数字信号处理 第三版第2章_4
数字信号处理西安电子高西全丁美玉第三版课后习题答案全1-7章

第 1 章 时域离散信号和时域离散系统
故该系统是非时变系统。 因为 y(n)=T[ax1(n)+bx2(n) =ax1(n)+bx2(n)+2[ax1(n-1)+bx2(n-1)] +3[ax1(n-2)+bx2(n-2)] T[ax1(n)]=ax1(n)+2ax1(n-1)+3ax1(n-2) T[bx2(n)]=bx2(n)+2bx2(n-1)+3bx2(n-2)
第 1 章 时域离散信号和时域离散系统
(3) 这是一个延时器, 延时器是线性非时变系统, 下面证明。 令输入为
输出为
x(n-n1)
y′(n)=x(n-n1-n0) y(n-n1)=x(n-n1-n0)=y′(n) 故延时器是非时变系统。 由于
T[ax1(n)+bx2(n)]=ax1(n-n0)+bx2(n-n0) =aT[x1(n)]+bT[x2(n)]
=aT[x1(n)]+mbT0 [x2(n)]
故系统是线性系统。
n
m0
第 1 章 时域离散信号和时域离散系统
(8) y(n)=x(n) sin(ωn)
令输入为
输出为
x(n-n0)
y′(n)=x(n-n0) sin(ωn) y(n-n0)=x(n-n0) sin[ω(n-n0)]≠y′(n) 故系统不是非时变系统。 由于
(5) 画x3(n)时, 先画x(-n)的波形(即将x(n)的波形以纵轴为中心翻转180°), 然后再右移2位, x3(n)波形如题2解图(四)所示。
第 1 章 时域离散信号和时域离散系统
题2解图(一)
第 1 章 时域离散信号和时域离散系统
DSP原理与应用 第三版

运算速度 以上。TMS320C6201执行1024点复数FFT运算时间只有66uS。
高度集成化
集滤波、A/D、D/A、ROM、RAM和DSP内核于一体的
运算精度和动态范围
模拟混合式DSP芯片已有较大的发展和应用。 DSP字长从8位已增到64位,累加器长度也增到40位,
开发工具
提高了运算精度。同时,采用超长字指令字(VLIW)结构和
2. TMS320C55x概况
目前C55x系列芯片主要有:
C5501/2(主频300MHz, McBSP,HPI接口), C5503/6/7/9A (主频200MHz, McBSP, HPI,
优点:成本低廉 缺点:性能差、
速度慢
DSP处理器
优点:速度高、大规模生产成本低; 缺点:开发成本高、通用性差。
针对数字信号处理的要求而设计,是数 字信号处理系统设计中采用的主流芯片。 优点:灵活、高速、便于嵌入式应用
7
1.2 DSP芯片简介
1.2.1 DSP芯片的发展历史、现状和趋势 1.2.2 DSP芯片的特点 1.2.3 DSP芯片的分类 1.2.4 DSP芯片的应用领域 1.2.5 选择DSP芯片考虑的因素
可同时进行取指令和多个数据存取操作,使CPU
在一个机器周期内可多次对程序空间和数据空
采用哈佛结构 间进行访问, 大大地提高了DSP的运行速度。
采用多总线结构
T1
T2
T3
T4
时钟
采用流水线结构
取指令
N
N+1
N+2
N+3
指令译码
N-1
N
N+1
N+2
配有专用的硬件乘法-累加器 取操作数 N-2
数字信号处理课后答案+第4章(高西全丁美玉第三版)

6*. 按照下面的IDFT算法编写MATLAB语言 IFFT程 序, 其中的FFT部分不用写出清单, 可调用fft函数。 并分 别对单位脉冲序列、 矩形序列、 三角序列和正弦序列进行 FFT和IFFT变换, 验证所编程序。
解: 为了使用灵活方便, 将本题所给算法公式作为函 数编写ifft46.m如下: %函数ifft46.m %按照所给算法公式计算IFET function xn=ifft46(Xk, N) Xk=conj(Xk); %对Xk取复共轭 xn=conj(fft(Xk, N))/N; %按照所给算法公式计算IFFT 分别对单位脉冲序列、 长度为8的矩形序列和三角序列 进行FFT, 并调用函数ifft46计算IFFT变换, 验证函数 ifft46的程序ex406.m如下:
快速卷积时, 需要计算一次N点FFT(考虑到H(k)= DFT[h(n)]已计算好存入内存)、 N次频域复数乘法和 一次N点IFFT。 所以, 计算1024点快速卷积的计算时间Tc 约为
Fs <
1024 = 15 625 次 /秒 65536 × 10−6
