数字信号处理第四章

合集下载

数字信号处理第四章 模拟滤波器频率变换、冲激响应不变法、双线性变换法

数字信号处理第四章 模拟滤波器频率变换、冲激响应不变法、双线性变换法

4.4 冲激响应不变法
一、基本原理

x(t)
y(t)
取样
取样
x(n) = x(nT)
?
y(n) = y(nT)
?

响应不变
4.4 冲激响应不变法
一、基本原理
其中
取样
其中
另,根据数字系统响应
冲激响应不变原则!
4.4 冲激响应不变法
一、基本原理
模拟滤波器:
(M<N)
部分分式分解
冲激响应不变准则:
数字滤波器:
因此,双线性变换不改变系统稳定性
4.4 双线性变换法
4、频率预畸变
0
高频进行压缩
无混叠,有畸变
频率越高,畸变越大
预畸变
预畸变公式:
根据数字滤波器设计指标,求对应模拟滤波器设计指标时,需预先进行畸变
4.4 双线性变换法
5、双线性变换法设计滤波器步骤
(1)确定数字滤波器技术指标
(Hz表示)
(弧度表示)或
1)带通:计算几何中心
0

,则
代替

,则
代替

,则令
4.2.4 模拟滤波器的频率变换
带通带阻滤波器衰减参数选择
几何对称:
若实际给出的指标不满足几何对称,如何应对?
2)带阻:计算几何中心
0

,则
代替

,则
代替

,则令
固定靠近
的两个值
以让过渡带更窄为选择标准(靠近中心,指标更严)
模拟转数字滤波器
已知一个模拟滤波器H(s),如何得到数字滤波器H(z)?
3)设计归一化低通滤波器,得到传输函数

《数字信号处理》课件第4章 (2)

《数字信号处理》课件第4章 (2)

(4-6b)
j 1
V jk (z) Fjk (z)W j (z)
(4-7)
相应的信号流图如图4.8所示。
第四章 数字滤波器的结构表示
源节 点1 1 X(z)或x(n)
a
2
3
z- 1 b
4
吸收 节点 1 Y(z)或y(n)
图4.8 标有支路传输比的Z变换形式的流图
第四章 数字滤波器的结构表示
在图4.8中,每一个支路的传输比均列于该支路的箭头之侧。 对支路(2、4)而言,它所作的是单位延迟变换, 此时的传递
第四章 数字滤波器的结构表示
第四章 数字滤波器的结构表示
4.1 引言 4.2 数字滤波器的信号流图表示 4.3 数字网络的矩阵表示 4.4 无限冲激响应(IIR)系统的基本网络结构 4.5 转置型 4.6 有限冲激响应(FIR)系统的基本网络结构
第四章 数字滤波器的结构表示
4.1 引 言
在设计数字滤波器的过程中,通常总是根据工程指标,按一 定的设计方法或技术,正确确定能够满足所需指标要求的滤波器 的数学模型,然后利用计算机或专用硬件加以实现。为了论述方 便, 我们把滤波器数学模型的确定放到第六章数字滤波器的设计 方法中专门研究,而把数学模型的具体实现放在这里先作必要的 介绍。 而且在这一章中,我们只对该数学模型的硬件实现作必要 的讨论, 利用计算机实现的软件设计则不再赘述。
第四章 数字滤波器的结构表示
S jk (z) bjk X j (z) Rjk (z) c jkWj (z)
把它们代入式(4-6),
N
M
Wk (z) Fjk (z)Wj (z) bjk X j (z)
j 1
j 1
N
Yk (z) c jkWj (z) j 1

