九年级数学上册4.1正弦和余弦第1课时正弦及30°角的正弦值习题课件新版湘教版
XJ湘教版初三九年级数学上册第一学期 同步课堂补习练习题作业 第四章 锐角三角函数(全章电子作业 分课时)

第四章锐角三角函数4.1 正弦和余弦第1课时正弦1(北京市平谷区期末)1.在Rt△ABC中,∠C=90°,∠A=30°,则sin30︒的值是A.1 2B.2C.2D.2(北京市平谷区期末)3.在Rt△ABC中,∠C=90°,AC=4,BC=3,则sin A是A.3 5B.4 5C.3 4D.4 33(北京市房山区期末)3.在Rt△ABC中,∠C=90°,AC=8,BC=6,则sin B的值等于A.3 4B.4 3C.3 5D.4 54(北京市密云县期末)5.如图,在Rt ABC∆,90C∠=︒,8AC=,6BC=,则sin B 的值等于A .34B . 34 C .45D . 35 5(北京市延庆县期末)6.在Rt △ABC 中,∠C =90°,若ABBC =2,则sin B 的值为ABC .12D .24.2 正弦和余弦第2课时 特殊角的正弦、用计算器求锐角的正弦1.用计算器求sin15°,正确的按键顺序是( )A .sin15=B .sin15C.Shift15D .15sin☆2.下面四个数中,最大的是( )A .B . s in88°C . s in46°D .★3.四位学生用计算器求sin62°20′的值正确的是( )AA.0.8857 B.0.8856 C.0.8852 D.0.8851★4.(齐齐哈尔)在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,CD=4,AC=6,则sinB的值是____.★5.因为sin30°=,sin210°=﹣,所以sin210°=sin(180°+30°)=﹣sin30°,因为sin45°=,sin225°=﹣,所以sin225°=sin(180°+45°)=﹣sin45°;由此猜想、推理知:一般地,当α为锐角时有sin(180°+α)=﹣sinα,由此可知:sin240°=.4.1 正弦和余弦第3课时余弦1.如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,若AC=2,AB=3,那么cos ∠BCD的值为.2.如图,在Rt△ABC中,∠C=90°,AB=6,cosB=,则BC的长为.3如图,△ABC中,∠C=90°,AC=3,AB=5,则sinA=______,cosA=.4.在△ABC中,∠C=90°,BC=24cm,cosA=513,求这个三角形的周长.4.2 正切1.如图,△ABC中,∠C=90°,AC=5,BC=12,则tanA=______.2.在△ABC中,∠C=90°,AC=4,BC=3,则tanA的值是()A.B.C.D.3.如图,在3×3的正方形的网格中标出了∠1,则tan∠1的值为()A .B.C.D.4.如图,在直角坐标系中,点A的坐标是(2,3),则tanα的值是()A.B .C.D.4.在Rt△ABC中,∠C=90°,若AC=5,tanA=2,则BC=.6.如图,已知梯形ABCD中,AB∥CD,AB⊥BC,且AD⊥BD,若CD=1,BC=3,那么∠A的正切值为.7.在△ABC中,∠C=90°,BC=8cm,tanA=,求AC的长.4.3 解直角三角形1(北京市顺义区期末)如图,在△ABC中,D为AB边上一点,B ACD∠=∠,若4AD=,3BD=,求AC的长.AB C D2(北京市顺义区期末) 如图,△ABC 中,∠B =60°,∠C =75°,AC =AB 的长.AB C3(辽宁省鞍山市期末)如图,在四边形ABCD 中,AD ∥BC ,CA 是∠BCD 的平分线,且AB ⊥AC ,AB=4,AD=6,(1)求证:三角形ADC 为等腰三角形;(2)求AC 的长.4(北京市房山区期末)如图,在ABC ∆中,90C ︒∠=,52sin =A ,D 为AC 上一点,45BDC ︒∠=,6=DC ,求AD 的长.5(北京市密云县期末)如图,在DEF ∆中,2,4,120EF DE DEF ==∠=︒, 求DF 的第20题图 C BA4.4 解直角三角形的应用第1课时仰角、俯角问题1.如图,小方在五月一日假期中到郊外放风筝,风筝飞到C 处时的线长为20米,此时小方正好站在A处,并测得∠CBD=60°,牵引底端B离地面1.5米,求此时风筝离地面的高度(结果精确到个位)2.如图,在活动课上,小明和小红合作用一副三角板来测量学校旗杆高度.已知小明的眼睛与地面的距离(AB)是1.7m,他调整自己的位置,设法使得三角板的一条直角边保持水平,且斜边与旗杆顶端M在同一条直线上,测得旗杆顶端M仰角为45°;小红眼睛与地面的距离(CD)是1.5m,用同样的方法测得旗杆顶端M的仰角为30°.两人相距28米且位于旗杆两侧(点B、N、D在同一条直线上).求出旗杆MN的高度.(参考数据:,,结果保留整数.)3.如图,小明为了测量小山顶的塔高,他在A处测得塔尖D的仰角为45°,再沿AC方向前进73.2米到达山脚B处,测得塔尖D的仰角为60°,塔底E的仰角为30°,求塔高.(精确到0.1米,≈1.732)4.我市某中学在创建“特色校园”的活动中,将本校的办学理念做成宣传牌(AB),放置在教学楼的顶部(如图所示).小明在操场上的点D处,用1米高的测角仪CD,从点C测得宣传牌的底部B的仰角为37°,然后向教学楼正方向走了4米到达点F处,又从点E测得宣传牌的顶部A的仰角为45°.