江苏省无锡市江阴市要塞片2015_2016学年八年级数学上学期期中试卷(含解析)苏科版

合集下载

2015年江苏省无锡市江阴市暨阳中学八年级上学期期中数学试卷与解析答案

2015年江苏省无锡市江阴市暨阳中学八年级上学期期中数学试卷与解析答案

2014-2015学年江苏省无锡市江阴市暨阳中学八年级(上)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)如图,下列图案是几种名车的标志,其中是轴对称图形的图案共有()A.1个 B.2个 C.3个 D.4个2.(3分)下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是()A.3、4、5 B.6、8、10 C.、2、D.5、12、133.(3分)下列计算正确的是()A.B.C.D.4.(3分)若|x﹣2y|+=0,则(﹣xy)2的值为()A.64 B.﹣64 C.16 D.﹣165.(3分)如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为()A.BD=CE B.AD=AE C.DA=DE D.BE=CD6.(3分)已知∠AOB=30°,点P在∠AOB内部,点P1与点P关于OA对称,点P2与点P关于OB对称,则△P1OP2是()A.含30°角的直角三角形B.顶角是30°的等腰三角形C.等边三角形D.等腰直角三角形7.(3分)下列语句中正确的个数有()①角的对称轴是角的平分线②两个能全等的图形一定能关于某条直线对称③一个轴对称图形不一定只有一条对称轴④两个成轴对称的图形的对应点一定在对称轴的两侧.A.1 B.2 C.3 D.48.(3分)如图,点P、Q是边长为4cm的等边△ABC边AB、BC上的动点,点P 从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,连接AQ、CP交于点M,则在P、Q运动的过程中,下列结论错误的是()A.BP=CMB.△ABQ≌△CAPC.∠CMQ的度数不变,始终等于60°D.当第秒或第秒时,△PBQ为直角三角形二、填空题(本大题共9小题,每空2分,共20分)9.(4分)4的算术平方根是,﹣8的立方根是.10.(2分)一个正数的两个平方根分别是2m﹣1和4﹣3m,则m=.11.(2分)在△ABC中,若AB=AC,∠B=70°,则∠A=度.12.(2分)已知等腰三角形的两边长分别为2cm,4cm,则其周长为.13.(2分)若直角三角形斜边上的高和中线长分别是3cm和4cm,则它的面积是.14.(2分)如图,在△ABC中,∠C=90°,DE垂直平分AB,∠CBE:∠A=1:2,则∠AED=°.15.(2分)如图,将一根25cm长的细木棒放入长、宽、高分别为8cm、6cm和cm的长方体无盖盒子中,则细木棒露在盒外面的最短长度是cm.16.(2分)△ABC中,AB=15,AC=13,BC边上的高AD=12,则BC的长为.17.(2分)如图①是3×3的小方格构成的正方形ABCD,若将其中的两个小方格涂黑,使得涂黑后的整个ABCD图案(含阴影)是轴对称图形,且规定沿正方形ABCD对称轴翻折能重合的图案都视为同一种,比如图②中四幅图就视为同一种,则得到不同的图案共有种.三、解答题(本大题共9小题,共56分.解答时应写出文字说明、证明过程或演算步骤.)18.(6分)计算:(1)()2﹣+(2)(﹣2)3×+(﹣1)2013﹣.19.(6分)求下列各式中的x的值:(1)2x2﹣1=3(2)(x﹣1)3=1000.20.(5分)已知:如图,点E、C、D、A在同一条直线上,AB∥DF,ED=AB,∠E=∠CPD.求证:△ABC≌△DEF.21.(6分)如图,在长度为1个单位长度的小正方形组成的网格中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△AB′C′;(2)四边形ACBB′的面积为;(3)在直线l上找一点P,使PB+PC的长最短,则这个最短长度为.22.(5分)已知直线l及其两侧两点A、B,如图.(1)在直线l上求一点P,使PA=PB;(2)在直线l上求一点Q,使l平分∠AQB.(以上两小题保留作图痕迹,标出必要的字母,不要求写作法)23.(6分)如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD,(1)求证:△BCE≌△DCF;(2)若AB=21,AD=9,AC=17,求CF的长.24.(6分)如图,居民楼与马路是平行的,在一楼的点A处测得它到马路的距离为9m,已知在距离载重汽车41m处就可受到噪声影响.(1)试求在马路上以4m/s速度行驶的载重汽车,能给一楼A处的居民带来多长时间的噪音影响?(2)若时间超过25秒,则此路禁止该车通行,你认为载重汽车可以在这条路上通行吗?25.(7分)如图,△ABC中,∠C=Rt∠,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?26.(9分)已知△ABC中,∠C=90°,AB=10,AC=6,点O是AB的中点,将一块直角三角板的直角顶点与点O重合并将三角板绕点O旋转,图中的M、N分别为直角三角板的直角边与边AC、BC的交点.(1)如图①,当点M与点A重合时,求BN的长.(2)当三角板旋转到如图②所示的位置时,即点M在AC上(不与A、C重合),①猜想图②中AM2、CM2、CN2、BN2之间满足的数量关系式,并说明理由.②若在三角板旋转的过程中满足CM=CN,请你直接写出此时BN的长.2014-2015学年江苏省无锡市江阴市暨阳中学八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)如图,下列图案是几种名车的标志,其中是轴对称图形的图案共有()A.1个 B.2个 C.3个 D.4个【解答】解:根据轴对称图形的概念可得轴对称图形有第二、三、四个图形是轴对称图形,故选:C.2.(3分)下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是()A.3、4、5 B.6、8、10 C.、2、D.5、12、13【解答】解:A、32+42=52,故是直角三角形,故A选项不符合题意;B、62+82=102,故是直角三角形,故B选项不符合题意;C、()2+22≠()2,故不是直角三角形,故C选项符合题意;D、52+122=132,故是直角三角形,故D选项不符合题意.故选:C.3.(3分)下列计算正确的是()A.B.C.D.【解答】解:A、结果是,故本选项错误;B、结果是,故本选项正确;C、结果是,故本选项错误;D、没有意义,故本选项错误;故选:B.4.(3分)若|x﹣2y|+=0,则(﹣xy)2的值为()A.64 B.﹣64 C.16 D.﹣16【解答】解:由题意,得:,解得;∴(﹣xy)2=(﹣4×2)2=64.故选:A.5.(3分)如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为()A.BD=CE B.AD=AE C.DA=DE D.BE=CD【解答】解:A、添加BD=CE,可以利用“边角边”证明△ABD和△ACE全等,再根据全等三角形对应角相等得到∠DAB=∠EAC,故本选项错误;B、添加AD=AE,根据等边对等角可得∠ADE=∠AED,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠DAB=∠EAC,故本选项错误;C、添加DA=DE无法求出∠DAB=∠EAC,故本选项正确;D、添加BE=CD可以利用“边角边”证明△ABE和△ACD全等,再根据全等三角形对应角相等得到∠DAB=∠EAC,故本选项错误.故选:C.6.(3分)已知∠AOB=30°,点P在∠AOB内部,点P1与点P关于OA对称,点P2与点P关于OB对称,则△P1OP2是()A.含30°角的直角三角形B.顶角是30°的等腰三角形C.等边三角形D.等腰直角三角形【解答】解:∵P为∠AOB内部一点,点P关于OA、OB的对称点分别为P1、P2,∴OP=OP1=OP2且∠P1OP2=2∠AOB=60°,∴故△P1OP2是等边三角形.故选:C.7.(3分)下列语句中正确的个数有()①角的对称轴是角的平分线②两个能全等的图形一定能关于某条直线对称③一个轴对称图形不一定只有一条对称轴④两个成轴对称的图形的对应点一定在对称轴的两侧.A.1 B.2 C.3 D.4【解答】解:①应为角的对称轴是角的平分线所在的直线,故本小题错误;②应为两个能全等的图形不一定能关于某条直线对称,故本小题错误;③一个轴对称图形不一定只有一条对称轴,正确;④应为两个成轴对称的图形的对应点一定在对称轴的两侧或在对称轴上;综上所述,正确的只有③共1个.故选:A.8.(3分)如图,点P、Q是边长为4cm的等边△ABC边AB、BC上的动点,点P 从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,连接AQ、CP交于点M,则在P、Q运动的过程中,下列结论错误的是()B.△ABQ≌△CAPC.∠CMQ的度数不变,始终等于60°D.当第秒或第秒时,△PBQ为直角三角形【解答】解:A、在等边△ABC中,AB=BC.∵点P、Q的速度都为1cm/s,∴AP=BQ,∴BP=CQ.只有当CM=CQ时,BP=CM.故A错误;B、∵△ABC是等边三角形∴∠ABQ=∠CAP,AB=CA,又∵点P、Q运动速度相同,∴AP=BQ,在△ABQ与△CAP中,∵,∴△ABQ≌△CAP(SAS).故B正确;C、点P、Q在运动的过程中,∠QMC不变.理由:∵△ABQ≌△CAP,∴∠BAQ=∠ACP,∵∠QMC=∠ACP+∠MAC,∴∠CMQ=∠BAQ+∠MAC=∠BAC=60°.故C正确;D、设时间为t秒,则AP=BQ=tcm,PB=(4﹣t)cm,当∠PQB=90°时,∴PB=2BQ,即4﹣t=2t,t=,当∠BPQ=90°时,∵∠B=60°,∴BQ=2BP,得t=2(4﹣t),t=,∴当第秒或第秒时,△PBQ为直角三角形.故D正确.由于该题选择错误的,故选:A.二、填空题(本大题共9小题,每空2分,共20分)9.(4分)4的算术平方根是2,﹣8的立方根是﹣2.【解答】解:4的算术平方根是=2,﹣8的立方根是=﹣2,故答案为:2,﹣3.10.(2分)一个正数的两个平方根分别是2m﹣1和4﹣3m,则m=3.【解答】解:根据题意得:2m﹣1+4﹣3m=0,解得:m=3,故答案为:311.(2分)在△ABC中,若AB=AC,∠B=70°,则∠A=40度.【解答】解:∵AB=AC∴∠B=∠C=70°∵∠A+∠B+∠C=180°∴∠A=180°﹣∠B﹣∠C=40°.故填40.12.(2分)已知等腰三角形的两边长分别为2cm,4cm,则其周长为10.【解答】解:等腰三角形的两边长分别为2cm和4cm,当腰长是4cm时,则三角形的三边是2cm,2cm,4cm,2cm+2cm=4cm不满足三角形的三边关系;当腰长是4cm时,三角形的三边是4cm,4cm,2cm,三角形的周长是10cm.故答案为:10.13.(2分)若直角三角形斜边上的高和中线长分别是3cm和4cm,则它的面积是12cm2.【解答】解:∵在Rt△ACB中,∠ACB=90°,CE是△ACB中线,CE=4cm,∴AB=2CE=8cm,∴△ACB的面积是×AB×CD=×8cm×3cm=12cm2,故答案为:12cm2.14.(2分)如图,在△ABC中,∠C=90°,DE垂直平分AB,∠CBE:∠A=1:2,则∠AED=54°.【解答】解:∵DE垂直平分AB,∴AE=BE,∴∠A=∠ABE,∵在△ABC中,∠C=90°,∠CBE:∠A=1:2,设∠A=2x°,则∠ABC=∠ABE+∠CBE=2x+x=3x°,∴2x+3x=90,解得:x=18,∴∠A=36°,∴∠AED=90°﹣∠A=54°.故答案为:54.15.(2分)如图,将一根25cm长的细木棒放入长、宽、高分别为8cm、6cm和cm的长方体无盖盒子中,则细木棒露在盒外面的最短长度是5cm.【解答】解:由题意知:盒子底面对角长为=10cm,盒子的对角线长:=20cm,细木棒长25cm,故细木棒露在盒外面的最短长度是:25﹣20=5cm.故答案为:5.16.(2分)△ABC中,AB=15,AC=13,BC边上的高AD=12,则BC的长为14或4.【解答】解:(1)如图,锐角△ABC中,AB=15,AC=13,BC边上高AD=12,在Rt△ABD中AB=15,AD=12,由勾股定理得:BD2=AB2﹣AD2=152﹣122=81,∴BD=9,在Rt△ACD中AC=13,AD=12,由勾股定理得CD2=AC2﹣AD2=132﹣122=25,∴CD=5,∴BC的长为BD+DC=9+5=14;(2)钝角△ABC中,AB=15,AC=13,BC边上高AD=12,在Rt△ABD中AB=15,AD=12,由勾股定理得:BD2=AB2﹣AD2=152﹣122=81,∴BD=9,在Rt△ACD中AC=13,AD=12,由勾股定理得:CD2=AC2﹣AD2=132﹣122=25,∴CD=5,∴BC的长为DC﹣BD=9﹣5=4.故答案为14或4.17.(2分)如图①是3×3的小方格构成的正方形ABCD,若将其中的两个小方格涂黑,使得涂黑后的整个ABCD图案(含阴影)是轴对称图形,且规定沿正方形ABCD对称轴翻折能重合的图案都视为同一种,比如图②中四幅图就视为同一种,则得到不同的图案共有6种.【解答】解:得到的不同图案有:,共6种.故答案为:6.三、解答题(本大题共9小题,共56分.解答时应写出文字说明、证明过程或演算步骤.)18.(6分)计算:(1)()2﹣+(2)(﹣2)3×+(﹣1)2013﹣.【解答】解:(1)原式=3﹣4﹣2=﹣3;(2)原式=﹣8×﹣1﹣3=﹣44﹣1﹣3=﹣48.19.(6分)求下列各式中的x的值:(1)2x2﹣1=3(2)(x﹣1)3=1000.【解答】解:(1)移项、合并同类项,得x2=2.开方,得x=±(2)开方,得x﹣1=10.移项、合并同类项,得x=11.20.(5分)已知:如图,点E、C、D、A在同一条直线上,AB∥DF,ED=AB,∠E=∠CPD.求证:△ABC≌△DEF.【解答】证明:∵AB∥DF,∴∠B=∠CPD,∠A=∠FDE,∵∠E=∠CPD.∴∠E=∠B,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA).21.(6分)如图,在长度为1个单位长度的小正方形组成的网格中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△AB′C′;(2)四边形ACBB′的面积为7;(3)在直线l上找一点P,使PB+PC的长最短,则这个最短长度为.【解答】解:(1)△AB′C′如图所示;(2)四边形ACBB′的面积=3×4﹣×2×2﹣×1×2﹣×1×4,=12﹣2﹣1﹣2,=12﹣5,=7;故答案为:7;(3)点P如图所示,PB+PC的最短长度==.故答案为:.22.(5分)已知直线l及其两侧两点A、B,如图.(1)在直线l上求一点P,使PA=PB;(2)在直线l上求一点Q,使l平分∠AQB.(以上两小题保留作图痕迹,标出必要的字母,不要求写作法)【解答】解:23.(6分)如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD,(1)求证:△BCE≌△DCF;(2)若AB=21,AD=9,AC=17,求CF的长.【解答】(1)证明:∵AC平分∠BAD,CE⊥AB,CF⊥AD,∴CE=CF,在Rt△BCE和Rt△DCF中,,∴Rt△BCE≌Rt△DCF(HL);(2)解:∵△BCE≌△DCF,∴BE=DF,在△ACE和△ACF中,,∴△ACE≌△ACF(HL),∴AE=AF,∴AF﹣AD=AB﹣AE,∴2AF=AB+AD,∵AB=21,AD=9,∴AF=15,在Rt△ACF中,CF===8.24.(6分)如图,居民楼与马路是平行的,在一楼的点A处测得它到马路的距离为9m,已知在距离载重汽车41m处就可受到噪声影响.(1)试求在马路上以4m/s速度行驶的载重汽车,能给一楼A处的居民带来多长时间的噪音影响?(2)若时间超过25秒,则此路禁止该车通行,你认为载重汽车可以在这条路上通行吗?【解答】解:(1)∵由题意得AC=9,AB=AD=41,AC⊥BD,∴Rt△ACB中,BC=,Rt△ACD中,DC=,∴BD=80,∴80÷4=20(s),∴受影响时间为20s;(2)∵20<25,∴可以通行.25.(7分)如图,△ABC中,∠C=Rt∠,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?【解答】解:(1)如图1,由∠C=90°,AB=5cm,BC=3cm,∴AC=4,动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,∴出发2秒后,则CP=2,∵∠C=90°,∴PB==,∴△ABP的周长为:AP+PB+AB=2+5+;(2)①如图2,若P在边AC上时,BC=CP=3cm,此时用的时间为3s,△BCP为等腰三角形;②若P在AB边上时,有三种情况:i)如图3,若使BP=CB=3cm,此时AP=2cm,P运动的路程为2+4=6cm,所以用的时间为6s,△BCP为等腰三角形;ii)如图4,若CP=BC=3cm,过C作斜边AB的高,根据面积法求得高为2.4cm,作CD⊥AB于点D,在Rt△PCD中,PD=1.8,所以BP=2PD=3.6cm,所以P运动的路程为9﹣3.6=5.4cm,则用的时间为5.4s,△BCP为等腰三角形;ⅲ)如图5,若BP=CP,此时P应该为斜边AB的中点,P运动的路程为4+2.5=6.5cm 则所用的时间为6.5s,△BCP为等腰三角形;综上所述,当t为3s、5.4s、6s、6.5s时,△BCP为等腰三角形.26.(9分)已知△ABC中,∠C=90°,AB=10,AC=6,点O是AB的中点,将一块直角三角板的直角顶点与点O重合并将三角板绕点O旋转,图中的M、N分别为直角三角板的直角边与边AC、BC的交点.(1)如图①,当点M与点A重合时,求BN的长.(2)当三角板旋转到如图②所示的位置时,即点M在AC上(不与A、C重合),①猜想图②中AM2、CM2、CN2、BN2之间满足的数量关系式,并说明理由.②若在三角板旋转的过程中满足CM=CN,请你直接写出此时BN的长.【解答】解:(1)连接AN,如图①,∵∠C=90°,AB=10,AC=6,∴BC==8,在△OAN和△OBN中,,∴△OAN≌△OBN(SAS),∴NB=AN,设BN=x,则CN=8﹣x,∵AC2+CN2=AN2,∴═;(2)①AM2+BN2=CN2+CM2,证明:延长NO到E,使EO=NO,连结AE、EM、MN,在△EOA和△NOB中,,∴△EOA≌△NOB(SAS),∴AE=BN,∠EAO=∠B,∴AE∥BC,∴∠EAC=90°由垂直平分线性质可得:MN=EM,∵AE2+AM2=EM2,CN2+CM2=MN2,∴AM2+BN2=CN2+CM2.②∵①中已经证明:AM2+BN2=CN2+CM2,设CM=CN=x,则BN=8﹣x,AM=6﹣x,代入上式得:x=,∴.赠送初中数学几何模型【模型二】半角型:图形特征:AB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DF45°DEa +b-a45°A1.2在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且EF =BE +DF ,求证:∠FAE =45°E-aaBE挖掘图形特征:x-a a-a运用举例:1.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.DE2.如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点3.如图,梯形ABCD 中,AD ∥BC ,∠C =90°,BC =CD =2AD =4,E 为线段CD 上一点,∠ABE =45°.(1)求线段AB 的长;(2)动点P 从B 出发,沿射线..BE 运动,速度为1单位/秒,设运动时间为t ,则t 为何值时,△ABP 为等腰三角形; (3)求AE -CE 的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.F。

江苏省无锡市锡北片2015-2016学年八年级上学期期中考试数学试题解析(解析版)

江苏省无锡市锡北片2015-2016学年八年级上学期期中考试数学试题解析(解析版)

一、选择题 (本大题共10小题,每小题3分,共30分.)1.下列标志中,可以看作是轴对称图形的是()A.B.C.D.【答案】D【解析】试题分析:将图形沿着某条直线对称,如果直线两边的图形能够完全重叠,则图象就是轴对称图形.根据定义可得D是轴对称图形.考点:轴对称图形2.已知等腰三角形的两条边长分别是3和7,则它的周长是()A.17 B.15 C.13 D.13或17【答案】A【解析】试题分析:当3为腰时,则3+3=6<7,不能构成三角形,则等腰三角形的腰长为7,底为3,则周长为:7+7+3=17. 考点:等腰三角形的性质3.下列能判定△ABC为等腰三角形的是()A.∠A=40º、∠B=50ºB.∠A=40º、∠B=70ºC.AB=AC=3,BC=6 D.AB=3、BC=8,周长为16【答案】B【解析】试题分析:A、根据题意可得:∠C=90°,则为直角三角形;B、根据题意可得:∠C=70°,则三角形为等腰三角形;C、3+3=6,无法构成三角形;D、根据题意可得:AC=5,则3+5=8,无法构成三角形.考点:等腰三角形的判定4.下列四组线段中,可以构成直角三角形的是()A.4,5,6B.3,4,5C.2,3,4D.1,2,3【答案】B【解析】试题分析:根据勾股定理的逆定理进行判定,A、C不是直角三角形;D不能构成三角形,则C为直角三角形.考点:直角三角形的判定5.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定...成立的是()A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC【答案】C【解析】试题分析:根据AC垂直平分BD可得:△ABD为等腰三角形,即AB=AD,AC平分∠BAD,△BEC≌△DEC. 考点:等腰三角形的性质6.如图,已知AE=CF,∠AFD=∠CEB,那么添加一个条件后,仍无法判定△ADF≌△CBE的是()A.∠A=∠C B.AD=CB C.BE=DF D.AD∥BC【答案】B【解析】试题分析:根据AE=CF可得:AF=CE,A选项可以利用ASA来进行判定;B选项无法判定;C选项可以利用SAS来进行判定;D可以利用ASA来进行判定.考点:三角形全等判定7.如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为()【答案】C【解析】试题分析:根据△ADC 的周长以及AC 的长度可得:AD+CD=17-5=12cm ,根据折叠图形的性质可得:AD=BD ,则BC=BD+CD=AD+CD=12cm.考点:折叠图形的性质8.如图所示的正方形网格中,网格线的交点称为格点.已知A 、B 是两格点,如果C 也是图中的格点,且使得ABC ∆为等腰三角形.....,则点C 的个数是( ) A .5 B .6 C .7 D .8【答案】D【解析】试题分析:本题需要分两种情况分别进行讨论,当AB 为底和AB 为腰两种情况.考点:等腰三角形的判定.9.如图所示的一块地,90ADC ∠=︒,12AD m =,9CD m =,39AB m =,36BC m =,求这块地的面积S 为( )m 2.A. 54B. 108C. 216D.270【答案】C【解析】试题分析:连接AC ,根据CD 和AD 的长度得出AC=15m ,根据AC ,BC 和AB 的长度可得△ABC 为直角三角形,则S=15×36÷2-9×12÷2=270-54=216.考点:直角三角形的性质10.如图,已知△ABC 中,AB=AC=2,∠BAC =90º,直角∠EPF 的顶点P 是BC 的中点,两边PE 、PF 分别交AB 、AC 于点E 、F ,给出以下四个结论:①图中只有2对全等三角形,②AE=CF; ③△EPF 是等腰直角三角形;④ S 四边形AEPF=12S △ABC ;⑤EF 的最小值为2.上述结论始终正确的有( ) A .2 B .3 C .4 D .5【答案】C【解析】试题分析:根据题意可得:△AEP ≌△CFP ,△BEP ≌△AFP ,△ABP ≌△ACP ,则①错误;根据三角形全等可得AE=CF ,△EPF 为等腰直角三角形,四边形AEPF 的面积等于△ABC 面积的一半,EF. 考点:等腰直角三角形的性质.二、填空题(本大题共10小题,每小题2分,共20分.)11.如图,已知BC=EC ,∠BCE=∠ACD ,要使△ABC ≌△DEC ,则应添加的一个条件为 (答案不唯一,只需填一个)【答案】AC=DC 或∠B=∠E 或∠A=∠D【解析】试题分析:本题根据∠BCE=∠CAD 可得∠BCA=∠ECD ,添加AC=DC 可以利用SAS 来进行判定;添加∠B=∠E 可以利用ASA 来进行判定;添加∠A=∠D 可以利用AAS 来进行判定.考点:三角形全等的判定12.如图,等腰△ABC 中,AB=AC ,∠DBC=15°,AB 的垂直平分线MN 交AC 于点D ,则∠A 的度数是 __°.【答案】50°【解析】试题分析:设∠A=x °,根据MN 为中垂线可得:∠ABD=∠A=x °,则∠ABC=(x+15)°,根据AB=AC 可得:∠C=∠ABC=(x+15)°,则根据△ABC 的内角和定理可得:x+x+15+x+15=180°,解得:x=50°.考点:等腰三角形的性质、中垂线的性质第10题13.在直角△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若CD=4,则点D到斜边AB的距离为 . 【答案】4【解析】试题分析:根据角平分线上的点到角两边的距离相等可得:点D到斜边AB的距离等于CD的长度.考点:角平分线的性质14.如图,以直角三角形一边向外作正方形,其中两个正方形的面积为100和64,则正方形A的面积为 .【答案】36【解析】试题分析:根据勾股定理可得:A+64=100,则A=36.考点:勾股定理中,三边长分别用a、b、c表示,已知a=3、b=5,则c2=_____________.15.在Rt ABC【答案】16或34【解析】试题分析:当a、b为直角边时,则2c=9+25=34,当b为斜边时,则2c=25-9=16.考点:直角三角形16.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AM的长为1.2km,则M,C两点间的距离为_______km.【答案】1.2【解析】试题分析:直角三角形斜边上的中线等于斜边的一半,根据这个定理可得:MC=AM=BM=1.2km.考点:直角三角形的性质17.已知┃x -12┃+┃z -13┃+y 2-10y +25=0,则以x 、y 、z 为三边的三角形是 三角形。

