初二数学倒数练习题答案
【高中数学】新人教A版高二5.2.2 导数的四则运算法则(练习题)

新人教A版高二5.2.2 导数的四则运算法则(1212) 1.下列运算正确的是()A.(3x)′=3x lnxB.(sinxx )′=xcosx+sinxx2C.(x−1x )′=1−1x2D.(log2x)′=1xln22.已知函数f(x)=x·lnx的导函数为f′(x),若f′(x0)=1,则x0的值为()A.1B.2C.eD.03.函数f(x)=e x cosx的图象在点(0,f(0))处的切线的倾斜角为()A.0B.π4C.1 D.π24.设f(x)=xlnx,若f′(x0)=2,则x0等于()A.e2B.eC.ln22D.ln25.已知函数f(x)=x2+2x−2的图象在点M处的切线与x轴平行,则点M的坐标是()A.(−1,3)B.(−1,−3)C.(−2,−3)D.(−2,3)6.已知函数f(x)的导数为f′(x),若f(x)=x2+2f′(0)x+sinx,则f′(0)=()A.−2B.−1C.1D.27.已知f(x)=xlnx+2017x,若f′(x0)=2019,则x0=()A.e2B.eC.1D.ln28.已知函数f(x)=alnx+2,若f′(e)=2,则a的值为()A.−1B.1C.2eD.e29.曲线y=3ln x+x+2在点P0处的切线方程为4x−y−1=0,则点P0的坐标是.10.已知函数f(x)=e x cos x−x,则f′(x)=.11.已知函数f(x)的导函数为f′(x),若f(x)=3xf′(2)+lnx,则f(1)的值为.12.已知f(x)为偶函数,且当x>0时,f(x)=lnx−3x,则f′(−1)=.13.求下列函数的导数:(1)f(x)=(1+sin x)(1−4x);(2)f(x)=xx+1−2x.14.设函数f(x)=ax−bx,曲线y=f(x)在点(2,f(2))处的切线方程为7x−4y−12=0.(1)求f(x)的解析式;(2)证明曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形的面积为定值,并求出此定值.x−9都相切,则15.若存在过点(1,0)的直线与曲线y=x3和y=ax2+154a=.16.对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义:设f″(x)是函数f(x)的导函数f′(x)的导数,若f″(x)=0有实数解x0,则称点(x0,f(x0))为函数f(x)的“拐点”.现已知f(x)=x3−3x2+2x−2,请解答下列问题:(1)求函数f(x)的“拐点”A的坐标;(2)证明:f(x)的图像关于“拐点”A对称参考答案1.【答案】:D【解析】:(3x)′=3x ln3,(sinxx )′=xcosx−sinxx2,(x−1x)′=1+1x2,(log2x)′=1xln2.故选 D.2.【答案】:A【解析】:f′(x)=ln x+1,∴f′(x0)=ln x0+1=1,∴ln x0=0,得x0=1.故选A.3.【答案】:B【解析】:对函数求导得f′(x)=e x(cos x−sin x),∴f′(0)=1,∴函数f(x)=e x cos x的图象在点(0,f(0))处的切线的倾斜角为π4.4.【答案】:B【解析】:【分析】本题主要考查导数的计算,属于基础题.求函数的导数,解导数方程即可.【解答】解:∵f(x)=xlnx,∴f′(x)=lnx+1,由f′(x0)=2,得lnx0+1=2,即lnx0=1,则x0=e,故选:B.5.【答案】:B【解析】:设M(x0,f(x0)),∵f′(x0)=2x0+2=0,∴x0=−1,∴f(−1)=(−1)2+2×(−1)−2=−3,∴M(−1,−3).6.【答案】:B【解析】:根据题意得f′(x)=2x+2f′(0)+cosx,令x=0,可得f′(0)=2f′(0)+1,解得f′(0)=−1,故选B.7.【答案】:B【解析】:∵f′(x)=lnx+1+2017,∴f′(x0)=ln x0+2018=2019,∴ln x0=1,解得x0=e.故选B.8.【答案】:C【解析】:函数f(x)=alnx+2,则f′(x)=ax ,若f′(e)=ae=2,则a=2e,故选C.9.【答案】:(1,3)【解析】:由题意知y′=3x+1=4,解得x=1,此时4×1−y−1=0,解得y=3,所以点P0的坐标是(1,3).10.【答案】:e x(cos x−sin x)−1【解析】:f′(x)=e x cosx+e x(−sinx)−1=e x(cosx−sinx)−1.11.【答案】:−34【解析】:因为f(x)=3xf′(2)+lnx,所以f′(x)=3f′(2)+1x,令x=2,可得f′(2)=3f′(2)+1 2,解得f′(2)=−14,故f(x)=−34x+lnx,则f(1)=−34.12.【答案】:2【解析】:根据题意,设x<0,则−x>0,则f(−x)=ln(−x)−3×(−x)=ln(−x)+3x,又f(x)为偶函数,所以f(x)=f(−x)=ln(−x)+3x,则f′(x)=1x +3,所以f′(−1)=1−1+3=2.13(1)【答案】f′(x)=(1+sin x)′(1−4x)+(1+sin x)(1−4x)′=cos x(1−4x)−4(1+sin x)= cos x−4xcos x−4−4sin x.(2)【答案】f(x)=xx+1−2x=1−1x+1−2x,则f′(x)=1(x+1)2−2x ln2.14(1)【答案】由7x−4y−12=0,得y=74x−3.当x=2时,y=12,∴f(2)=12.①又f ′(x)=a +b x 2,∴f ′(2)=74.