已知教学楼高BM=17米,且点A,B,M在同一直线上,求宣传牌AB的高度(结果精确到0.1米,参考数据:≈1.73,sin37°≈0.60,cos37°≈0.81,tan37°≈0.75).4.4 解直角三角形的应用第2课时 坡度、坡比问题 1.如图,已知一商场自动扶梯的长l 为13米,高度h 为5米,自动扶梯与地面所成的夹角为θ,则tanθ的值等于( )A .512B . 125C .513D .12132.(深圳中考)小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12,的山坡上走1300米,此时小明看山顶的角度为60°,求山高( )A .600-B .250C .350+D .3. (上海中考)已知传送带与水平面所成斜坡的坡度i=1:2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_____米.☆4. 如图,某公园入口处原有三级台阶,每级台阶高为20cm ,深为30cm ,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A ,斜坡的起始点为C ,现设计斜坡的坡度i=1:5,则AC的长度是_________.5.(莱芜中考)如图,一堤坝的坡角∠ABC=62°,坡面长度AB=25米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角∠ADB=50°,则此时应将坝底向外拓宽多少米?(结果保留到0.01米)(参考数据:sin62°≈0.88,cos62°≈0.47,tan50°≈1.20)☆6.(常德中考)如图,A,B,C表示修建在一座山上的三个缆车站的位置,AB,BC表示连接缆车站的钢缆.已知A,B,C所处位置的海拔AA1,BB1,CC1分别为160米,400米,1000米,钢缆AB,BC分别与水平线AA2,BB2所成的夹角为30°,45°,求钢缆AB和BC的总长度.(结果精确到1米)☆7. (山西中考)如图,点A、B、C表示某旅游景区三个缆车站的位置,线段AB、BC表示连接缆车站的钢缆,已知A、B、C三点在同一铅直平面内,它们的海拔高度AA′,BB′,CC′分别为110米、310米、710米,钢缆AB的坡度i1=1:2,钢缆BC的坡度i2=1:1,景区因改造缆车线路,需要从A到C直线架设一条钢缆,那么钢缆AC的长度是多少米?(注:坡度i是指坡面的铅直高度与水平宽度的比)8.(广安中考)为邓小平诞辰110周年献礼,广安市政府对城市建设进行了整改,如图,已知斜坡AB长米,坡角(即∠BAC)为45°,BC⊥AC,现计划在斜坡中点D处挖去部分斜坡,修建一个平行于水平线CA的休闲平台DE 和一条新的斜坡BE(下面两个小题结果都保留根号).(1)若修建的斜坡BE1,求休闲平台DE的长是多少米?(2)一座建筑物GH距离A点33米远(即AG=33米),小亮在D点测得建筑物顶部H的仰角(即∠HDM)为30°.点B、C、A、G,H在同一个平面内,点C、A、G在同一条直线上,且HG⊥CG,问建筑物GH高为多少米?第4章锐角三角函数一填空题(每小题6分,共18分):1.在Rt△ABC中,∠C=90°,a=2,b=3,则cos A=,sin B=,tan B =,cot B=;2.直角三角形ABC的面积为24cm2,直角边AB为6cm,∠A是锐角,则sin A=;3.等腰三角形底边长10cm,周长为36cm,则一底角的余切值为.二 选择题:(每题5分,共10分):1.sin 2θ+sin 2(90°-θ) (0°<θ<90°)等于……………………………………( )(A )0 (B )1 (C )2 (D )2sin 2θ2.ββββcot sin tan cos ⋅⋅ (0°<β<90°)等于………………………………………………( ) (A )sin β (B )cos β (C )tan β (D )cot β三 计算题(每小题6分,共18分):1.tan 30°cot 60°+cos 230°-sin 245°tan 45°2.sin 266°-tan 54°tan 36°+sin 224°;3.50cos 40sin 0cos 45cot 30cos 330sin 145tan 41222-+-+.四 解直角三角形(△ABC 中,∠C =90°,每小题6分,共24分):1.已知:c = 83,∠A =60°,求∠B 、a 、b .2.已知:a =36, ∠A =30°,求∠B 、b 、c .6 ,a=3-1 ,求∠A、∠B、b.3.已知:c=24.已知:a=6,b=23,求∠A、∠B、c.五在直角三角形ABC中,锐角A为30°,锐角B的平分线BD的长为8cm,求这个三角形的三条边的长.六某型号飞机的翼形状如图所示,根据图中数据计算AC、BD和CD的长度(精确到0.1米).。
湘教版-数学-九年级上册-4.1正弦和余弦 精品教案

课题锐角三角函数——正弦一、教学目标1. 通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实;2. 能根据正弦概念正确进行计算;3. 能计算出30°、45°、60°角的正弦值;4.经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力。
二、教学重点、难点重点:理解认识正弦(sinA)概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实.难点:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实。
