数学八年级思维导图上册

合集下载

八年级上册数学第十三章 轴对称思维导图

八年级上册数学第十三章 轴对称思维导图

八年级上册数学第十三章
轴对称13.1 轴对称
13.1.1 轴对称
轴对称的定义
相关概念
对称轴1
对称点2
垂直平分线3
性质
13.1.2 线段的垂直平分线的性质
性质
判定
13.1.3 三角形的稳定性
三角形是具有稳定性的图形
四边形没有稳定性
13.2 画轴对称图形
轴对称图形特点
做轴对称图形方法
在平面直角坐标系中做轴对称图形
在平面直角坐标系中
找带你的轴对称点
13.3 等腰三角形
13.3.1 等腰三角形
等腰三角形定义4
等腰三角形性质
判定方法
13.3.2 等边三角形
等边三角形定义5
推论:
在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半
13.3 课题学习 最短路径问题通过利用轴对称、平移等变化把已知问题转化为容易解决的问题
从而作出最短路径的选择
八年级上册数学总大纲
备注:
1. 把一个图形沿着某一条直线折叠,如果它能够于与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴
2. 折叠后重合的点是对应点,叫做对称点
3. 经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线
4. 有两边相等的三角形是等腰三角形
5. 等边三角形的三个内角都相等,并且每一个角都等于60°三个角都相等的三角形是等边三角形有一个角是60°的等腰三角形是等边三角形。

人教版 八年级上册数学 章节思维导图集 图片版

人教版 八年级上册数学 章节思维导图集 图片版

你现在的努力要对得起别人对你的好!
Math 实验室-1-人教版八年级数学上册章节思维导图
共5章
人教版八年级数学上册教材目录
第11章三角形的思维导图
11.1与三角形有关的线段
11.2与三角形有关的角
11.3多边形及其内角和
第12章全等三角形的思维导图
12.1全等三角形
12.2三角形全等的判定
12.3角的平分线的性质
第13章轴对称的思维导图
13.1轴对称
13.2画轴对称图形
13.3等腰三角形
13.4课题学习最短路径问题
第14章整式的乘法与因式分解的思维导图
14.1整式的乘法
14.2乘法公式
14.3因式分解
第15章分式的思维导图
15.1分式
15.2分式的运算
15.3
分式方程。