②由①②得{2a −b2=12,a +b 4=74,解得{a =1,b =3, 故f(x)=x −3x .(2)【答案】证明:设P(x 0,y 0)为曲线上任一点,由f ′(x)=1+3x 2知,曲线y =f(x)在点P(x 0,y 0)处的切线方程为y −y 0=(1+3x 02)(x −x 0),即y −(x 0−3x 0)=(1+3x 02)(x −x 0). 令x =0,得y =−6x 0,从而得切线与直线x =0的交点坐标为(0,−6x 0). 令y =x ,得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0). 故曲线y =f(x)在点P(x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形面积为12×|−6x 0|×|2x 0|=6,故曲线y =f(x)上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,此定值为6.15.【答案】:−1或−2564【解析】:设过点(1,0)的直线与曲线y =x 3相切于点(x 0,x 03),则切线方程为y −x 03=3x 02(x −x 0),即y =3x 02x −2x ,30又点(1,0)在切线上,所以x 0=0或x 0=32.当x 0=0时,由直线y =0与曲线y =ax 2+154x −9相切,可得a =−2564;当x 0=32时,由直线y =274x −274与曲线y =ax 2+154x −9相切,可得a =−1. 综上可知,a =−1或−2564.16(1)【答案】由题易得f ′(x)=3x 2−6x +2,f″(x)=6x −6. 令f ″(x)=6x −6=0,得x =1,因为f(1)=1−3+2−2=−2, 所以“拐点”A 的坐标为(1,−2).(2)【答案】设P(x 0,y 0)是f(x)图像上任意一点,则y 0=x 03−3x 02+2x 0−2, P(x 0,y 0)关于“拐点”A(1,−2)的对称点为 P ′(2−x 0,−4−y 0). 因为−4−y 0=−x 03+3x 02−2x 0−2, (2−x 0)3−3(2−x 0)2+2(2−x 0)−2 =−x 03+3x 02−2x 0−2,所以点P ′(2−x 0,−4−y 0)在f(x)的图像上, 所以f(x)的图像关于“拐点”A 对称.。
拐点练习题含详细答案

拐点练习题含详细答案拐点是数学中一个重要的概念,它标志着函数图像从凹向上凸,或者从凸向下凹的转折点。
对于函数而言,拐点处的导数发生变化,导致函数图像的凹凸性发生改变。
在这篇文章中,我们将讨论一些拐点练习题,并提供详细的解答。
题目1:求函数f(x) = x^3 - 6x^2 + 9x的拐点。
解答1:首先,我们需要求出函数的导数。
对于给定的函数f(x) = x^3 - 6x^2 + 9x,求导得到f'(x) = 3x^2 - 12x + 9。
然后,我们需要找到导数f'(x)的根,因为函数的拐点发生在导数的根处。
我们可以利用因式分解或者配方法求得f'(x) = 0的解为x = 1和x = 3。
接下来,我们可以求得函数f(x)在x = 1和x = 3处的二阶导数。
对于f(x) = x^3 - 6x^2 + 9x,求二阶导数得f''(x) = 6x - 12。
然后,我们将x = 1和x = 3代入f''(x)得到f''(1) = -6和f''(3) = 6。
最后,我们可以通过观察二阶导数的值来判断拐点的性质。
当二阶导数的值从正数变为负数时,函数图像从凸形状转为下凹形状,此时发生一个拐点。
类似地,当二阶导数的值从负数变为正数时,函数图像从下凹形状转为凸形状,也会发生一个拐点。
根据我们计算得到的二阶导数的值,我们可以确定函数f(x)在x = 1处有一个下凹的拐点,而在x = 3处有一个上凸的拐点。
题目2:给定函数g(x) = x^4 - 12x^3 + 48x^2 - 64x,求其拐点。
解答2:首先,我们需要求出函数g(x)的导数。
对于给定的函数g(x) = x^4 - 12x^3 + 48x^2 - 64x,求导得到g'(x) = 4x^3 - 36x^2 + 96x - 64。
然后,我们需要找到导数g'(x)的根。
高二数学导数练习题及答案

高二数学导数练习题及答案导数是高中数学中的重要概念之一,它在数学和实际问题中具有广泛的应用。
为了帮助高二学生巩固导数的知识和提高解题能力,本文为大家准备了一些高二数学导数练习题及答案。
希望通过这些练习题的训练,同学们能够更好地理解导数的概念和运用。
练习题一:1. 求函数 f(x) = 2x^3 - 3x^2 + 4x - 1 在点 x = 2 处的导数。
2. 已知函数 f(x) = x^2 + 3x,求函数 f(x) = x^2 + 3x 的导函数。
3. 求函数 f(x) = (x + 1)(x - 2)(x + 3) 在点 x = -1 处的导数。
答案一:1. 函数 f(x) = 2x^3 - 3x^2 + 4x - 1 的导数为:f'(x) = 6x^2 - 6x + 4。
2. 函数 f(x) = x^2 + 3x 的导函数为:f'(x) = 2x + 3。
3. 函数 f(x) = (x + 1)(x - 2)(x + 3) 在点 x = -1 处的导数为:f'(-1) = 0。
练习题二:1. 求函数 f(x) = 3x^4 - 2x^3 + 5x^2 - 4x + 1 的极值点及极值。
2. 已知函数 f(x) = x^3 - 6x^2 + 9x + 2,求函数 f(x) = x^3 - 6x^2 + 9x+ 2 的拐点。