三、教学过程(一)情境导入教师展示“东方明珠”电视塔图片提问:你能实际测量电视塔的高度吗?本章即将探讨和学习的利用锐角三角函数来测算物体长度或高度的方法。
下面我们大家一起来学习锐角三角函数中的第一种:锐角的正弦(二)观察教师用三角板和学生用三角板(30°的)发现:在直角三角形中,如果一个锐角等于30°,那么它的对边与斜边的比一定等于二分之一,与三角形的大小无关。
提问:如果在直角三角形中,这个锐角不等于30°,它的对边与斜边的比是不是与三角形的大小有关呢?即:当∠A取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值?(三)几何画板课件展示在直角三角形中,一个锐角的对边与斜边的比与三角形的大小无关,只与这个锐角的大小有关。
(四)引导学生证明这个结论(五)认识正弦如图,在Rt △ABC 中,∠A 、∠B 、∠C 所对的边分别记为a 、b 、c 。
师:在Rt △ABC 中,∠C=90°,我们把锐角A 的对边与斜边的比叫做∠A 的正弦。
记作sinA 。
板书:sinA =A a A c∠=∠的对边的斜边 (举例说明:若a=1,c=3,则sinA=31) 显然:sin30°=1/2注意(1).“sinA ”是一个完整的符号,不要误解为sin × A ,今后所学的其他的三角函数符号也是这样。
2017年秋九年级数学上册 4.1 正弦和余弦 第1课时 正弦及30°角的正弦值教案 (新版)湘教版

第4章 锐角三角函数4.1 正弦和余弦第1课时 正弦及30°角的正弦值1.通过具体实例,分析、比较后,知道“当直角三角形的锐角固定时,它的对边与斜边的比值也固定”的事实.2.了解正弦的概念,知道特殊角30°的正弦值,并能根据正弦的相关概念进行计算.(重点)阅读教材P109~111,完成下列内容:(一)知识探究1.在有一个锐角等于α的所有直角三角形中,角α的对边与斜边的比值是一个________,与直角三角形的大小________.2.在直角三角形中,锐角α的对边与斜边的比叫作角α的正弦,记作sin α,即sin α=________.3.sin30°=________.(二)自学反馈1.如图,在△ABC 中,∠C =90°,AB =10,BC =6,则sinA 的值是( )A.35B.45C.53D.542.在Rt △ABC 中,∠C =90°,∠A =30°,BC =1,则AB =________.活动1 小组讨论例 如图,在Rt △ABC 中,∠C =90°,BC =3,AB =5.(1)求sinA 的值;(2)求sinB 的值.解:(1)∠A 的对边BC =3,斜边AB =5,于是sinA =BC AB =35. (2)∠B 的对边AC ,根据勾股定理,得AC 2=AB 2-BC 2=52-32=16.于是AC =4.因此sinB =AC AB =45.在直角三角形中,求一个角的正弦值只需要用该角所对的直角边比斜边,如果所对直角边或斜边长未知时,可首先通过勾股定理求解出长度.易错提示:求一个角的正弦值必须在直角三角形中求解.活动2 跟踪训练1.在Rt △ABC 中,∠C =90°,若将各边长度都扩大为原来的2倍,则∠A 的正弦值( )A .扩大为原来的2倍B .缩小为原来的12倍 C .扩大为原来的4倍 D .不变2.在△ABC 中,∠C =90°,BC ∶CA =3∶4,那么sinA 等于( )2 A.34 B.43 C.35 D.453.如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P(3,4),则sin α=________.4.在Rt △ABC 中,若∠C=90°,BC =4,sinB =35,则AB =________.5.在Rt △ABC 中,∠C =90°,AC =35AB ,求sinB 的值.活动3 课堂小结学生试述:今天学到了什么?【预习导学】知识探究1.常数 无关 2.角α的对边斜边 3.12自学反馈1.A 2.2【合作探究】活动2 跟踪训练1.D 2.C 3.45 4.5 5.∵Rt △ABC 中,∠C =90°,AC =35AB ,∴sinB =AC AB =35.。
余弦与特殊角的余弦值PPT课件

课堂导练
5.(2020·自贡)一种试电笔的构造如图所示,下列说法 正确的是( D ) A.使用试电笔时 手可以接触笔尖 B.使用试电笔时手不要接触笔卡 C.试电笔中的电阻可以用铁丝代替 D.当氖管发光时有微弱电流通过人体
习题链接
1 见习题
提示:点击 进入习题
7
见习题
答案呈现
2B
8 火;切断
3 见习题 4 试电笔;发光
16.(1)如图,锐角的正弦和余弦都随着锐角的确定而确定, 也随着其变化而变化,试探索随着锐角度数的增大,它的 余弦值的变化规律;
解:在图中,cos ∠B1AC=AABC1,cos ∠B2AC=AABC2, cos ∠B3AC=AABC3. ∵AB3<AB2<AB1,∴AABC1<AABC2<AABC3, 即 cos ∠B1AC<cos ∠B2AC<cos ∠B3AC.
45°,∴cos∠BAC= 22.本题易错点是没有先连接 BC 并判断
△ABC 是直角三角形,而直接运用 cos∠BAC=AABC得出结论.
【答案】
2 2
8.在Rt△ABC中,∠C=90°,sin
A=
3 5
,则cos
B的值等
于( A )
3
4
3
4
A.5
B.5
C.4
D.3
【点拨】在Rt△ABC中,若∠C=90°,则cos B=sin A.