八年级上册数学人教版思维导图

八年级上册数学人教版思维导图

第十一章 三角形与三角形有关的线段与三角形有关的角多边形及其内角和相关概念三角形的定义三角形的分类三角形的三边关系①三条线段②不在同一直线上③首位顺次相接按角分类锐角三角形直角三角形钝角三角形按边分类三边都不相等的三角形等腰三角形底和腰不相等的等腰三角形等边三角形(特殊的等腰三角形)三角形两边的和大于第三边三角形两边的差小于第三边三角形的三条重要线段(高,中线,角平分线)相同点都是线段都有三条,且交于一点交点位置高线锐角三角形→三角形内部直角三角形→直角顶点钝角三角形→三角形外部 中线(交点叫做三角形的重心)角平分线位于三角形内部性质三角形的高线→直角三角形或90°的角 三角形的中线→所分的两个三角形面积相等(所分两个三角形等底同高)三角形的角平分线→相等的角或成2倍关系的角三角形的稳定性 三角形具有稳定性,而其他多边形都不具有稳定性 三角形内角和定理:三角形三个内角的和等于180° 三角形的外角:三角形的外角等于与它不相邻的两个内角的和直角三角形性质:直角三角形的两个锐角互余判定有一个角是直角的三角形是直角三角形有两个角互余的三角形是直角三角形 概念:在平面内,由一些线段首位顺次相接组成的封闭图形叫做多边形多边形的内角和多边形的外角和各条边都相等的多边形叫做正多边形边形的内角和等于正边形的每一个内角为多边形的外角和等于360°(与边数无关)正边形的每一个外角为多边形的对角线边形的对角线的条数为第十三章轴对称轴对称用坐标表示轴对称有关概念线段的垂直平分线轴对称图形的有关性质轴对称图形:把一个平面图形沿着一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形成轴对称:把一个图形沿着一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称定义:经过线段中点并且垂直于这条线段的直线性质判定:与线段两个端点距离相等的点在这条线段的垂直平分线上对应线段相等,对应角相等对称轴垂直平分连接对应点的线段关于x轴对称的两个点的坐标特征:横坐标相等,纵坐标互为相反数关于y轴对称的两个点的坐标特征:横坐标互为相反数,纵坐标相等等腰三角形等腰三角形性质轴对称图形→有一条对称轴等边对等角→在同一个三角形中证明角相等三线合一顶角平分线底边上的高底边上的中线相互重合判定定义:两边相等等角对等边→也是证明线段相等的方法等边三角形性质轴对称图形→三条对称轴三线合一→三条三线合一的线三条边都相等三个内角都相等,并且每一个角都等于60°判定三条边相等的三角形→已知三边关系用此方法三个角都相等的三角形→已知三个内角的关系用此方法有一个角是60°的等腰三角形→已知两边相等时可找一个60°的角用此方法含30°角的直角三角形的性质:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半应用“已知一条直线及其同侧的两点,在直线上确定一点,使它到这两个已知点的距离之和最小”的问题,这类问题一般都是首先作出其中一个点关于直线的对称点,然后连接另一点和对称点,借助两点之间线段最短解决问题线段垂直平分线垂直且平分该线段线段垂直平分线上任意一点到该线段两端点的距离相等三角形三条边的垂直平分线相交于一点,这一点到三个顶点的距离相等与线段两个端点距离相等的点在这条线段的垂直平分线上第十四章整式的乘法与因式分解幂的运算法则同底数幂的乘法法则:都是正整数推广:均为正整数逆用:都是正整数幂的乘方法则:都是正整数推广:都是正整数逆用:都是正整数积的乘方法则:都是正整数推广:都是正整数)逆用:都是正整数同底数幂的除法法则:都是正整数并且推广:都是正整数并且逆用:都是正整数并且零指数幂整式的乘、除法法则单项式乘单项式单项式乘多项式多项式乘多项式单项式除以单项式多项式除以单项式乘法公式平方差公式完全平方公式添括号因式分解提取公因式公式法系数×系数→积的系数同底数幂×同底数幂→积的幂只在一个单项式里含有的字母→连同指数作为积的一个因式法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加公式表示:m(a+b-c)=ma+mb+m(-c)=ma+mb-m c法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加公式表示:(a+b)(m-n)=am+a(-n)+bm+b(-n)=a m-an+bm-bn被除式系数÷除式系数→商的系数被除式同底数幂÷除式同底数幂→商中的幂只在被除式里含有的字母→连同指数作为商的一个因式法则:多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加公式表示:(am+bm-cm)÷m=am÷m+bm÷m+(-c m)÷m=a+b+(-c)=a+b-c括号前“+”→括到括号里的各项都不变符号括号前“-”→括到括号里的各项都改变符号m a+mb+mc→m(a+b+c)公因式的确定方法系数→多项式中各项系数的最大公因数字母→多项式中各项中都含有的相同字母相同字母的次数→多项式中各项中相同字母的最低次幂第十五章分式分式的有关概念分式的基本性质分式方程分式的运算分式的定义分式有意义的条件分式值为零的条件基本性质约分和通分分式的乘法分式的除法分式的乘方分式的加减分式的混合运算分式方程的定义分式方程的解法分式方程的应用一般地如果表示两个整式并且中含有字母那么式子叫做分式分式无意义→B=0分式有意义→B≠0A=0B≠0缺一不可分式的式子与分母乘(或除以)同一个不等于0的整式,分式的值不变式子表示其中是整式分式的通分→确定最简公分母分式的约分→确定分子和分母的公因式最简公分母的确定方法系数→各分母系数的最小公倍数字母→各分母中含有的所有字母相同字母的次数→各分母中相同字母的最高次幂不等于不等于法则:是正整数逆用是正整数)同分母相加减:异分母相加减:无括号:乘方→乘除→加减有括号:小括号→中括号→大括号结果为最简形式负整数指数幂科学记数法绝对值小于1的数→为原数第个不为零的数字前面所有零的个数包括小数点前面的零分母中含有未知数的方程是分式方程,判断一个方程是否为分式方程关键看分母中是否含有未知数去分母→方程两边同乘最简公分母,把分式方程化为整式方程解整式方程检验→将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解使原分式方程的解;否则,就是原分式方程的增根,原分式方程无解审→审清题意,弄清已知量和未知量找→找出等量关系设→设未知数列→列分式方程解→解这个方程验→既要检验所求的解使分式方程的解,又要检验求得的解是否符合实际意义答→写出答案。