2015-2016学年江苏省无锡市滨湖区八年级上学期期中考试数学试卷(带解析)

2015-2016学年江苏省无锡市滨湖区八年级上学期期中考试数学试卷(带解析)

绝密★启用前2015-2016学年江苏省无锡市滨湖区八年级上学期期中考试数学试卷(带解析)试卷副标题考试范围:xxx ;考试时间:127分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(题型注释)1、在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A .B .C .D .二、选择题(题型注释)2、如图,在△ABC 中,AC =BC ,∠ACB =90°,AE 平分∠BAC 交BC 于E ,BD ⊥AE 于D ,DF ⊥AC 交AC 的延长线于F ,连接CD ,给出三个结论:※订※※线※※内※※答※…………订……①AE=2BD;②AB-AC=CE;③CE=2FC;其中正确的结论有().A.0个 B.1个 C.2个 D.3个3、如图,已知△ABC(AB<BC<AC),用直尺和圆规在AC上确定一点P,使PB+PC=AC,则下列选项中,一定符合要求的作图痕迹是().4、一个钝角三角形的两边长为5、12,则第三边可以为().A.11 B.13 C.15 D.175、如图,在数轴上表示1、的点分别为A、B,点B关于点A的对称点为C,则C点所表示的().A.2-B.-2 C.1-D.-16、如图,BC的垂直平分线分别交AB、BC于点D和点E,连接CD,AC=DC,∠B=25°,则∠ACD的度数是().A.50°B.60°C.80°D.100°7、在下列各组条件中不能说明△ABC ≌△DEF的是().A.AB=DE,∠B=∠E,∠C=∠FB.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠ED.AB=DE,BC=EF,AC=DF8、等腰三角形的两边长分别为2cm和7cm,则其周长为().A.11cm B.13cm C.16cm D.11cm或16cm9、下列说法正确的是().A.(-3)2的平方根是3B.=±4C.1的平方根是1D.8的立方根是210、下列实数:2、、、0.1010010001、、π,其中无理数的个数为().A.1 B.2 C.3 D.4第II卷(非选择题)三、填空题(题型注释)11、如图,△ABC中,∠ACB=90°,以AC为底边在△ABC外作等腰△ACD,过点D 作∠ADC的平分线分别交AB、AC于点E、F.若AC=12cm,BC=5cm,点P是直线DE上的一个动点,则△PBC的周长的最小值是_________cm.12、如图,△ABC中,CD⊥AB于D,E是AC的中点,若AD=6,CD=8,则DE的长等于.13、若等腰三角形的一个外角为80°,则它的顶角是为 °.14、若一个正数的两个不同的平方根为2m-5与m+2,则这个正数为.15、式子有意义,则x的取值范围是.16、9的平方根是;的立方根是-2.17、如图,已知AB ∥CF ,E 为DF 的中点,若AB =7 cm ,BD =3 cm ,则CF = cm .四、计算题(题型注释)18、计算题. (1)计算:-+20150; (2)+|1-|-()-2.五、解答题(题型注释)19、已知:如图1,射线MN ⊥AB ,AM =1cm ,MB =4cm .点C 从M 出发以2cm/s 的速度沿射线MN 运动,设点 C 的运动时间为t (s )(1)当△ABC 为等腰三角形时,求t 的值; (2)当△ABC 为直角三角形时,求t 的值;(3)当t 满足条件:__________时,△ABC 为钝角三角形;当_________时,△ABC 为锐角三角形.20、爱动脑筋的小明在学习了全等三角形和等腰三角形有关知识后作了如下探索: (1)已知,如图,△ABC 中,∠BAC 是锐角,AB =AC ,高AD 、BG 所在的直线相交于点H ,且AG =BG ,则AH 和BC 的关系是:_____________________;(2)若把(1)中的“∠BAC 是锐角”改为“∠BAC 是钝角”(如图2),其他条件都不变, AH 和BC 的关系是否仍然成立,若成立,请在图2中用三角板和量角器画出完整的图形并证明;若不成立,请说明理由.21、如图,将长方形纸片ABCD 沿对角线BD 折叠得到△BDE ,DE 交AB 于点G .(1)求证:DG =BG ;(2)若AD =4,AB =8,求△BDG 的面积.22、如图,C 为线段AB 的中点,CD ∥BE ,CD =BE .求证:AD ∥CE .23、已知x -2的算术平方根是3,2x -y +12的立方根是1,求x +y 的值.24、在4×4的方格中有三个同样大小的正方形如图摆放,请你在图1—图3中的空白处添加一个正方形方格(涂黑),使它与其余三个正方形组成的新图形是一个轴对称图形.25、求出下列x 的值.(1)4x 2-9=0 ; (2)(x+1)3=-27.26、如图,四边形ABCD 中,AD ∥BC ,∠B =90°,AB =AD =4cm ,BC =7cm ,现要在形如四边形ABCD 的纸片上剪下一个腰长为3cm 的等腰三角形(要求:等腰三角形的一个顶点与四边形ABCD 的一个顶点重合,其余两个顶点在四边形ABCD 的边上),则剪下的等腰三角形的底边的长度的值有 种可能.27、【问题背景】如图1,在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°,且∠EAF =60°,探究图中线段BE ,EF ,FD 之间的数量关系.小明同学的方法是将△ABE 绕点A 逆时针旋转120°到△ADG 的位置,然后再证明△AFE ≌△AFG ,从而得出结论:___________________.【探索延伸】如图2,若在四边形ABCD 中,AB =AD ,∠B +∠D =180°,E ,F 分别是BC ,CD 上的点,且∠EAF =∠BAD ,上述结论是否仍然成立,并说明理由.【结论应用】如图3,在某次军事演习中,舰艇甲在指挥中心(O 处)北偏东60°的A 处,舰艇乙在指挥中心南偏西20°的B 处,并且两舰艇到指挥中心的距离相等.接到行动指令后,舰艇甲向正南方向以40海里/小时的速度前进,舰艇乙沿南偏东40°的方向以50海里/小时的速度前进,2小时后,指挥中心观测到甲、乙两舰艇分别到达E ,F 处,且两舰艇与指挥中心O 之间夹角∠EOF =70°,试求此时两舰艇之间的距离.参考答案1、A.2、D.3、C.4、C.5、A.6、C.7、B.8、C.9、D.10、B.11、18.12、5.13、100.14、9.15、x ≥-2.16、3;-8.17、4.18、(1)7;(2).19、(1)t=或t=;(2)t=1;(3)0<t<1;t>120、(1)AH平分BC且AH=BC ;(2)成立,理由参见解析.21、(1)参见解析;(2)10.22、参见解析.23、44.24、参见解析.25、(1)x=±;(2)x=-4.26、7.27、问题背景:EF=BE+FD;探索延伸:EF=BE+FD仍然成立.结论应用:180海里.【解析】1、试题分析:根据轴对称图形的概念求解.A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.考点:轴对称图形.2、试题分析:作∠ACN=∠BCD,交AD于N,因为∠CAN=22.5°,∠CBD=90°-22.5°-45°=22.5°,∠CAN=∠CBD,所以△ACN≌△BCD(ASA),所以CN=CD,AN=BD,又因为∠NCD=∠ACE=90°,所以∠CNE=45°,∠ACN=45°-22.5°=22.5°,所以AN=CN,又算得∠NEC=∠NCE=67.5°,所以NC=NE,所以AE=2CN=2AN,,所以AE=2BD,故①正确;作EQ⊥AB于Q,因为AE平分∠BAC,所以CE=EQ,又可得到AC=AQ,因为∠EBQ=45°,所以EQ=BQ,所以AB-AC=AB-AQ=BQ=EQ=CE,即AB-AC=CE;故②正确;作DH⊥AB于H,可证△DCF≌△DBH,所以CF=BH,又可证AH=AF,于是有AC+CF=AB-BH,即AC+CF=AB-CF,移项:2CF=AB-AC,即2CF=AB-AQ=BQ=EQ=CE,即CE=2FC,故③正确;所以本题正确的结论有3个,故选D.考点:1.角平分线性质;2.三角形全等的判定与性质;3.等腰三角形性质.3、试题分析:A选项由作图痕迹可知AP(或AB)+PC=AC,故A错误;B选项由作图痕迹可知AP+PC(或BC)=AC,故B错误;C选项连接PB,由线段垂直平分线性质可得:PB=AP,所以满足PB+PC=AC,故C正确;D选项由作图痕迹可知AP +PC(或PB)=AC,故D错误;所以本题选C.考点:线段垂直平分线性质的应用.4、试题分析:根据三角形两边之和要大于第三边,所以D选项排除,若第三边为B选项的13,则此三角形是直角三角形,所以B选项排除,若为钝角三角形,则两短边平方和要少于钝角所对边的平方,所以A选项排除.C选项符合,故选C.考点:三角形三边关系.5、试题分析:因为A点表示1,B点表示,所以AB=OB-OA=-1,因为点B关于点A的对称点为C,所以CA=AB=-1,所以OC=OA-AC=1-(-1)=2-,故选A.考点:1.利用数轴计算;2.轴对称知识.6、试题分析:因为DE垂直平分BC,所以DC=DB,所以∠B=∠DCB=25°,所以∠CDA=∠B+∠DCB=50°,因为AC=DC,所以∠CDA=∠A=50°,所以∠ACD=180°-50°-50°=80°.故选C.考点:1.线段垂直平分线的性质;2.三角形内角和定理.7、试题分析:一般三角形全等的判定方法有SSS,SAS,ASA,AAS.A选项符合两角及其中一角的对边相等(AAS),两个三角形全等,故A正确;B选项给出两边及其中一边的对角相等,不一定全等,故B错误;C选项给出两角及其夹边相等(ASA),两个三角形全等,故C正确;D选项给出三边对应相等(SSS),两个三角形全等,故D 正确.所以不能说明△ABC ≌△DEF的是B选项,本题选B.考点:全等三角形的判定.8、试题分析:由题意可知,这三边长有2,2,7和2,7,7,两种情况,但2,2,7,不符合三角形两边之和大于第三边,应舍去,故三边为2,7,7,周长为16.故选C.考点:三角形三边关系.9、试题分析:A选项(-3)2的平方根应是±3,故A错误;B选项=4,故B错误;C选项1的平方根是±1,故C错误;D正确,故选D.考点:1.平方根的意义;2.立方根的意义.10、试题分析:因为无限不循环小数是无理数,所以给出的数中,无理数有,π,有两个,故选B.考点:无理数概念.11、试题分析:由题意可知DE平分等腰△ACD中∠ADC,所以直线DE是AC边的垂直平分线,连接CE,则CE=AE,使△PBC的周长的最小值P点,与E点重合,由勾股定理算出AB=13,此时△PBC的周长等于CE+EB+BC=AE+EB+BC=AB+BC=13+5=18.故△PBC的周长的最小值是18cm.考点:利用线段垂直平分线性质和等腰三角形性质求周长最小值.12、试题分析:因为CD⊥AB,AD=6,CD=8,由勾股定理计算出AC=10,又因为E是直角三角形ADC中斜边AC的中点,所以DE=AC=5.故DE的长等于5.考点:1.勾股定理;2.直角三角形性质.13、试题分析:若这个外角是等腰三角形底角的外角,则相邻内角是100度,三角形内角和超过了180度,故不合题意舍去,若这个外角是等腰三角形顶角的外角,则相邻的顶角是100度,符合三角形内角和定理,所以它的顶角是100度.考点:1.三角形内角和定理;2.三角形外角性质.14、试题分析:一个正数的平方根有两个,这两个数互为相反数,所以(2m-5)+(m+2)=0,解得:m=1,所以这个正数的两个不同的平方根为±3,所以这个正数是9.考点:平方根的意义.15、试题分析:由二次根式性质得:x+2≥0,所以x ≥-2.考点:二次根式性质.16、试题分析:一个正数的平方根有两个,这两个数互为相反数,所以9的平方根是3,因为-2的立方是-8,所以-8的立方根是-2.考点:平方根,立方根的意义.17、试题分析:因为E为DF的中点,所以DE=FE,因为AB∥CF,所以∠A=∠ECF,又有∠AED=∠CEF,所以△AED≌△CEF(AAS),所以AD=CF,因为AD=AB-DB=7-3=4,所以CF=4cm.考点:全等三角形的判定与性质.18、试题分析:(1)先算出16的算术平方根,-8的立方根,及2015的0指数幂,然后按照顺序计算即可;(2)先算出25的算术平方根,正确脱掉绝对值符号,计算二分之一的负整数指数幂,然后按照顺序计算即可.试题解析:(1)原式=4-(-2)+1=4+2+1=7;(2)原式=5+(-1)-4=5+-1-4=.考点:1.平方根与立方根的计算;2.0指数幂与负整数指数幂的计算;3.绝对值意义.19、试题分析:(1)当△ABC为等腰三角形时,分三种情况讨论,t值可以用勾股定理建立等量关系求出;(2)当△ABC为直角三角形时,由题意可得,有一种情况:∠ACB =90°,利用勾股定理求出t值;(3)利用勾股定理可证出锐角三角形三边关系是两边平方和大于第三边平方,钝角三角形三边关系是两短边平方和小于钝角所对边的平方.建立不等关系式,求出t的取值范围.试题解析:由题意可得:CM=2t,(t>0).(1)当△ABC为等腰三角形时,分三种情况讨论,①当CB=AB时,在Rt△MCB中,由勾股定理得:BC2=42+(2t)2,所以42+(2t)2 = 25,解得:t=;②当AB=AC时,12+(2t)2 = 25,解得:t=,③当AC=BC时,C在AB的垂直平分线上,与条件不合,故这种情况不存在;综上所述t=或t=时△ABC为等腰三角形.(2)当△ABC为直角三角形时,由题意可得,有一种情况:∠ACB=90°,∴AC2+BC2=AB2 ,CM=2t,在Rt△MCB中,由勾股定理得:BC2=(2t)2+42,在Rt△MCA中,由勾股定理得:AC2=(2t)2+12 ,∴4t2+42+4t2+12=52 ,解得:t=1,所以t的值为1时△ABC为直角三角形.(3)利用勾股定理可证出钝角三角形三边关系是两短边平方和小于钝角所对边的平方.建立不等关系式,(2t)2+12 +(2t)2+42 <25 ,解得:t2<1,所以0<t<1时,△ABC为钝角三角形;而锐角三角形三边关系是两边平方和大于第三边平方,所以(2t)2+12 +(2t)2+42 >25 ,解得:t2>1,所以t>1时,△ABC为锐角三角形;考点:1.特殊三角形的判定;2.动点问题;3.勾股定理的运用.20、试题分析:(1)通过ASA证△AGH≌△BGC,得到AH=BC,又因为AB=AC,AD⊥BC,所以AD平分BC,即AH平分BC,于是得出结论;(2)作BG垂直CA交CA的延长线于G,作AD垂直BC于D,DA的延长线与BG的延长线交于H,仍可通过AAS证明△AGH≌△BGC,得到AH=BC,又因为AB=AC,AD⊥BC,所以AD平分BC,即AH平分BC,于是得出结论;试题解析:(1)由题意可知∠AGH=∠BGC=90º,∠CBG和∠HAG同是∠C的余角,所以∠CBG=∠HAG,又有AG=BG,所以△AGH≌△BGC(ASA),所以AH=BC,又因为AB=AC,AD⊥BC,所以AD平分BC,即AH平分BC,所以AH平分BC且AH=BC ;(2)正确画出图形:作BG垂直CA交CA的延长线于G,作AD垂直BC 于D,DA的延长线与BG的延长线交于H,因为∠C和∠H同是∠GBC的余角,于是∠C=∠H,又有∠AGH=∠BGC=90º,AG=BG,所以△AHG≌△BCG(AAS),所以AH=BC,又因为AB=AC,AD⊥BC,所以AD平分BC,即AH平分BC,所以结论仍成立.考点:1.全等三角形的判定与性质;2.等腰三角形性质.21、试题分析:(1)因为等角对等边,所以只要证明∠GDB=∠DBG就可以了,通过折叠角相等和平行线的性质即可得出结论;(2)因为BG=DG,设DG=BG=x,则AG=8-x,在Rt△ADG中,用勾股定理求出DG,于是△BDG的面积就求出来了.试题解析:(1)由折叠角相等,可得:∠CDB=∠GDB,由矩形ABCD可得DC∥AB,于是有∠CDB=∠DBG,∴∠GDB=∠DBG,∴DG=BG ;(2)设DG=BG=x,则AG=8-x,在△ADG中,∠A=90°,∴42+(8-x)2=x2,解得x=5,所以BG=5,又AD=4,所以△BDG的面积=×5×4=10 .考点:1.矩形性质;2.勾股定理;3.折叠性质.22、试题分析:此题证得∠A=∠ECB是解题的关键,由题意可证△ACD ≌△CBE,利用全等三角形的对应角相等得到∠A=∠ECB,通过已知条件C为线段AB的中点,CD∥BE,CD=BE.得到全等三角形的判定条件,于是利用同位角相等,两直线平行得到AD∥CE.试题解析:因为C为线段AB的中点,所以AC=BC,因为CD∥BE,所以∠ACD=∠B,又因为CD=BE,所以△ACD ≌△CBE(SAS),所以∠A=∠ECB,所以AD∥CE .考点:1.全等三角形的判定与性质;2.平行线的判定与性质.23、试题分析:根据9的算术平方根是3,1的立方根是1,求出x和y值,即可得出结论.试题解析:因为9的算术平方根是3所以,x-2=9,解得,x=11.因为1的立方根是1,所以2x-y+12=1,解得,y=33,∴x+y=11+33="44" .考点:1.算术平方根的意义;2.立方根的意义.24、试题分析:轴对称图形沿着某条直线折叠,直线两旁的部分能重合,由题意可得,使涂黑的正方形和原来的正方形组成轴对称图案即可.试题解析:(1)将图1的第三行第一个正方形方格涂黑,便组成一个轴对称图形;(2)将图2的第一行第四个正方形方格涂黑,便组成一个轴对称图形;(3)将图3的第四行最后一个正方形涂黑,便组成一个轴对称图形.考点:轴对称图形概念.25、试题分析:(1)先移项,然后把二次项系数化为1,再开方求解;(2)因为-3的立方是-27,所以左边底数是-3,然后解方程求解.试题解析:(1)移项:4x2=9,二次项系数化为1:x2=,开方:x=±;(2)因为-3的立方是-27,所以x+1=-3,解得:x=-4.考点:1.平方根的意义;2.立方根的意义.26、试题分析:剪下的符合条件的等腰三角形共有7种不同的情形,所以底边的长度值有7种可能.分别是:①分别以A,B为圆心,3cm长为半径作弧,分别交于相邻的两边各一点,分别和A,B点形成两个腰长是3cm的等腰直角三角形,底边长度是同一个值;②以D为圆心,3cm长为半径作弧,交于相邻两边各一点,和D点形成腰长是3cm 的钝角三角形;底边长度是一个值;③以C为圆心,3cm长为半径作弧,交于CD,CB 边一点,形成一个符合条件的等腰三角形,底边长度是同一个值;④以C为圆心,3cm 长为半径作弧,交CD于E,再以E为圆心3cm长为半径作弧,交于CB一点,和C,ED点形成符合条件的等腰三角形,底边长度是一个值;⑤以C为圆心,3cm长为半径作弧,交于CB于一点F,再以F为圆心,3cm长为半径作弧,交于CD一点,和C,F 点形成符合条件的等腰三角形,底边长度是一个值;⑥以D为圆心,3cm长为半径作弧,交AD于P点,再以P为圆心3cm长为半径作弧,交于AB一点,和P,D点形成符合条件的等腰三角形,底边长度是一个值;⑦以D为圆心,3cm长为半径作弧,交CD于M点,再以M为圆心3cm长为半径作弧,交于BC一点,和M,D点形成符合条件的等腰三角形,底边长度是一个值;综上所述,三角形底边的长度的值有7种可能.考点:1.等腰三角形的判定.27、试题分析:问题背景:将△ABE绕点A逆时针旋转120°到△ADG的位置后,AE=AG,DG=BE,∠EAF=∠FAG=60°,利用SAS证明△AFE ≌△AFG即可得出结论;探索延伸:延长FD到点G,使DG=BE,连接AG,通过SAS可证得△ABE≌△ADG,∴AE =AG,∠BAE=∠DAG,∠EAF=∠FAG=60°,于是△AEF≌△AGF.EF=FG.所以FG=DG+DF=BE+DF.∴EF=BE+FD仍然成立.结论应用:连接EF,∵∠AOB=140°,∠FOE=70°=∠AOB,又∵OA=OB,∠A+∠B=60°+120°=180°,符合探索延伸中的条件,即结论EF=AE+FB成立.因为AE=80,FB=100,于是求出此时两舰艇之间的距离EF.试题解析:问题背景:将△ABE绕点A逆时针旋转120°到△ADG的位置后,AE=AG,DG=BE,∠BAE=∠DAG,∠EAF=60°,∠EAG=120°,所以∠FAG=60°,∠EAG=∠FAG,所以△AFE ≌△AFG(SAS),∴EF=FG.∵FG=DG+DF,所以EF=BE+FD.探索延伸:EF=BE+FD仍然成立,延长FD到点G,使DG=BE,连接AG,因为AB=AD,∠B=∠ADG=90°,所以△ABE≌△ADG,所以∴AE=AG,∠BAE=∠DAG,所以∠EAG=∠FAG=60°,所以△AEF≌△AGF(SAS).∴EF=FG.又∵FG =DG+DF=BE+DF.∴EF=BE+FD.结论应用:连接EF,∵∠AOB=30°+90°+20°=140°,∠FOE=70°=∠AOB,又∵OA=OB,∠A+∠B=60°+120°=180°,符合探索延伸中的条件,∴结论EF=AE+FB成立.因为BF=50×2=100,AE=40×2=80,所以此时两舰艇之间的距离EF=AE+FB=80+100=180海里,即此时两舰艇之间的距离为180海里.考点:1.全等三角形的判定与性质;2.线段的和差转化.。

江苏省江阴市要塞片2015-2016学年八年级上学期期中考试数学试题解析(解析版)

江苏省江阴市要塞片2015-2016学年八年级上学期期中考试数学试题解析(解析版)