9 火;断路;不能 10 D
5D
11 试电笔;大地
6 火线;220
12 见习题
课堂导练
8.漏电保护器的作用:如果站在地上的人不小心接触 ___火___线,电流经过人体流入大地,这时总开关上的 “漏电保护器”就要起作用了,它会迅速__切__断____电流 ,对人体起到保护作用。
【湘教版】九年级数学上册:4.1.1 正弦及30°角的正弦值(含答案)

第4章 锐角三角函数4.1 正弦和余弦第1课时 正弦及30°角的正弦值01 基础题 知识点1 正弦的意义1.如图,△ABC 中,∠C =90°,则∠A 的正弦值可以表示为(C)A.AC ABB.AC BCC.BC ABD.BC AC2.(贵阳中考)在Rt △ABC 中,∠C =90°,AC =12,BC =5,则sinA 的值为(D)A.512B.125C.1213D.5133.正方形网格中,△AOB 如图放置,则sin ∠AOB =(C)A.32B.23C.31313D.213134.已知△ABC 中,AC =4,BC =3,AB =5,则sinA =(A) A.35 B.45 C.53 D.345.在Rt △ABC 中,∠C =90°,BC =2,sinA =23,则边AC 的长是(A)A. 5B.3C.43D.126.把△ABC 三边的长度都扩大为原来的3倍,则锐角A 的正弦值(A) A.不变 B.缩小为原来的13C.扩大为原来的3倍D.不能确定7.如图,在平面直角坐标系内有一点P(5,12),那么OP 与x 轴的夹角α的正弦值是1213.8.分别求出图中∠A.∠B 的正弦值.图1 图2解:图1:AC =AB 2-BC 2=62-22=42, ∴sinA =BC AB =13,sinB =AC AB =223.图2:AB =AC 2+BC 2=(2)2+(6)2=22, ∴sinA =BC AB =622=32,sinB =AC AB =222=12.知识点2 30°角的正弦值 9.计算:sin30°=12.10.计算:sin30°-|-2|=-32.11.如图,在△ABC 中,DE ∥BC ,∠B =30°,则sin ∠ADE 的值为12.12.在Rt △ABC 中,∠C =90°,∠A ∶∠B =1∶2,则sinA =12.02 中档题13.在Rt △ABC 中,∠B =90°.若AC =2BC ,则sinC 的值是(C) A.12 B.2C.32D. 3 14.(乐山中考)如图,在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,则下列结论中不正确的是(C)A.sinB =AD ABB.sinB =ACBCC.sinB =AD ACD.sinB =CDAC15.如图,在Rt △ABC 中,∠ACB =90°,BC =3,AC =15,AB 的垂直平分线ED 交BC 的延长线于点D ,垂足为E ,则sin ∠CAD =(A) A.14 B.13C.154D.151516.(威海中考)如图,在下列网格中,小正方形的边长均为1,点A.B.O 都在格点上,则∠AOB 的正弦值是(D) A.31010 B.12C.13D.101017.如图,孔明同学背着一桶水,从山脚A 出发,沿与地面成30°角的山坡向上走,送水到山上因今年春季受旱缺水的王奶奶家(B 处),AB =80米,则孔明从A 到B 上升的高度BC 是40米.18.如图,在▱ABCD 中,连接BD ,AD ⊥BD ,AB =4,sinA =34,求▱ABCD 的面积.解:∵AD ⊥BD ,∴在Rt △ABD 中,sinA =34=BDAB .∵AB =4,∴BD =3.由勾股定理,得AD =AB 2-BD 2=16-9=7,∴S ▱ABCD =AD·DB=7×3=37.19.如图,等腰三角形的顶角为120°,腰长为2 cm ,求它的底边长.解:过点A 作AD ⊥BC 于点D ,则∠BAD =∠CAD =60°,BD =DC. ∵AD ⊥BC , ∴∠B =30°. ∴sinB =AD AB =12.∵AB =2, ∴AD =1,BD = 3. ∴BC =2 3.20.如图所示,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,D 为垂足,若AC =4,BC =3,求sin ∠ACD 的值.解:∵在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,AC =4,BC =3, ∴AB =AC 2+BC 2=5.根据同角的余角相等,得∠ACD =∠B. ∴sin ∠ACD =sinB =AC AB =45. 03 综合题21.在Rt △ABC 中,∠C =90°,请你根据正弦的定义证明sin 2A +sin 2B =1. 证明:在Rt △ABC 中,∵∠C =90°, ∴a 2+b 2=c 2,sinA =a c ,sinB =bc.∴sin 2A +sin 2B =(a c )2+(b c )2=a 2+b 2c2=1,即sin 2A +sin 2B =1.。
湘教版数学九年级上册第3课时 余弦课件牛老师

解:cos260°-sin245°
=
1 2
2
2 2
2
11 42
1 4
(2)1-2cos30°cos45°. 解:1-2cos30°cos45°
=1 2 3 2 22
=1 6 2
=2 6. 2
如图,在直角三角形中,我们把锐角α的邻边与斜边的比叫 作角α的余弦,记作cosα,即
cos
α
如下图所示,△ABC和△DEF都是直角三角形,其中
∠A=∠D=α,∠C=∠F=90°,则
AC 成D立F吗?为什么? AB DE
∵∠A=∠D=α,∠C=∠F=90°,
∴∠B=∠E.
从而sin B=sin E. 因此 AC DF. AB DE
由此可得,在有一个锐角等于α的所有直角三角形中,角α的邻边与 斜边的比值是一个常数,与直角三角形的大小无关.
在Rt△ABC中,由勾股定理可得
BC2= AB2-AC2= 72-52=24. BC= 2 6.
cos B sin90 B sin A= BC 2
6 .
AB 7
2.用计算器求下列锐角的余弦值(精确到0.0001): (1)35°; (2)68°12′; (3)9°42′.