数字信号处理 第4章 FFT基本思想和2种基本的FFT

数字信号处理 第4章 FFT基本思想和2种基本的FFT

= −W
W的对称性
W的可约性
2 rk WN rk = WN / 2
长序列变成短序列 若N → 2个N / 2
2 则N 2次复述乘法 →(N / 2)= N 2 / 2次复数乘法 2
从信号的特殊性上考虑
– 如奇、偶、虚、实性
W 0 X (0) X (1) W 0 = X (2) W 0 0 X (3) W
对 N = 2M , 共可分 M 次,即 m = 0,1,L , M − 1,
8点FFT时间抽取算法信号流图
每一级有 N/2 个如下的“蝶形”单元:
xm ( p )
xm +1 ( p )
W
r N
xm (q)
−1
xm +1 (q )
算法讨论( “级”的概念、碟形单元、 “组” 的概念、旋转因子的分布、码位倒置)
r =2l ,r =2l +1
A(k ), B(k )
C(k) = D(k) =
N / 4−1 l =0
∑x(4l)W
l =0
lk N/4
, k = 0,1,..., N / 4 −1
N / 4−1
lk x(4l + 2)WN / 4 , k = 0,1,..., N / 4 −1 ∑
k A(k) = C(k) +WN / 2 D(k), k = 0,1,..., N / 4 −1 k A(k + N / 4) = C(k) −WN / 2 D(k), k = 0,1,..., N / 4 −1
x(6)
n N
N n = 0,1,L , 2
由此得到基本 运算单元
g (0) g (1) g (2) g (3)

数字信号处理

数字信号处理
nk N nk N
所以
X (k ) [Rex(n) j Imx(n)]
nk nk [Re WN j Im WN )] N 1 n 0
{Rex(n)ReW Imx(n)ImW j (Rex(n)ImW Imx(n)ReW )}, k 0,1,2,..., N 1

N r 0,1,..., 1 4
X 2 k f 3 ( X 5 (k ), X 6 (k ))
蝶形运算
数字信号处理-第四章 快速傅立叶变换
x1 (0)
. .
x1 ( N 1)
.
N/2点 DFT
N x1 n x1 2r x1 2r 1, r 0,1,2,..., 1 4 X 1 (k ) x1 2r x3 r , x1 2r 1 x4 (r )
.
数字信号处理-第四章 快速傅立叶变换
x(n) X (k ),

x1 (n) X 1 (k ), x2 (n) X 2 (k ),
n, k 0,1,2,..., N 1 N n, k 0,1,2,..., 1 2 N n, k 0,1,2,..., 1 2
N 1 n 0 nk N
x2 0 x5 (0)
N/4点 N x5 ( N 1) . DFT x2 2 4 2
.
.
X 5 (k )
x2 1 x6 (0)
蝶形 运算
X 6 (k )
X 2 (k )
N/4点 . N N x2 1 x6 ( 1) . DFT 4 2
数字信号处理-第四章 快速傅立叶变换
4.2 直接计算DFT的问题及改进的途径

数字信号处理课件第四章资料

数字信号处理课件第四章资料
k 0,1,..., N 1 2
5、时间抽取蝶形运算流图符号
X1(k)
X1(k) WNk X 2 (k)
X 2 (k )
WNk
1 X1(k) WNk X 2 (k)
返回DIF 返回例题
设 N 23 8
X1(k)
X 2 (k )
WNk
k 0
W80
1
W81
2
W82
3
W83
X (k)
k 0,1,,7
l0
l 0
X1(k) X 3(k) WNk X 4 (k)
2
X1(k
N 4
)
X 3 (k )
W Nk
2
X
4
(k)
k 0,1,..., N 1 4
x2(r)也进行同样的分解:
x5 (l) x2 (2l)
x6 (l) x2 (2l 1)
l 0,1,..., N 1 4
)
N
/ 21
x1(r)WNrk/ 2
X1(k)
r 0
r 0
X2(k N / 2) X2(k) X (k) X1(k) WNk X 2 (k)
W (kN N
/
2)
WNkWNN
/
2
WNk
N点X(k)可以表示成前 N点和后 点N 两部分:
2
2
前半部分X(k):
X (k) X1(k) WNk X 2 (k)
N 1
X (k) x(n)WNnk k = 0, 1, …, N-1
n0
x(n)
1 N
N 1
X (k )WNnk
k 0
n = 0, 1, …, N-1
二者的差别只在于WN 的指数符号不同,以及差一 个常数因子1/N,所以IDFT与DFT具有相同的运算量。