(考试时间100分钟,满分100分)一.选择题(本大题共10小题,每题3分,共30分.)1.下列美丽的车标中是轴对称图形的个数有……………………………………………( )A .1个B .2个C .3个D .4个 【答案】C 考点:轴对称图形2.如图,在边长为1个单位长度的小正方形组成的网格中, A 、B 都是格点,则线段AB 的长度为……………………………… ………………( )A. 5B. 6C.7D. 8【答案】A【解析】 试题分析:如图所示:(第2题图)建立格点三角形,利用勾股定理求解AB的长度.故选:A.考点:勾股定理3.一个等腰三角形的两边长分别是4和9,则它的周长是……………………………………()A.13 B.17 C.22 D.17或22【答案】C【解析】试题分析:根据题意,要分情况讨论:①4是腰;②4是底.必须符合三角形三边的关系,任意两边之和大于第三边.如:①若4是腰,则另一腰也是4,底是9,但是4+4<9,故不能构成三角形,舍去.②若4是底,则腰是9,9,4+9>9,符合条件,成立.故周长为:4+9+9=22.故选C.考点:等腰三角形,三角形三边关系4.下列结论错误的是………………………………………………………………………………()A.全等三角形对应边上的中线相等B.两个直角三角形中,两个锐角相等,则这两个三角形全等C.全等三角形对应边上的高相等D.两个直角三角形中,若有两组边对应相等,则这两个直角三角形全等【答案】B【解析】试题分析:根据全等三角形的性质和判定(全等三角形的判定定理有SAS,ASA,AAS,SSS)判断即可.B、如教师用得含30°的三角板和学生用的含30°的三角板就不全等,故此选项错误.故选B考点:全等三角形的性质和判定5.如图,请仔细观察用直尺和圆规作一个角等于已知角的示意图,请你根据所学的三角形全等有关的知识,说明画出∠A'O'B'=∠AOB的依据是……………………()A.SAS B.ASA C.AAS D.SSS【答案】D【解析】试题分析:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D'(SSS),则△COD≌△C'O'D',即∠A'O'B'=∠AOB(全等三角形的对应角相等).故选D.考点:基本作图,全等三角形的判定与性质6.已知△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件不能判断△ABC是直角三角形的是……………………………………………………………………()A.∠A:∠B:∠C=3:4:5B.a:b:c=5:12:13 C.a2=b2-c2 D.∠A=∠C-∠B【答案】A考点:直角三角形的判定方法7.在联欢会上,有A、B、C三名选手站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC 的…………………………………………………………()A. 三边中线的交点B.三边中垂线的交点C.三条角平分线的交点D.三边上高的交点【答案】B【解析】试题分析:根据三角形的三条垂直平分线的交点到中间的凳子的距离相等,所以凳子应放在△ABC的三条垂直平分线的交点最适当.故选:B.考点: 线段垂直平分线的性质.8.如图,BD 是∠ABC 平分线,DE AB 于E ,AB =36cm,BC =24cm,S △ABC =144cm 2,则DE 的长是………( )A .4.8cmB .4.5cmC .4 cmD .2.4cm【答案】A【解析】试题分析:根据角平分线上的点到角的两边距离相等可得点D 到AB 、BC 的距离都等于DE 的长度,然后根据△ABC 的面积列方程S △ABC=12(AB+BC )·DE=144,即12(36+24)·DE=144,解得DE=4.8cm . 故选A .考点:角平分线上的点到角的两边距离相等的性质9.在如图的正方形网格上画有两条线段.现在要再画一条,使图中的三条线段组成一个轴对称图形,能满足条件的线段有…………………………………………………………( )A .2条B .3条C .4条D .5条【答案】C【解析】试题分析:根据轴对称的意义,延某条直线对折能完全重合,可作如下图:因此共有4种可能.故选C考点:轴对称10.如下图,已知∠AOB =α,在射线OA 、OB 上分别取点OA 1=OB 1,连结A 1B 1,在B 1A 1、B 1B 上分别取点A 2、B 2,使B 1B 2= B 1A 2,连结A 2 B 2……按此规律下去,记∠A 2B 1 B 2=θ1,∠A 3B 2B 3=θ2,…,∠A n +1B n B n +1=θn ,则θ2016-θ2015的值为………………………………………………………………( )A .20151802α+B . 20151802α-C .20161802α+D .20161802α- 43B 2A 4A 3A 2OB B 1A 1A【答案】D【解析】试题分析:根据等腰三角形两底角相等用α表示出∠A 1B 1O=12(180°-α),再根据平角等于180°可列式为12(180°-α)+1θ=180°,用α表示出1θ =1802α+ ; 同理可得12(180°-1θ)+2θ=180°,再用1θ表示出2θ=11802θ+ =31804α⨯+ ,并求出2θ-1θ=31804α⨯+ -1802α+ =21802α- ; 依此类推求出3θ-2θ=31802α- , ………20162015θθ-=20161802α- . 故选D考点:等腰三角形,三角形的外角,平角的定义二.填空题(本大题共8小题,每空3分,共24分.)11.正方形是一个轴对称图形,它有 条对称轴.【答案】4考点:轴对称图形12.△ABC是等腰三角形,若∠A=80°,则∠B=.【答案】80°或50°或20°【解析】试题分析:根据等腰三角形的两底角相等,可分两种情况考虑,①当∠A=80°是顶角时,两底角分别为50°和50°,所以∠B=50°;②当∠A=80°是底角时,另一底角为80°,顶角为20°,因此∠B=80°或20°;因此答案为20°,50°,80°.考点:等腰三角形13.某直角三角形的两直角边长分别为6cm,8 cm,则此三角形斜边上的高的长是cm.【答案】4.8【解析】试题分析:10=,然后从直角三角形面积的两种求法入手,可得直角三角形面积=12×一直角边长×另一直角边长=12×斜边长×斜边的高,代入数值可得12×6×8=12×10h,解得h=4.8,即斜边的高为4.8.考点:勾股定理,三角形的面积14.如图,∠1=∠2,要使△ABE ≌△ACE,则还需添加一个条件是.【答案】∠B=∠C等【解析】试题分析:根据题意,易得∠AEB=∠AEC,又由AE公共边,所以根据全等三角形的判定方法容易寻找添加条件为:当∠B=∠C时,△ABE≌△ACE(AAS);或BE=CE时,△ABE≌△ACE(SAS);或∠BAE=∠CAE时,△ABE≌△ACE(ASA).考点:全等三角形的判定15.如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要cm.10【答案】考点:两点之间线段最短,勾股定理,长方体的侧面展开图16.如图,△OAD≌△OBC,且∠O=70°,∠AEB=100°,则∠C=°.OBAED(第16题图)【答案】15°【解析】试题分析:根据全等三角形的性质求出∠C=∠D ,根据三角形的外角性质求出∠CAE=∠O+∠D=∠O+∠C ,推出∠AEB=∠C+∠CAE=∠C+∠O+∠C ,代入求出∠C=15°. 考点:全等三角形的性质,三角形的外角性质的应用17.如图,AE ⊥AB ,且AE =AB ,BC ⊥CD ,且BC =CD ,请按照图中所标注的数据计算图中实线所围成的图形的面积S = .【答案】50考点:全等三角形的判定,18.已知:如图,AD 、BE 分别是△ABC 的中线和角平分线,AD ⊥BE ,AD =8,BF =5,则AC 的长等于 .【答案】13【解析】试题分析:延长AD 到M ,使AD=DM=8,连接BM ,则根据D 为BC 中点,可证得△ADC ≌△MDB (SAS ),可知AC=BM ,然后根据AD ⊥BE ,BE 平分∠ABD ,可知AF=DF=4,∠BFD=90°,因此可知FM=12,根据勾股定理可FB AC DE(第18题图)求的BM=13,即AC=3.考点:三角形全等的判定与性质,等腰三角形,勾股定理三.解答题(本大题共6小题,共46分. 解答需写出必要的文字说明或演算步骤)19.作图题:(6分)(1)如图,在图1所给方格纸中,每个小正方形边长都是1,标号为①②③的三个三角形均为格点三角形(顶点在方格顶点处),请按要求将图2中的指定图形分割成三个三角形,使它们与标号为①②③的三个三角形分别对应全等.(分割线画成实线.)(2)如图3,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.①在图中画出与△ABC关于直线L成轴对称的△A′B′C′;②请直线L上找到一点P,使得PC + PB的距离之和最小..【答案】见解析(2)根据轴对称的性质的图形,然后连接C1B,与l的交点即为P点.考点:网格问题;作图(应用与设计作图).20.(6分)如图,四边形ABCD中,AB∥CD,AB=CD,A、F、E、C在同一直线上,∠ABE=∠CDF.(1)试说明:△ABE≌△CDF;(2)试说明:AF=CE.【答案】见解析【解析】试题分析:(1)由平行线的性质得到∠BAE=∠DAF ,再根据三角形全等的判定ASA 可证得△ABE ≌△CDF ;(2)根据△ABE ≌△CDF 得到AE=CF ,然后根据等量代换求得结论.试题解析:(1)解:∵AB ∥CD∴∠BAE=∠DCF又∵AB=CD ,∠ABE=∠CDF∴△ABC ≌△DEF(2) ∵ △ABC ≌△DEF∴ AE=CF∴ AE —EF=CF —EF∴ AF=CE考点:三角形全等的判定与性质21.(6分)中菲黄岩岛争端持续,我海监船加大黄岩岛附近海域的巡航维权力度.如图,OA ⊥OB ,OA =36海里,OB =12海里,黄岩岛位于O 点,我国海监船在点B 处发现有一不明国籍的渔船,自A 点出发沿着AO 方向匀速驶向黄岩岛所在地点O ,我国海监船立即从B 处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C 处截住了渔船.(1)请用直尺和圆规作出C 处的位置;(2)求我国海监船行驶的航程BC 的长.O【答案】见解析【解析】试题分析:(1)由题意得,我渔政船与不明船只行驶的距离相等,即在OA 上找到一点,使其到A 点与B 点的距离相等,所以连接AB,作AB的垂直平分线即可;(2)利用第(1)题中的BC=AC,设BC=x海里,在Rt△BOC中,BC=x海里,OC=(45-x)海里,利用勾股定理列方程即可求得结果.试题解析:(1)∴点C就是所求点考点:基本作图,线段的垂直平分线,勾股定理22.(7分)如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90º,点D为AB边上的一点,(1)试说明:∠EAC=∠B;(2)若AD=10,BD=24,求DE的长.【答案】DE=26【解析】试题分析:(1)根据等腰直角三角形得出AC=BC,CE=CD,∠ACB=∠ECD=90°,求出∠BCD=∠ACE,根据SAS推出△BCD≌△ACE即可.(2)根据全等得出AE=BD=24,在Rt△AED中,由勾股定理求出DE即可.试题解析:(1)∵∠ACB=∠ECD=90°∴∠ACB—∠ACD =∠ECD—∠ACD∴∠ECA=∠DCB∵△A CB和△ECD都是等腰三角形∴EC=DC,AC=BC∴△A CE≌△BCD∴∠EAC=∠B(2)∵△A CE≌△BCD∴AE=BD=24∵∠EAC=∠B=45 °∴∠EAD=∠EAC+∠CAD=90°∴在Rt△ADE中,222=+DE EA AD∴222DE=+1024∴DE=26考点:三角形全等的判定与性质,勾股定理23.(6分)如图,△ABC中,AD是边BC上的高,CF是边AB上的中线,且DC=BF,DE⊥CF于E,问E是CF的中点吗?试说明理由【答案】E是CF的中点考点:直角三角形斜边上的中线,线段的垂直平分线24.(6分)探索研究.请解决下列问题:(1)已知△ABC中,∠A=90°,∠B=67.5°,请画一条直线,把这个三角形分割成两个等腰三角形.(请你选用下面给出的备用图,并把所有不同的分割方法都画出来,图不够可以自己画.只需画图,不必说明理由,但要在图中标出相等两角的度数).(2)已知等腰△ABC中,AB=AC,D为BC上一点,连接AD,若△ABD和△ACD都是等腰三角形,则∠B的度数为(请画出示意图,并标明必要的角度).【答案】(1)见解析(2)45°或36°【解析】试题分析:(1)已知角度,要分割成两个等腰三角形,可以运用直角三角形、等腰三角形性质结合三角形内角和定理,先计算出可能的角度,或者先从草图中确认可能的情况,及角度,然后画上.(2)在(1)的基础上,由“特殊”到“一般”,需要把直角三角形分成两个等腰三角形的各种情形列方程,可得出角与角之间的关系.试题解析:(1)(2)45°或36°考点:等腰三角形,直角三角形25.(9分)如图,在四边形ABCD中,AD=BC=12,AB=CD,BD=15,点E从D点出发,以每秒4个单位的速度沿D→A→D匀速移动,点F从点C出发,以每秒1个单位的速度沿CB向点B作匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,假设移动时间为t秒.(1)试说明:AD∥BC;(2)在移动过程中,小明发现有△DEG与△BFG全等的情况出现,请你探究这样的情况会出现几次?并分别求出此时的移动时间t和G点的移动距离.【答案】(1)见解析(2)综上可知共有三次,移动的时间分别为1秒、2.4秒、4秒、4.2秒,移动的距离分别为4、7.5、7.5、7.2.试题解析:(1)证明:在△ABD和△CDB中AD=BCAB=CDBD=DB∴△ABD≌△CDB∴∠ADB=∠CBD∴AD∥BC(2)解:设G点的移动距离为y,由(1)得∠EDG=∠FBG若△DEG与△BFG全等则有△DEG≌△BFG或△DGE≌△BFG可得:DE=BF,DG=BG;或DE=BG,DG=BF,①当E由D到A,即0<t≤3时,有41215t ty y=-⎧⎨=-⎩,解得2.47.5ty=⎧⎨=⎩或41215t yt y=⎧⎨-=-⎩,解得14ty=⎧⎨=⎩②当F由A返回到D,即3<t≤6时,有2441215t ty y-=-⎧⎨=-⎩,解得47.5ty=⎧⎨=⎩或2441215t yt y-=⎧⎨-=-⎩,解得4.27.2ty=⎧⎨=⎩综上可知共有三次,移动的时间分别为1秒、2.4秒、4秒、4.2秒,移动的距离分别为4、7.5、7.5、7.2.考点:三角形全等,动点几何问题高考一轮复习:。

江苏省无锡江阴市2015-2016学年八年级上学期期末考试数学试题解析(解析版)

江苏省无锡江阴市2015-2016学年八年级上学期期末考试数学试题解析(解析版)

江苏省无锡江阴市2015-2016学年八年级上学期期末考试数学试题一、选择题(本大题共有10小题,每小题3分,共30分,在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内)1.9的平方根是 ( )A .3B .-3C . ±3D .±3【答案】C【解析】试题分析:一个正数有两个平方根,且他们互为相反数.因为2(3)±=9,则9的平方根为±3.考点:平方根 2.下列各数:π,34,0,-1中,无理数是 ( ) A .π B .34 C . 0 D .-1 【答案】A【解析】试题分析:无理数是指无限不循环小数.考点:无理数的定义3.下列图形中,轴对称图形的个数为 ( )A .1个B .2 个C .3个D .4个【答案】B【解析】试题分析:将图形沿着某条直线折叠,直线两边的图形能够完全重叠的图形叫做轴对称图形;本题中第二和第三个是轴对称图形.考点:轴对称图形4.点P( 2,-3 )关于x 轴对称的点是 ( )A . (-2, 3 )B . (2,3)C .(-2, -3 )D .(2,-3 )【解析】试题分析:关于x轴对称的两点横坐标相等,纵坐标互为相反数.考点:关于x轴对称的点的特征5.下列各组数中,不能作为直角三角形三边长度的是 ( )A.2、3、4 B.3、4、5 C.6、8、10 D.25、24、7【答案】A【解析】试题分析:如果较小的两边的平方和等于较大边的平方,则这个三角形是直角三角形.考点:直角三角的判定6.下列条件中,能判定两个直角三角形全等的是 ( )A.斜边相等 B.面积相等 C.两锐角对应相等 D.两直角边对应相等【答案】D【解析】试题分析:直角三角形全等的判定方法有SSS、SAS、AAS、ASA以及HL判定定理,根据判定方法只有D选项可以进行判定.考点:直角三角形的判定7.已知一次函数y=(m+3)x-2中,y的值随x的增大而增大,则m的取值范围是() A.m>0 B.m<0 C.m>-3 D.m<-3【答案】C【解析】试题分析:对于一次函数y=kx+b(k、b为常数且k≠0)而言,当k>0时,y随着x的增大而增大,则m+3>0,解得:m>-3.考点:一次函数的性质8.如图,在△ABC中,D为BC上一点,且AB=AD=DC,∠B=80º,则∠C等于()A.20º B.30º C.40º D.50º【答案】C试题分析:根据AB=AD 可得:∠ADB=∠B=80°,根据外角的性质可得:∠ADB=∠DAC+∠C ,根据AD=CD 可得:∠DAC=∠C ,则∠C=40°.考点:(1)、等腰三角形的性质;(2)、三角形外角的性质9.如图,AD =AB =BC ,那么∠1和∠2之间的关系是 ( )A.∠1=∠2B.2∠1+∠2=180°C.∠1+3∠2=180°D.3∠1-∠2=180°【答案】D【解析】试题分析:根据题意得:∠1=∠2+∠D ,∠B=∠D ,∠1=∠BAC ,根据△ABD 的内角和可得:∠D=(180-∠BAC -∠2)÷2=(180-∠1-∠2)÷2,∴∠1=∠2+(180-∠1-∠2)÷2,∴3∠1-∠2=180°.考点:三角形内角和定理与外角的性质10.甲、乙两辆摩托车分别从A 、B 两地出发相向而行,图中1l 、2l 分别表示两辆摩托车与A 地的距离s(千米)与行驶时间t (小时)之间的函数关系,则下列说法:①A 、B 两地相距24千米;②甲车比乙车行完全程多用了0.1小时;③甲车的速度比乙车慢8千米/时;④两车出发后,经过311小时,两车相遇.其中正确的有 ( )A.1个B.2个C.3个D.4个【答案】D【解析】试题分析:①、从图形上可得S=24km ,则A 、B 两地相距24km ;②、甲车用了0.6小时,乙车用了0.5小时,则甲车比乙车多用了0.1小时;③、甲车的速度为40km/h,乙车的速度为48km/h,则甲车的速度比乙车慢8km/h;④、24÷(40+48)=311小时,则两车经过311小时相遇.考点:一次函数的应用二、填空题(本大题共8小题,每小题3分,共24分.不需要写出解答过程,只需把答案直接填写在题中的横线上)11.计算:364=___ __ ___.【答案】4【解析】试题分析:正数的立方根只有1个,因为34=64,则64的立方根为4.考点:立方根的计算12.已知点A(a-1,2+a)在第二象限,那么a的取值范围是___ ___ __.【答案】-2<a<1【解析】试题分析:根据第二象限中点的特征可得:1020aaì-ïí+ïî,解得:-2<a<1.考点:第二象限中点的特征13.已知一个直角三角形的两条直角边分别为6和8,则它斜边上的中线的长为____ ___.【答案】5【解析】试题分析:根据直角三角形的勾股定理可得:直角三角形的斜边长为10,根据直角三角形斜边上的中线等于斜边一半可以得出斜边上的中线的长为5.考点:(1)、勾股定理;(2)、直角三角形斜边上的中线性质14.已知一个等腰三角形的顶角为100°,则它的底角为___________.【答案】40°【解析】试题分析:根据等腰三角形的性质可得:底角的度数为:(180°-100°)÷2=40°.考点:等腰三角形的性质15.如图,在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC 交CD的延长线于点F,若EF=5cm,则AE= cm.【答案】3【解析】试题分析:根据题意可得:△ABC≌△FCE,则AC=RF=5cm,EC=BC=2cm,则AE=AC-EC=5-2=3cm.考点:三角形全等的判定与应用16.如图,函数y=2x和y=ax+4的图象相交于点A(1,m),则不等式2x<ax+4的解集为___________.【答案】x<1【解析】试题分析:根据一次函数与不等式的关系可得:当x<1时,2x<ax+4.考点:一次函数与不等式17.如图所示,等边△ABC中,B点在坐标原点,C点坐标为(4,0),点A关于x轴对称点A′的坐标为__________.【答案】(2,-【解析】试题分析:根据题意可得:AB=AC=BC=4,过点A作AD⊥BC,则∠BAD=30°,BD=2,,∴点A的坐标为,则A′的坐标为(2,-考点:(1)、等边三角形的性质;(2)、点关于x轴对称的性质.18.如图是一个围棋棋盘的局部,若把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是(-2,-2),白棋③的坐标是(-1,-4),则黑棋②的坐标是 .【答案】(1,-3)【解析】试题分析:根据给出的图示中点的坐标,找出坐标原点,然后求出黑棋②的坐标.考点:坐标系中点的坐标表示三、解答题(解答时应写出文字说明、证明过程或演算步骤)19.计算⑴(﹣1)2015﹣3-+12 +(3﹣π)0; ⑵)(53)13(2+--)(53-【答案】(1);(2)、-【解析】试题分析:(1)、根据(-1)的奇数次幂为-1,任何非零实数的0次幂为1;(2)、根据完全平方公式和平方差公式将式子展开,然后进行实数的计算.试题解析:(1)、原式= ,-1﹣3+23 +1=3;(2)、原式=4-23-4=32-考点:实数的计算.20.已知一次函数y=kx +b 的图象经过点(-1,-5),且与正比例函数12y x =的图象相交于点(2,a ). ⑴求a 的值.⑵求一次函数y=kx +b 的表达式.⑶在同一坐标系中,画出这两个函数的图象.【答案】(1)、a=1;(2)、y=2x -3;(3)、答案见解析【解析】试题分析:(1)、将点(2,a)代入正比例函数解析式求出a 的值;(2)、将(-1,-5)和(2,1)代入一次函数解析式求出k 和b 的值,从而得出函数解析式;(3)、根据描点法画出函数图象.试题解析:(1)、∵ 正比例函数12y x =的图象过点(2,a ) ∴ a =1 (2)∵一次函数y=kx +b 的图象经过两点(-1,-5)、(2,1)∴52,213k b k k b b -+=-=⎧⎧⎨⎨+==-⎩⎩解得 ∴y=2x -3 (3)函数图像如右图考点:(1)、待定系数法求函数解析式;(2)、描点法画函数图象.21.化简求值:(1)、已知x =2-1,求x 2+3x -1的值;(2)、已知22a b =-=-,求22()()(2)3a b a b a b a ++-+-值.【答案】(1)-1;(2)、1.【解析】试题分析:(1)、将x 的值代入代数式进行计算;(2)、首先将多项式进行化简计算,然后将a 、b 的值代入化简后的式子进行计算.试题解析:(1)、当x =2-1时,x 2+3x -1=(2-1)2+3(2-1)-1=2-22+1+32-3-1=2-1.⑵原式=2a +2ab+2b +22a -ab -2b -32a =ab当a=-2-2 ∴原式=ab=(-2-2)=4-3=1.考点:代数式的化简求值.22.已知,如图,AB =AC ,BD =CD ,DE ⊥AB 于点E ,DF ⊥AC 于点F ,求证:DE =DF .23.如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A 、B 、C 在小正方形的顶点上.(1) 在图中画出与△ABC 关于直线l 成轴对称的△A //C B ;(2) 线段/CC 被直线l ;(3) 在直线l 上找一点P ,使PB+PC 的长最短,并算出这个最短长度.【答案】(1)、答案见解析;(2)、垂直平分;(3)、5.【解析】试题分析:(1)、根据轴对称图形的性质画出对称轴;(2)、轴对称图形的性质;(3)、根据直角三角形的勾股定理可以求出线段的长度.试题解析:(1)(2)垂直平分 (3)连接BC ’交l 于点P ,如图,在∆BC ’D 中222''BC D C BD =+ 22243'+=BC ∴5'=BC ∴最短长度为5.考点:(1)、轴对称图形的性质;(2)、直角三角形的勾股定理.24.探索与研究:方法1:如图(a),对任意的符合条件的直角三角形绕其锐角顶点旋转90°所得,所以∠BAE =90°,且四边形ACFD 是一个正方形,它的面积和四边形ABFE 面积相等,而四边形ABFE 面积等于Rt △BAE 和Rt △BFE 的面积之和,根据图示写出证明勾股定理的过程;方法2:如图(b),是任意的符合条件的两个全等的Rt △BEA 和Rt △ACD 拼成的,你能根据图示再写一种证明勾股定理的方法吗?【答案】答案见解析【解析】 试题分析:根据面积相等的法则进行计算.试题解析:方法1:∵由图(a)可知S 正方形ACFD =S 四边形ABFE ,∴S 正方形ACFD =S ⊿BAE +S ⊿BFE又∵正方形ACFD 的边长为b, S Rt △BAE =221c ,S Rt △BFE =()()a b a b -+21 ∴b 2 =221c +()()a b a b -+21 即2b 2=c 2+(b+a)(b-a)25.如图,A (0,1),M (3,2),N (4,4) , 动点P 从点A 出发,沿y 轴以每秒1个单位长的速度向上移动,且过点P 的直线l :y =-x +b 也随之移动,设移动时间为 t 秒.(直线y = kx+b 平移时k 不变) ⑴当t =3时,求 l 的解析式;⑵若点M ,N 位于l 的异侧,确定 t 的取值范围. (a)【答案】(1)、y=-x+4;(2)、4<t <7.【解析】试题分析:(1)、将A 点的坐标代入可得b=1,根据平移可得b=1+t ,将t=3代入求出b 的值;(2)、将点M和N 分别代入解析式分别求出t 的值,得出范围.试题解析:(1)、直线y=-x+b 交y 轴于点P (0,b ), 由题意,得b>0,t ≥0,b=1+t当t=3时,b=4 ∴y=-x+4(2)、当直线y=-x+b 过M (3,2)时,2=-3+b 解得b=5, ∴5=1+t ∴t=4当直线y=-x+b 过N (4,4)时,4=-4+b 解得 b=8 ∴8=1+t ∴t=7 ∴4<t<7 考点:待定系数法求函数解析式26.如图,在△ABC 中,AB =BC ,BE ⊥AC 于点E ,AD ⊥BC 于点D ,∠BAD =45°,AD 与BE 交于点F ,连接CF.⑴求证:BF =2AE ;⑵若CD,求AD 的长.【答案】(1)、证明过程见解析;(2)、【解析】试题分析:(1)、根据AD ⊥BC ,∠BAD=45°,得出AD=BD ,∠ADC=∠FDB=90°,根据AD ⊥BC ,BE ⊥AC 得出∠CAD=∠CBE ,从而得出△ADC 和△BDF 全等,得出AC=BF ,根据AB=BC ,BE ⊥AC ,得出AE=EC ,可得BF=2AE;(2)、根据△ADC和△BDF全等得出,根据Rt△CDF的勾股定理得出CF=2,得出AF=FC=2,根据AD=AF+DF求出长度.试题解析:(1)、∵ AD⊥BC,∠BAD=45°,∴∠ABD=∠BAD=45°.∴ AD=BD.∵ AD⊥BC,BE⊥AC, ∴∠CAD+∠ACD=90°,∠CBE+∠ACD=90o ∴∠CAD=∠CBE. 又∵∠CDA=∠FDB=90°,∴△ADC≌△BDF. ∴ AC=BF.∵ AB=BC,BE⊥AC, ∴ AE=EC,即AC=2AE.∴ BF=2AE.(2)、∵△ADC≌△BDF,∴. ∴在Rt△CDF中,CF=2.∵ BE⊥AC,AE=EC,∴ AF=FC=2. ∴.考点:三角形全等的证明与性质.27.钓鱼岛是我国渤海海峡上的一颗明珠,渔产丰富.一天某渔船离开港口前往该海域捕鱼.捕捞一段时间后,发现一外国舰艇进入我国水域向钓鱼岛驶来,渔船向渔政部门报告,并立即返航.渔政船接到报告后,立即从该港口出发赶往钓鱼岛.下图是渔船及渔政船与港口的距离s和渔船离开港口的时间t之间的函数图象.(假设渔船与渔政船沿同一航线航行)⑴直接写出渔船离港口的距离s和它离开港口的时间t的函数关系式.⑵求渔船和渔政船相遇时,两船与钓鱼岛的距离.⑶在渔政船驶往钓鱼岛的过程中,求渔船从港口出发经过多长时间与渔政船相距30海里?【答案】(1)、当0≤t≤5时,s=30 ;当5<t≤8时,s=150;当8<t≤13时,s=-30t+390;(2)、60;(3)、9.6 小时或10.4小时【解析】试题分析:(1)、分三种情况写出函数解析式,(2)、首先利用待定系数法求出渔政船离港口的距离与渔船离开港口的时间的函数关系式,然后进行计算;(3)、分相遇前和相遇之后两种情况分别求出t的值.试题解析:(1)、当0≤t≤5时,s=30;当5<t≤8时,s=150;当8<t≤13时,s=-30t+390;(2)渔政船离港口的距离与渔船离开港口的时间的函数关系式设为s=kt+b⎪⎩⎪⎨⎧+=+=bk bk 33415080解得: k =45 b =-360∴s =45t -360⎩⎨⎧+-=-=3903036045t s t s解得 t =10s =90渔船离钓鱼岛距离为 150-90=60 (海里)(3) S 渔=-30t +390 S 渔政=45t -360分两种情况:①相遇之前,S 渔-S 渔政=30 -30t +390-(45t -360)=30 解得t =485 (或9.6) ② 相遇之后,S 渔政-S 渔=30 45t -360-(-30t +390)=30解得 t =525 (或10.4) ∴当渔船离开港口9.6小时或10.4小时时,两船相距30海里. 考点:一次函数的应用.高考一轮复习:。