3. 求函数 f(x) = x^3 - 3x 在其定义域内的极值点。
答案二:1. 函数 f(x) = 3x^4 - 2x^3 + 5x^2 - 4x + 1 的极值点为 x = 1/2,极值为 f(1/2) = 47/16。
2. 函数 f(x) = x^3 - 6x^2 + 9x + 2 的拐点为 x = 2。
3. 函数 f(x) = x^3 - 3x 在其定义域内的极值点为 x = 1。
练习题三:1. 求函数 f(x) = e^x 的导数。
2. 已知函数 f(x) = ln(x),求函数 f(x) = ln(x) 的导函数。
高二导数练习题及答案文库

高二导数练习题及答案文库导数是高中数学中的重要知识点之一,掌握导数的概念和运算方法对学生的数学学习至关重要。
为了帮助高二学生更好地巩固导数知识,提高解题能力,本文整理了一些高二导数练习题及其详细答案,供学生参考和练习。
一、基础练习题1. 求函数f(x) = 3x² - 2x + 1的导数f'(x)。
解:根据导数的定义,可得:f'(x) = lim(Δx→0)[f(x + Δx) - f(x)] / Δx代入函数f(x)的表达式,展开并化简:f'(x) = lim(Δx→0)[(3(x + Δx)² - 2(x + Δx) + 1) - (3x² - 2x + 1)] / Δx= lim(Δx→0)[3x² + 6xΔx + 3(Δx)² - 2x - 2Δx + 1 - 3x² + 2x - 1] /Δx= lim(Δx→0)(6xΔx + 3(Δx)² - 2Δx) / Δx= lim(Δx→0)(6x + 3Δx - 2) = 6x - 2所以,函数f(x) = 3x² - 2x + 1的导数f'(x)为6x - 2。
2. 已知函数g(x) = 4x³ + 2x² - x的导数g'(x),求g'(1)的值。
解:根据导数的定义,g'(x) = lim(Δx→0)[g(x + Δx) - g(x)] / Δx代入函数g(x)的表达式,展开并化简:g(x + Δx) = 4(x + Δx)³ + 2(x + Δx)² - (x + Δx)= 4x³ + 12x²Δx + 12xΔx² + 4(Δx)³ + 2x² + 4xΔx + 2(Δx)² - x - Δx= 4x³ + 2x² - x + 12x²Δx + 12xΔx² + 4(Δx)³ + 4xΔx + 2(Δx)² - Δx代入导数的定义:g'(x) = lim(Δx→0)[(4x³ + 2x² - x + 12x²Δx + 12xΔx² + 4(Δx)³ + 4xΔx + 2(Δx)² - Δx) - (4x³ + 2x² - x)] / Δx= lim(Δx→0)(12x²Δx + 12xΔx² + 4(Δx)³ + 4xΔx + 2(Δx)² - Δx) / Δx= lim(Δx→0)(12x² + 12xΔx + 4(Δx)² + 4x + 2Δx - 1)= 12x² + 4x - 1将x = 1代入上述导数表达式,可得:g'(1) = 12(1)² + 4(1) - 1 = 15所以,g'(1)的值为15。
高中数学导数练习题含答案

高中数学导数练习题含答案一、解答题 1.已知函数()ln xf x x=. (1)求曲线()y f x =在点11,e e f ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭处的切线方程;(2)设()()g x f x k =-有两个不同的零点12,x x ,求证:212e x x >. 2.已知函数2()ln (2)f x a x x a x =+-+,其中.a R ∈ (1)讨论函数()f x 的单调性;(2)若函数()f x 的导函数()'f x 在区间()1,e 上存在零点,证明:当()1,e x ∈时,()2e .f x >-3.已知函数()e sin cos x f x x x ax =+--.(1)若函数()f x 在[)0,∞+上单调递增,求实数a 的取值范围; (2)设函数()()()ln 1g x f x x =--,若()0g x ≥,求a 的值. 4.已知函数ln ()xf x x=(1)填写函数()f x 的相关性质;(2)通过(1)绘制出函数()f x 的图像,并讨论ln x ax =方程解的个数. 5.已知函数()ln f x x x =-,322()436ln 1g x x x x x =---. (1)若()1x f ax ≥+恒成立,求实数a 的取值范围;(2)若121322x x <<<,且()()120g x g x +=,试比较()1f x 与()2f x 的大小,并说明理由.6.设函数y =x 3+ax 2+bx +c 的图像如图所示,且与y =0在原点相切,若函数的极小值为-4.(1)求a ,b ,c 的值. (2)求函数的递减区间.7.设函数ln e ()xx f x a x=-,其中a ∈R 且0a ≠,e 是自然对数的底数. (1)设()'f x 是函数()f x 的导函数,若()'f x 在(2,3)上存在零点,求a 的取值范围; (2)若34e a ≥,证明:()0f x <. 8.已知函数2()e 1)(x f x ax x =-+.(1)求曲线()y f x =在点(0,(0))f 处的切线的方程; (2)若函数()f x 在0x =处取得极大值,求a 的取值范围; (3)若函数()f x 存在最小值,直接写出a 的取值范围.9.已知函数()e 2x f x ax =-,()22sin 1g x a x x =-+,其中e 是自然对数的底数,a ∈R .(1)试判断函数()f x 的单调性与极值点个数;(2)若关于x 的方程()()0af x g x +=在[]0,π上有两个不等实根,求实数a 的最小值. 10.