本科数字信号处理第4章

本科数字信号处理第4章

m WN
(4.2.2)
其对称性表现为
WN m WNN m WN
m N 2 m WN
或者 [WN
N m
m ] WN
第4章 快速傅里叶变换(FFT)
4.2.2 时域抽取法基2FFT基本原理 FFT 算 法 基 本 上 分 为 两 大 类 : 时 域 抽 取 法 FFT(Decimation In Time FFT,简称DIT-FFT)和频域抽取 法FFT(Decimation In Frequency FFT,简称DIF―FFT)。 下面先介绍DIF―FFT算法。 设序列x(n)的长度为N,且满足
第4章 快速傅里叶变换(FFT)
4.2 基2FFT算法
4.2.1 直接计算DFT的特点及减少运算量的基本途径 长度为N的有限长序列x(n)的DFT为
kn X ( k ) x ( n )WN , k 0,1, , N 1 n 0 N 1
(4.2.1)
考虑x(n)为复数序列的一般情况,对某一个k值, 直接按(4.2.1)式计算X(k)值需要N次复数乘法、(N-1)次 复数加法。
2 kr WN /2
所以
X (k )
N / 2 1

r 0
x1 ( r )W
kr N /2
W
k N
N / 2 1

r 0
kr k x2 ( r )WN X ( k ) W /2 1 N X 2 (k )
第4章 快速傅里叶变换(FFT)
其中X1(k)和X2(k)分别为x1(r)和x2(r)的N/2点DFT, 即
第4章 快速傅里叶变换(FFT)
第4章 快速傅里叶变换(FFT)
4.1 引言 4.2 基2FFT算法 4.3 进一步减少运算量的措施 4.4 分裂基FFT算法 4.5 离散哈特莱变换(DHT)

精品课件-数字信号处理(第四版)(高西全)-第4章

精品课件-数字信号处理(第四版)(高西全)-第4章

点DFT和(4.2.10)式或(4.2.11)式所示的N/4个蝶形运算,
如图4.2.3所示。依次类推,经过M次分解,最后将N点DFT
分解成N个1点DFT和M级蝶形运算,而1点DFT就是时域序列
本身。一个完整的8点DIT-FFT运算流图如图4.2.4所示。
图中用到关系式
。W图N中k / m输入W序Nmk列不是顺序排
In Time FFT,简称DIT-FFT ); 频域抽取法FFT (Decimation In Frequency FFT,简称DIF-FFT)。本节介 绍DIT-FFT
设序列x(n)的长度为N,且满足N=2M,M为自然数。按n 的奇偶把x(n)分解为两个N/2点的子序列
x1(r) x(2r), x2 (r) x(2r 1),
x1
(2l
1)WNk
( /
2l 2
1)
l 0
l 0
N / 41
N / 41
x3 (l)WNkl/ 4 WNk / 2
x4
(l
)WNk
l /
4
l 0
l 0
X 3 (k ) WNk/ 2 X 4 (k )
k 0, 1, , N 1 2
(4.2.9)
第4章 快速傅里叶变换(FFT)
式中
N / 41
r0
2
(4.2.6)
由于X1(k)和X2(k)均以N/2为周期,
kN
WN 2
WNk

,因此X(k)又可表示为
第4章 快速傅里叶变换(FFT)
X (k) X1(k) WNk X 2 (k),
X
(k
N 2
)
X1(k)
WNk
X

数字信号处理4

数字信号处理4
平均值等于它的真值卷积三角谱窗函数,因此周期图是有偏估 计,但当N→∞时,wB(m)→1,三角谱窗函数趋近于δ 函数,周
期图的统计平均值趋于它的真值,因此周期图属于渐近无偏估
计。
第四章 功 率 谱 估 计 2) 周期图的方差 由于周期图的方差的精确表示式很繁冗,为分析简单起见,
通常假设x(n)是实的零均值的正态白噪声信号,方差是σ
ˆ (e j ) PBT
式中
m ( M 1)