2015-2016学年苏科版八年级(上)期中数学试卷及答案(2套)

2015-2016学年苏科版八年级(上)期中数学试卷及答案(2套)

2015-2016学年八年级(上)期中数学试卷一.选择题:(每小题3分,共24分)1.如图,图中的图形是常见的安全标记,其中是轴对称图形的是()A. B. C. D.2.不能确定两个三角形全等的条件是()A.三边对应相等 B.两边及其夹角相等C.两角和任一边对应相等 D.三个角对应相等3.如图,有A、B、C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.在AC,BC两边高线的交点处B.在AC,BC两边中线的交点处C.在AC,BC两边垂直平分线的交点处D.在∠A,∠B两内角平分线的交点处4.给出下列说法:①﹣6是36的平方根;②16的平方根是4;③;④是无理数;⑤一个无理数不是正数就是负数.其中,正确的说法有()A.①③⑤ B.②④ C.①③ D.①5.下列条件中,不能判断△ABC为直角三角形的是()A.∠B=∠C﹣∠A B. a2=(b+c)(b﹣c)C.∠A:∠B:∠C=3:4:5 D. a=1,b=2,c=6.如图所示,BE⊥AC于点D,且AD=CD,BD=ED,若∠ABC=54°,则∠E=()A. 25° B. 27° C. 30° D. 45°7.下列说法:(1)等腰三角形的高、中线、角平分线互相重合;(2)等腰三角形的两腰上的中线长相等;(3)等腰三角形的腰一定大于其腰上的高;(4)等腰三角形的一边长为8,一边长为16,那么它的周长是32或40.其中不正确的个数是()A. 1 B.[来源:学。

科。

网] 2 C. 3 D. 48.在一次课外社会实践中,王强想知道学校旗杆的高,但不能爬上旗杆也不能把绳子解下来,可是他发现旗杆上的绳子垂到地面上还多1m,当他把绳子的下端拉开5m后,发现下端刚好接触地面,则旗杆的高为()A. 13 B. 12 C. 4 D. 10二、填空题(共10小题,每小题4分,满分22分)9.25的平方根是,的立方根是.10.下列几何图形中:(1)平行四边形;(2)线段;(3)角;(4)圆;(5)正方形;(6)任意三角形.其中一定是轴对称图形的有.11.在﹣7,0.32,,0,,,,π,0.1010010001…这些数中,无理数有.12.地球七大洲的总面积约是149 480 000km2,如对这个数据保留3个有效数字可表示为km2.13.如图,在等腰△ABC中,AB=AC,AB的垂直平分线DE交AB于点D,交另一腰AC于点E,若∠EBC=15°,则∠A= 度.14.如图,在△ABC中,∠BAC=90°,AB=AC,AE是经过A点的一条直线,且B、C在AE的两侧,BD⊥AE于D,CE⊥AE于E,CE=2,BD=6,则DE的长为.15.已知三角形的三边长分别为、5、2,则该三角形最长边上的中线长为.16.等腰三角形的周长是20cm,底边上的高是6cm,则底边的长为cm.17.如图,已知AB=12,AB⊥BC于B,AB⊥AD于A,AD=5,BC=10.点E是CD的中点,则AE 的长是.18.已知等腰△ABC中,AB=AC,D是BC边上一点,连接AD,若△ACD和△ABD都是等腰三角形,则∠C的度数是.三、解答题:19.计算:(1)求式中x的值:①4x2=81;②(x+10)3=﹣27;(2)﹣+.20.如果3x+12的立方根是3,求2x+6的算术平方根.21.作图题:如图所示是每一个小方格都是边长为1的正方形网格,(1)利用网格线作图:①在BC上找一点P,使点P到AB和AC的距离相等;②在射线AP上找一点Q,使QB=QC.(2)在(1)中连接CQ与BQ,试说明△CBQ是直角三角形.22.如图,在梯形ABCD中,AD∥BC,E为CD的中点,连接AE并延长AE交BC的延长线于点F.(1)求证:CF=AD;(2)若AD=3,AB=8,当BC= 时,点B在线段AF的垂直平分线上.23.如图,在△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥GF,交AB于点E,连接EG.(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并证明你的结论.24.某园艺公司对一块直角三角形的花圃进行改造,测得两直角边长为BC=6m、AC=8m.现要将其扩建成等腰三角形,且扩充部分是以AC为直角边的直角三角形.求扩建后的等腰三角形花圃的面积.如图所示(画出所有可能情况的图并计算).25.如图,在△ABC中,AB=BC,CD⊥AB于点D,CD=BD,BE平分∠ABC,点H是BC边的中点,连接DH,交BE于点G,连接CG.(1)求证:△ADC≌△FDB;(2)求证:CE=BF;(3)判断△ECG的形状,并证明你的结论;(4)猜想BG与CE的数量关系,并证明你的结论.2015-2016学年八年级(上)期中数学试卷参考答案与试题解析一.选择题:(每小题3分,共24分)1.如图,图中的图形是常见的安全标记,其中是轴对称图形的是()A. B. C. D.考点:轴对称图形.分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对常见的安全标记图形进行判断.解答:[来源:学#科#网]解:A、有一条对称轴,是轴对称图形,符合题意;B、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;C、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;D、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意.故选A.点评:本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.不能确定两个三角形全等的条件是()A.三边对应相等 B.两边及其夹角相等C.两角和任一边对应相等 D.三个角对应相等考点:全等三角形的判定.分析:判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS,HL,做题时要结合各选项的已知条件逐个进行验证.解答:解:A、三条边对应相等,符合SSS,能判定三角形全等,不符合题意;B、两边及其夹角对应相等,符合SAS,能判定三角形全等,不符合题意;C、两角和任一边对应相等,符合ASA或AAS,能判定三角形全等,不符合题意;D、三个角对应相等,满足AAA,不能判定三角形全等,符合题意.故选D.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS,HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.3.如图,有A、B、C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.在AC,BC两边高线的交点处B.在AC,BC两边中线的交点处C.在AC,BC两边垂直平分线的交点处D.在∠A,∠B两内角平分线的交点处考点:线段垂直平分线的性质.专题:应用题.分析:要求到三小区的距离相等,首先思考到A小区、B小区距离相等,根据线段垂直平分线定理的逆定理知满足条件的点在线段AB的垂直平分线上,同理到B小区、C小区的距离相等的点在线段BC的垂直平分线上,于是到三个小区的距离相等的点应是其交点,答案可得.解答:解:根据线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等.则超市应建在AC,BC两边垂直平分线的交点处.故选C.点评:本题主要考查线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等;此题是一道实际应用题,做题时,可分别考虑,先满足到两个小区的距离相等,再满足到另两个小区的距离相等,交点即可得到.4.给出下列说法:①﹣6是36的平方根;②16的平方根是4;③;④是无理数;⑤一个无理数不是正数就是负数.其中,正确的说法有()A.[来源:学_科_网Z_X_X_K] ①③⑤ B.②④ C.①③ D.①考点:无理数;平方根;立方根.专题:计算题.分析:根据平方根的定义即可判断①②;根据立方根的定义计算③④即可;根据无理数的定义判断⑤即可.解答:解:﹣6是36的平方根,∴①正确;16的平方根是±4,∴②错误;[来源:],∴③正确;=3是有理数,∴④错误;一个无理数不是正数就是负数,∴⑤正确;正确的有①③⑤.故选A.点评:本题主要考查对无理数、平方根、立方根等知识点的理解和掌握,能熟练地运用这些定义进行判断是解此题的关键.5.下列条件中,不能判断△ABC为直角三角形的是()A.∠B=∠C﹣∠A B. a2=(b+c)(b﹣c)C.∠A:∠B:∠C=3:4:5 D. a=1,b=2,c=考点:勾股定理的逆定理;三角形内角和定理.分析:分别根据勾股定理的逆定理及三角形内角和定理对各选项进行逐一判断即可.解答:解:A、∵∠B=∠C﹣∠A,∴∠A+∠B=∠C,∵∠A+∠B+∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故本选项错误;B、∵a2=(b+c)(b﹣c),∴a2=b2﹣c2,∴a2+c2=b2,∴△ABC是直角三角形,故本选项错误;C、∵∠A:∠B:∠C=3:4:5,∴∠C=×180°=75°,∴△ABC不是直角三角形,故本选项正确;D、∵a=1,b=2,c=,12+()2=4=22,∴△ABC是直角三角形.故选C.点评:本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.6.如图所示,BE⊥AC于点D,且AD=CD,BD=ED,若∠ABC=54°,则∠E=()A. 25° B. 27° C. 30° D. 45°考点:全等三角形的判定与性质.分析:根据题意中的条件判定△ADB≌△CDB和△ADB≌△CDE,根据全等三角形的性质可得∠ABD=∠CBD和∠E=∠ABD,即:∠E=∠ABD=∠CBD,又因为∠ABC=∠ABD+∠CBD=54°,所以∠E=∠ABD=∠CBD=×∠ABC,代入∠ABC的值可求出∠E的值.解答:解:在△ADB和△CDB,∵BD=BD,∠ADB=∠CDB=90°,AD=CD∴△ADB≌△CDB,∴∠ABD=∠CBD,又∵∠ABC=∠ABD+∠CBD=54°,∴∠ABD=∠CBD=×∠ABC=27°.在△ADB和△EDC中,∵AD=CD,∠ADB=∠EDC=90°,BD=ED,∴△ADB≌△CDE,∴∠E=∠ABD.[来源:]∴∠E=∠ABD=∠CBD=27°.所以,本题应选择B.点评:本题主要考查了全等三角形的判定和全等三角形的性质.通过全等证得∠ABD=∠CBD 是解决本题的关键.7.下列说法:(1)等腰三角形的高、中线、角平分线互相重合;(2)等腰三角形的两腰上的中线长相等;(3)等腰三角形的腰一定大于其腰上的高;(4)等腰三角形的一边长为8,一边长为16,那么它的周长是32或40.其中不正确的个数是()[来源:学。

2015-2016年江苏省无锡市江阴市华士片八年级(下)期中数学试卷(解析版)