解:(1)cos35°=0.8192;
►在有欢声笑语的校园里,满地都是雪,像一块大地毯。房檐上挂满了冰 凌,一根儿一根儿像水晶一样,真美啊!我们一个一个小脚印踩在大地毯 上,像画上了美丽的图画,踩一步,吱吱声就出来了,原来是雪在告我们: 和你们一起玩儿我感到真开心,是你们把我们这一片寂静变得热闹起来。 对了,还有树。树上挂满了树挂,有的树枝被压弯了腰,真是忽如一夜春 风来,千树万树梨花开。真好看呀! ►冬天,一层薄薄的白雪,像巨大的轻软的羊毛毯子,覆盖摘在这广漠的 荒原上,闪着寒冷的银光。
正弦和余弦
正弦和余弦【学习目标】1.了解正弦、余弦的概念的意义(用直角三角形中直角边与斜边的比表示),知道当锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实.2.熟记30°、45°、60°角的正弦、余弦值,并会根据这些数值说出对应的特殊角的度数.3.了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系. 4.会查“正弦和余弦表”,即由已知锐角求对应的正弦、余弦值,已知正弦、余弦值求对应的锐角(或运用计算器).5.会用上述知识解决一些求三角形中未知元素的简单问题. 【主体知识归纳】1.如图6—1,在Rt △ABC 中,如果∠C =90°,∠A 、∠B 、∠C 所对的边分别是a 、b 、c ,那么∠A 的正弦sin =ca ,∠A 的余弦cos =cb .2.特殊角的正弦、余弦值.3.任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值.即sinA =cos (90°-A ),cosA =sin (90°-A ).4.三角函数表三角函数值的变化规律是使用三角函数表的依据.当角度在0°~90°变化时,正弦值随着角度的增大(或减小)而增大(或减小);余弦值随着角度的增大(或减小)而减小(或增大).【基础知识讲解】1.正弦、余弦的概念是本章的起点,同时又是重点、关键.这是本章知识的基础.在直角三角形ABC 中,当一个锐角(∠A )取固定值时,它的直角边与斜边的比值也是一个固定值.ABBC A A =∠=斜边的对边sin ,cos =ABAC A =∠斜边的邻边.实际上它们是一个函数关系,它的自变量的取值范围是大于0°且小于90°的所有角度. 在直角三角形中,由于斜边最长,所以函数值的范围是大于0且小于1的所有实数. 2.在查“正弦和余弦表”时,需要明确以下四点:(1)这份表的作用是:求锐角的正弦、余弦值,或由锐角的正弦、余弦值,求这个锐角;(2)这份表中,角精确到1′,正弦、余弦值具有四个有效数字; (3)凡查表所得的值,在教科书中习惯用等号“=”,而不用约等号“≈”;根据查表所得的值进行近似计算,结果经四舍五入后,一般用约等号“≈”来表示;(4)通过查表要知道:sin0°=0,sin90°=1,cos0°=1,cos90°=0.在使用余弦表中的修正值时,如果角度增加(1′~3′),相应的余弦值要减小一些;如果角度减小(1′~3′),相应的余弦值要增加.【例题精讲】例1:如图6—2,已知在△ABC 中,∠ACB =90°,CD ⊥AB ,且AC =4,CD =3,求∠B 的正弦值和余弦值.剖析:任意一个锐角的三角函数值,一般是利用一个直角三角形中相应的边的比值表示,因此要求∠B 的正弦、余弦值,首先要观察∠B 是否在一个直角三角形中,边的比值可否求出.解:∵AC ⊥BC ,C D⊥AB ,∴△ACD ∽△ABC .∴∠ACD =∠B .又∵AC =4,C D=3,由勾股定理,得AD =7. ∴sinB =sin ∠ACD =47,cosB =cos ∠ACD =43.例2:如图6—3,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,写出等于∠A 的正弦的线段比.剖析:根据三角函数定义知,在直角三角形中,角的正弦值等于对边比斜边,余弦值等于邻边比斜边.这里的前提条件一定要注意,是在直角三角形中.错解:sin =AB BC AB CD =.正解:sin =BCBD ABBC ACCD ==.说明:错解之一是所答线段比ABCD ,因为它们不在同一个直角三角形中,错解之二是所答线段比不全,不全的原因是在三种情况下形成的:一是∠A 是Rt △ABC 和Rt △ACD 的公共角,应有两个比,二是∠A =∠BCD ,则sin =sin ,三是∠A +∠ACD =90°,∠A +∠B =90°,cosACD =sinA =ACCD ,cosB =sin ∠BCD =BCBD .只不过第三种情况的比包含在前两种情况之中了.例3:如图6—4,在△ABC 中,AB =AC =5,BC =6,求cos ∠A .剖析:我们所求的任意一个锐角的三角函数值,都是根据三角函数定义,利用一个直角三角形中相应边的比值来表示.求锐角A 的三角函数值时,要观察∠A 是否存在于一个直角三角形中,如果题中没有给出这样的条件,我们要通过添加辅助线,构造出∠A 所在的直角三角形.解:作△ABC 的高AD 、BE .∵AB =AC =5,BC =6,∴BD =21BC =21³6=3.在Rt △ABD 中,由勾股定理,得 AD =222235-=-BDAB =4.∵S △ABC =21BC ²AD =21AC ²BE ,∴BC ²AD =AC ²BE , 即6³4=5³BE . ∴BE =524.在Rt △ABE 中,由勾股定理,得 AE =57)524(52222=-=-BEAB .∴cos =257=ABAE .说明:任意锐角的正弦、余弦值都是存在的,因此在求某一个锐角的正弦值、余弦值时,可把该锐角放到某一直角三角形中(如本例通过添加辅助线,构造出直角三角形),也可以利用某直角三角形中的一个和它相等的角替代(如例1中,求∠B 的三角函数值可转化为求∠ACD 的三角函数值).