已知函数2()ln f x a x x =+,其中a R ∈且0a ≠. (1)讨论()f x 的单调性;(2)当1a =时,证明:2()1f x x x ≤+-; (3)求证:对任意的*n N ∈且2n ≥,都有:222111111234⎛⎫⎛⎫⎛⎫+++ ⎪⎪⎪⎝⎭⎝⎭⎝⎭…211e n⎛⎫+< ⎪⎝⎭.(其中e 2.718≈为自然对数的底数)【参考答案】一、解答题1.(1)22e 3e 0x y --=;(2)证明见解析 【解析】 【分析】(1)求导,计算1e f ⎛⎫⎪⎝⎭'和1ef ⎛⎫ ⎪⎝⎭,再由点斜式代入写出切线方程;(2)设120x x >>,由题意得()1212ln ln x x k x x +=+,()1212ln ln x x k x x -=-,将证明212e x x >转化为证明()1212122lnx x x x x x ->+,令12x t x =,即证()21ln 1t t t ->+,令()()()21ln 11t h t t t t -=->+,求导判断单调性即可证明. (1)由题意,()21ln x f x x -'=,则212e e f ⎛⎫'= ⎪⎝⎭,1e e f ⎛⎫=- ⎪⎝⎭, 所以函数()y f x =在点11,e e f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线方程为()21e 2e e y x ⎛⎫--=- ⎪⎝⎭,即22e 3e 0x y --=. (2)设120x x >>,由题意,()()120g x g x ==, 所以1122ln 0,ln 0x kx x kx -=-=,可得()1212ln ln x x k x x +=+,()1212ln ln x x k x x -=-,要证明212e x x >,只需证12ln ln 2x x +>,即()122k x x +>,因为1212ln ln x x k x x -=-,所以可转化为证明121212ln ln 2x x x x x x ->-+, 即()1212122lnx x x x x x ->+,令12x t x =,则1t >,即证()21ln 1t t t ->+,令()()()21ln 11t h t t t t -=->+,则()()()()222114011t h t t t t t -'=-=>++, 所以函数()h t 在()1,+∞上是增函数,所以()()211ln1011h t ⨯->-=+, 即()21ln 1t t t ->+得证,所以212e x x >.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用. 2.(1)答案不唯一,具体见解析 (2)证明见解析 【解析】 【分析】(1)求出函数的导数,通过讨论a 的范围,解关于导函数的不等式,求出函数的单调区间即可;(2)根据导函数在()1,e 上存在零点,则()0f x '=在()1,e 上有解,则有1e 2a <<,即22e a <<,得到函数()f x 的最小值,构造函数2()ln (1ln 2)4xg x x x x =--+,22e <<x ,利用导数判断出其单调性,结合不等式传递性可证.(1)函数()f x 的定义域是(0,)+∞,(2)(1)()2(2)a x a x f x x a xx'--=+-+=, ①0a 时,20x a ->,令()0f x '>,解得:1x >,令()0f x '<, 解得:01x <<,故()f x 在(0,1)递减,在(1,)+∞递增; ②02a <<时,令()0f x '>,解得:1x >或02ax <<,令()0f x '<,解得:12a x <<,故()f x 在0,2a ⎛⎫⎪⎝⎭递增,在,12⎛⎫ ⎪⎝⎭a 递减,在()1,+∞递增;③2a =时,()0f x ',()f x 在(0,)+∞递增;④2a >时,令()0f x '>,解得:2ax >或01x <<,令()0f x '<,解得:12ax <<,故()f x 在(0,1)递增,在1,2⎛⎫ ⎪⎝⎭a 递减,在,2⎛⎫+∞ ⎪⎝⎭a递增;综上:0a 时,()f x 在(0,1)递减,在(1,)+∞递增,02a <<时,()f x 在0,2a ⎛⎫⎪⎝⎭递增,在,12⎛⎫ ⎪⎝⎭a 递减,在(1,)+∞递增; 2a =时,()f x 在(0,)+∞递增;2a >时,()f x 在(0,1)递增,在1,2⎛⎫ ⎪⎝⎭a 递减,在,2⎛⎫+∞ ⎪⎝⎭a 递增;(2)因为(2)(1)()2(2)a x a x f x x a x x'--=+-+=,又因为导函数()'f x 在(1,)e 上存在零点,所以()0f x '=在(1,e)上有解, 则有1e 2a <<,即22e a <<,且当12a x <<时,()0f x '<,()f x 单调递减, 当e 2a x <<时,()0f x '>,()f x 单调递增,所以22()ln (2)ln (1ln 2)22424⎛⎫=+-+=--+ ⎪⎝⎭a a a a a f x f a a a a a ,设2()ln (1ln 2)4x g x x x x =--+,22e x <<,则()ln 1(1ln 2)ln ln 222x xg x x x '=+--+=--,则11()02g x x ''=-<,所以()g x '在(2,2e)上单调递减,所以()g x 在(2,2e)上单调递减,则()()()222e 22e e 2e 1ln 2e 2g eln g =--+=-<,所以()2e g x >-,则根据不等式的传递性可得,当()1,e x ∈时,()2e .f x >-【点睛】本题考查利用导数表示曲线上某点处的斜率,考查函数的单调性,考查导数的综合应用以及分类讨论思想,转化思想,属于难题. 3.