2015-2016学年江苏省无锡市江阴市华士片八年级(下)期中数学试卷一.选择题:(本大题共10小题,每题3分,共30分.)1.(3分)下列各式、、、+1、中分式有()A.2个B.3个C.4个D.5个2.(3分)下列式子为最简二次根式的是()A.B.C.D.3.(3分)下列有四种说法:①了解某一天出入扬州市的人口流量用普查方式最容易;②“在同一年出生的367名学生中,至少有两人的生日是同一天”是必然事件;③“打开电视机,正在播放少儿节目”是随机事件;④如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件.其中,正确的说法是()A.①②③B.①②④C.①③④D.②③④4.(3分)使有意义的x的取值范围是()A.B.C.D.5.(3分)如果把分式中的m和n都扩大2倍,那么分式的值()A.不变B.扩大2倍C.缩小2倍D.扩大4倍6.(3分)下列约分正确的是()A.B.C.D.7.(3分)已知▱ABCD,给出下列条件:①AC=BD;②∠BAD=90°;③AB=BC;④AC⊥BD,添加其中之一能使□ABCD成为菱形的条件是()A.①③B.②③C.③④D.①②③8.(3分)如图,在平面直角坐标系中,点B、C、E、在y轴上,Rt△ABC经过变换得到Rt△ODE.若点C的坐标为(0,1),AC=2,则这种变换可以是()A.△ABC绕点C顺时针旋转90°,再向下平移3B.△ABC绕点C顺时针旋转90°,再向下平移1C.△ABC绕点C逆时针旋转90°,再向下平移1D.△ABC绕点C逆时针旋转90°,再向下平移39.(3分)以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是()A.如图1,展开后测得∠1=∠2B.如图2,展开后测得∠1=∠2且∠3=∠4C.如图3,测得∠1=∠2D.如图4,展开后再沿CD折叠,两条折痕的交点为O,测得OA=OB,OC=OD 10.(3分)如图,在平面直角坐标中,直线l经过原点,且与y轴正半轴所夹的锐角为60°,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l 的垂线交y轴于点A1,以A1B、BA为邻边作▱ABA1C1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2,以A2B1、B1A1为邻边作▱A1B1A2C2;…;按此作法继续下去,则C n的坐标是()A.(﹣×4n,4n)B.(﹣×4n﹣1,4n﹣1)C.(﹣×4n﹣1,4n)D.(﹣×4n,4n﹣1)二.填空题:(本大题共8小题,每题2分,共16分.)11.(2分)使分式有意义的x的取值范围是.12.(2分)请写出的一个同类二次根式.13.(2分)分式;的最简公分母是.14.(2分)若矩形ABCD的对角线长为10,点E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH的周长是.15.(2分)事件A发生的概率为,大量重复做这种试验,事件A平均每100次发生的次数是.16.(2分)如图,在△ABC中,∠ACB=30°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1,当点C1在线段CA的延长线上时,则∠CC1A1=°.17.(2分)如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值是.18.(2分)如图,以Rt△ABC的斜边BC为一边作正方形BCDE,设正方形的中心为O,连结AO,如果AB=3,AO=2,那么AC的长为.三.解答题:(本大题共8小题,共54分.解答需写出必要的文字说明或演算步骤)19.(8分)计算或化简(1)(2)﹣2+2+.20.(6分)如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)以A点为旋转中心,将△ABC绕点A顺时针旋转90°得△AB1C1,画出△AB1C1.(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2.(3)作出点C关于x轴的对称点P.若点P向右平移x(x取整数)个单位长度后落在△A2B2C2的内部,请直接写出x的值.21.(6分)已知,如图,E,F是▱ABCD的对角线AC上的两点,AE=CF,试说明:(1)△ABC≌△CDF;(2)BE∥DF.22.(6分)某校以“我最喜爱的体育运动”为主题对全校学生进行随机抽样调查,调查的运动项目有:篮球、羽毛球、乒乓球、跳绳及其它项目(每位同学仅选一项).根据调查结果绘制了如下不完整的频数分布表和扇形统计图:请根据以上图表信息解答下列问题:(1)频数分布表中的m=,n=;(2)在扇形统计图中,“乒乓球”所在的扇形的圆心角的度数为°;(3)从选择“篮球”选项的60名学生中,随机抽取10名学生作为代表进行投篮测试,则其中某位学生被选中的概率是.23.(6分)在信息快速发展的社会,“信息消费”已成为人们生活的重要部分.郑州市的一个社区随机抽取了部分家庭,调查每月用于信息消费的金额,数据整理成如图所示的不完整统计图.已知A、B两组户数直方图的高度比为1:5,请结合图中相关数据回答下列问题.(1)A组的频数是,本次调查样本的容量是;(2)补全直方图(需标明各组频数);(3)若该社区有1500户住户,请估计月信息消费额不少于300元的户数是多少?24.(6分)某班围棋兴趣小组的同学在一次活动时,他们用25粒围棋摆成了如图1所示的图案.甲、乙、丙3人发现了该图案的以下性质:甲:这是一个中心对称图形;乙:这是一个轴对称图形,且有4条对称轴;丙:这是一个轴对称图形,且它的对称轴经过5粒棋子.他们想,若去掉其中的若干个棋子,上述性质能否仍具有呢?例如,去掉图案正中间一粒棋子(如图2,用“×”表示去掉棋子),则甲、乙发现的性质仍具有.请你帮助他们一起进行探究:(1)在图3中,请去掉4个棋子,使所得图形仅保留甲所发现的性质.(2)在图4中,请去掉4个棋子,使所得图形仅保留丙所发现的性质.(3)在图5中,请去掉若干个棋子(大于0且小于10),使所得图形仍具有甲、乙、丙3人所发现的性质.25.(8分)在数学兴趣小组活动中,小明进行数学探究活动.将边长为2的正方形ABCD与边长为3的正方形AEFG按图1位置放置,AD与AE在同一条直线上,AB与AG在同一条直线上.(1)小明发现DG⊥BE,请你帮他说明理由.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG 上时,请你帮他求出此时△ADG的面积.(3)如图3,若小明将正方形ABCD绕点A继续逆时针旋转,顺次连接BD、DE、EG、GB,请你直接写出四边形BDEG面积的最大值.26.(8分)如图,在平面直角坐标系中,点A、B的坐标分别是(﹣2,0)、(0,4).动点P从O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C以每秒2个单位的速度在y轴上从点B出发运动到点O停止,点C停止运动时点P也随之停止运动.以CP、CO为邻边构造▱PCOD,在线段OP的延长线长取点E,使得PE=2.设点P的运动时间为t秒.(1)求证:四边形ADEC是平行四边形;(2)以线段PE为对角线作正方形MPNE,点M、N分别在第一、四象限.①当点M、N中有一点落在四边形ADEC的边上时,求出所有满足条件的t的值;②若点M、N中恰好只有一点落在四边形ADEC的内部(不包括边界)时,设▱PCOD的面积为S,直接写出S的取值范围.2015-2016学年江苏省无锡市江阴市华士片八年级(下)期中数学试卷参考答案与试题解析一.选择题:(本大题共10小题,每题3分,共30分.)1.(3分)下列各式、、、+1、中分式有()A.2个B.3个C.4个D.5个【解答】解:、+1是分式,故选:A.2.(3分)下列式子为最简二次根式的是()A.B.C.D.【解答】解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A正确;B、被开方数含能开得尽方的因数或因式,故B错误;C、被开方数含能开得尽方的因数或因式,故C错误;D、被开方数含分母,故D错误;故选:A.3.(3分)下列有四种说法:①了解某一天出入扬州市的人口流量用普查方式最容易;②“在同一年出生的367名学生中,至少有两人的生日是同一天”是必然事件;③“打开电视机,正在播放少儿节目”是随机事件;④如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件.其中,正确的说法是()A.①②③B.①②④C.①③④D.②③④【解答】解:①了解某一天出入扬州市的人口流量用普查方式花费的劳力太大,估计一下就可以了,不必进行普查.②③④都是对的.故选:D.4.(3分)使有意义的x的取值范围是()A.B.C.D.【解答】解:根据题意得:3x﹣1≥0,解得x≥.故选:C.5.(3分)如果把分式中的m和n都扩大2倍,那么分式的值()A.不变B.扩大2倍C.缩小2倍D.扩大4倍【解答】解:分式中的m和n都扩大2倍,得分式的值不变,故选:A.6.(3分)下列约分正确的是()A.B.C.D.【解答】解:A、=a4,故本选项错误;B、不能化简,故本选项错误;C、不能化简,故本选项错误;D、=﹣=﹣1,故本选项正确.故选:D.7.(3分)已知▱ABCD,给出下列条件:①AC=BD;②∠BAD=90°;③AB=BC;④AC⊥BD,添加其中之一能使□ABCD成为菱形的条件是()A.①③B.②③C.③④D.①②③【解答】解:∵四边形ABCD是平行四边形,①若AC=BD,可得四边形ABCD是矩形,故①错误,②中∠BAD=90°,得到一矩形,不是菱形,所以②错误,③中一组邻边相等,也可得到一菱形,所以③成立,④若AC⊥BD,则可得其为菱形,④成立,故选:C.8.(3分)如图,在平面直角坐标系中,点B、C、E、在y轴上,Rt△ABC经过变换得到Rt△ODE.若点C的坐标为(0,1),AC=2,则这种变换可以是()A.△ABC绕点C顺时针旋转90°,再向下平移3B.△ABC绕点C顺时针旋转90°,再向下平移1C.△ABC绕点C逆时针旋转90°,再向下平移1D.△ABC绕点C逆时针旋转90°,再向下平移3【解答】解:根据图形可以看出,△ABC绕点C顺时针旋转90°,再向下平移3个单位可以得到△ODE.故选:A.9.(3分)以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是()A.如图1,展开后测得∠1=∠2B.如图2,展开后测得∠1=∠2且∠3=∠4C.如图3,测得∠1=∠2D.如图4,展开后再沿CD折叠,两条折痕的交点为O,测得OA=OB,OC=OD 【解答】解:A、∠1=∠2,根据内错角相等,两直线平行进行判定,故正确;B、∵∠1=∠2且∠3=∠4,由图可知∠1+∠2=180°,∠3+∠4=180°,∴∠1=∠2=∠3=∠4=90°,∴a∥b(内错角相等,两直线平行),故正确;C、测得∠1=∠2,∵∠1与∠2即不是内错角也不是同位角,∴不一定能判定两直线平行,故错误;D、在△AOC和△BOD中,,∴△AOC≌△BOD,∴∠CAO=∠DBO,∴a∥b(内错角相等,两直线平行),故正确.故选:C.10.(3分)如图,在平面直角坐标中,直线l经过原点,且与y轴正半轴所夹的锐角为60°,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l 的垂线交y轴于点A1,以A1B、BA为邻边作▱ABA1C1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2,以A2B1、B1A1为邻边作▱A1B1A2C2;…;按此作法继续下去,则C n的坐标是()A.(﹣×4n,4n)B.(﹣×4n﹣1,4n﹣1)C.(﹣×4n﹣1,4n)D.(﹣×4n,4n﹣1)【解答】解:∵直线l经过原点,且与y轴正半轴所夹的锐角为60°,∴直线l的解析式为y=x.∵AB⊥y轴,点A(0,1),∴可设B点坐标为(x,1),将B(x,1)代入y=x,得1=x,解得x=,∴B点坐标为(,1),AB=.在Rt△A1AB中,∠AA1B=90°﹣60°=30°,∠A1AB=90°,∴AA1=AB=3,OA1=OA+AA1=1+3=4,∵▱ABA1C1中,A1C1=AB=,∴C1点的坐标为(﹣,4),即(﹣×40,41);由x=4,解得x=4,∴B1点坐标为(4,4),A1B1=4.在Rt△A2A1B1中,∠A1A2B1=30°,∠A2A1B1=90°,∴A1A2=A1B1=12,OA2=OA1+A1A2=4+12=16,∵▱A1B1A2C2中,A2C2=A1B1=4,∴C2点的坐标为(﹣4,16),即(﹣×41,42);同理,可得C3点的坐标为(﹣16,64),即(﹣×42,43);以此类推,则C n的坐标是(﹣×4n﹣1,4n).故选:C.二.填空题:(本大题共8小题,每题2分,共16分.)11.(2分)使分式有意义的x的取值范围是x≠3.【解答】解:分式有意义,则x﹣3≠0,解得x≠3.故答案为:x≠3.12.(2分)请写出的一个同类二次根式2(答案不唯一).【解答】解:根据同类二次根式的定义,例如:2(答案不唯一).故答案为:2(答案不唯一).13.(2分)分式;的最简公分母是6x3y(x﹣y).【解答】解:分式,的最简公分母是6x3y(x﹣y);故答案为:6x3y(x﹣y).14.(2分)若矩形ABCD的对角线长为10,点E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH的周长是20.【解答】解:∵矩形ABCD的对角线长为10,∴AC=BD=10∵点E、F、G、H分别是AB、BC、CD、DA的中点,∴EF=HG=AC=×10=5EH=GF=BD=×10=5∴四边形EFGH的周长为EF+FG+GH+HE=5+5+5+5=20.故答案为:2015.(2分)事件A发生的概率为,大量重复做这种试验,事件A平均每100次发生的次数是5.【解答】解:事件A发生的概率为,大量重复做这种试验,则事件A平均每100次发生的次数为:100×=5.故答案为:5.16.(2分)如图,在△ABC中,∠ACB=30°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1,当点C1在线段CA的延长线上时,则∠CC1A1=60°.【解答】解:∵∠ACB=30°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1,点C1在线段CA的延长线上,∴BC=BC1,∠C=∠A1C1B=30°,∴∠C=∠BC1C=30°,∴∠CC1A1=60°.故答案为:60.17.(2分)如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值是.【解答】解:∵PE⊥AB,PF⊥AC,∠BAC=90°,∴∠EAF=∠AEP=∠AFP=90°,∴四边形AEPF是矩形,∴EF,AP互相平分.且EF=AP,∴EF,AP的交点就是M点,∵当AP的值最小时,AM的值就最小,∴当AP⊥BC时,AP的值最小,即AM的值最小.∵AP×BC=AB×AC,∴AP×BC=AB×AC,在Rt△ABC中,由勾股定理,得BC==10,∵AB=6,AC=8,∴10AP=6×8,∴AP=∴AM=,故答案为:.18.(2分)如图,以Rt△ABC的斜边BC为一边作正方形BCDE,设正方形的中心为O,连结AO,如果AB=3,AO=2,那么AC的长为7.【解答】解:如图在CA上截取CM=AB,连接OM,∵四边形BCDE是正方形,∴OB=OC,∠BOC=90°,∵∠ABO+∠AKB=90°,∠OCM+∠OKC=90°,∠AKB=∠OKC,∴∠ABO=∠OCM,在△ABO和△MCO中,,∴△ABO≌△MCO,∴AO=MO,∠AOB=∠COM,∴∠AOM=∠BOC=90°,∵AO=OM=2,AB=CM=3,∴AM==4,∴AC=AM+CM=4+3=7故答案为:7.三.解答题:(本大题共8小题,共54分.解答需写出必要的文字说明或演算步骤)19.(8分)计算或化简(1)(2)﹣2+2+.【解答】解:(1)原式=3+﹣1+1=4;(2)原式=4﹣2++4=3+4.20.(6分)如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)以A点为旋转中心,将△ABC绕点A顺时针旋转90°得△AB1C1,画出△AB1C1.(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2.(3)作出点C关于x轴的对称点P.若点P向右平移x(x取整数)个单位长度后落在△A2B2C2的内部,请直接写出x的值.【解答】解:(1)作图如右:△A1B1C1即为所求;(2)作图如右:△A2B2C2即为所求;(3)x的值为6或7.21.(6分)已知,如图,E,F是▱ABCD的对角线AC上的两点,AE=CF,试说明:(1)△ABC≌△CDF;(2)BE∥DF.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠BAE=∠DCF,又∵AE=CF,,∴△ABE≌△CDF(SAS);(2)∵△ABE≌△CDF,∴∠AEB=∠CFD,∴∠BEC=∠DFA,∴DF∥BE.22.(6分)某校以“我最喜爱的体育运动”为主题对全校学生进行随机抽样调查,调查的运动项目有:篮球、羽毛球、乒乓球、跳绳及其它项目(每位同学仅选一项).根据调查结果绘制了如下不完整的频数分布表和扇形统计图:请根据以上图表信息解答下列问题:(1)频数分布表中的m=48,n=0.3;(2)在扇形统计图中,“乒乓球”所在的扇形的圆心角的度数为108°;(3)从选择“篮球”选项的60名学生中,随机抽取10名学生作为代表进行投篮测试,则其中某位学生被选中的概率是.【解答】解:(1)∵喜爱篮球的人数是60人,占总人数的25%,∴总人数==240(人).∵喜欢羽毛球的人数占中人数的20%,∴m=240×20%=48(人).n=1﹣0.25﹣0.2﹣0.15﹣0.10=0.3.故答案为:48,0.3;(2)∵喜欢乒乓球的人数是72人,∴“乒乓球”所在的扇形的圆心角的度数=×360°=108°.故答案为:108;(3)∵从选择“篮球”选项的60名学生中,随机抽取10名学生作为代表进行投篮测试,∴其中某位学生被选中的概率==.故答案为:.23.(6分)在信息快速发展的社会,“信息消费”已成为人们生活的重要部分.郑州市的一个社区随机抽取了部分家庭,调查每月用于信息消费的金额,数据整理成如图所示的不完整统计图.已知A、B两组户数直方图的高度比为1:5,请结合图中相关数据回答下列问题.(1)A组的频数是2,本次调查样本的容量是50;(2)补全直方图(需标明各组频数);(3)若该社区有1500户住户,请估计月信息消费额不少于300元的户数是多少?【解答】解:(1)A组的频数是:10×=2;调查样本的容量是:(2+10)÷(1﹣8%﹣28%﹣40%)=50;(2)C组的频数是:50×40%=20,D组的频数是:50×28%=14,E组的频数是:50×8%=4,如图,.(3)∵1500×(28%+8%)=540,∴全社区捐款不少于300元的户数是540户.24.(6分)某班围棋兴趣小组的同学在一次活动时,他们用25粒围棋摆成了如图1所示的图案.甲、乙、丙3人发现了该图案的以下性质:甲:这是一个中心对称图形;乙:这是一个轴对称图形,且有4条对称轴;丙:这是一个轴对称图形,且它的对称轴经过5粒棋子.他们想,若去掉其中的若干个棋子,上述性质能否仍具有呢?例如,去掉图案正中间一粒棋子(如图2,用“×”表示去掉棋子),则甲、乙发现的性质仍具有.请你帮助他们一起进行探究:(1)在图3中,请去掉4个棋子,使所得图形仅保留甲所发现的性质.(2)在图4中,请去掉4个棋子,使所得图形仅保留丙所发现的性质.(3)在图5中,请去掉若干个棋子(大于0且小于10),使所得图形仍具有甲、乙、丙3人所发现的性质.【解答】解:所设计图形如下:说明:答案不唯一,只要符合题意即可.第(1)、(2)小题各(2分),第(3)小题(4分).25.(8分)在数学兴趣小组活动中,小明进行数学探究活动.将边长为2的正方形ABCD与边长为3的正方形AEFG按图1位置放置,AD与AE在同一条直线上,AB与AG在同一条直线上.(1)小明发现DG⊥BE,请你帮他说明理由.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG 上时,请你帮他求出此时△ADG的面积.(3)如图3,若小明将正方形ABCD绕点A继续逆时针旋转,顺次连接BD、DE、EG、GB,请你直接写出四边形BDEG面积的最大值.【解答】(1)如图1,延长EB交DG于点H∵四边形ABCD与四边形AEFG是正方形∴AD=AB,∠DAG=∠BAE=90°,AG=AE∴△ADG≌△ABE(SAS)∴∠AGD=∠AEB∵△ADG中∠AGD+∠ADG=90°∴∠AEB+∠ADG=90°∵△DEH中,∠AEB+∠ADG+∠DHE=180°∴∠DHE=90°∴DG⊥BE.(2)如图2,过点A作AM⊥DG交DG于点M,∠AMD=∠AMG=90°∵BD是正方形ABCD的对角∴∠MDA=45°在Rt△AMD中,∵∠MDA=45°,AD=2∴AM=在Rt△AMG中,∵AM2+GM2=AG2∴GM=∵DG=DM+GM=+=DG•AM=(+)=1+∴S△ADG(3)如图3,作DH⊥AE交EA的延长线与H,作BI⊥AG,∵四边形ABCD是边长为2的正方形,∴AB=AD=2,设旋转角为α,∴∠BIG=α,∠HAD=α,在Rt△AIB中,BI=ABsinα,在Rt△AHD中,DH=ADsinα,∵四边形AEFG是边长为3的正方形,∴AG=AE=3,∴S=S△ABG+S△ABD+S△ADE+S△AEG四边形BDEG=S△ABD+S△AEG+S△ABG+S△ADE=AB×AD+AG×AE+×AG×BI+AE×DH=AB×AD+AG×AE+×AG×ABsinα+AE×ADsinα=×2×2+×3×3+×3×2sinα+×3×2sinα=+6sinα当sinα=1时,S四边形BDEG 最大,S四边形BDEG最大=,故答案为.26.(8分)如图,在平面直角坐标系中,点A、B的坐标分别是(﹣2,0)、(0,4).动点P从O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C以每秒2个单位的速度在y轴上从点B出发运动到点O停止,点C停止运动时点P也随之停止运动.以CP、CO为邻边构造▱PCOD,在线段OP的延长线长取点E,使得PE=2.设点P的运动时间为t秒.(1)求证:四边形ADEC是平行四边形;(2)以线段PE为对角线作正方形MPNE,点M、N分别在第一、四象限.①当点M、N中有一点落在四边形ADEC的边上时,求出所有满足条件的t的值;②若点M、N中恰好只有一点落在四边形ADEC的内部(不包括边界)时,设▱PCOD的面积为S,直接写出S的取值范围.【解答】(1)证明:如图1,连接CD交AE于F,∵四边形PCOD是平行四边形,∴CF=DP,OF=PF,∵PE=AO,∴AF=EF,又CF=DF,∴四边形ADEC为平行四边形;(2)解:①当M点在CE上时,第一种情况:如图,当点M在CE边上时,∵MF∥OC,∴△EMF∽△ECO,∴=,∵四边形MPNE为正方形,∴MF=EF,∴CO=EO,即4﹣2t=t+2,∴t=;第二种情况:当点N在DE边时,∵NF∥PD,∴△EFN∽△EPD,∴,∵四边形MPNE为正方形,∴NF=EF,∴PD=PE,即4﹣2t=2,∴t=1;∴当点M、N中有一点落在四边形ADEC的边上时,所有满足条件的t的值为t=或t=1;②解:∵≤t≤1,S=(4﹣2t)t=﹣2t2+4t=﹣2(t﹣1)2+2,∴点M、N中恰好只有一点落在四边形ADEC的内部(不包括边界)时,≤S <2.。