Fs 15625 = = 7.8125 kHz 2 2
1 x ( n) = IDFT[ X ( k )] = [DFT[ X * ( k )]]* N
%程序ex406.m %调用fft函数计算IDFT x1n=1; %输入单位脉冲序列x1n x2n=[1 1 1 1 1 1 1 1]; %输入矩形序列向量x2n x3n=[1 2 3 4 4 3 2 1]; %输入三角序列序列向量x3n N=8; X1k=fft(x1n, N); X2k=fft(x2n, N); X3k=fft(x3n, N); %计算x1n的N点DFT %计算x2n的N点DFT %计算x3n的N点DFT
《数字信号处理》第三版课后答案

数字信号处理(西电科大第三版)课后答案1.2 教材第一章习题解答1. 用单位脉冲序列()n δ及其加权和表示题1图所示的序列。
解:()(4)2(2)(1)2()(1)2(2)4(3) 0.5(4)2(6)x n n n n n n n n n n δδδδδδδδδ=+++-+++-+-+-+-+-2. 给定信号:25,41()6,040,n n x n n +-≤≤-⎧⎪=≤≤⎨⎪⎩其它(1)画出()x n 序列的波形,标上各序列的值; (2)试用延迟单位脉冲序列及其加权和表示()x n 序列; (3)令1()2(2)x n x n =-,试画出1()x n 波形; (4)令2()2(2)x n x n =+,试画出2()x n 波形; (5)令3()2(2)x n x n =-,试画出3()x n 波形。
解:(1)x(n)的波形如题2解图(一)所示。
(2)()3(4)(3)(2)3(1)6() 6(1)6(2)6(3)6(4)x n n n n n n n n n n δδδδδδδδδ=-+-+++++++-+-+-+-(3)1()x n 的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。
(4)2()x n 的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。
(5)画3()x n 时,先画x(-n)的波形,然后再右移2位,3()x n 波形如题2解图(四)所示。
3. 判断下面的序列是否是周期的,若是周期的,确定其周期。
(1)3()cos()78x n A n ππ=-,A 是常数; (2)1()8()j n x n e π-=。
解:(1)3214,73w w ππ==,这是有理数,因此是周期序列,周期是T=14; (2)12,168w wππ==,这是无理数,因此是非周期序列。
5. 设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。
《数字信号处理》第三版课后答案(完整版)

西安电子 ( 高西全丁美玉第三版 ) 数字信号处理课后答案1.2 教材第一章习题解答1. 用单位脉冲序列 (n) 及其加权和表示 题 1 图所示的序列。
解:x( n)(n4) 2 (n 2) ( n 1)2 (n)(n 1) 2 (n 2) 4 ( n 3)0.5(n 4)2 (n 6)2n 5, 4 n 12. 给定信号: x( n)6,0n 40, 其它(1)画出 x( n) 序列的波形,标上各序列的值; (2)试用延迟单位脉冲序列及其加权和表示 x(n) 序列;(3)令 x 1( n) 2x(n 2) ,试画出 x 1( n) 波形;(4)令 x 2 (n) 2x(n 2) ,试画出 x 2 (n) 波形;(5)令 x 3 (n) 2x(2 n) ,试画出 x 3 (n) 波形。
解:( 1) x(n) 的波形如 题 2 解图(一) 所示。
( 2)x(n)3 ( n 4)(n 3) (n 2) 3 ( n 1) 6 (n) 6 (n 1)6 ( n 2)6(n 3) 6 (n 4)( 3) x 1 (n) 的波形是 x(n) 的波形右移 2 位,在乘以 2,画出图形如 题 2 解图(二) 所示。
( 4) x 2 (n) 的波形是 x(n) 的波形左移 2 位,在乘以 2,画出图形如 题 2 解图(三) 所示。
( 5)画 x 3 (n) 时,先画 x(-n) 的波形,然后再右移2 位, x3 ( n) 波形如 题 2 解图(四) 所示。
3. 判断下面的序列是否是周期的,若是周期的,确定其周期。