例4:计算:cos 245°–︒+︒60sin 2360cos 3+cos 230°+sin 245°–sin 230°.剖析:本题主要考查特殊角的三角函数值及数的运算,所以做题时,一是要牢记特殊角的三角函数值,二是运算要准确.解:原式=(22)2–211+2323⨯+(23)2+(22)2–(21)2=21–2+1+43+21–41=21.说明:牢记特殊角的三角函数值是做题的前提,运算正确是关键. 例5:在△ABC 中,若|sin –22|+(23–cos)2=0,∠A 、∠B 都是锐角,则∠C 的度数是( ) A .75°B .90°C .105°D .120°剖析:本题主要考查非负数的性质及正、余弦函数的有关知识,在△ABC 中,要求∠C 的度数,首先要确定∠B 、∠C 的度数.解:∵|sin –22|+(23–cos)2=0,∴|sin –22|=0,(23–cos)2=0,∴sin –22=0, 23–cos =0.即sin =22,cos =23.∴∠A =45°,∠B =30°. ∵∠A +∠B +∠C =180°, ∴∠C =105°. 故应选C .例6:在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,则BBA s in c o s c o s ∙的值是( ) A .ca B .ac C .baD .ab剖析一:四个选择支均为边的比值,因此想到将sinB 、cosB 、cosA 转化边的比,根据锐角三角函数的定义,cosA =cb ,sinB =cb ,cosB =ca ,化简得ca ,所以选A .剖析二:利用互余两角三角函数间的关系,得cosA =sinB ,即Bsin Bcos A cos ⋅=cosB =ca .因此选A .说明:(1)在解题中,常常利用锐角三角函数的定义,将锐角三角函数转化为边的比,或将边的比转化成锐角三角函数;(2)求三角函数式的值、化简三角函数式、或证明三角函数恒等式,常常利用互为余角的三角函数间的关系.将不同角的三角函数变为同角的三角函数.例7:若α是锐角,且sin α=322,求cos α的值.解:如图6—5,设∠A =α,∠C =90°,不妨设BC =22,AB =3,∴AC =2222)22(3-=-BC AB =1.∴cos α=31=ABAC .说明:(1)因α是锐角,可构造一个直角三角形,使α是其中的一个锐角,从而转化为利用锐角三角函数定义来解决问题.(2)已知sin α=322,运用特例的思想,可设BC =22,AB =3,从而转化为在直角三角形内的问题.这种解法在做选择题、填空题时应用更为广泛.(3)此题还可应用同角之间的三角函数关系求解,这将在以后的学习中学到. 【知识拓展】培养学习数学好习惯学习习惯是长时期逐渐养成的、一时不容易改变的学习行为方式和行为倾向,一个人养成什么样的学习习惯,会对其学习成绩直接产生有利或有害的影响.同学们养成怎样的学习习惯才对学习有利呢? (1)独立思考的习惯 爱因斯坦说过:“学习知识要善于思考、思考、再思考,我就是靠这个学习方法成为科学家的.” 课堂上对于老师的讲解,不要只是听或认真听,而要经过思考:老师为什么要这样讲?此题为什么要这样解?辅助线为什么要这样添?还有没有其他解法?长期坚持下去,既培养了自己独立思考的习惯,又真正掌握了知识,提高了能力,只有这样才有助于学习成绩的提高.(2)善于求异和质疑的习惯具体内容是:①独立思考问题,自己从书中、演算中或从分析自己的错例中寻找问题的答案,不畏困难,积极思考.②敢于提出自己的疑问并寻根问底,敢于提出自己不同意见.③在解题、讨论或研究问题时能突破条条框框的约束,不墨守成规,能从不同角度多方面的思考问题,寻求出创造性的解题方法.纠正懒于思考,事事依赖老师、家长、同学或单纯靠记忆模仿、照搬等不良的思维习惯.养成求异和质疑的好习惯对发展创造性思维,及将来的进一步学习都有重要的作用.要养成这种好习惯,首先要认真阅读课本,对书上的结论、注解要多问几个为什么;其次在听懂老师讲解后,要独立思考,看看所讲例题有没有别的解法;再次,就是在研究一题多解的基础上,勤积累,多思考.【同步达纲练习】1.选择题(1)下列各式中,正确的是( ) A .sin60°=21 B .cos (90°-30°)=sin60° C .cos60°=21D .sin 2x =sinx 2(2) 21cos30°+22cos45°+sin60°²cos60°等于( ) A . 22B .23 C .221+D .231+(3)在Rt △ABC 中,∠C =90°,a :b =3:4,则cosB 等于( ) A .54 B .53 C .43 D .34(4)已知在Rt △ABC 中,∠C =90°,AC =12,AB =13,那么sinA 的值是( ) A .1312 B .1213C .131 D .135(5)在Rt △ABC 中,∠C =90°,若c =2,sinA =41,则b 的值是( ) A .21 B .1C .215 D .以上都不对(6)在Rt △ABC 中,各边的长都扩大两倍,那么锐角A 的正弦值( )A .扩大两倍B .缩小到一半C .没有变化D .不能确定(7)在Rt △ABC 中,sinB =23,则cos 2B 等于( )A .21 B .23C .±23 D .以上答案都不对(8)若0°<α<45°,那么cos α–sin α的值( )A .大于零B .小于零C .等于零D .