ˆ rxx (m)e
- jωω
(4.2.3)
w(m) -(M-1)≤m≤(M-1) w(m) , M≤N 其它 0
(4.2.4)
第四章 功 率 谱 估 计 有时称(4.2.3)式为加权协方差谱估计。它要求加窗后的 功率谱仍是非负的,这样窗函数w(m)的选择必须满足一个原 则,即它的傅里叶变换必须是非负的, 例如巴特利特窗就满 足这一条件。 为了采用FFT计算(4.2.3)式,设FFT的变换域为(0~L-1),
(4.2.7) 按照(4.2.1)式估计自相关函数,我们已经证明这是渐近一 致估计,但经过傅里叶变换得到功率谱的估计,功率谱估计却 不一定仍是渐近一致估计,可以证明它是非一致估计,是一种 不好的估计方法。下面我们将证明:BT法中用有偏自相关函数 进行估计时,它和用周期图法估计功率谱是等价的,因此BT 法估计质量和周期图法的估计质量是一样的。
第四章 功 率 谱 估 计 现代谱估计以信号模型为基础,图4.1.1表示的是x(n)的 信号模型,输入白噪声w(n)均值为0,方差为σ 谱由下式计算:
2 Pxx (e j ) w | H (e j ) |2
2
w,x(n)的功率
(4.1.7)
如果由观测数据能够估计出信号模型的参数,信号的功率谱可 以按照(4.1.7)式计算出来,这样,估计功率谱的问题变成了 由观测数据估计信号模型参数的问题。模型有很多种类,例如 AR模型、 MA模型等等,针对不同的情况,合适地选择模型,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章线性时不变离散时间系统的频域分析一、传输函数和频率响应例4.1传输函数分析Q4.1clear;M = input('Enter the filter length M: ');w = 0:2*pi/1023:2*pi;num = (1/M)*ones(1,M);den = [1];h = freqz(num, den, w);subplot(2,1,1)plot(w/pi,abs(h));gridtitle('Magnitude Spectrum |H(e^{j\omega})|')xlabel('\omega /\pi');ylabel('Amplitude');subplot(2,1,2)plot(w/pi,angle(h));gridtitle('Phase Spectrum arg[H(e^{j\omega})]')xlabel('\omega /\pi');ylabel('Phase in radians');M=2 M=10 M=15幅度谱为偶对称,相位谱为奇对称,这是一个低通滤波器。

M越大,通带越窄且过渡带越陡峭。

Q4.2使用修改后的程序P3.1,计算并画出当w=[0,pi]时传输函数的因果线性时不变离散时间系统的频率响应。

它表示哪种类型的滤波器?w = 0:pi/511:pi;num = [0.15 0 -0.15];den = [1 -0.5 0.7];如下图1这是一个带通滤波器。

图1 图2Q4.3对下面的传输函数重做习题Q4.2:,式(4.36)和式(4.37)给出的两个滤波器之间的区别是什么?你将选择哪一个滤波器来滤波,为什么?w = 0:pi/511:pi;num = [0.15 0 -0.15];den = [0.7 -0.5 1];如上图2也是一个带通滤波器,这两个滤波器的幅度谱是一样的,相位谱不太一样,我会选择第一个带通滤波器,因为它的相位谱更加平滑,相位失真小。

Q4.4 使用MATLAB计算并画出当w=[0,pi]时因果线性时不变离散时间系统的群延迟。

系统的传输函数为。

clf;w = 0:pi/511:pi;num = [1 -1.2 1];den = [1 -1.3 1.04 -0.222];h= grpdelay(num,den,w);plot(w/pi,h);xlabel('w/pi');ylabel('群延迟');Q4.5 使用Q3.50中编写的程序,分别计算并画出式(4.36)和式(4.37)确定的两个滤波器的冲激响应中的前一百个样本。

讨论你的结果。

clf;num = [0.15 0 -0.15];den = [0.7 -0.5 1];L = input('输入样本数 L: ');[g t] = impz(num,den,L);stem(t,g);title(['前 ',num2str(L),' 脉冲响应的样本']);xlabel('时间序号 n');ylabel('h[n]');(4.36)式(4.37)式由图可知:这些情节由impz给生成的因果的脉冲响应实现的H(z)。

我们观察到Q4.3因果滤波器与H(z)在(4.36)稳定,这意味着H[n]是绝对可和,我们看到交替和指数衰减的脉冲响应。

在另一方面,因果编档人员与H(z)在(4.37)极点以外的单位圆,是不稳定的。

不足为奇的是,相应的h[n]上图显示与n指数增长。

Q4.6 传输函数的极零点图同样能分析线性时不变离散时间系统的性质。

使用命令zplane 可以很容易地得到系统的极零点图。

使用zplane分别生成式(4.36)和式(4.37)确定的两个滤波器的极零点图。

讨论你的结果。

clf;num = [0.15 0 -0.15];den = [1 -0.5 0.7];[z p k] = tf2zpk(num,den);disp('Zeros:');disp(z);disp('Poles:');disp(p);input('Hit <return> to continue...');[sos k] = zp2sos(z,p,k)input('Hit <return> to continue...');zplane(z,p);式(4.36)式(4.37)由图可知:过滤器在(4.36)在单位圆和两极因此它的因果实现稳定;较低的图显示过滤器(4.37)极点在单位圆外,其因果关系的实现是不稳定的。