(1)2a ≤ (2)3a = 【解析】 【分析】(1)由题意()e cos sin 0xf x x x a '=++-≥,利用分离参数法得到e cos sin x a x x ≤++对[)0,x ∈+∞恒成立.设()e cos sin xh x x x =++,利用导数判断出函数()h x 在[)0,∞+上单调递增,求出2a ≤;(2)把题意转化为(),1x ∀∈-∞,()()0g x g ≥恒成立.由0x =为()g x 的一个极小值点,解得3a =.代入原函数验证成立. (1)由题意知()e cos sin xf x x x a '=++-因为函数()f x 在[)0,∞+上单调递增,所以()e cos sin 0xf x x x a '=++-≥,即e cos sin x a x x ≤++对[)0,x ∈+∞恒成立设()e cos sin xh x x x =++,则()e sin cos 4x x h x x x e x π⎛⎫'=-+=- ⎪⎝⎭当02x π≤<时,()e 1104xh x x π⎛⎫'=->-= ⎪⎝⎭当2x π≥时,()2e e 0h x π'>>> 所以函数()e cos sin xh x x x =++在[)0,∞+上单调递增所以()()min 02a h x h ≤== (2)由题知()()()()()ln 1e sin cos ln 11xg x f x x x x ax x x =--=+----<所以()1e cos sin 1x g x x x a x'=++-+-,()00g = 因为()0g x ≥,所以(),1x ∀∈-∞,()()0g x g ≥即()0g 为()g x 的最小值,0x =为()g x 的一个极小值点,所以()010e cos0sin 0010g a '=++-+=-,解得3a = 当3a =时,()()()e sin cos 3ln 11xg x x x x x x =+----<所以()11e cos sin 3e 3141xx g x x x x x x π⎛⎫'=++-+=+-+ ⎪--⎝⎭ ①当01x ≤<时,()11310g x '≥+-+=(当且仅当0x =时等号成立) 所以()g x 在[)0,1上单调递增②当0x <时,若02x π-≤<,()11310g x '<+-+=;若2x π<-,()22132e 3302222g x πππ-'<+<+-+<++ 所以()g x 在(),0∞-上单调递减综上,()g x 在(),0∞-上单调递减,在[)0,1上单调递增 所以当3a =时,()()00g x g ≥= 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用. 4.(1)详见解析 (2)详见解析 【解析】【分析】(1)利用导数判断函数的性质;(2)由函数性质绘制函数的图象,并将方程转化为ln xa x=,即转化为y a =与ln xy x=的交点个数. (1) 函数()ln xf x x=的定义域是()0,+∞, ()21ln xf x x -'=, 当0e x <<时,0f x ,函数单调递增,当e x >时,0f x,函数单调递减,所以当e x =时,函数取得极大值,同时也是函数的最大值,()1e ef =, 当0x →时,()f x →-∞,当x →+∞时,()0f x →, 函数的值域是1,e ⎛⎤-∞ ⎥⎝⎦,()ln 0xf x x==,得1x =,所以函数的零点是1x =, f ()x定义域 值域 零点极值点单调性 性 质 ()0,+∞1,e ⎛⎤-∞ ⎥⎝⎦ 1x =e x =单调递增区间()0,e ,单调递减区间()e,+∞(2)函数()f x 的图象如图,ln x ax =,即ln x a x =,方程解的个数,即y a =与ln xy x=的交点个数, 当1ea >时,无交点,即方程ln x ax =无实数根;当1ea =或0a ≤时,有一个交点,即方程ln x ax =有一个实数根; 当10,ea ⎛⎫∈ ⎪⎝⎭时,有两个交点,即方程ln x ax =有两个实数根.5.(1)0a ≤(2)()()21f x f x <,理由见解析 【解析】 【分析】(1)分离参变量,得到ln 1,(0)x x a x x--≤>恒成立,构造函数,将问题转化为求函数的最值问题;(2)由(1)可得1ln x x -≥,从而判断()g x 的单调性,确定1213122x x <<<<,再通过构造函数,利用导数判断其单调性,最终推出122x x +<;再次构造函数1ln ()12t tF t t -=-+,判断其单调性,由此推出2211ln ln x x x x -<-,可得结论. (1)()1x f ax ≥+恒成立,即ln 1,(0)x x a x x--≤>恒成立, 令ln 1()x x h x x --=,2ln ()xh x x'=, 当(0,1)x ∈时,()0h x '<,函数()h x 递减; 当(1,)x ∈+∞时,()0h x '>,函数()h x 递增, 故min ()(1)0h x h ==, 所以0a ≤. (2)2()121212ln 12(1ln )g x x x x x x x x '=--=--,由(1)知1ln x x -≥,所以在13,22⎛⎫⎪⎝⎭上()0g x '≥,所以()g x 在13,22⎛⎫⎪⎝⎭上单调递增,且(1)0g =.