不能确定(9)α是锐角,且cos α=43,则α( ) A .0°<α<30°B .30°<α<45°C .45°<α<60°D .60°<α<90°(10)在Rt △ABC 中,∠C =90°,CD ⊥AB ,垂足为D ,AB :AC =3:2,则∠BC D的正弦值为( )A .35 B .32 C .23 D .53(11)在△ABC 中,∠C =90°,则下列叙述中正确的是( ) A .∠A 的邻边与斜边之比是∠A 的正弦B .∠A 的对边与邻边之比是∠A 的正弦C .∠A 的对边与斜边之比是∠B 的余弦D .∠A 的邻边与斜边之比是∠B 的余弦(12)在Rt △ABC 中,∠C =90°,∠A =30°,则sinA +cosA 等于( ) A .1B .231+ C .221+ D .41(13)下列等式中正确的是( ) A .sin20°+sin40°=sin60° B .cos20°+cos40°=cos60° C .sin (90°-40°)=cos40° D .cos (90°-30°)=sin60° (14)下列不等式中正确的是( ) A .cos42°>cos40°B .cos20°<cos70°C .sin70°>sin20°D .sin42°<sin40°(15)在Rt △ABC 中,∠C =90°,下列等式一定成立的是( ) A .sinA =sinB B .sinA =cosA C .sin (A +B )=cos D .sinA=cosB(16)化简22)80sin 20(sin 20sin 80sin )80cos 1(︒-︒︒-︒-︒-的结果是( )A .1–cos80°B .–cos80°C .cos80°D .cos80°–1(17)若α是锐角,sin40°=cos α,则α等于( ) A .40° B .50° C .60° D .不能确定(18)已知α、β是两个锐角,sin α=0.412,sin β=0.413,则有( ) A .α>βB .α<βC .α=βD .不能确定α、β的大小(19)已知α、β是两个锐角,cos α=0.43,cos β=0.44,则有( ) A .α>β B .α<β C .α=β D .不能确定α、β的大小(20)如果α是锐角,且cos α=54,则sin (90°-α)的值等于( )A .259 B .54C .53 D .2516(21)在△ABC 中,如果sinA =cosB =21,则△ABC 是( )A .直角三角形B .钝角三角形C .锐角三角形D .以上答案都不对2.填空题(1)计算:4sin60°+23cos30°-6cos 245°=__________;(2)一个直角三角形的两直角边分别为5和12,则较小锐角的正弦值是__________;(3)化简:︒+︒∙︒-︒90sin 60cos 70sin 470sin 22+cos20°的结果为__________;(4)若锐角α满足2sin α-1=0,则α=__________;(5)不查表,比较大小:sin25°_____sin24°30′,cos82°25′_______cos82°26′; (6)△ABC 的面积为24cm 2,∠B =90°,一直角边AB 为6 cm ,则sinA =__________; (7)若三角形的三边长之比为1:3:2,则此三角形的最小内角的正弦值为__________; (8)在Rt △ABC 中,∠C =90°,a =8,b =15,则sinA +sinB =__________;(9)若锐角α满足等式2sin(α+15°)–1=0,则∠α=__________,cos2α=__________. (10)如果2+3是方程x 2–8xcos α+1=0的一个根,且α是锐角,则α=__________. (11)若ααααcos sin cos sin -+没有意义,则锐角α__________.3.用符号表示: (1)∠A 的正弦; (2)∠B 的余弦; (3)40°角的正弦; (4)47°5′角的余弦. 4.求下列各式的值:(1)sin30°+2cos60°;(2)sin 230°+cos 230°;(3)2sin45°²cos45°; (4)︒︒45cos sin45-1;(5)sin30°²cos45°+cos30°²sin45°.5.把下列各角的正弦(余弦)改写成它的余角的余弦(正弦): (1)sin17°; (2)cos39°; (3)sin41°12′; (4)cos62°27′.6.在△ABC 中,∠C =90°,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ;先根据下列条件求出∠A 的正弦值和余弦值,然后直接写出∠B 的正弦值和余弦值.(1)a =5,c =29; (2)b =9,c =85; (3)a =7,b =4.7.已知△ABC 为等腰直角三角形,∠ACB =90°,过BC 的中点D 作DE⊥AB ,垂足为E ,连结CE ,求cosAEC 的值.8.已知2+3是方程 x 2-5x ²sin θ+1=0的一个根,θ是锐角,试求sin θ、cos θ的值.参考答案【同步达纲练习】1.(1)C (2)D (3)B (4)D (5)C (6)C (7)B (8)A (9)B (10)A (11)C (12)A (13)C (14)C (15)D (16)B (17)B (18)B (19)A (20)B (21)A 2.(1)23 (2)135 (3)1 (4)45° (5)> > (6)54 (7)21 (8)1723 (9)15°23 (10)60° (11)=45°3.(1)sinA (2)cosB (3)sin40° (4)cos47°5′ 4.(1)23(2)1 (3)1 (4)0 (5)4625.(1)cos73° (2)sin51° (3)cos48°48′ (4)sin27°33′ 6.(1)sinA =cosB =29295,cosA =sinB =29292;(2)sinA =cosB =85852,cosA =sinB =85859; (3)sinA=cosB =65657,cosA =sinB =656547.cosAEC =558.sin θ=54,cos θ=53。