二、传输函数的类型例4.2滤波器Q4.7clf;fc = 0.25;n = [-6.5:1:6.5];y = 2*fc*sinc(2*fc*n);k = n+6.5;stem(k,y);title('N = 14');axis([0 13 -0.2 0.6]);xlabel('Time index n');ylabel('Amplitude');grid;图1 图2如图1低通有限冲激滤波器的长度为14,决定滤波器长度的语句为n = [-6.5:1:6.5],而控制截止频率的参数是fc = 0.25。

Q4.8fc = 0.45;n = [-9.5:1:9.5];y = 2*fc*sinc(2*fc*n);k = n+9.5;stem(k,y);title('N = 20');axis([0 19 -0.2 0.7]);xlabel('Time index n');ylabel('Amplitude');grid;修改参数fc和n,得到如上图2,可知低通有限冲激滤波器的长度变为20.Q4.9clf;fc = 0.65;n = [-7.0:1:7.0];y = 2*fc*sinc(2*fc*n);k = n+7.0;stem(k,y);title('N = 14');axis([0 14 -0.4 1.4]);xlabel('Time index n');ylabel('Amplitude');grid;Q4.10clear;N = input('Enter the filter time shift N: ');No2 = N/2;fc = 0.25;n = [-No2:1:No2];y = 2*fc*sinc(2*fc*n);w = 0:pi/511:pi;h = freqz(y, [1], w);plot(w/pi,abs(h));grid;title(strcat('|H(e^{j\omega})|, N=',num2str(N)));xlabel('\omega /\pi');ylabel('Amplitude');上图依次分别为N=5,10,30,100的四幅图,从这四幅图可以看出随着阶数N的增大,低通滤波器的过渡带越来越窄,阻带衰减越来越快,滤波器越来越接近理想低通滤波器。

Q4.11clf;M = 2;num = ones(1,M)/M;[g,w] = gain(num,1);plot(w/pi,g);gridaxis([0 1 -50 0.5])xlabel('\omega /\pi');ylabel('Gain in dB');title(['M = ',num2str(M)])可以验证3dB截止频率在π/2处。

Q4.12clear;K = input('Enter the number of sections K: ');Hz = [1];for i=1:K;Hz = conv(Hz,[1 1]);end;Hz = (0.5)^K * Hz;[g,w] = gain(Hz,1);ThreedB = -3*ones(1,length(g));t1 = 2*acos((0.5)^(1/(2*K)))*ones(1,512)/pi;t2 = -50:50.5/511:0.5;plot(w/pi,g,w/pi,ThreedB,t1,t2);grid;axis([0 1 -50 0.5])xlabel('\omega /\pi');ylabel('Gain in dB');title(['K = ',num2str(K),'; Theoretical \omega_{c} = ',num2str(t1(1))]);Q4.13clear;M = input('Enter the filter length M: ');n = 0:M-1;num = (-1).^n .* ones(1,M)/M;[g,w] = gain(num,1);plot(w/pi,g);grid;axis([0 1 -50 0.5]);xlabel('\omega /\pi');ylabel('Gain in dB');title(['M = ', num2str(M)]);其3dB截止频率约为0.82piQ4.14 设计一个在0.45pi处具有3dB截止频率wc的一阶无限冲激响应低通滤波器和一阶无限冲激响应高通滤波器。

用MATLAB计算并画出它们的增益响应,验证设计的滤波器是否满足指标。

用MATLAB证明两个滤波器是全通互补和功率互补的。

Q4.15 级联10个式(4.15)所示一阶无限冲激响应低通滤波器,设计一个在0.3pi处具有3dB截止频率wc的无限冲激响应低通滤波器。

把它与一个具有相同截止频率的一阶无限冲激响应低通滤波器的增益响应作比较。

Q4.16 设计一个中心频率wo在0.61pi处、3dB带宽为0.51pi的二阶无限冲激响应带通滤波器。

由于式(4.20)是α的二次方程,为了产生相同的3dB带宽,参数α将有两个数值,得到的传输函数HBP(z)也会有两个不同的表达式。

使用函数zplane可产生两个传输函数的极零点图,从中可以选择一个稳定的传输函数。

用MATLAB计算并画出你所设计的滤波器的增益响应,并验证它确实满足给定的条件。

用设计的稳定无限冲激响应带通滤波器的传输函数的参数α和β,生成一个二阶无限冲激响应带阻滤波器的传输函数HBS(z)。

相关文档
最新文档