所以1213122x x <<<<,设()12(1ln )m x x x x =--,()12(22ln )m x x x '=--, 设()12(22ln )n x x x =--,则12(21)()x n x x -'=,13,22x ⎛⎫∈ ⎪⎝⎭,()0n x '>,所以()m x '在13,22⎛⎫⎪⎝⎭上单调递增,且(1)0m '=,所以()m x 在1,12⎛⎫ ⎪⎝⎭上单调递减,在31,2⎛⎫⎪⎝⎭上单调递增,令()()(2)H x g x g x =+-,()()(2)12[22ln (2)ln(2)]H x g x g x x x x x x '''=--=--+--, 令()()G x H x '=,()2()12ln 2G x x x '=--,31,2x ⎛⎫∈ ⎪⎝⎭,()0G x '>,所以()H x '在31,2⎛⎫⎪⎝⎭上单调递增,所以()(1)0H x H ''>=, 所以()H x 在31,2⎛⎫ ⎪⎝⎭上单调递增,所以()(1)0H x H >=, 所以()()()22220H x g x g x =+->,()()()2212g x g x g x ->-=,而()g x 在13,22⎛⎫⎪⎝⎭上单调递增,所以212x x ->,122x x +<;设1ln ()12t tF t t -=-+,()()()221021t F t t t '--=≤+, 所以()F t 单调递减,且(1)0F =,1t >,()0F t <,所以210x F x ⎛⎫< ⎪⎝⎭,即221121ln 121x x x xx x ⎛⎫- ⎪⎝⎭<+,即212121ln 2ln x x x x x x -<+-, 所以212121ln ln 12x xx x x x -+<-<, 所以2121ln ln x x x x -<-,即2211ln ln x x x x -<-. 所以()()21f x f x <. 【点睛】本题考查了利用导数解决不等式恒成立时求参数范围问题以及利用导数比较函数值大小问题,综合性较强,难度较大,解答的关键是要合理地构造函数,利用导数判断函数单调性以及确定极值或最值,其中要注意解答问题的思路要清晰明确.6.(1)3,0a b c =-==; (2)(0,2). 【解析】 【分析】(1)由题得到三个方程,解方程即得解; (2)解不等式()'f x <0即得函数的单调递减区间. (1)解:由题意知(0)0f = ,∴c =0 .∴()f x =x 3+ax 2+bx , 所以()'f x =3x 2+2ax +b 由题得(0)f '=b =0,∴()'f x =3x 2+2ax =0,故极小值点为x 23a =-, ∴f (23a -)=﹣4,∴323a ⎛⎫-+ ⎪⎝⎭a 223a ⎛⎫-=- ⎪⎝⎭4,解得a =﹣3.故3,0a b c =-==. (2)解:令()'f x <0 即3x 2﹣6x <0,解得0<x <2, ∴函数的递减区间为(0,2). 7.(1)32322e e a <<; (2)证明见解析. 【解析】 【分析】(1)求出函数()f x 的导数,由()0f x '=分离参数并构造函数,求解其值域作答. (2)将不等式等价转化,构造两个函数,并分别探讨它们的最大、最小值即可推理作答. (1)依题意,21(1)e ()x x f x ax x -'=-,由()0f x '=得:21(1)e 1(1)ex xx x ax x a x--=⇔=, 令1())(e x x x x ϕ-=,23x <<,则22()(1)e 0xx x x xϕ+'-=>,即()ϕx 在(2,3)上单调递增,当23x <<时,(2)()(3)x ϕϕϕ<<,即23e 2e ()23x ϕ<<,由()'f x 在(2,3)上存在零点,则方程1(1)e xx a x-=在(2,3)上有根,因此有23e 12e 23a <<,解得32322e e a <<,所以a 的取值范围是:32322e e a <<. (2)函数()f x 的定义域为(0,)+∞,当34e a ≥时,2ln e e ln ()000x xx a xf x a x x x<⇔-<⇔->, 令2e ()x a g x x =,0x >,求导得:3e ())(2x a x x g x'-=,当02x <<时,()0g x '<,当2x >时,()0g x '>,即函数()g x 在(0,2)上单调递减,在(2,)+∞上单调递增,当2x =时,22min 3e 4e 1()(2)4e 4ea g x g ==≥⋅=, 令ln ()x h x x =,0x >,求导得:21ln ()x h x x -'=,当0e x <<时,()0h x '>,当e x >时,()0h x '<,即函数()h x 在(0,e)上单调递增,在(e,)+∞上单调递减,当e x =时,max 1()(e)eh x h ==, 因此,0x ∀>,min max 1()()()()eg x g x h x h x ≥≥=≥,而()g x 的最大值与()h x 的最小值不同时取得,即上述不等式中不能同时取等号,于是得:0x ∀>,()()g x h x >成立,即2e ln 0x a x x x ->成立, 所以()0f x <.【点睛】思路点睛:证明不等式常需构造辅助函数,将不等式证明转化为利用导数研究函数的单调性、求最值等解决.8.(1)1y = (2)1(,)2-∞ (3)10,4⎛⎤⎥⎝⎦【解析】【分析】(1)先求导后求出切线的斜率'(0)0f =,然后求出直线上该点的坐标即可写出直线方程;(2)根据函数的单调性和最值分类讨论;(3)分情况讨论,根据函数的单调性和极限求解.(1)解:由题意得:22'e 121)e 2)()((x x ax x a f x ax x x ax =-++-=+-'(0)0f =,(0)1f = 故曲线()y f x =在点(0,(0))f 处的切线的方程1y =.