BAP�∠1=∠APC�∠2(等量代换),即∠3=∠4,∴AE∥PF,(内错角相等,两直线平行),∴∠E=∠F(两直线平行,内错角相等).故答案为:已知;同旁内角互补,两直线平行;两直线平行,内错角相等;已知;等量代换;内错角相等,两直线平行;两直线平行,内错角相等.【分析】先根据题意得出AB∥CD,再由平行线的性质得出∠BAP=∠APC,根据∠1=∠2可得出∠3=∠4,进而得出AE∥PF,据此可得出结论.三、解答题 18、【答案】解:设这个角的度数为x°,则根据题意得:180�x=3(90�x),解得:x=45,即这个锐角为45°.【考点】余角和补角【解析】【分析】设这个角的度数为x°,则根据题意得出180�x=3(90�x),求出方程的解即可. 19、【答案】解:∠1=∠2,理由:∵∠A=∠C=90°,根据四边形的内角和得,∠ADC+∠ABC=180°,∵BE平分∠ABC,DF 平分∠ADC,∴∠EBC= ∠ABC,∠2= ∠ADC,∴∠EBC+∠2= ∠ABC+ ∠ADC=90°,∵FG⊥BE,∴∠FGB=90°,∴∠1+∠EBC=90°,∴∠1=∠2 【考点】余角和补角,角平分线的性质,多边形内角与外角【解析】【分析】先根据四边形的内角和求出∠ADC+∠ABC=180°,再结合角平分线得出∠EBC+∠2=90°,再利用直角三角形的两锐角互余得出,∠1+∠EBC=90°,即可得出结论. 20、【答案】证明:如图所示,∵HF⊥AB,CD⊥AB,∴CD∥HF,∴∠2+∠3=180°,又∵∠1与∠2互补,∴∠2+∠1=180°,∴∠1=∠3,∴DE∥BC,∵AC⊥BC,∴DE⊥AC.【考点】余角和补角,平行线的判定与性质【解析】【分析】根据AC⊥BC,DE⊥AC,易证DE∥BC,那么∠2+∠3=180°,而∠1与∠2互补,从而可证∠1=∠3,即可得出DE∥BC,结合AC⊥B C,易得DE⊥AC.四、综合题 21、【答案】(1)解:∵OA平分∠COF,∴∠COA=∠FOA=∠BOD,∵OE⊥CD,∴∠EOB+∠BOD=90°,∴∠COA+∠EOB=90°,∠FOA+∠EOB=90°,∴与∠EOB互余的角是:∠COA,∠FOA,∠BOD (2)解:∵∠AOF=30°,由(1)知∠COA=∠FOA=∠BOD=30°,∴∠DOF=180°�∠FOA�∠BOD=120°,∵OE⊥CD,∴∠BOE=90°�30°=60° 【考点】角平分线的定义,余角和补角,对顶角、邻补角,垂线【解析】【分析】(1)由于OA平分∠COF和∠COA与∠BOD是对顶角,得到∠COA=∠FOA=∠BOD,根据垂直定义有∠EOB+∠BOD=90°,根据互为余角的定义即可得到结论;(2)由(1)知∠COA=∠FOA=∠BOD=30°,由平角的意义可求得∠DOF,根据垂直定义可求得∠BOE. 22、【答案】(1)解:(1)BF∥DE,理由如下:∵∠AGF=∠ABC,∴GF∥BC,∴∠1=∠3,∵∠1+∠2=180°,∴∠3+∠2=180°,∴BF∥DE;(2)解:∵BF∥DE,BF⊥AC,∴DE⊥AC,∵∠1+∠2=180°,∠2=150°,∴∠1=30°,∴∠AFG=90°�30°=60°.【考点】余角和补角,垂线【解析】【分析】(1)由于∠AGF=∠ABC,可判断GF∥BC,则∠1=∠3,由∠1+∠2=180°得出∠3+∠2=180°判断出BF∥DE;(2)由BF∥DE,BF⊥AC得到DE⊥AC,由∠2=150°得出∠1=30°,得出∠AFG的度数23、【答案】(1)∠A+∠C=90°;(2)解:如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,∴∠C=∠CBG,∴∠ABD=∠C;(3)解:如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,① 由AB⊥BC,可得β+β+2α=90°,② 由①②联立方程组,解得α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【考点】余角和补角,平行线的判定与性质【解析】【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)先过点B作BG∥DM,根据同角的余角相等,得出∠ABD=∠CBG,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD=∠C;(3)先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.。