(1) x( n)Acos(3n) ,A 是常数;78(2)x(n)j ( 1n)e 8。
解:(1)w 3214T=14 ;7,,这是有理数,因此是周期序列,周期是w3(2)w 1 , 216 ,这是无理数,因此是非周期序列。
8w5. 设系统分别用下面的差分方程描述,x(n) 与 y(n) 分别表示系统输入和输出,判断系统是否是线性非时变的。
第二章 时域离散信号和系统(数字信号处理)

第二章 时域离散信号和系统
6. 复指数序列
x(n)=e(σ+jω0)n 式中ω0为数字域频率,设σ=0,用极坐标和实部虚 部表示如下式: x(n)=e jω0n
x(n)=cos(ω0n)+jsin(ω0n)
由于n取整数,下面等式成立: e j(ω0+2πM)n= e jω0n, M=0,±1,±2…
第二章 时域离散信号和系统
图1.2.5 正弦序列
第二章 时域离散信号和系统
则要求N=(2π/ω0)k,式中k与N均取整数,且k的取
值要保证N是最小的正整数,满足这些条件,正弦序列 才是以N为周期的周期序列。
正弦序列有以下三种情况:
(1)当2π/ ω0为整数时,k=1,正弦序列是以2π/ ω0 为周期的周期序列。例如sin(π/8)n, ω0 =π/8,2π/ ω0 =16,该正弦序列周期为16。
例 设x(n)=R4(n),h(n)=R4(n),求y(n)=x(n)*h(n)。
解 按照公式,
y (n )
m
R ( m) R ( n m)
4 4
上式中矩形序列长度为4,求解上式主要是根据矩
形序列的非零值区间确定求和的上、下限,R4(m)的非
令n-k=m,代入上式得到
u( n )
n
( m)
n
第二章 时域离散信号和系统
u(n) 1 „ n 0 1 2 3
单位阶跃序列
第二章 时域离散信号和系统
3. 矩形序列RN(n) 1, RN(n)= 0, 0≤n≤N-1 其它n
上式中N称为矩形序列的长度。当N=4时,R4(n)的
第二章 时域离散信号和系统
第2章 时域离散信号和系统
数字信号处理——第2章 离散时间傅里叶变换与Z变换
• 总结:
①序列ZT的收敛域以极点为边界(包含0 和 ②收敛域内不含任何极点,可以包含0 ③相同的零极点可能对应不同的收敛域,即: 不同的序列可能有相同的ZT ④收敛域汇总:右外、左内、双环、有限长z平面
)
常见典型序列z变换
序列 Z变换 收敛域
z a
z b
注意:只有z变换和它的收敛域两者在一起才和序列相对应。 其它序列见P54: 表2-1 几种序列的z变换
2.3
z反变换
Z反变换: 从X(z)中还原出原序列x(n)
X ( z ) ZT [ x ( n)]
n
x (n) z n
实质:求X(z)幂级数展开式
Z反变换的求解方法: 留数定理法
部分分式法
长除法
1. 留数定理法
根据复变函数理论,可以推导出
x ( n)
1 2 j
X ( z ) z n 1dz
1 1 3z 1
n
z 2
2 n u ( n)
z 3
3
n
n
u (n 1)
x n 2 u n 3 u n 1
3. 幂级数法(长除法)
如果序列的ZT能表示成幂级数的形式,则序列x(n) 是幂 级数 说明: ①这种方法只对某些特殊的ZT有效。 ②如果ZT为有理函数,可用长除法将X(z)展开成幂级 数。 若为右边序列(特例:因果序列),将X(z)展开成负幂 级数; 若为左边序列(特例:反因果序列),将X(z)展开成正 幂级数; 中
z z 1 1 X z 1 z 2 z 3 1 2z 1 3 z 1
1 ZT [a u (n)] z a 1 1 az 1 n ZT [a u (n 1)] z a 1 1 az
数字信号处理(第三版)课后习题答案全
| z |
| z | 1 2
1 5 7 z n 1 F ( z ) X ( z ) z n 1 z (1 0.5 z 1 )(1 2 z 1 ) 5z 7 zn ( z 0.5)( z 2)
n≥0时, 因为c内无极点,x(n)=0; n≤-1时, c内有极点 0 , 但z=0是一个n阶极点, 改为求圆外极点留数, 圆外极点有z1=0.5, z2=2, 那么
0.5n 2 n
n<0时, c内有极点0.5、 2、 0, 但极点0是一个n阶极点,
改成求c外极点留数, 可是c外没有极
点, 因此 x(n)=0 最后得到
x(n)=(0.5n-2n)u(n)
第2章
时域离散信号和系统的频域分析
19. 用部分分式法求以下X(z)的反变换:
(1)