(2)由(1)得要使得()f x 在0x =处取得极大值,'()f x 在0x <时应该'()0f x >,'()f x 在0x >时应该'()0f x <,'e 2(1)()x x x ax f a =+-故①0a <且120a a -<,解得0a < ②0a >且120a a->,解得102a << 当0a =时,'()e x f x x =-,满足题意; 当12a =时,'21(e )2x f x x =,不满足题意;综上:a 的取值范围为1(,)2-∞.(3)可以分三种情况讨论:①0a ≤②102a <<③12a ≥若0a ≤,()f x 在12(,)a a --∞上单调递减,在12(,0)a a -单调递增,在(0,)+∞上单调递减,无最小值; 若102a <<时,当0x <时,x 趋向-∞时,()f x 趋向于0;当0x > ,要使函数取得存在最小值121221212112()[(41)0e ()]e a a a a a a a f a a a a a a -----=-=-≤+,解得104a <≤,故 12a x a -=处取得最小值,故a 的取值范围10,4⎛⎤ ⎥⎝⎦. 若12a ≥时,()f x 在x 趋向-∞时,()f x 趋向于0,又(0)1f =故无最小值;综上所述函数()f x 存在最小值, a 的取值范围10,4⎛⎤⎥⎝⎦. 9.(1)答案见解析(2)e π--【解析】【分析】(1)求出()f x ',分类讨论,分0a ≤和0a >讨论()f x 的单调性与极值; (2)利用分离参数法得到sin 1e x x a -=,令()()sin 10e x x h x x π-=≤≤,利用导数判断 ()h x 的单调性与最值,根据直线y a =与函数()h x 的图像有两个交点,求出实数a 的最小值.(1)()e 2x f x ax =-,则()e 2x f x a '=-.①当0a ≤时,()0f x '>,则()f x 在R 上单调递增,此时函数()f x 的极值点个数为0;②当0a >时,令()20e x f x a '=-=,得()ln 2x a =,当()ln 2x a >时,()0f x '>,则()f x 在()()ln 2,a +∞上单调递增,当()ln 2x a <时,()0f x '<,则()f x 在()(),ln 2a -∞上单调递减,此时函数()f x 的极值点个数为1.综上所述,当0a ≤时,()f x 在R 上单调递增,极值点个数为0;当0a >时,()f x 在()()ln 2,a +∞上单调递增,在()(),ln 2a -∞上单调递减,极值点个数为1.(2)由()()0af x g x +=,得sin 1x x a e -=. 令()()sin 10xx h x x e π-=≤≤, 因为关于x 的方程()()0af x g x +=在[]0,π上有两个不等实根,所以直线y a =与函数()sin 1xx h x e -=的图像在[]0,π上有两个交点. ()1cos sin 14x xx x x h x e e π⎛⎫-+ ⎪-+⎝⎭'==, 令()0h x '=,则sin 42x π⎛⎫-= ⎪⎝⎭[]0,x π∈,所以2x π=或x π=, 所以当02x π<<时,()0h x '>;当2x ππ<<时,()0h x '<, 所以()h x 在0,2π⎛⎫ ⎪⎝⎭上单调递增,在,2ππ⎛⎫ ⎪⎝⎭上单调递减,所以()max 02h x h π⎛⎫== ⎪⎝⎭. 又()01h =-,()e h ππ-=-, e 1π-->- 所以当)e ,0x a -⎡∈-⎣时,直线y a =与函数()h x 的图像有两个交点,所以实数a 的最小值为e π--.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决生活中的优化问题;(4)利用导数研究零点问题,考查数形结合思想的应用.10.(1)答案见解析;(2)证明见解析;(3)证明见解析.【解析】【分析】(1)求得()'f x ,对参数a 进行分类讨论,即可求得不同情况下函数的单调性; (2)构造函数()ln 1g x x x =-+,利用导数研究函数单调性和最值,即可证明; (3)根据(2)中所求得2211ln 1n n ⎛⎫+< ⎪⎝⎭,结合累加法即可求证结果. (1)函数()f x 的定义域为(0,)+∞,22()2a a x f x x x x '+=+=, ①当0a >时,()0f x '>,所以()f x 在(0,)+∞上单调递增;②当0a <时,令()0f x '=,解得x =当0x <<220a x +<,所以()0f x '<,所以()f x 在⎛ ⎝上单调递减,当x >220a x +>,所以()0f x '>,所以()f x 在⎫+∞⎪⎪⎭上单调递增. 综上,当0a >时,函数()f x 在(0,)+∞上调递增;当0a <时,函数()f x 在⎛ ⎝上单调递减,在⎫+∞⎪⎪⎭上单调递增. (2)当1a =时,2()ln f x x x =+,要证明2()1f x x x ≤+-,即证ln 1≤-x x ,即ln 10x x -+≤,设()ln 1g x x x =-+,则1()x g x x -'=,令()0g x '=得,可得1x =, 当(0,1)x ∈时,()0g x '>,当(1,)x ∈+∞时,()0g x '<.所以()(1)0g x g ≤=,即ln 10x x -+≤,故2()1f x x x ≤+-.(3)由(2)可得ln 1≤-x x ,(当且仅当1x =时等号成立), 令211x n =+,1,2,3,n =,则2211ln 1n n ⎛⎫+< ⎪⎝⎭, 故2211ln 1ln 123⎛⎫⎛⎫++++ ⎪ ⎪⎝⎭⎝⎭…222111ln 123n ⎛⎫++<++ ⎪⎝⎭…21111223n +<++⨯⨯…()11n n +- 1111223⎛⎫⎛⎫=-+-+ ⎪ ⎪⎝⎭⎝⎭…11111lne 1n n n ⎛⎫+-=-<= ⎪-⎝⎭,即222111ln[111234⎛⎫⎛⎫⎛⎫+++ ⎪⎪⎪⎝⎭⎝⎭⎝⎭…211]lne n ⎛⎫+< ⎪⎝⎭, 故222111111234⎛⎫⎛⎫⎛⎫+++ ⎪⎪⎪⎝⎭⎝⎭⎝⎭…211e n⎛⎫+< ⎪⎝⎭. 【点睛】本题考察利用导数研究含参函数单调性,以及构造函数利用导数证明不等式,以及数列和导数的综合,属综合困难题.。