八年级上册数学第十三章 轴对称思维导图 脑图

八年级上册数学第十三章 轴对称思维导图 脑图

第十三章轴对称轴对称定义如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形相关概念对称轴把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴对称点折叠后重合的点是对应点,叫做对称点正n边形有n条对称轴性质如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连连线段的垂直平分线轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线垂直平分线定义经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线性质线段垂直平分线上的点与这条线段两个端点的距离相等判定与线段两个端点距离相等的点在这条线段的垂直平分线上画轴对称图形轴对称图形特点轴对称得到图形与原图形的形状、大小完全相同新图形上的每一点,都是原图形上的某一点关于对称轴直线的对称点连接任意一对对应点所连线段被对称轴垂直平分做轴对称图形方法几何图形都可以看作由点组成,对于某些图形,只要画出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形在平面直角坐标系中找对应的轴对称点关于x轴对称:横不变,纵相反(x轴x不变)关于y轴对称:横相反,纵不变(y轴y不变)关于原点对称:横纵坐标都互为相反数等腰三角形等腰三角形定义有两边相等的三角形是等腰三角形等腰三角形性质等边对等角:等腰三角形的两个底角相等三线合一:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合判定方法等角对等边如果一个三角形有两个角相等,那么这两个角所对的边也相等等边三角形定义三条边都相等的三角形叫做等边三角形性质等边三角形的三个内角都相等,并且每一个角都等于60°判定三个角都相等的三角形是等边三角形有一个角是60°的等腰三角形是等边三角形轴对称图形,每条边都有三线合一含30°锐角的直角三角形性质在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半常见辅助线添法构造全等三角形(中线倍长,一线三等角,垂直)构造等腰三角形(三线中一线,平行线,截长补短,截边等构造60°)最短路径问题通过利用轴对称、平移等变化把已知问题转化为容易解决的问题从而作出最短路径的选择(异侧共线和最小,同侧共线差最大)★尺规作图过一点做已知直线的垂线作已知线段的垂直平分线作已知线段的中点作一种图形的轴对称图形作等腰三角形作最短路径。

苏教版初中数学八年级上册知识点思维导图

苏教版初中数学八年级上册知识点思维导图

三个角都相等的三角形县等边三角形 有两个 内角 屋6炉的三角形尾等边三角形 有一个角昆60° 的等腰三角形昆等边三角彤
亘角三角形两亘角边的平方和
等于斜边的平方
定理
如果a,b分别表示亘角三角形
内容
勾 股 定
的两亘角边}和表示斜边,理 Nhomakorabea那么:矿 l 护=;
忧图验证法
探索勾股定理
亘角三角形 的判别条件
勾股定理 的应用
一次函数与一元一次 方程的天系
一 次函数,=kx+h 的图 象与x轴的 交点的横坐标为方程红+h=O 的 解
关千x 的—元—次不等式kx+h>O 的鲜史足以直线尸kx心和 x轴的交点为分界点, x轴上方的图象所对应的x的值
一次函数与不等式
的关系
} 关于x的—元—次不等式kx+h<O的解集是以百线尸kx+b和 x轴的交点为分界点, x轴下方的图象所对应的x的值
。y当随kx>的O增时大,而图增象大经过第一、 三象限,
表达式 图象

当k<.o时,图象经过第二髦
y随x的增大而凅小
四象限,

设、 代、 求、 写
待定系数法
表达式 图象
.y=kx+l, ( k , h为常数,总0) 过(-'.'.,O),(O, b)两点的一条亟线 k
; ; 。y当随kx>的o增, 大h>而O增时大,图象经过第—、 二、 三象限,
看作点的平移
.
横坐标,右移加,左移凅 纵坐标,上移加,下移凅
轴对称与 坐标变化
关于x轴对称的两个点的坐标:
横坐标相同,纵坐标互为相反数 /

八年级数学思维导图

八年级数学思维导图

八年级数学思维导图研究必备欢迎下载第十一章三角形有关概念三角形的定义顶点、边、内角及其表示方法三角形三边的关系两边之和大于第三边(指任意两边)与三角形有关的线段三角形的高三条重要线段三角形的中线三角形的角平分线三角形内角和定理三角形三个内角的和等于180°三角形与三角形有关的角三角形的外角及其性质三角形的外角三角形外角的性质多边形多边形的有关概念内角、外角、对角线凸多边形多边形及其内角和正多边形多边形的内角和n边形的内角和等于(n-2)x 180°多边形的外角和n边形的外角和等于360°研究必备欢迎下载第十二章全等三角形全等三角形的对应边相称全等三角形的性质全等形全等三角形的对应角相等边边边SSS一般三角形边角边SAS非凡的全等形角边角ASA三角形全等的断定角角边AASSSS,SAS,ASA,AAS直角三角形HL只适用于直角三角形全等三角形应用全等三角形办理实践题目互逆定理角中分线的性子角平分线的性质与判定角平分线的判定研究必备欢迎下载第十三章轴对称研究必备欢迎下载研究必备欢迎下载第十四章整式的乘法与因式分解研究必备欢迎下载第十五章分式研究必备欢迎下载第十六章二次根式满足以下两个特性的二次根式,叫最简二次根式.(1)被开方数不含分母,分母中不含二次根式;(2)被开方数中不含开得尽方的因数或因式.最简二次根式二次根式的乘法二次根式的除法(a≥0,b>0)二次根式的夹杂运算二次根式的加减运算二次根式性质(a≥0,b≥0)(a≥0,b>)定义:式子(a≥0)叫做二次根式(a≥0)是一个非负数。