1 1 z 1 3 X ( z) , 1 2 5z 2 z 2
0
jn
令n′=n-n0, 即n=n′+n0, 则
FT[ x(n n0 )]
n
x(n)e
j ( n n0 )
e jn0 X (e j )
第2章
(2)
时域离散信号和系统的频域分析
FT[ x (n)]
(6) 因为
n
x ( n ) e jn
j 3 j n n n 3
n 0
3
e
jn
n 1
3
e
j n
n 0
3
e
jn
n 1
3
e j n
数字信号处理第三版西安科大出版高西全丁玉美课后答桉第3和4章
1
N 1
X (k) 2
n0
N k0
第3章 离散傅里叶变换(DFT)及其快速算法
(FFT)
7)
(1) 长度为N的共轭对称序列xep(n)与反共轭对称序列
xop(n):
xep(n) xep(N n)
xop (n) xop (N n)
序列x(n)的共轭对称分量与共轭反对称分量:
xep (n)
所以
~xN (n)
x(n rN )
r
即 ~xN (n) 是x(n)的周期延拓序列, 由DFT与DFS的关系
可得出
xN (n) IDFT[ X (k)] ~xN (n)RN (n) x(n rN )RN (n) r
第3章 离散傅里叶变换(DFT)及其快速算法
(FFT)
xN(n)=IDFT[X(k)]为x(n)的周期延拓序列(以N为延拓周期) 的主值序列。 以后这一结论可以直接引用。
DFT[x(n m)N RN (n)] WNkm X (k)
5) 频域循环移位性质
DFT[WNnm x(n)] X ((k m)) N RN (k)
第3章
6) 循环卷积:
离散傅里叶变换(DFT)及其快速算法 (FFT)
L1
yc (n) h(m)x((n m))L RL (n)=h(n) L x(n)
(1)在h(n)的尾部加L-N个零点, 在x(n)的尾部加L-M
(2)计算L点的H(k)=FFT[h(n)]和L点的X(k)=FFT [x(n)];
(3) 计算Y(k)=H(k)X(k) (4) 计算Y(n)=IFFT[Y(k)], n=0,1,2,3,…,L-1。 但当h(n)和x(n)中任一个的长度很长或者无限长时, 需用 书上介绍的重叠相加法和重叠保留法。
数字信号处理答案第二章习题解答
————第二章————教材第二章习题解答1. 设()jw X e 和()jw Y e 分别是()x n 和()y n 的傅里叶变换,试求下面序列的傅里叶变换: (1)0()x n n -; (2)()x n -; (3)()()x n y n ; (4)(2)x n 。
解:(1)00[()]()jwnn FT x n n x n n e∞-=-∞-=-∑令''00,n n n n n n =-=+,则'00()'0[()]()()jw n n jwn jw n FT x n n x n e e X e ∞-+-=-∞-==∑(2)****[()]()[()]()jwnjwn jw n n FT x n x n ex n e X e -∞∞-=-∞=-∞===∑∑(3)[()]()jwnn FT x n x n e∞-=-∞-=-∑令'n n =-,则'''[()]()()jwn jw n FT x n x n eX e ∞-=-∞-==∑(4) [()*()]()()jwjwFT x n y n X e Y e = 证明: ()*()()()m x n y n x m y n m ∞=-∞=-∑[()*()][()()]jwnn m FT x n y n x m y n m e ∞∞-=-∞=-∞=-∑∑令k=n-m ,则[()*()][()()] ()() ()()jwk jwnk m jwkjwnk m jw jw FT x n y n x m y k eey k e x m eX e Y e ∞∞--=-∞=-∞∞∞--=-∞=-∞===∑∑∑∑2. 已知001,()0,jww w X e w w π⎧<⎪=⎨<≤⎪⎩求()jw X e 的傅里叶反变换()x n 。
解: 00sin 1()2w jwn w w nx n e dw nππ-==⎰3. 线性时不变系统的频率响应(传输函数)()()(),jw jw j w H e H e eθ=如果单位脉冲响应()h n 为实序列,试证明输入0()cos()x n A w n ϕ=+的稳态响应为00()()cos[()]jw y n A H e w n w ϕθ=++。