江阴市要塞片2015-2016学年八年级下期中数学试卷含答案解析

2015-2016学年江苏省无锡市江阴市要塞片八年级(下)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.下列图形中,不是中心对称图形的是()A.B.C.D.2.下列说法正确的是()A.为了了解某中学800名学生的视力情况,从中随机抽取了50名学生进行调查,在此次调查中,样本容量为50名学生的视力B.若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖C.了解无锡市每天的流动人口数,采用抽查方式D.“掷一枚硬币,正面朝上”是必然事件3.顺次连结矩形四边的中点所得的四边形是()A.矩形 B.正方形C.菱形 D.以上都不对4.如果把分式中的m和n都扩大3倍,那么分式的值()A.不变 B.扩大3倍 C.缩小3倍 D.扩大9倍5.平行四边形的对角线长为x,y,一边长为12,则x,y的值可能是()A.8和14 B.10和14 C.18和20 D.10和346.如图,O是矩形ABCD的对称中心,M是AD的中点.若BC=8,OB=5,则OM的长为()A.1 B.2 C.3 D.47.如图,在方格纸上上建立的平面直角坐标系中,将OA绕原点O按顺时针方向旋转180°得到OA′,则点A′的坐标为()A.(3,1)B.(3,﹣1)C.(1,﹣3)D.(1,3)8.为了早日实现“绿色太仓,花园之城”的目标,太仓对4000米长的城北河进行了绿化改造.为了尽快完成工期,施工队每天比原计划多绿化10米,结果提前2天完成.若原计划每天绿化x米,则所列方程正确的是()A.B.C. D.9.如图,已知菱形的两条对角线分别为6cm和8cm,则这个菱形的高DE为()A.2.4cm B.4.8cm C.5cm D.9.6cm10.如图,平行四边形ABCD中,AB=8cm,AD=12cm,点P在AD 边上以每秒1cm的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有()A.4次B.3次C.2次D.1次二、填空题(本大题共有10个空格,每个空格2分,共18分.)11.小燕抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为.12.当x时,分式的值为0.当x时,分式有意义.13.如图,菱形ABCD的边长为5,对角线AC=6.则菱形ABCD的面积为.14.如图,E、F分别是正方形ABCD的边AB、BC上的点,BE=CF,连接CE、DF.△CDF 可以看作是将△BCE绕正方形ABCD的中心O按逆时针方向旋转得到.则旋转的角度为°.15.如图,在△ABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF.给出下列条件:①BE⊥EC;②BF∥CE;③AB=AC;从中选择一个条件使四边形BECF是菱形,你认为这个条件是(只填写序号).16.如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边与对角线BD重合,折痕为DG,则AG的长为.17.如图,在平面直角坐标系中,点A的坐标为(1,0),点B的坐标为(4,0),点C在y的正半轴上,且OB=2OC,在直角坐标平面内确定点D,使得以点D、A、B、C为顶点的四边形是平行四边形,请写出点D的坐标为.18.在平面直角坐标系中,边长为3的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x 上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图).在旋转正方形OABC的过程中,△MBN的周长为.三、解答题(本大题共10小题.共82分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(1)÷(2)﹣x﹣1.20.解方程:(1)﹣=0(2)﹣=1.21.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣4,2)、B(0,4)、C(0,2),(1)画出△ABC关于点C成中心对称的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(2)△A1B1C和△A2B2C2关于某一点成中心对称,则对称中心的坐标为.22.某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有名;“剩大量”的扇形圆心角是.(2)把条形统计图补充完整;(3)在被调查的学生中随机抽取一名恰巧是“剩少量”或“剩一半左右”饭的概率多大;(4)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?23.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小李做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,如表是实验中的一组统计数据:摸球的次数n 100 200 300 500 800 1000 3000摸到白球的次数m 63 124 178 302 481 599 18030.63 0.62 0.593 0.604 0.601 0.599 0.601摸到白球的频率(1)请估计:当实验次数为10000次时,摸到白球的频率将会接近;(精确到0.1)(2)假如你摸一次,你摸到白球的概率P(摸到白球)=;(3)如何通过增加或减少这个不透明盒子内球的具体数量,使得在这个盒子里每次摸到白球的概率为0.5?24.如图,在▱ABCD中,点E、F是AD、BC的中点,连接BE、DF.(1)求证:BE=DF.(2)若BE平分∠ABC且交边AD于点E,如果AB=6cm,BC=10cm,试求线段DE的长.25.如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.(1)求证:四边形DBFE是平行四边形;(2)当△ABC满足什么条件时,四边形DBFE是菱形?为什么?26.为了迎接“五•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如表:运动鞋价格甲乙进价(元/双)m m﹣20售价(元/双)240 160已知:用3600元购进甲种运动鞋的数量与用3000元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21600元,且不超过22440元,问该专卖店有多少种进货方案?27.如图,在△ABC中,∠C=90°,AC=BC,AB=20,点P在AB上,AP=6.点E以每秒2个单位长度的速度,从点P出发沿线段PA向点A作匀速运动,点F同时以每秒1个单位长度的速度,从点P出发沿线段PB向点B作匀速运动,点E到达点A后立刻以原速度沿线段AB向点B运动,点F运动到点B时,点E随之停止.在点E、F运动过程中,以EF 为边作正方形EFGH,使它与△ABC在线段AB的同侧.设E、F运动的时间为t秒(t>0),正方形EFGH与△ABC重叠部分的面积为S.(1)当t=1时,正方形EFGH的边长是;当t=4时,正方形EFGH的边长是;(2)当0<t≤3时,求S与t的函数关系式.28.如图,在平面直角坐标系中,直线y=﹣x+b分别与x轴、y轴交于点A、B,且点A的坐标为(4,0),四边形ABCD是正方形.(1)填空:b=;(2)求点D的坐标;(3)点M是线段AB上的一个动点(点A、B除外),试探索在x上方是否存在另一个点N,使得以O、B、M、N为顶点的四边形是菱形?若不存在,请说明理由;若存在,请求出点N的坐标.2015-2016学年江苏省无锡市江阴市要塞片八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.下列图形中,不是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:A、是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项正确;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误;故选B.2.下列说法正确的是()A.为了了解某中学800名学生的视力情况,从中随机抽取了50名学生进行调查,在此次调查中,样本容量为50名学生的视力B.若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖C.了解无锡市每天的流动人口数,采用抽查方式D.“掷一枚硬币,正面朝上”是必然事件【考点】总体、个体、样本、样本容量;全面调查与抽样调查;随机事件;概率的意义.【分析】根据样本容量为所抽查对象的数量,抽样调查,随机事件,即可解答.【解答】解:A.为了了解某中学800名学生的视力情况,从中随机抽取了50名学生进行调查,在此次调查中,样本容量为50,故错误;B.若一个游戏的中奖率是1%,则做100次这样的游戏有一次中奖,故错误;C.了解无锡市每天的流动人口数,采用抽查方式,正确;D.因为一枚硬币有正反两面,所以“掷一枚硬币,正面朝上”是随机事件,故错误;故选:C.3.顺次连结矩形四边的中点所得的四边形是()A.矩形 B.正方形C.菱形 D.以上都不对【考点】中点四边形.【分析】因为题中给出的条件是中点,所以可利用三角形中位线性质,以及矩形对角线相等去证明四条边都相等,从而说明是一个菱形.【解答】解:连接AC、BD,在△ABD中,∵AH=HD,AE=EB∴EH=BD,同理FG=BD,HG=AC,EF=AC,又∵在矩形ABCD中,AC=BD,∴EH=HG=GF=FE,∴四边形EFGH为菱形.故选:C.4.如果把分式中的m和n都扩大3倍,那么分式的值()A.不变 B.扩大3倍 C.缩小3倍 D.扩大9倍【考点】分式的基本性质.【分析】根据分式的分子分母都乘以或除以同一个不为0的整式,结果不变,可得答案.【解答】如果把分式中的m和n都扩大3倍,那么分式的值不变,故选:A.5.平行四边形的对角线长为x,y,一边长为12,则x,y的值可能是()A.8和14 B.10和14 C.18和20 D.10和34【考点】平行四边形的性质;三角形三边关系.【分析】如图:因为平行四边形的对角线互相平分,所OB=,OC=,在△OBC中任意两边之和大于第三边,任意两边之差小于第三边,将各答案代入验证即可求得.即x+y>24,y﹣x<24.【解答】解:A、=4+7=11<12,所以不可能;B、=5+7=12=12,所以不可能;D、34﹣10=24,所以不可能;故选C.6.如图,O是矩形ABCD的对称中心,M是AD的中点.若BC=8,OB=5,则OM的长为()A.1 B.2 C.3 D.4【考点】矩形的性质.【分析】先由矩形的性质得出AB=CD,根据勾股定理求出AB,再求出OM是△ACD的中位线,即可得出OM的长.【解答】解:∵四边形ABCD是矩形,∴AB=CD,OA=AC,OB=BD,AC=BD,∴AC=BD=2OB=10,∴AB==6,∴AB=6,∵O是矩形ABCD的对称中心,M是AD的中点,∴OM是△ACD的中位线,∴OM=CD=3,故选:C.7.如图,在方格纸上上建立的平面直角坐标系中,将OA绕原点O按顺时针方向旋转180°得到OA′,则点A′的坐标为()A.(3,1)B.(3,﹣1)C.(1,﹣3)D.(1,3)【考点】坐标与图形变化-旋转.【分析】根据关于原点对称的点的坐标特点直接得出答案即可.【解答】解:∵将OA绕原点O按顺时针方向旋转180°得到OA′,A点坐标为:(﹣3,1),∴点A′的坐标为:(3,﹣1).故选:B.8.为了早日实现“绿色太仓,花园之城”的目标,太仓对4000米长的城北河进行了绿化改造.为了尽快完成工期,施工队每天比原计划多绿化10米,结果提前2天完成.若原计划每天绿化x米,则所列方程正确的是()A.B.C. D.【考点】由实际问题抽象出分式方程.【分析】关键描述语是:“提前2天完成绿化改造任务”.等量关系为:原计划的工作时间﹣实际的工作时间=2.【解答】解:若设原计划每天绿化(x)m,实际每天绿化(x+10)m,原计划的工作时间为:,实际的工作时间为:方程应该为:﹣=2.故选:A.9.如图,已知菱形的两条对角线分别为6cm和8cm,则这个菱形的高DE为()A.2.4cm B.4.8cm C.5cm D.9.6cm【考点】菱形的性质.【分析】先由菱形的性质和勾股定理求出边长,再根据菱形面积的两种计算方法,即可求出菱形的高.【解答】解:如图所示:∵四边形ABCD是菱形,∴OA=AC=4,OB=BD=3,AC⊥BD,∴AB===5,∵菱形ABCD的面积=AB•DE=AC•BD=×8×6=24,∴DE==4.8;故选:B.10.如图,平行四边形ABCD中,AB=8cm,AD=12cm,点P在AD 边上以每秒1cm的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有()A.4次B.3次C.2次D.1次【考点】平行四边形的判定与性质.【分析】易得两点运动的时间为12s,PD=BQ,那么以P、D、Q、B四点组成平行四边形平行四边形,列式可求得一次组成平行四边形,算出Q在BC上往返运动的次数可得平行的次数.【解答】解:∵四边形ABCD 是平行四边形,∴BC=AD=12,AD∥BC,∵四边形PDQB是平行四边形,∴PD=BQ,∵P的速度是1cm/秒,∴两点运动的时间为12÷1=12s,∴Q运动的路程为12×4=48cm,∴在BC上运动的次数为48÷12=4次,第一次:12﹣t=12﹣4t,∴t=0,此时两点没有运动,∴点Q以后在BC上的每次运动都会有PD=QB,∴在运动以后,以P、D、Q、B四点组成平行四边形的次数有3次,故选B.二、填空题(本大题共有10个空格,每个空格2分,共18分.)11.小燕抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为.【考点】概率的意义.【分析】求出一次抛一枚硬币正面朝上的概率即可.【解答】解:∵抛硬币正反出现的概率是相同的,不论抛多少次出现正面或反面的概率是一致的,∴正面向上的概率为.故答案为:.12.当x=1时,分式的值为0.当x≠3时,分式有意义.【考点】分式的值为零的条件;分式有意义的条件.【分析】先根据分式的值为0的条件列出关于x的不等式组,求出x的值,再根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵分式的值为0,∴,解得x=﹣1;∵分式有意义,∴x﹣3≠0,即x≠3.故答案为:=﹣1,≠3.13.如图,菱形ABCD的边长为5,对角线AC=6.则菱形ABCD的面积为24.【考点】菱形的性质.【分析】根据菱形的对角线互相垂直且互相平分可得出对角线AC的长度,进而根据对角线乘积的一半可得出菱形的面积.【解答】解:∵菱形ABCD中AO=AC=3,∴BO===4,∴AC=8,故可得菱形ABCD的面积为×8×6=24.故答案为:24.14.如图,E、F分别是正方形ABCD的边AB、BC上的点,BE=CF,连接CE、DF.△CDF 可以看作是将△BCE绕正方形ABCD的中心O按逆时针方向旋转得到.则旋转的角度为90°.【考点】旋转的性质;正方形的性质.【分析】根据旋转性质得出旋转后C到D,只要根据正方形的性质和三角形的内角和定理求出∠COD即可.【解答】解:将△CBE绕正方形的对角线交点O按顺时针方向旋转到△CDF时,C和D重合,即∠COD是旋转角,∵四边形ABCD是正方形,∴∠OCD=∠ODC=45°,∴∠COD=180°﹣45°﹣45°=90°,即旋转角是90°,故答案为90.15.如图,在△ABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF.给出下列条件:①BE⊥EC;②BF∥CE;③AB=AC;从中选择一个条件使四边形BECF是菱形,你认为这个条件是③(只填写序号).【考点】菱形的判定.【分析】首先利用对角线互相平分的四边形是平行四边形判定该四边形为平行四边形,然后结合菱形的判定得到答案即可.【解答】解:由题意得:BD=CD,ED=FD,∴四边形EBFC是平行四边形,①BE⊥EC,根据这个条件只能得出四边形EBFC是矩形,②BF∥CE,根据EBFC是平行四边形已可以得出BF∥CE,因此不能根据此条件得出菱形,③AB=AC,∵,∴△ADB≌△ADC,∴∠BAD=∠CAD∴△AEB≌△AEC(SAS),∴BE=CE,∴四边形BECF是菱形.故答案为:③.16.如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边与对角线BD重合,折痕为DG,则AG的长为.【考点】翻折变换(折叠问题);勾股定理.【分析】根据勾股定理可得BD=5,由折叠的性质可得△ADG≌△A'DG,则A'D=AD=3,A'G=AG,则A'B=5﹣3=2,在Rt△A'BG中根据勾股定理求AG的即可.【解答】解:在Rt△ABD中,AB=4,AD=3,∴BD===5,由折叠的性质可得,△ADG≌△A'DG,∴A'D=AD=3,A'G=AG,∴A'B=BD﹣A'D=5﹣3=2,设AG=x,则A'G=AG=x,BG=4﹣x,在Rt△A'BG中,x2+22=(4﹣x)2解得x=,即AG=.17.如图,在平面直角坐标系中,点A的坐标为(1,0),点B的坐标为(4,0),点C在y的正半轴上,且OB=2OC,在直角坐标平面内确定点D,使得以点D、A、B、C为顶点的四边形是平行四边形,请写出点D的坐标为(3,2)(﹣3,2)(5,﹣2).【考点】平行四边形的判定;坐标与图形性质.【分析】需要分类讨论:以AB为边的平行四边形和以AB为对角线的平行四边形.【解答】解:如图,①当BC为对角线时,易求M1(3,2);②当AC为对角线时,CM∥AB,且CM=AB.所以M2(﹣3,2);③当AB为对角线时,AC∥BM,且AC=BM.则|M y|=OC=2,|M x|=OB+OA=5,所以M3(5,﹣2).综上所述,符合条件的点D的坐标是M1(3,2),M2(﹣3,2),M3(5,﹣2).故答案为:(3,2)(﹣3,2)(5,﹣2).18.在平面直角坐标系中,边长为3的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x 上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图).在旋转正方形OABC的过程中,△MBN的周长为6.【考点】一次函数综合题.【分析】通过证△OAE≌△OCN(ASA)和△OME≌△OMN(SAS),把△MBN的各边整理成与正方形的边长有关的式子即可.【解答】解:∵A点第一次落在直线y=x上时停止旋转,直线y=x与y轴的夹角是45°,∴OA旋转了45°.如图所示:延长BA交y轴于E点,则∠AOE=45°﹣∠AOM,∠CON=90°﹣45°﹣∠AOM=45°﹣∠AOM,∴∠AOE=∠CON.又∵OA=OC,∠OAE=180°﹣90°=90°=∠OCN,在△OAE和△OCN中,,∴△OAE≌△OCN(ASA).∴OE=ON,AE=CN.在△OME和△OMN中,,∴△OME≌△OMN(SAS).∴MN=ME=AM+AE.∴MN=AM+CN,∴△MBN的周长为:MN+BN+BM=AM+CN+BN+BM=AB+BC=6.故答案是:6.三、解答题(本大题共10小题.共82分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(1)÷(2)﹣x﹣1.【考点】分式的混合运算.【分析】(1)首先将分子与分母因式分解,进而化简求出即可;(2)首先通分进而利用分式加减运算法则求出即可.【解答】解:(1)÷=×=;(2)﹣x﹣1=﹣=.20.解方程:(1)﹣=0(2)﹣=1.【考点】解分式方程.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:2x﹣x﹣1=0,解得:x=1,经检验x=1是分式方程的解;(2)去分母得:x2﹣4x+4﹣16=x2﹣4,解得:x=﹣2,经检验:x=﹣2是增根,则原方程无解.21.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣4,2)、B(0,4)、C(0,2),(1)画出△ABC关于点C成中心对称的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(2)△A1B1C和△A2B2C2关于某一点成中心对称,则对称中心的坐标为(2,﹣1).【考点】作图-旋转变换;作图-平移变换.【分析】(1)根据网格结构找出点A、B关于点C成中心对称的点A1、B1的位置,再与点A顺次连接即可;根据网格结构找出点A、B、C平移后的对应点A2、B2、C2的位置,然后顺次连接即可;(2)根据中心对称的性质,连接两组对应点的交点即为对称中心.【解答】解:(1)△A1B1C如图所示,△A2B2C2如图所示;(2)如图,对称中心为(2,﹣1).22.某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有1000名;“剩大量”的扇形圆心角是54°.(2)把条形统计图补充完整;(3)在被调查的学生中随机抽取一名恰巧是“剩少量”或“剩一半左右”饭的概率多大;(4)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?【考点】条形统计图;用样本估计总体;扇形统计图;概率公式.【分析】(1)根据“没有剩”的人数除以“没有剩”的人数所占的百分比,可得调查的人数,根据“剩大量”的人数除以调查的人数乘以360°,可得答案;(2)根据有理数的减法,可得“剩少量”的人数,根据“剩少量”的人数,可得答案;(3)根据“剩少量”的人数与“剩一半”的人数的和除以调查的人数,可得答案;(4)根据总人数乘以“食用一餐的人数与调查的人数比”,可得答案.【解答】解:(1)这次被调查的同学共有400÷40%=1000人;“剩大量”的扇形圆心角是×360°=54°,故答案为:1000,54°;(2)“剩少量”的人数1000﹣400﹣250﹣150=200人,补充完整;(3)在被调查的学生中随机抽取一名恰巧是“剩少量”或“剩一半左右”饭的概率=;(4)学生一餐浪费的食物可供18000×=3600人食用一餐.23.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小李做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,如表是实验中的一组统计数据:摸球的次数n 100 200 300 500 800 1000 3000摸到白球的次数m 63 124 178 302 481 599 18030.63 0.62 0.593 0.604 0.601 0.599 0.601摸到白球的频率(1)请估计:当实验次数为10000次时,摸到白球的频率将会接近0.6;(精确到0.1)(2)假如你摸一次,你摸到白球的概率P(摸到白球)=0.6;(3)如何通过增加或减少这个不透明盒子内球的具体数量,使得在这个盒子里每次摸到白球的概率为0.5?【考点】利用频率估计概率.【分析】(1)计算出其平均值即可;(2)概率接近于(1)得到的频率;(3)首先确定40个球的颜色,然后使得黑球和白球的数量相等即可确定答案.【解答】解:(1)∵摸到白球的频率为(0.65+0.62+0.593+0.604+0.601+0.599+0.601)÷7≈0.6,∴当实验次数为10000次时,摸到白球的频率将会接近0.6.(2)∵摸到白球的频率为0.6,∴假如你摸一次,你摸到白球的概率P(白球)=0.6.(3)先得到盒子内白球数24,黑球数16;增加8个黑球(或减少8个白球等).24.如图,在▱ABCD中,点E、F是AD、BC的中点,连接BE、DF.(1)求证:BE=DF.(2)若BE平分∠ABC且交边AD于点E,如果AB=6cm,BC=10cm,试求线段DE的长.【考点】平行四边形的判定与性质.【分析】(1)由四边形ABCD是平行四边形,可得AD∥BC,AD=BC,又由点E、F分别是▱ABCD边AD、BC的中点,可得DE=BF,证得四边形BFDE是平行四边形,即可证得结论.(2)由平行线的性质和角平分线得出∠ABE=∠AEB,证出AE=AB=6cm,即可得出结果.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵点E、F分别是▱ABCD边AD、BC的中点,∴DE=AD,BF=BC,∴DE=BF,∴四边形BFDE是平行四边形,∴BE=DF.(2)解:∵AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AE=AB=6cm,∴DE=AD﹣AE=10cm﹣6cm=4cm.25.如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.(1)求证:四边形DBFE是平行四边形;(2)当△ABC满足什么条件时,四边形DBFE是菱形?为什么?【考点】三角形中位线定理;平行四边形的判定;菱形的判定.【分析】(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC,然后根据两组对边分别平行的四边形是平行四边形证明;(2)根据邻边相等的平行四边形是菱形证明.【解答】(1)证明:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,又∵EF∥AB,∴四边形DBFE是平行四边形;(2)解:当AB=BC时,四边形DBFE是菱形.理由如下:∵D是AB的中点,∴BD=AB,∵DE是△ABC的中位线,∴DE=BC,∵AB=BC,∴BD=DE,又∵四边形DBFE是平行四边形,∴四边形DBFE是菱形.26.为了迎接“五•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如表:运动鞋价格甲乙进价(元/双)m m﹣20售价(元/双)240 160已知:用3600元购进甲种运动鞋的数量与用3000元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21600元,且不超过22440元,问该专卖店有多少种进货方案?【考点】分式方程的应用;一元一次不等式组的应用.【分析】(1)用总价除以单价表示出购进鞋的数量,根据两种鞋的数量相等列出方程求解即可;(2)设购进甲种运动鞋x双,表示出乙种运动鞋双,然后根据总利润列出一元一次不等式,求出不等式组的解集后,再根据鞋的双数是正整数解答即可.【解答】.解:(1)依题意得,整理得,3600(m﹣2)=3000m,解得m=120,经检验,m=120是原分式方程的解,所以,m=120;(2)设购进甲种运动鞋x双,则乙种运动鞋双,根据题意得,,不等式组的解集是160≤x≤174,∵x是正整数,174﹣160+1=15,∴共有15种方案.27.如图,在△ABC中,∠C=90°,AC=BC,AB=20,点P在AB上,AP=6.点E以每秒2个单位长度的速度,从点P出发沿线段PA向点A作匀速运动,点F同时以每秒1个单位长度的速度,从点P出发沿线段PB向点B作匀速运动,点E到达点A后立刻以原速度沿线段AB向点B运动,点F运动到点B时,点E随之停止.在点E、F运动过程中,以EF 为边作正方形EFGH,使它与△ABC在线段AB的同侧.设E、F运动的时间为t秒(t>0),正方形EFGH与△ABC重叠部分的面积为S.(1)当t=1时,正方形EFGH 的边长是 3 ;当t=4时,正方形EFGH 的边长是 8 ; (2)当0<t ≤3时,求S 与t 的函数关系式.【考点】相似形综合题;等腰三角形的判定与性质;正方形的性质.【分析】(1)当t=1时,根据PE=2t ,PF=t 即可求出EF 的值,当t=4时,点E 运动到点A 后返回,PE=2AP ﹣2t ,PF=t ,由此即可求出EF 的值;(2)当点H 在线段AC 上时,可求出t=,可分两种情况讨论:当0<t ≤时,S=S 正方形EFGH =EF 2,只需用t 的代数式表示出EF 即可解决问题;当<t ≤3时,S=S 五边形EFGMN =S 正方形EFGH ﹣S △MHN =EF 2﹣HN •HM ,只需用t 的代数式分别表示出EF 、HN 、HM 即可解决问题.【解答】解:(1)当t=1时,PE=2×1=2,PF=1×1=1,EF=EP+PF=2+1=3.当t=4时,PE=12﹣2×4=4,PF=1×4=4,EF=EP+PF=4+4=8.故答案分别为:3、8;(2)当点H 在线段AC 上时,则有AE=HE=EF ,即6﹣2t=3t ,解得:t=.①当0<t ≤时,EF=EP+PF=2t+t=3t ,则S=9t 2;②当<t ≤3时,∵∠C=90°,AC=BC,∴∠A=45°.∵四边形EFGH是正方形,∴HE=EF=3t,∠H=∠HEF=90°,∴∠ANE=90°﹣45°=45°,∴∠ANE=∠A=45°,∴NE=AE=AP﹣EP=6﹣2t,∴HN=HE﹣NE=3t﹣(6﹣2t)=5t﹣6.∵∠HNM=∠ANE=45°,∴∠HMN=90°﹣45°=45°,∴∠HMN=∠HNM=45°,∴HM=HN=5t﹣6,∴S=S﹣S△NHM正方形EFGH=(3t)2﹣(5t﹣6)2=﹣t2+30t﹣18.综上所述:S与t的函数关系式为S=.28.如图,在平面直角坐标系中,直线y=﹣x+b分别与x轴、y轴交于点A、B,且点A 的坐标为(4,0),四边形ABCD是正方形.(1)填空:b=3;(2)求点D的坐标;(3)点M是线段AB上的一个动点(点A、B除外),试探索在x上方是否存在另一个点N,使得以O、B、M、N为顶点的四边形是菱形?若不存在,请说明理由;若存在,请求出点N的坐标.。