初中数学八年级上册思维导图

初中数学八年级上册思维导图一、数的开方1. 平方根:如果一个正数x的平方等于a,那么x是a的平方根,记作x=√a。

正数a的平方根有两个,它们互为相反数,分别记作+√a 和√a。

0的平方根是0,负数没有平方根。

2. 立方根:如果一个数x的立方等于a,那么x是a的立方根,记作x=³√a。

每个实数都有唯一的立方根。

3. 开方运算:开方运算是求一个数的平方根或立方根的运算。

对于正数a,开方运算可以表示为√a或³√a。

二、实数1. 实数的概念:实数包括有理数和无理数。

有理数是可以表示为两个整数比的数,无理数是不能表示为两个整数比的数。

2. 实数的分类:实数可以分为正实数、负实数和0。

正实数是大于0的实数,负实数是小于0的实数,0既不是正实数也不是负实数。

3. 实数的运算:实数可以进行加法、减法、乘法和除法运算。

在运算过程中,需要遵循实数的运算规律,如交换律、结合律和分配律。

三、勾股定理1. 勾股定理的内容:勾股定理指出,在一个直角三角形中,直角边的平方和等于斜边的平方。

即a²+b²=c²,其中a、b是直角边,c是斜边。

2. 勾股定理的应用:勾股定理可以用来解决直角三角形中的边长问题,也可以用来解决一些与直角三角形相关的实际问题。

3. 勾股定理的证明:勾股定理的证明有多种方法,其中一种常见的证明方法是使用几何图形的面积关系。

四、一次函数1. 一次函数的概念:一次函数是指函数的图像是一条直线,其一般形式为y=kx+b,其中k是斜率,b是截距。

2. 一次函数的性质:一次函数的图像是一条直线,斜率k表示直线的倾斜程度,截距b表示直线与y轴的交点。

3. 一次函数的应用:一次函数可以用来描述一些线性关系,如物体的速度与时间的关系、正比例关系等。

五、不等式1. 不等式的概念:不等式是表示两个数之间大小关系的数学表达式,如a>b、a<b、a≥b、a≤b等。

2. 不等式的性质:不等式可以进行加减、乘除运算,但在乘除运算中需要注意符号的变化。

初中数学八年级上册思维导图

初中数学八年级上册思维导图一、数的开方1. 平方根:如果一个正数x的平方等于a,那么x是a的平方根,记作x=√a。

正数a的平方根有两个,它们互为相反数,分别记作√a和√a。

0的平方根是0。

2. 立方根:如果一个数x的立方等于a,那么x是a的立方根,记作x=³√a。

立方根只有一个。

3. 算术平方根:正数a的正的平方根,记作√a,称为a的算术平方根。

4. 立方根的性质:①正数的立方根是正数;②负数的立方根是负数;③0的立方根是0。

二、实数1. 实数的概念:实数包括有理数和无理数。

有理数是可以表示为两个整数比的数,无理数是不能表示为两个整数比的数。

2. 实数的分类:①正实数;②负实数;③零。

3. 实数的运算:实数的加减乘除运算与有理数的运算类似,但需要注意无理数的运算。

三、二次根式1. 二次根式的概念:形如√a的式子,其中a≥0,称为二次根式。

2. 二次根式的性质:①√a²=a(a≥0);②(√a)²=a(a≥0);③√ab=√a√b(a≥0,b≥0);④√a²+b²=√a²+√b²(a≥0,b≥0)。

3. 二次根式的运算:二次根式的加减乘除运算与有理数的运算类似,但需要注意无理数的运算。

四、一元二次方程1. 一元二次方程的概念:形如ax²+bx+c=0(a≠0)的方程,称为一元二次方程。

2. 一元二次方程的解法:①配方法;②求根公式法;③因式分解法。

3. 一元二次方程的根的判别式:判别式△=b²4ac,当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根。