湘教版数学九年级上册《4.1.1正弦和余弦》说课稿
湘教版数学九年级上册《4.1.1正弦和余弦》说课稿一. 教材分析湘教版数学九年级上册《4.1.1正弦和余弦》这一节主要介绍了正弦和余弦的概念及性质。
正弦和余弦是三角函数中的两个重要概念,它们在数学、物理、工程等领域有着广泛的应用。
本节内容为后续学习正切函数及其他三角函数奠定了基础。
教材通过丰富的例题和练习,使学生掌握正弦和余弦的定义、性质及其应用。
二. 学情分析九年级的学生已经学习了初中阶段的大部分数学知识,具有一定的逻辑思维能力和数学素养。
但是,对于正弦和余弦这两个概念,学生可能初次接触,理解起来有一定难度。
因此,在教学过程中,教师需要关注学生的认知水平,通过生动形象的比喻、直观的图形演示等方法,帮助学生理解和掌握正弦和余弦的概念。
三. 说教学目标1.知识与技能:使学生掌握正弦和余弦的概念、性质及其应用;2.过程与方法:通过观察、分析、归纳等方法,培养学生研究三角函数的能力;3.情感态度与价值观:激发学生学习三角函数的兴趣,培养学生的创新意识。
四. 说教学重难点1.教学重点:正弦和余弦的概念、性质及其应用;2.教学难点:正弦和余弦的定义及其内在联系。
五. 说教学方法与手段1.教学方法:采用问题驱动、启发式教学法,引导学生主动探究、积极思考;2.教学手段:利用多媒体课件、图形演示等辅助教学,提高教学效果。
六. 说教学过程1.导入新课:通过复习初中阶段学过的锐角三角函数,引出正弦和余弦的概念;2.自主学习:让学生阅读教材,了解正弦和余弦的定义及性质;3.合作交流:分组讨论,分析正弦和余弦的内在联系,总结性质;4.教师讲解:针对学生的疑问,进行讲解,重点阐述正弦和余弦的定义及其联系;5.巩固练习:布置练习题,让学生运用所学知识解决问题;6.课堂小结:总结本节课的主要内容,强调正弦和余弦的概念及性质;7.布置作业:布置课后作业,巩固所学知识。
七. 说板书设计板书设计如下:•正弦:直角三角形中,锐角的对边与斜边的比值;•余弦:直角三角形中,锐角的邻边与斜边的比值。
3.3.1正弦函数、余弦函数的图象与性质_课件-湘教版必修2PPT
预习测评
1.正弦曲线上最高点的纵坐标是
π A. 2
B.π
C.12
D.1
答案 D
2.y=1+sin x,x∈[0,2π)的图象与直线y=
交点
( ).
3 2
有______个
( ).
A.1
B.2
C.3
D.0
答案 B
3.在[0,2π]上,f(x)=cos x的零点有________个 ( ).
A.0
B.1
(3)找横坐标:把x轴上从0~2π(2π≈6.28)这一段分成12等份. (4)找纵坐标:将正弦线对应平移,即可找出相应的12个点. (5)连线:用平滑的曲线将12个点依次从左到右连接起来,即 得y=sin x,x∈[0,2π]的图象.
我们通过图象的平移作正弦函数y=sin x,x∈R的图 象.因为终边相同的角的三角函数值相等,所以函数y= sin x,x∈[2kπ,2(k+1)π],k∈Z且k≠0的图象与函数y= sin x,x∈[0,2π]的图象的形状完全一样,只是位置不同, 于是我们只要将函数y=sin x,x∈[0,2π]的图象向左、右 平移(每次平移2π个单位长度),就可以得到正弦函数y= sin x,x∈R的图象,正弦函数y=sin x,x∈R的图象叫做 正弦曲线. 下图是正弦曲线y=sin x,(x∈R)的图象:
典例剖析
题型一 “五点法”作图 【例1】作出下列函数0,2π];
(2)y=-1-cos x,x∈[0,2π].
解 (1)利用“五点法”作图
列表:
x
0
π 2
π
3π 2
2π
sin x 0 1 0 -1 0
1-sin x 1 0 1 2 1
描点作图,如图所示:
4.1 正弦和余弦 (课件)2024-2025湘教版 数学九年级上册
例1 在 Rt △ ABC 中,∠ C=90 °,如果AB=2, BC=1, 3
那么 sin B 的值是____2_____ .
解题秘方:利用勾股定理求出 AC 的长,紧扣正 弦的定义,明确∠ B 的对边和斜边, 直接求得 sin B 的值 .
课堂新授
(1)a=6,b=8; 解:如图4.1-1,在Rt△ABC中, ∵∠C=90°,a=6,b=8, ∴ c= a2+b2= 62+82=10. ∴ sin A=ac=160=35,cos A=bc=180=45.
课堂新授
(2)b=2,c= 10. 解:如图4.1-2,在Rt△ABC中, ∵∠C=90°,b=2,c= 10, ∴ a= 6.
∴ sin A=ac=
6= 10
515,cos A=bc=
2= 10
510.
4-1. [ 月考·晋江 ] 在△ ABC 中, ∠ C=90° ,a, b,
c 分别是 ∠ A,∠ B, ∠ C 所对的边,且 2b=a+c.
(1)求∠ B 的余弦值; 解:由题意得 b=12(a+c).∵a2+b2=c2, ∴a2+14(a+c)2=c2, (a+c)(a-c)+14(a+c)2=0, (a+c)(54a-34c)=0. ∵a+c≠0,∴a=35c,∴cosB=ac=35.
4.1 正弦和余弦
课堂新授
知识点 1 正弦
1. 正弦的定义:
文字语言
数学语言
图示
在直角三角形中,锐
角α的对边与斜边的 比叫作角α的正弦, 在Rt△ABC中, 记作sin α,即sin α= sin α=ac 角α的对边