江苏省无锡市新区八年级数学上学期期中试题(含解析) 苏科版-苏科版初中八年级全册数学试题

某某省某某市新区2015-2016学年八年级数学上学期期中试题一、选择题(本大题共8小题,每小题3分,共24分.)1.如图,下列图案是我国几家银行的标志,其中轴对称图形有( )A.1个B.2个C.3个D.4个2.在下列各组条件中,不能说明△ABC≌△DEF的是( )A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF3.下列语句中正确的有( )句①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③一个轴对称图形不一定只有一条对称轴;④两个轴对称图形的对应点一定在对称轴的两侧.A.1 B.2 C.3 D.44.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在( )A.△ABC 的三条中线的交点B.△ABC 三边的中垂线的交点C.△ABC 三条角平分线的交点D.△ABC 三条高所在直线的交点5.等腰三角形的一个角是80°,则它顶角的度数是( )A.80° B.80°或20°C.80°或50°D.20°6.若一个直角三角形的两边长分别为3和4,则它的第三边的平方为( )A.25 B.7 C.25或16 D.25或77.在数学活动课上,小明提出这样一个问题:∠B=∠C=90°,E是BC的中点,DE平分∠ADC,如图,则下列说法正确的有几个,大家一起热烈地讨论交流,小英第一个得出正确答案,是( )(1)AE平分∠DAB;(2)△EBA≌△DCE;(3)AB+CD=AD;(4)AE⊥DE;(5)AB∥CD.A.1个B.2个C.3个D.4个8.如图,在第1个△ABA1中,∠B=52°,AB=A1B,在A1B上取一点C,延长AA1到A2,使得A1A2=A1C;在A2C上取一点D,延长A1A2到A3,使得A2A3=A2D;…,按此作法进行下去,第2014个三角形的底角的度数为( )A.B.C.D.二、填空题(本大题共11小题,每题2分,共22分)9.若等腰三角形的两条边长分别为7cm和14cm,则它的周长为__________cm.10.直角三角形两条直角边的长分别为5、12,则斜边长为__________,斜边上的高为__________.11.在△ABC中,∠A=50°,当∠B的度数=__________时,△ABC是等腰三角形.12.如图,AB∥DC,请你添加一个条件使得△ABD≌△CDB,可添条件是__________.(添一个即可)13.如图,△OAD≌△OBC,且∠O=70°,∠AEB=100°,则∠C=__________°.14.如图,已知△ABC中,AB=AC,AB边上的垂直平分线DE交AC于点E,D为垂足,若∠ABE:∠EBC=2:1,则∠A=__________.15.如图,一块长方体砖宽AN=5cm,长ND=10cm,CD上的点B距地面的高BD=8cm,地面上A处的一只蚂蚁到B处吃食,需要爬行的最短路径是__________cm.16.如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为__________.17.△ABC的周长为60,∠A和∠B的平分线相交于点P,若点P到边AB的距离为10,则△ABC 的面积为__________.18.如图,E为正方形ABCD边AB上一点,BE=3AE=3,P为对角线BD上一个动点,则PA+PE 的最小值是__________.19.如图:已知在Rt△ABC中,∠C=90°,∠A=30°,在直线AC上找点P,使△ABP是等腰三角形,则∠APB的度数为__________.三、解答题(本大题共7小题,共54分)20.如图,方格纸上画有AB、CD两条线段,请你在图中添上一条线段,使图中的3条线段组成一个轴对称图形.(不写作法).21.如图,校园有两条路OA、OB,在交叉路口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置P,简要说明理由.22.如图,五边形ABCDE中,BC=DE,AE=DC,∠C=∠E,DM⊥AB于M,试说明M是AB中点.23.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,(1)求证:AD平分∠BAC;(2)已知AC=20,BE=4,求AB的长.24.如图:E在△ABC的AC边的延长线上,D点在AB边上,DE交BC于点F,DF=EF,BD=CE,过D作DG∥AC交BC于G.求证:(1)△GDF≌△CEF;(2)△ABC是等腰三角形.25.把一X长方形纸片按如图方式折叠,使顶点B和点D重合,折痕为EF.若AB=3cm,BC=5cm,求:(1)DF的长;(2)重叠部分△DEF的面积.26.已知,点P是直角三角形ABC斜边AB上一动点(不与A,B重合),分别过A,B向直线CP作垂线,垂足分别为E,F,Q为斜边AB的中点.(1)如图1,当点P与点Q重合时,AE与BF的位置关系是__________,QE与QF的数量关系式__________;(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.2015-2016学年某某省某某市新区八年级(上)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分.)1.如图,下列图案是我国几家银行的标志,其中轴对称图形有( )A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此可知只有第三个图形不是轴对称图形.【解答】解:根据轴对称图形的定义:第一个图形和第二个图形有2条对称轴,是轴对称图形,符合题意;第三个图形找不到对称轴,则不是轴对称图形,不符合题意.第四个图形有1条对称轴,是轴对称图形,符合题意;轴对称图形共有3个.故选:C.【点评】本题考查了轴对称与轴对称图形的概念.轴对称的关键是寻找对称轴,两边图象折叠后可重合.2.在下列各组条件中,不能说明△ABC≌△DEF的是( )A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF【考点】全等三角形的判定.【分析】根据题目所给的条件结合判定三角形全等的判定定理分别进行分析即可.【解答】解:A、AB=DE,∠B=∠E,∠C=∠F,可以利用AAS定理证明△ABC≌△DEF,故此选项不合题意;B、AC=DF,BC=EF,∠A=∠D不能证明△ABC≌△DEF,故此选项符合题意;C、AB=DE,∠A=∠D,∠B=∠E,可以利用ASA定理证明△ABC≌△DEF,故此选项不合题意;D、AB=DE,BC=EF,AC=DF可以利用SSS定理证明△ABC≌△DEF,故此选项不合题意;故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.3.下列语句中正确的有( )句①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③一个轴对称图形不一定只有一条对称轴;④两个轴对称图形的对应点一定在对称轴的两侧.A.1 B.2 C.3 D.4【考点】轴对称的性质.【分析】认真阅读4个小问题提供的已知条件,根据轴对称的性质,对题中条件进行一一分析,得到正确选项.【解答】解:①关于一条直线对称的两个图形一定能重合,正确;②两个能重合的图形全等,但不一定关于某条直线对称,错误;③一个轴对称图形不一定只有一条对称轴,正确;④两个轴对称图形的对应点不一定在对称轴的两侧,还可以在对称轴上,错误.故选B.【点评】本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,找着每个问题的正误的具体原因是正确解答本题的关键.4.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在( )A.△ABC 的三条中线的交点B.△ABC 三边的中垂线的交点C.△ABC 三条角平分线的交点D.△ABC 三条高所在直线的交点【考点】三角形的内切圆与内心.【分析】由于凉亭到草坪三条边的距离相等,所以根据角平分线上的点到边的距离相等,可知是△ABC三条角平分线的交点.由此即可确定凉亭位置.【解答】解:∵凉亭到草坪三条边的距离相等,∴凉亭选择△ABC三条角平分线的交点.故选C.【点评】此题主要考查了线段的垂直平分线的性质在实际生活中的应用.主要利用了到线段的两个端点的距离相等的点在这条线段的垂直平分线上.5.等腰三角形的一个角是80°,则它顶角的度数是( )A.80° B.80°或20°C.80°或50°D.20°【考点】等腰三角形的性质.【专题】分类讨论.【分析】分80°角是顶角与底角两种情况讨论求解.【解答】解:①80°角是顶角时,三角形的顶角为80°,②80°角是底角时,顶角为180°﹣80°×2=20°,综上所述,该等腰三角形顶角的度数为80°或20°.故选:B.【点评】本题考查了等腰三角形两底角相等的性质,难点在于要分情况讨论求解.6.若一个直角三角形的两边长分别为3和4,则它的第三边的平方为( )A.25 B.7 C.25或16 D.25或7【考点】勾股定理.【分析】分两种情况:①当3和4为两条直角边长时;②当4为斜边长时;由勾股定理求出第三边长的平方即可.【解答】解:分两种情况:①当3和4为两条直角边长时,由勾股定理得:第三边长的平方=斜边长的平方=32+42=25;②当4为斜边长时,第三边长的平方=42﹣32=7;综上所述:第三边长的平方是7或25;故选:D.【点评】本题考查了勾股定理;熟练掌握勾股定理是解决问题的关键,注意分清斜边和直角边长.7.在数学活动课上,小明提出这样一个问题:∠B=∠C=90°,E是BC的中点,DE平分∠ADC,如图,则下列说法正确的有几个,大家一起热烈地讨论交流,小英第一个得出正确答案,是( )(1)AE平分∠DAB;(2)△EBA≌△DCE;(3)AB+CD=AD;(4)AE⊥DE;(5)AB∥CD.A.1个B.2个C.3个D.4个【考点】全等三角形的判定与性质;平行线的性质.【分析】此题可以通过作辅助线来得解,取AD的中点F,连接EF.根据平行线的性质可证得(1)(4)(5),根据梯形中位线定理可证得(3)正确.根据全等三角形全等的判定可证得(2)的正误,即可得解.【解答】解:如图:取AD的中点F,连接EF.∵∠B=∠C=90°,∴AB∥CD;[结论(5)]∵E是BC的中点,F是AD的中点,∴EF∥AB∥CD,2EF=AB+CD(梯形中位线定理)①;∴∠CDE=∠DEF(两直线平等,内错角相等),∵DE平分∠ADC,∴∠CDE=∠FDE=∠DEF,∴DF=EF;∵F是AD的中点,∴DF=AF,∴AF=DF=EF②,由①得AF+DF=AB+CD,即AD=AB+CD;[结论(3)]由②得∠FAE=∠FEA,由AB∥EF可得∠EAB=∠FEA,∴∠FAE=∠EAB,即EA平分∠DAB;[结论(1)]由结论(1)和DE平分∠ADC,且DC∥AB,可得∠EDA+∠DAE=90°,则∠DEA=90°,即AE⊥DE;[结论(4)].由以上结论及三角形全等的判定方法,无法证明△EBA≌△DCE.正确的结论有4个,故选D.【点评】本题考查了平行线的判定及性质、梯形中位线定理、等腰三角形的性质、全等三角形的判定等知识点,是一道难度较大的综合题型.8.如图,在第1个△ABA1中,∠B=52°,AB=A1B,在A1B上取一点C,延长AA1到A2,使得A1A2=A1C;在A2C上取一点D,延长A1A2到A3,使得A2A3=A2D;…,按此作法进行下去,第2014个三角形的底角的度数为( )A.B.C.D.【考点】等腰三角形的性质.【专题】规律型.【分析】先根据等腰三角形的性质求出第1个三角形的底角即∠BA1A的度数,再根据三角形外角的性质及等腰三角形的性质分别求出第2、3、4个三角形的底角即∠CA2A1,∠DA3A2及∠EA4A3的度数,找出规律即可得出第2014个三角形的底角的度数.【解答】解:∵在△ABA1中,∠B=52°,AB=A1B,∴∠BA1A==,∵A1A2=A1C,∠B A1A是△A1A2C的外角,∴∠CA2A1=∠BA1A=;同理可得,∠DA3A2=,∠EA4A3=,∴第2014个三角形的底角的度数为.故选C.【点评】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠CA2A1,∠DA3A2及∠EA4A3的度数,进而找出规律是解答此题的关键.二、填空题(本大题共11小题,每题2分,共22分)9.若等腰三角形的两条边长分别为7cm和14cm,则它的周长为35cm.【考点】等腰三角形的性质;三角形三边关系.【分析】题目给出等腰三角形有两条边长为7cm和14cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:①14cm为腰,7cm为底,此时周长为14+14+7=35cm;②14cm为底,7cm为腰,则两边和等于第三边无法构成三角形,故舍去.故其周长是35cm.故答案为:35.【点评】此题主要考查学生对等腰三角形的性质及三角形的三边关系的掌握情况.已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.10.直角三角形两条直角边的长分别为5、12,则斜边长为13,斜边上的高为.【考点】勾股定理.【分析】可先用勾股定理求出斜边长,然后再根据直角三角形面积的两种公式求解即可.【解答】解:由勾股定理可得:AB2=52+122,则AB=13,直角三角形面积S=×5×12=×13×CD,可得:斜边的高CD=.故答案为:13,.【点评】本题考查勾股定理及直角三角形面积公式的综合运用,解答本题的关键是熟练掌握勾股定理,此题难度不大.11.在△ABC中,∠A=50°,当∠B的度数=50°或65°或80°时,△ABC是等腰三角形.【考点】等腰三角形的判定;三角形内角和定理.【专题】分类讨论.【分析】由已知条件,根据题意,分两种情况讨论:①∠A是顶角;②∠A是底角,③∠A=∠C=50°,利用三角形的内角和进行求解.【解答】解:①∠A是顶角,∠B=(180°﹣∠A)÷2=65°;②∠A是底角,∠B=∠A=50°.③∠A是底角,∠A=∠C=50°,则∠B=180°﹣50°×2=80°,∴当∠B的度数为50°或65°或80°时,△ABC是等腰三角形.故答案为:50°或65°或80°.【点评】本题考查了等腰三角形的判定及三角形的内角和定理;分情况讨论是正确解答本题的关键.12.如图,AB∥DC,请你添加一个条件使得△ABD≌△CDB,可添条件是AB=CD等(答案不唯一).(添一个即可)【考点】全等三角形的判定.【专题】开放型.【分析】由已知二线平行,得到一对角对应相等,图形中又有公共边,具备了一组边和一组角对应相等,还缺少边或角对应相等的条件,结合判定方法及图形进行选择即可.【解答】解:∵AB∥DC,∴∠ABD=∠CDB,又BD=BD,①若添加AB=CD,利用SAS可证两三角形全等;②若添加AD∥BC,利用ASA可证两三角形全等.(答案不唯一)故填AB=CD等(答案不唯一)【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.13.如图,△OAD≌△OBC,且∠O=70°,∠AEB=100°,则∠C=15°.【考点】全等三角形的性质.【分析】根据全等三角形的性质求出∠C=∠D,根据三角形的外角性质求出∠CAE=∠O+∠D=∠O+∠C,推出∠AEB=∠C+∠CAE=∠C+∠O+∠C,代入求出即可.【解答】解:∵△OAD≌△OBC,∴∠C=∠D,∵∠CAE=∠O+∠D=∠O+∠C,∴∠AEB=∠C+∠CAE=∠C+∠O+∠C,∵∠O=70°,∠AEB=100°,∴100°=70°+2∠C,∴∠C=15°,故答案为:15.【点评】本题考查了全等三角形的性质,三角形的外角性质的应用,解此题的关键是求出∠C=∠D和推出∠AEB=∠O+2∠C.14.如图,已知△ABC中,AB=AC,AB边上的垂直平分线DE交AC于点E,D为垂足,若∠ABE:∠EBC=2:1,则∠A=45°.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】利用线段垂直平分线的性质可求得∠A=∠ABE,结合等腰三角形可求得∠C=∠ABC,结合条件可得到∠A和∠C的关系,在△ABC中利用三角形内角和可求得∠A.【解答】解:∵AB=AC,∴∠ABC=∠C,∵E在线段AB的垂直平分线上,∴EA=EB,∴∠ABE=∠A=2∠EBC,∴∠ABC=∠ABE+∠EBC=∠A+∠A,∵∠A+∠ABC+∠C=180°,∴∠A+2(∠A+∠A)=180°,∴∠A=45°,故答案为:45°.【点评】本题主要考查线段垂直平分线的性质及等腰三角形的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.注意三角形内角和定理的应用.15.如图,一块长方体砖宽AN=5cm,长ND=10cm,CD上的点B距地面的高BD=8cm,地面上A处的一只蚂蚁到B处吃食,需要爬行的最短路径是17cm.【考点】平面展开-最短路径问题.【分析】要求不在同一平面内的两点间的最短距离,首先要把两点所在的两个平面展开到一个平面内,然后根据题意确定数据,再根据勾股定理即可求解.【解答】解:①如图1所示,连接AB,则AB的长即为A处到B处的最短路程.在Rt△ABD中,∵AD=AN+DN=5+10=15cm,BD=8cm,∴AB===17(cm).②如图2所示,AB===(cm),∵>17,∴需要爬行的最短路径是17cm.故答案为:17.【点评】本题的是平面展开﹣最短路径问题,解答此类问题时要先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.16.如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为4.【考点】全等三角形的判定与性质.【专题】常规题型.【分析】易证BD=AD,即可证明△BDF≌△ADC,即可求得DF=CD.【解答】解:∵∠ABC=45°,AD⊥BC,∴BD=AD,∵∠CAD+∠AFE=90°,∠CAD+∠C=90°,∠AFE=∠BFD,∴∠AFE=∠C,在△BDF和△ADC中,,∴△BDF≌△ADC(ASA),∴DF=CD=4,故答案为4.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质.17.△ABC的周长为60,∠A和∠B的平分线相交于点P,若点P到边AB的距离为10,则△ABC 的面积为300.【考点】角平分线的性质.【分析】作出图形,过点P作PD⊥AB于D,PE⊥BC于E,PF⊥AC于F,根据角平分线上的点到角的两边的距离相等可得PD=PE=PF,然后根据三角形的面积公式列式进行计算即可得解.【解答】解:如图,过点P作PD⊥AB于D,PE⊥BC于E,PF⊥AC于F,∵∠A和∠B的平分线相交于点P,∴PD=PE=PF=10,∵△ABC的周长为60,∴△ABC的面积=AB•PD+BC•PE+AC•PF=PD(AB+BC+AC)=×10×60=300.故答案为:300.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,三角形的面积,作辅助线,得到点P到三边的距离相等是解题的关键.18.如图,E为正方形ABCD边AB上一点,BE=3AE=3,P为对角线BD上一个动点,则PA+PE 的最小值是5.【考点】轴对称-最短路线问题.【专题】动点型.【分析】连接EC,则EC的长就是PA+PE的最小值.【解答】解:连接EC.∵BE=3AE=3,∴AB=4,则BC=AB=4,在直角△BCE中,CE===5.故答案是:5.【点评】本题考查了轴对称,理解EC的长是PA+PE的最小值是关键.19.如图:已知在Rt△ABC中,∠C=90°,∠A=30°,在直线AC上找点P,使△ABP是等腰三角形,则∠APB的度数为15°、30°、75°、120°.【考点】等腰三角形的判定.【分析】分别根据当AB=BP1时,当AB=AP3时,当AB=AP2时,当AP4=BP4时,求出答案即可.【解答】解:∵在Rt△ABC中,∠C=90°,∠A=30°,∴当AB=BP1时,∠BAP1=∠BP1A=30°,当AB=AP3时,∠ABP3=∠AP3B=∠BAC=×30°=15°,当AB=AP2时,∠ABP2=∠AP2B=×(180°﹣30°)=75°,当AP4=BP4时,∠BAP4=∠ABP4,∴∠AP4B=180°﹣30°×2=120°,∴∠APB的度数为:15°、30°、75°、120°.故答案为:15°、30°、75°、120°.【点评】此题主要考查了等腰三角形的判定,利用分类讨论得出是解题关键.三、解答题(本大题共7小题,共54分)20.如图,方格纸上画有AB、CD两条线段,请你在图中添上一条线段,使图中的3条线段组成一个轴对称图形.(不写作法).【考点】利用轴对称设计图案.【分析】直接利用轴对称图形的性质分别判定得出答案.【解答】解:如图所示:线段AE,EF即为所求.【点评】此题主要考查了利用轴对称设计图案,正确掌握轴对称图形的性质是解题关键.21.如图,校园有两条路OA、OB,在交叉路口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置P,简要说明理由.【考点】作图—应用与设计作图.【专题】作图题.【分析】到C和D的距离相等,应在线段CD的垂直平分线上;到路AO、OB的距离相等,应在路OA、OB夹角的平分线上,那么灯柱的位置应为这两条直线的交点.【解答】解:灯柱的位置P在∠AOB的平分线OE和CD的垂直平分线的交点上.∵P在∠AOB的平分线上,∴到两条路的距离一样远;∵P在线段CD的垂直平分线上,∴P到C和D的距离相等,符合题意.【点评】考查学生对角平分线及线段垂直平分线的理解;用到的知识点为:与一条线段两个端点距离相等的点,则这条线段的垂直平分线上;到一个角两边距离相等的点,在这个角的平分线上.22.如图,五边形ABCDE中,BC=DE,AE=DC,∠C=∠E,DM⊥AB于M,试说明M是AB中点.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】证明题.【分析】连接AD、BD.易证△ADE≌△DBC,再根据全等三角形的性质可得AD=DB,即△ABD 是等腰三角形,而DM⊥AB,利用等腰三角形三线合一定理可得M是AB中点.【解答】证明:连接AD、BD,∵,∴△ADE≌△DBC(SAS),∴AD=BD,又∵DM⊥AB,∴M是AB的中点.【点评】本题考查了全等三角形的判定和性质及等腰三角形三线合一定理;作出辅助线是正确解答本题的关键.23.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,(1)求证:AD平分∠BAC;(2)已知AC=20,BE=4,求AB的长.【考点】全等三角形的判定与性质;角平分线的性质.【分析】(1)求出∠E=∠DFC=90°,根据全等三角形的判定定理得出Rt△BED≌Rt△CFD,推出DE=DF,根据角平分线性质得出即可;(2)根据全等三角形的性质得出AE=AF,BE=CF,即可求出答案.【解答】(1)证明:∵DE⊥AB,DF⊥AC,∴∠E=∠DFC=90°,∴在Rt△BED和Rt△CFD中∴Rt△BED≌Rt△CFD(HL),∴DE=DF,∵DE⊥AB,DF⊥AC,∴AD平分∠BAC;(2)解:∵Rt△BED≌Rt△CFD,∴AE=AF,CF=BE=4,∵AC=20,∴AE=AF=20﹣4=16,∴AB=AE﹣BE=16﹣4=12.【点评】本题考查了全等三角形的性质和判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等,对应角相等.24.如图:E在△ABC的AC边的延长线上,D点在AB边上,DE交BC于点F,DF=EF,BD=CE,过D作DG∥AC交BC于G.求证:(1)△GDF≌△CEF;(2)△ABC是等腰三角形.【考点】全等三角形的判定与性质;平行线的性质;等腰三角形的判定与性质.【专题】证明题.【分析】(1)利用平行线的性质得出∠GDF=∠CEF进而利用ASA得出△GDF≌△CEF;(2)利用全等三角形的性质以及等腰三角形的判定得出即可.【解答】证明:(1)∵DG∥AC∴∠GDF=∠CEF(两直线平行,内错角相等),在△GDF和△CEF中,∴△GDF≌△CEF(ASA);(2)由(1)△GDF≌△CEF得DG=CE又∵BD=CE,∴BD=DG,∴∠DBG=∠DGB,∵DG∥AC,∴∠DGB=∠ACB,∴∠ABC=∠ACB,∴△ABC是等腰三角形.【点评】本题考查了全等三角形的判定与性质以及等腰三角形的判定,比较简单,判定两三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”,需要熟练掌握.25.把一X长方形纸片按如图方式折叠,使顶点B和点D重合,折痕为EF.若AB=3cm,BC=5cm,求:(1)DF的长;(2)重叠部分△DEF的面积.【考点】翻折变换(折叠问题).【分析】(1)根据折叠的性质知:BF=DF,用DF表示出FC,在Rt△DCF中,利用勾股定理可求得DF的长;(2)作FH⊥AD于点H,求得FH,由折叠的性质和平行线的性质证得∠EFD=∠DEF,得出DE=DF,进一步利用三角形的面积计算公式即可求解.【解答】解:(1)设DF=x,由折叠可知BF=DF=x,∴FC=BC﹣BF=5﹣x,∵四边形ABCD为长方形,∴DC=AB=3,∠C=90°,AD∥BC,在Rt△DCF中,∠C=90°,DF2=DC2+FC2x2=32+(5﹣x)2x=3.4,∴DF=3.4Ccm;(2)作FH⊥AD于点H,则FH=AB=3,由折叠可知,∠EFB=∠EFD,∵AD∥BC,∴∠DEF=∠EFB,∴∠EFD=∠DEF,∴ED=DF=3.4,S△DEF=×DE×FH=×3.4×3=5.1.【点评】此题主要考查了翻折变换的性质,勾股定理等运用,矩形的性质,三角形的面积,掌握折叠的性质得出对应的线段和角相等是解决问题的关键.26.已知,点P是直角三角形ABC斜边AB上一动点(不与A,B重合),分别过A,B向直线CP作垂线,垂足分别为E,F,Q为斜边AB的中点.(1)如图1,当点P与点Q重合时,AE与BF的位置关系是AE∥BF,QE与QF的数量关系式QE=QF;(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.【考点】全等三角形的判定与性质;直角三角形斜边上的中线.【专题】压轴题.【分析】(1)证△BFQ≌△AEQ即可;(2)证△FBQ≌△DAQ,推出QF=QD,根据直角三角形斜边上中线性质求出即可;(3)证△AEQ≌△BDQ,推出DQ=QE,根据直角三角形斜边上中线性质求出即可.【解答】解:(1)AE∥BF,QE=QF,理由是:如图1,∵Q为AB中点,∴AQ=BQ,∵BF⊥CP,AE⊥CP,∴BF∥AE,∠BFQ=∠AEQ=90°,在△BFQ和△AEQ中∴△BFQ≌△AEQ(AAS),∴QE=QF,故答案为:AE∥BF;QE=QF.(2)QE=QF,证明:如图2,延长FQ交AE于D,∵Q为AB中点,∴AQ=BQ,∵BF⊥CP,AE⊥CP,∴BF∥AE,∴∠QAD=∠FBQ,在△FBQ和△DAQ中∴△FBQ≌△DAQ(ASA),∴QF=QD,∵AE⊥CP,∴EQ是直角三角形DEF斜边上的中线,∴QE=QF=Q D,即QE=QF.(3)(2)中的结论仍然成立,证明:如图3,延长EQ、FB交于D,∵Q为AB中点,∴AQ=BQ,∵BF⊥CP,AE⊥CP,∴BF∥AE,∴∠1=∠D,在△AQE和△BQD中,,∴△AQE≌△BQD(AAS),∴QE=QD,∵BF⊥CP,∴FQ是斜边DE上的中线,∴QE=QF.【点评】本题考查了全等三角形的性质和判定,直角三角形斜边上中线性质的应用,注意:①全等三角形的判定定理有SAS,ASA,AAS,SSS,②全等三角形的性质是:全等三角形的对应边相等,对应角相等.。

江苏省无锡市江阴市马镇2015-2016学年八年级上学期12月联考数学试题解析(解析版)