五、不等式1. 不等式的概念:表示不相等关系的式子称为不等式。

2. 不等式的性质:①两边同时加上或减去同一个数,不等号方向不变;②两边同时乘以或除以同一个正数,不等号方向不变;③两边同时乘以或除以同一个负数,不等号方向改变。

初二上的数学思维导图

初二上的数学思维导图汇总初二数学上册定理1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于18018 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于6034 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45 逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46 勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247 勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48 定理四边形的内角和等于36049 四边形的外角和等于36050 多边形内角和定理 n边形的内角的和等于(n-2)18051 推论任意多边的外角和等于36052 平行四边形性质定理1 平行四边形的对角相等53 平行四边形性质定理2 平行四边形的对边相等54 推论夹在两条平行线间的平行线段相等55 平行四边形性质定理3 平行四边形的对角线互相平分56 平行四边形判定定理1 两组对角分别相等的四边形是平行四边形提公因式法1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.2. 运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数.2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:①列出常数项分解成两个因数的积各种可能情况; ②尝试其中的哪两个因数的和恰好等于一次项系数.3.将原多项式分解成(x+q)(x+p)的形式.。

北师大版初中数学八年级上册知识点梳理思维导图


对于九个数"1• Xz, ···, x. ,
把 -1(X1 + x2 ++心
" 叫做这"个数的算术平均数
算术平均
卢定义
缸个数中凸出现斤次, x2出现片欠, , x且出现f几次, (./j + .J; +·· +.r. = "),那么;.= 一1 (x1Jj+x凶+ + xJ;.)
" 这祥求得的平均数叫做这几个数的加权平均数
优点
皂人们特别关心的一个呈,也尾一组 数据中豆复次数最多的数据
缺点
当各个数据的里复次数大致相等肘, 众数就没有夸义了


极差=最大数据-最小数据



定.义~ 方 平均 差数 屋各个数据与平均数差的平方的
公式
?
$
=
l
;;[(x1
-沪 (凸
-;户+
(x三)%
)
其中豆压, Xz, ··· , X舶平均数, s,是方差
I

\ 经纬定位法
丿
轴对称与
坐标变化
注意:坐标轴上的点不在任何一个象限内哟 ! I
关于x轴对称

关于y轴对称
横坐标相同,
纵坐标互为相反数
纵坐标相同 , 横坐标互为相反数
一般地,如果在一个变化过程中有两个变昼x
郎,井且对于变冕x的每一个值,变最y都有 唯一的值与它对应,那么我们称战坠的函
概念
数,其中x是目 变呈
三角形的 内角和等于180°
\
三角形 内角 和 定理
( 三角形 的外角
概念 惟论
三角形的一条边与另一条边的 反向延长线组成的角
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学八年级思维导图上册数学八年级思维导图上册
一、有理数
1. 有理数的定义
2. 有理数的四则运算
3. 有理数的大小比较
4. 有理数的绝对值
5. 有理数的加减法运算规律
二、代数式与方程式
1. 代数式的概念
2. 代数式的加减乘除
3. 代数式的因式分解
4. 简单一元一次方程式的解法
5. 一元一次方程式的应用
三、平面图形
1. 平面图形的基本概念
2. 三角形的性质及分类
3. 四边形的性质及分类
4. 正多边形的性质及分类
5. 平行线与平面图形的性质
四、函数
1. 函数的定义
2. 常见函数及其图像
3. 函数的性质及变化规律
4. 函数的概念拓展
5. 函数的图像及其在实际问题中的应用
五、统计与概率
1. 统计中的基本概念及统计图
2. 概率的基本概念及概率模型
3. 事件的概念及其运算
4. 概率的应用
5. 统计与概率在实际问题中的应用
六、三角函数
1. 角度制与弧度制
2. 常见三角函数及其性质
3. 三角函数的等式和恒等式
4. 三角函数的运用及其在实际问题中的应用
5. 三角函数的图像和周期性
七、空间图形
1. 空间图形的基本概念及表示方法
2. 立体图形的计算
3. 空间直角坐标系及其应用
4. 空间几何中的关系与定理
5. 空间几何在实际问题中的应用
总结:
数学八年级思维导图上册内容涵盖了初中阶段最重要的数学知识点,包括有理数、代数式与方程式、平面图形、函数、统计与概率、三角函数以及空间图形等方面,是初中数学学习的重要参考资料。

相关文档
最新文档