江苏省无锡市江阴市马镇2015-2016学年八年级上学期12月联考数学试题一.选择题(本大题共10小题,每小题3分,共30分)1.【题文】3的算术平方根是( )A .3B .3-C .3±D .9 【答案】A【解析】试题分析:3的算术平方根是3,故选A.考点:算术平方根.【结束】2. 【题文】下列图形中,是轴对称图形的个数是( )A.1B .2C . 3D .4 【答案】C【解析】试题分析:第一个、第三个、第四个图形是轴对称图形,第二个图形不是轴对称图形,故轴对称图形的个数是3个,故选C.考点:轴对称图形.【结束】3.【题文】把π≈3.141 592 6按四舍五入法精确到0.0001的近似值为( )A .3.1415B .3.1416C .3.142D .3.1417 【答案】B【解析】试题分析:π≈3.141 6,故选B.考点:精确度与近似数.【结束】4. 【题文】在101001.0-, 5,72 , 2π- , 0中,无理数的个数有( ) A .1个B .2个C .3个D .4个【答案】B【解析】试题分析:无理数有2,5π-共2个,故选B.考点:有理数与无理数.【结束】 5. 【题文】在平面直角坐标系中,点()1,12+-m 一定在( )A .第一象限 B.第二象限 C.第三象限 D .第四象限【答案】B【解析】试题分析:∵m 2+1>0,∴点(-1,m 2+1)位于的二象限,故选B.考点:象限内点的坐标特征.【结束】6. 【题文】已知等腰三角形的周长为15 cm ,一边长为7 cm ,则该等腰三角形的底边长为( )A. 5 cmB. 3cm 或5 cmC.3 cmD. 1 cm 或7 cm 【答案】D【解析】试题分析:若底边为7,则腰长为4,4,4+4>7,能构成三角形;若腰长为7,则底边长为15-7-7=1,故底边长为7cm 或1cm ,故选D.考点:1.三角形三边关系;2.分类讨论.【结束】7.【题文】 在平面直角坐标系中,将点P (﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P ′的坐标是( )A.(2,4)B.(1,5)C.(1,-3)D.(-5,5)【答案】B【解析】试题分析:由平移规律可得将点P (﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P ′的坐标是(1,5),故选B.考点:点的平移.【结束】8. 【题文】如图,△ABC 中,D 为AB 中点,E 在AC 上,且BE ⊥AC .若DE=10,AE=16,则BE 的长度( )A .10B .11C .12D .13【答案】C【解析】试题分析:延长ED 至点F ,使DF=DE ,连接AF ,则EF=2ED=20,∵AD=BD ,∠BDE=∠ADF ,ED=FD ,∴△BDE ≌△ADF ,∴∠F=∠BED ,BE=AF ,∴AF//BE ,∴∠FAE=∠BEC=90°,∴AF=22AE EF -=221620-=12,∴BE=12,故选C.考点:1.三角形全等的判定和性质;2.勾股定理.【结束】9.【题文】 如图,动点P 从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P 第2013次碰到矩形的边时,点P 的坐标为( )A.(1,4)B.(5,0)C.(6,4)D.(8,3)【答案】D【解析】试题分析:如图,当点P 经过6次反弹后动点回到出发点(0,3),当点P 第6次碰到矩形的边时,点P 的坐标为(0,3);∵2013÷6=335…3,∴当点P第2013次碰到矩形的边时为第336个循环组的第3次反弹,点P的坐标为(8,3).故选D.考点:1.规律性;2.点的坐标.【结束】10.【题文】某仓库调拨一批物资,调进物资共用8小时.调进物资4小时后同时开始调出物资(调进与调出物资的速度均保持不变).该仓库库存物资m(吨)与时间t(小时)之间的函数关系如图所示.则这批物资调出的速度(吨/小时)及从开始调进到全部调出所需要的时间(小时)分别是 ( ) A.10,10 B.25,8.8 C.10,8.8 D.25,9【答案】B【解析】试题分析:调进物资的速度是60÷4=15吨/时,当在第4小时时,库存物资应该有60吨,在第8小时时库存20吨,∴调出速度是60201544-+⨯=25吨/时,∴剩余的20吨完全调出需要20÷25=0.8小时。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年江苏省无锡市江阴市要塞片八年级(上)期中数学试卷一.选择题(本大题共10小题,每题3分,共30分.)1.下列美丽的车标中是轴对称图形的个数有()A.1个B.2个C.3个D.4个2.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB的长度为()A.5 B.6 C.7 D.253.一个等腰三角形的两边长分别是4和9,则它的周长为()A.17 B.20 C.22 D.17或224.下列结论错误的是()A.全等三角形对应边上的中线相等B.两个直角三角形中,两个锐角相等,则这两个三角形全等C.全等三角形对应边上的高相等D.两个直角三角形中,斜边和一个锐角对应相等,则这两个三角形全等5.请仔细观察用直尺和圆规作一个角等于已知角的示意图,请你根据所学的三角形全等有关的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS6.已知△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件不能判断△ABC是直角三角形的是()A.∠A:∠B:∠C=3:4:5 B.a:b:c=5:12:13C.a2=b2﹣c2D.∠A=∠C﹣∠B7.在联合会上,有A、B、C三名选手站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC的()A.三边中线的交点B.三条角平分线的交点C.三边中垂线的交点 D.三边上高的交点8.如图,BD是∠ABC平分线,DE⊥AB于E,AB=36cm,BC=24cm,S△ABC=144cm2,则DE的长是()A.4.8cm B.4.5cm C.4cm D.2.4cm9.在如图的正方形网格上画有两条线段.现在要再画一条,使图中的三条线段组成一个轴对称图形,能满足条件的线段有()A.2条B.3条C.4条D.5条10.如图所示,已知∠AOB=α,在射线OA、OB上分别取点OA1=OB1,连结A1B1,在B1A1、B1B上分别取点A2、B2,使B1B2=B1A2,连结A2B2…按此规律下去,记∠A2B1B2=θ1,∠A3B2B3=θ2,…,∠A n+1B n B n+1=θn,则θ2016﹣θ2015的值为()A.B.C.D.二.填空题(本大题共8小题,每空3分,共24分.)11.正方形是轴对称图形,它共有条对称轴.12.△ABC是等腰三角形,若∠A=80°,则∠B= .13.直角三角形的两直角边的长分别为6cm、8cm,则斜边上高的长是cm.14.如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是(填上你认为适当的一个条件即可).15.如图,长方体的底面边长分别为1cm 和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要cm.16.如图,△OAD≌△OBC,且∠O=70°,∠AEB=100°,则∠C= °.17.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是.18.已知:如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=8,BF=5,则AC的长等于.三.解答题(本大题共7小题,共46分.解答需写出必要的文字说明或演算步骤)19.作图题:(1)如图,在图1所给方格纸中,每个小正方形边长都是1,标号为①②③的三个三角形均为格点三角形(顶点在方格顶点处),请按要求将图2中的指定图形分割成三个三角形,使它们与标号为①②③的三个三角形分别对应全等.(分割线画成实线)(2)如图3,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.①在图中画出与△ABC关于直线L成轴对称的△A′B′C′;②请直线L上找到一点P,使得PC+PB的距离之和最小.20.如图,四边形ABCD中,AB∥CD,AB=CD,A、F、E、C在同一直线上,∠ABE=∠CDF.(1)试说明:△ABE≌△CDF;(2)试说明:AF=CE.21.中菲黄岩岛争端持续,我海监船加大黄岩岛附近海域的巡航维权力度.如图,OA⊥OB,OA=36海里,OB=12海里,黄岩岛位于O点,我国海监船在点B处发现有一不明国籍的渔船,自A点出发沿着AO方向匀速驶向黄岩岛所在地点O,我国海监船立即从B处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C处截住了渔船.(1)请用直尺和圆规作出C处的位置;(2)求我国海监船行驶的航程BC的长.22.如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的一点,(1)试说明:∠EAC=∠B;(2)若AD=10,BD=24,求DE的长.23.如图,△ABC中,AD是边BC上的高,CF是边AB上的中线,且DC=BF,DE⊥CF于E,问E是CF 的中点吗?试说明理由.24.探索研究.请解决下列问题:(1)已知△ABC中,∠A=90°,∠B=67.5°,请画一条直线,把这个三角形分割成两个等腰三角形.(请你选用下面给出的备用图,并把所有不同的分割方法都画出来,图不够可以自己画.只需画图,不必说明理由,但要在图中标出相等两角的度数).(2)已知等腰△ABC中,AB=AC,D为BC上一点,连接AD,若△ABD和△ACD都是等腰三角形,则∠B的度数为(请画出示意图,并标明必要的角度).25.如图,在四边形ABCD中,AD=BC=12,AB=CD,BD=15,点E从D点出发,以每秒4个单位的速度沿D→A→D匀速移动,点F从点C出发,以每秒1个单位的速度沿CB向点B作匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,假设移动时间为t秒.(1)试说明:AD∥BC;(2)在移动过程中,小明发现有△DEG与△BFG全等的情况出现,请你探究这样的情况会出现几次?并分别求出此时的移动时间t和G点的移动距离.2015-2016学年江苏省无锡市江阴市要塞片八年级(上)期中数学试卷参考答案与试题解析一.选择题(本大题共10小题,每题3分,共30分.)1.下列美丽的车标中是轴对称图形的个数有()A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:第1,2,3个图形是轴对称图形,共3个.故选C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB的长度为()A.5 B.6 C.7 D.25【考点】勾股定理.【专题】网格型.【分析】建立格点三角形,利用勾股定理求解AB的长度即可.【解答】解:如图所示:AB==5.故选:A.【点评】本题考查了勾股定理的知识,解答本题的关键是掌握格点三角形中勾股定理的应用.3.一个等腰三角形的两边长分别是4和9,则它的周长为()A.17 B.20 C.22 D.17或22【考点】等腰三角形的性质;三角形三边关系.【分析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:(1)若4为腰长,9为底边长,由于4+4<9,则三角形不存在;(2)若9为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为9+9+4=22.故选C.【点评】本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.4.下列结论错误的是()A.全等三角形对应边上的中线相等B.两个直角三角形中,两个锐角相等,则这两个三角形全等C.全等三角形对应边上的高相等D.两个直角三角形中,斜边和一个锐角对应相等,则这两个三角形全等【考点】全等三角形的判定与性质.【分析】画出图形,根据全等三角形的性质和判定(全等三角形的判定定理有SAS,ASA,AAS,SSS)判断即可.【解答】解:A、∵△ABC≌△DEF,∴AB=DE,∠B=∠E,BC=EF,∵AM是△ABC的中线,DN是△DEF中线,∴BC=2BM,EF=2EN,∴BM=EN,在△ABM和△DEN中∴△ABM≌△DEN(SAS),∴AM=DN,正确,故本选项错误;B、如教师用得含30度的三角板和学生用的含30度的三角板就不全等,错误,故本选项正确;C、∵△ABC≌△DEF,∴AB=DE,∠B=∠E,∵AM是△ABC的高,DN是△DEF的高,∴∠AMB=∠DNE=90°,在△ABM和△DEN中∴△ABM≌△DEN,∴AM=DN,正确,故本选项错误;D、根据AAS即可推出两直角三角形全等,正确,故本选项错误;故选B.【点评】本题考查了全等三角形的性质和判定的应用,全等三角形的判定定理有SAS,ASA,AAS,SSS,直角三角形全等的判定定理除具有定理SAS,ASA,AAS,SSS外,还有HL定理..5.请仔细观察用直尺和圆规作一个角等于已知角的示意图,请你根据所学的三角形全等有关的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS【考点】作图—基本作图;全等三角形的判定与性质.【分析】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,得到三角形全等,由全等得到角相等,是用的全等的性质,全等三角形的对应角相等.【解答】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D'(SSS),则△COD≌△C'O'D',即∠A'O'B'=∠AOB(全等三角形的对应角相等).故选D.【点评】本题考查了全等三角形的判定与性质;由全等得到角相等是用的全等三角形的性质,熟练掌握三角形全等的性质是正确解答本题的关键.6.已知△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件不能判断△ABC是直角三角形的是()A.∠A:∠B:∠C=3:4:5 B.a:b:c=5:12:13C.a2=b2﹣c2D.∠A=∠C﹣∠B【考点】勾股定理的逆定理;三角形内角和定理.【分析】利用直角三角形的定义和勾股定理的逆定理逐项判断即可.【解答】解:A、∵∠A:∠B:∠C=3:4:5,且∠A+∠B+∠C=180°,可求得∠C≠90°,故△ABC不是直角三角形;B、不妨设a=5,b=12,c=13,此时a2+b2=132=c2,即a2+b2=c2,故△ABC是直角三角形;C、由条件可得到a2+c2=b2,满足勾股定理的逆定理,故△ABC是直角三角形;D、由条件∠A=∠C﹣∠B,且∠A+∠B+∠C=180°,可求得∠C=90°,故△ABC是直角三角形;故选A.【点评】本题主要考查直角三角形的判定方法,掌握判定直角三角形的方法是解题的关键,可以利用定义也可以利用勾股定理的逆定理.7.在联合会上,有A、B、C三名选手站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC的()A.三边中线的交点B.三条角平分线的交点C.三边中垂线的交点 D.三边上高的交点【考点】线段垂直平分线的性质.【分析】为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上.【解答】解:∵三角形的三条垂直平分线的交点到中间的凳子的距离相等,∴凳子应放在△ABC的三条垂直平分线的交点最适当.故选:C.【点评】本题主要考查了线段垂直平分线的性质的应用;利用所学的数学知识解决实际问题是一种能力,要注意培养.想到要使凳子到三个人的距离相等是正确解答本题的关键.8.如图,BD是∠ABC平分线,DE⊥AB于E,AB=36cm,BC=24cm,S△ABC=144cm2,则DE的长是()A.4.8cm B.4.5cm C.4cm D.2.4cm【考点】角平分线的性质.【分析】过点D作DF⊥BC交BC的延长线于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△BCD列方程求解即可.【解答】解:如图,过点D作DF⊥BC交BC的延长线于F,∵BD是∠ABC平分线,DE⊥AB于E,∴DE=DF,∵S△ABC=S△ABD+S△BCD,AB=36cm,BC=24cm,∴×36×DE+×24×DF=144,即18DE+12DE=144,解得DE=4.8cm.故选A.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并根据三角形的面积列出方程是解题的关键.9.在如图的正方形网格上画有两条线段.现在要再画一条,使图中的三条线段组成一个轴对称图形,能满足条件的线段有()A.2条B.3条C.4条D.5条【考点】利用轴对称设计图案.【分析】直接利用轴对称图形的性质分别得出符合题意的答案.【解答】解:如图所示:能满足条件的线段有4条.故选:C.【点评】此题主要考查了利用轴对称设计图案,正确利用轴对称图形的性质得出是解题关键.10.如图所示,已知∠AOB=α,在射线OA、OB上分别取点OA1=OB1,连结A1B1,在B1A1、B1B上分别取点A2、B2,使B1B2=B1A2,连结A2B2…按此规律下去,记∠A2B1B2=θ1,∠A3B2B3=θ2,…,∠A n+1B n B n+1=θn,则θ2016﹣θ2015的值为()A.B.C.D.【考点】等腰三角形的性质.【专题】规律型.【分析】根据等腰三角形两底角相等用α表示出∠A1B1O,再根据平角等于180°列式用α表示出θ1,再用θ1表示出θ2,并求出θ2﹣θ1,依此类推求出θ3﹣θ2,…,θ2013﹣θ2012,即可得解.【解答】解:∵OA1=OB1,∠AOB=α,∴∠A1B1O=(180°﹣α),∴(180°﹣α)+θ1=180,整理得,θ1=,∵B1B2=B1A2,∠A2B1B2=θ1,∴∠A2B2B1=(180°﹣θ1),∴(180°﹣θ1)+θ2=180°,整理得θ2==,∴θ2﹣θ1=﹣==,同理可求θ3==,∴θ3﹣θ2=﹣==,…,依此类推,θ2016﹣θ2015=.故选D.【点评】本题考查了等腰三角形两底角相等的性质,图形的变化规律,依次求出相邻的两个角的差,得到分母成2的指数次幂变化,分子不变的规律是解题的关键.二.填空题(本大题共8小题,每空3分,共24分.)11.正方形是轴对称图形,它共有 4 条对称轴.【考点】轴对称图形.【分析】根据对称轴的定义,直接作出图形的对称轴即可.【解答】解:∵如图所示,正方形是轴对称图形,它共有4条对称轴.故答案为:4.【点评】此题主要考查了轴对称图形的定义,根据定义得出个正多边形的对称轴条数是解决问题的关键.12.△ABC是等腰三角形,若∠A=80°,则∠B= 80°或50°或20°.【考点】等腰三角形的性质.【专题】分类讨论.【分析】此题要分三种情况进行讨论:①∠C为顶角;②∠A为顶角,∠B为底角;③∠B为顶角,∠A为底角.【解答】解:∵∠A=80°,△ABC是等腰三角形,∴分三种情况;①当∠C为顶角时,∠B=∠A=80°;②当∠A为顶角时,∠B=(180°﹣80°)÷2=50°;③当∠B为顶角时,∠B=180°﹣80°×2=20°;综上所述:∠B的度数为80°、50°、20°.故答案为:80°或50°或20°.【点评】此题主要考查了等腰三角形的性质、三角形内角和定理;熟练掌握等腰三角形的性质,关键是分三种情况讨论,不要漏解.13.直角三角形的两直角边的长分别为6cm、8cm,则斜边上高的长是 4.8 cm.【考点】勾股定理.【专题】计算题.【分析】先根据勾股定理求出直角三角形的斜边,然后从直角三角形面积的两种求法入手,代入公式后计算即可.【解答】解:∵直角三角形两直角边分别为6cm,8cm,∴斜边长为=10cm.∵直角三角形面积=×一直角边长×另一直角边长=×斜边长×斜边的高,代入题中条件,即可得:斜边高=4.8cm.故答案为:4.8.【点评】本题考查勾股定理及直角三角形面积公式的应用,看清条件即可.14.如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是∠B=∠C (填上你认为适当的一个条件即可).【考点】全等三角形的判定.【专题】开放型.【分析】根据题意,易得∠AEB=∠AEC,又AE公共,所以根据全等三角形的判定方法容易寻找添加条件.【解答】解:∵∠1=∠2,∴∠AEB=∠AEC,又 AE公共,∴当∠B=∠C时,△ABE≌△ACE(AAS);或BE=CE时,△ABE≌△ACE(SAS);或∠BAE=∠CAE时,△ABE≌△ACE(ASA).【点评】此题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.如图,长方体的底面边长分别为1cm 和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要10 cm.【考点】平面展开-最短路径问题.【专题】计算题;压轴题.【分析】要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【解答】解:将长方体展开,连接A、B′,∵AA′=1+3+1+3=8(cm),A′B′=6cm,根据两点之间线段最短,AB′==10cm.故答案为:10.【点评】考查了平面展开﹣最短路径问题,本题就是把长方体的侧面展开“化立体为平面”,用勾股定理解决.16.如图,△OAD≌△OBC,且∠O=70°,∠A EB=100°,则∠C= 15 °.【考点】全等三角形的性质.【分析】根据全等三角形的性质求出∠C=∠D,根据三角形的外角性质求出∠CAE=∠O+∠D=∠O+∠C,推出∠AEB=∠C+∠CAE=∠C+∠O+∠C,代入求出即可.【解答】解:∵△OAD≌△OBC,∴∠C=∠D,∵∠CAE=∠O+∠D=∠O+∠C,∴∠AEB=∠C+∠CAE=∠C+∠O+∠C,∵∠O=70°,∠AEB=100°,∴100°=70°+2∠C,∴∠C=15°,故答案为:15.【点评】本题考查了全等三角形的性质,三角形的外角性质的应用,解此题的关键是求出∠C=∠D和推出∠AEB=∠O+2∠C.17.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是50 .【考点】全等三角形的判定与性质;勾股定理.【专题】计算题.【分析】由AE⊥AB,EF⊥FH,BG⊥AG,可以得到∠EAF=∠ABG,而AE=AB,∠EFA=∠AGB,由此可以证明△EFA≌△ABG,所以AF=BG,AG=EF;同理证得△BGC≌△DHC,GC=DH,CH=BG,故FH=FA+AG+GC+CH=3+6+4+3=16,然后利用面积的割补法和面积公式即可求出图形的面积.【解答】解:∵AE⊥AB且AE=AB,EF⊥FH,BG⊥FH⇒∠FED=∠EFA=∠BGA=90°,∠EAF+∠BAG=90°,∠ABG+∠BAG=90°⇒∠EAF=∠ABG,∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG⇒△EFA≌△ABG∴AF=BG,AG=EF.同理证得△BGC≌△DHC得GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16故S=(6+4)×16﹣3×4﹣6×3=50.故答案为50.【点评】本题考查的是全等三角形的判定的相关知识.作辅助线是本题的关键.18.已知:如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=8,BF=5,则AC的长等于13 .【考点】全等三角形的判定与性质;勾股定理.【分析】根据ASA证得△AFB≌△DFB,得出AB=BD,AF=FD=AD=4,根据勾股定理求得BD,根据三角形面积公式求得AG,然后根据勾股定理即可求得.【解答】解:∵AD⊥BE,∴∠AFB=∠DFB=90°,在△AFB和△DFB中∴△AFB≌△DFB,∴AB=BD,AF=FD=AD=4,∴AB=BD===,∵BD=DC,∴BC=2,作AG⊥BC于G,∵S△ABD=BD•AG=AD•BF,∴AG===,∴DG===,∴CG=+=∴AC===13;故答案为:13.【点评】本题考查了三角形全等的判定和性质,勾股定理的应用,作出辅助线构建直角三角形是解题的关键.三.解答题(本大题共7小题,共46分.解答需写出必要的文字说明或演算步骤)19.作图题:(1)如图,在图1所给方格纸中,每个小正方形边长都是1,标号为①②③的三个三角形均为格点三角形(顶点在方格顶点处),请按要求将图2中的指定图形分割成三个三角形,使它们与标号为①②③的三个三角形分别对应全等.(分割线画成实线)(2)如图3,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.①在图中画出与△ABC关于直线L成轴对称的△A′B′C′;②请直线L上找到一点P,使得PC+PB的距离之和最小.【考点】作图-轴对称变换;轴对称-最短路线问题.【分析】(1)根据图1中三角形的边长将图2中的图形分割即可;(2)①作出各点关于直线l的对称点,再顺次连接各点即可;②连接CB′交直线l于点P,则点P即为所求点.【解答】解:(1)如图2所示;(2)①如图3所示;②如图3,点P即为所求点.【点评】本题考查的是作图﹣轴对称变换,熟知轴对称的性质是解答此题的关键.20.如图,四边形ABCD中,AB∥CD,AB=CD,A、F、E、C在同一直线上,∠ABE=∠CDF.(1)试说明:△ABE≌△CDF;(2)试说明:AF=CE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)由平行线的性质得到∠BAE=∠DAF,又由AB=CD,∠ABE=∠CDF,即可证明△ABC≌△DEF;(2)由△ABC≌△DEF,得到AE=CF,所以AE﹣EF=CF﹣EF,即AF=CE.【解答】解:(1)∵AB∥CD,∴∠BAE=∠DAF,在△ABC和△DEF中,∴△ABC≌△DEF.(2)∵△ABC≌△DEF,∴AE=CF,∴AE﹣EF=CF﹣EF,∴AF=CE.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.21.中菲黄岩岛争端持续,我海监船加大黄岩岛附近海域的巡航维权力度.如图,OA⊥OB,OA=36海里,OB=12海里,黄岩岛位于O点,我国海监船在点B处发现有一不明国籍的渔船,自A点出发沿着AO方向匀速驶向黄岩岛所在地点O,我国海监船立即从B处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C处截住了渔船.(1)请用直尺和圆规作出C处的位置;(2)求我国海监船行驶的航程BC的长.【考点】勾股定理的应用.【分析】(1)由题意得,我海监船与不明渔船行驶距离相等,即在OA上找到一点,使其到A点与B点的距离相等,所以连接AB,作AB的垂直平分线即可.(2)连接BC,利用第(1)题中作图,可得BC=AC.在直角三角形BOC中,利用勾股定理列出方程122+(36﹣BC)2=BC2,解方程即可.【解答】解:(1)作AB的垂直平分线与OA交于点C;(2)连接BC,由作图可得:CD为AB的中垂线,则CB=CA.由题意可得:OC=36﹣CA=36﹣CB.∵OA⊥OB,∴在Rt△BOC中,BO2+OC2=BC2,即:122+(36﹣BC)2=BC2,解得BC=20.答:我国海监船行驶的航程BC的长为20海里.【点评】本题考查了勾股定理的应用以及线段垂直平分线的性质,利用勾股定理不仅仅能求直角三角形的边长,而且它也是直角三角形中一个重要的等量关系.22.如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的一点,(1)试说明:∠EAC=∠B;(2)若AD=10,BD=24,求DE的长.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)由于△ACB与△ECD都是等腰直角三角形,CD=CE,CB=CA,∠B=∠CAB=45°,∠ACB=∠ECD=90°,于是∠ACE+∠ACD=∠ACD+∠BCD,根据等式性质可得∠ACE=∠BCD,利用SAS可证△ACE ≌△BCD,利用全等三角形的对应角相等即可解答;(2)根据△ACE≌△BCD,于是∠EAC=∠B=45°,AE=BD=24,易求∠EAD=90°,再利用勾股定理可求DE=26.【解答】解:(1)∵∠ACB=∠ECD=90°,∴∠ACB﹣∠ACD=∠ECD﹣∠ACD,∴∠ECA=∠DCB,∵△ACB和△ECD都是等腰三角形,∴EC=DC,AC=BC,在△ACE和△BCD中,,∴△ACE≌△BCD,∴∠EAC=∠B.(2)∵△ACE≌△BCD,∴AE=BD=24,∵∠EAC=∠B=45°∴∠EAD=∠EAC+∠CAD=90°,∴在Rt△ADE中,DE2=EA2+AD2,∴DE2=102+242,∴DE=26.【点评】本题考查了全等三角形的判定和性质、勾股定理,解题的关键是先证明△ACE≌△BCD,从而求出AE,以及∠EAD=90°.23.如图,△ABC中,AD是边BC上的高,CF是边AB上的中线,且DC=BF,DE⊥CF于E,问E是CF 的中点吗?试说明理由.【考点】直角三角形斜边上的中线;等腰三角形的判定与性质.【分析】连接DF,根据直角三角形斜边上的中线等于斜边的一半可得DF=BF=AB,然后求出CD=DF,再根据等腰三角形三线合一的性质证明即可.【解答】解:E是CF的中点,理由如下:如图,连接DF,∵AD是边BC上的高,CF是边AB上的中线,∴DF=BF=AB,∵DC=BF,∴CD=DF,∵DE⊥CF,∴E是CF的中点.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记各性质是解题的关键.24.探索研究.请解决下列问题:(1)已知△ABC中,∠A=90°,∠B=67.5°,请画一条直线,把这个三角形分割成两个等腰三角形.(请你选用下面给出的备用图,并把所有不同的分割方法都画出来,图不够可以自己画.只需画图,不必说明理由,但要在图中标出相等两角的度数).(2)已知等腰△ABC中,AB=AC,D为BC上一点,连接AD,若△ABD和△ACD都是等腰三角形,则∠B的度数为45°或36°(请画出示意图,并标明必要的角度).【考点】作图—应用与设计作图;等腰三角形的判定与性质.【分析】(1)由∠A=90°,∠B=67.5°,则∠C=22.5°,要使分割成的两个三角形为等腰三角形,必须要得出一个角为22.5°,或另一个角为67.5,因此需要把90°的角或67.5°的角得出22.5,从这两个角入手分出22.5°的角解决问题;(2)要使分成的△ABD和△ACD都是等腰三角形,首先想到等腰直角三角形,再次想到“黄金三角形”,由此得出答案即可.【解答】解:(1)如图,(2)如图,【点评】此题考查作图﹣应用与设计作图,掌握等腰三角形的性质和特殊三角形的性质是解决问题的关键.25.如图,在四边形ABCD中,AD=BC=12,AB=CD,BD=15,点E从D点出发,以每秒4个单位的速度沿D→A→D匀速移动,点F从点C出发,以每秒1个单位的速度沿CB向点B作匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,假设移动时间为t秒.(1)试说明:AD∥BC;(2)在移动过程中,小明发现有△DEG与△BFG全等的情况出现,请你探究这样的情况会出现几次?并分别求出此时的移动时间t和G点的移动距离.【考点】四边形综合题.【分析】(1)由AD=BC=12,AB=CD,BD为公共边,所以可证得△ABD≌△CDB,所以可知∠ADB=∠CBD,所以AD∥BC;(2)设运动时间为t,设G点的移动距离为y,根据全等三角形的性质进行解答即可.【解答】(1)证明:在△ABD和△CDB中,,∴△ABD≌△CDB,∴∠ADB=∠CBD,∴AD∥BC,(2)解:设G点的移动距离为y,∵AD∥BC,∴∠EDG=∠FBG,若△DEG与△BFG全等,则有△DEG≌△BFG或△DGE≌△BFG,可得:DE=BF,DG=BG;或DE=BG,DG=BF,①当E由D到A,即0<t≤3时,有4t=12﹣t,解得:t=2.4,∵y=15﹣y,∴y=7.5,或4t=y,解得:t=1,∵12﹣t=15﹣y,∴y=4,②当F由A返回到D,即3<t≤6时,有24﹣4t=12﹣t,解得:t=4,∵y=15﹣y,∴y=7.5,或24﹣4t=y,解得:t=4.2∵12﹣t=15﹣y,y=7.2,综上可知共有三次,移动的时间分别为1秒、2.4秒、4秒、4.2秒,移动的距离分别为4、7.5、7.5、7.2.【点评】本题主要考查三角形全等的判定和性质,平行线的判定,根据全等三角形的性质列方程求解,第(2)题解题的关键是利用好三角形全等解得.。

相关文档
最新文档