2023届全国高考数学复习:专题(导数的运算)重点讲解与练习(附答案)

2023届全国高考数学复习:专题(导数的运算)重点讲解与练习1.基本初等函数的导数公式2.导数的运算法则若f ′(x ),g ′(x )存在,则有[cf (x )]′=cf ′(x );[f (x )±g (x )]′=f ′(x )±g ′(x );[f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x );⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0); 3.复合函数的定义及其导数(1)一般地,对于两个函数y =f (u )和u =g (x ),如果通过中间变量u ,y 可以表示成x 的函数,那么称这个函数为函数y =f (u )与u =g (x )的复合函数,记作y =f (g (x )).(2)复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y ′x =y ′u ꞏu ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.【方法总结】导数运算的原则和方法基本原则:先化简、再求导; 具体方法:(1)连乘积形式:先展开化为多项式的形式,再求导;(2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导; (3)对数形式:先化为和、差的形式,再求导; (4)根式形式:先化为分数指数幂的形式,再求导;(5)三角形式:先利用三角函数公式转化为和或差的形式,再求导; (6)复合函数:由外向内,层层求导. 【例题选讲】[例1] 求下列函数的导数: (1)y =x 2sin x ;(2)y =cos x e x ;(3)y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2; (4)y =ln(2x -5).[例2] (1) (2020ꞏ全国Ⅲ)设函数f (x )=e x x +a .若f ′(1)=e4,则a =________.(2)已知函数f (x )的导函数为f ′(x ),f (x )=2x 2-3xf ′(1)+ln x ,则f (1)= .(3)已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2 022(x )等于( )A .-sin x -cos xB .sin x -cos xC .-sin x +cos xD .sin x +cos x (4)(多选)给出定义:若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=(f ′(x ))′,若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在⎝⎛⎭⎫0,π2上是凸函数的是( ) A .f (x )=sin x +cos x B .f (x )=ln x -2x C .f (x )=x 3+2x -1 D .f (x )=x e x(5)已知f (x )的导函数为f ′(x ),若满足xf ′(x )-f (x )=x 2+x ,且f (1)≥1,则f (x )的解析式可能是( ) A .x 2-x ln x +x B .x 2-x ln x -x C .x 2+x ln x +x D .x 2+2x ln x +x 【对点训练】1.下列求导运算正确的是( )A .⎝⎛⎭⎫x +1x ′=1+1x 2B .(log 2x )′=1x ln 2C .(5x )′=5x log 5xD .(x 2cos x )′=-2x sin x 2.函数y =x cos x -sin x 的导数为( )A .x sin xB .-x sin xC .x cos xD .-x cos x 3.(多选)下列求导运算正确的是( )A .(sin a )′=cos a (a 为常数)B .(sin 2x )′=2cos 2xC .(x )′=12xD .(e x -ln x +2x 2)′=e x -1x +4x4.已知函数f (x )=sin x cos x +1x 2,则f ′(x )= .5.已知函数f (x )的导函数为f ′(x ),记f 1(x )=f ′(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x )(n ∈N *),若f (x )=x sin x ,则f 2 019(x )+f 2 021(x )=( )A .-2cos xB .-2sin xC .2cos xD .2sin x 6.f (x )=x (2 021+ln x ),若f ′(x 0)=2 022,则x 0等于( )A .e 2B .1C .ln 2D .e7.已知函数f (x )=1ax -1+e x cos x ,若f ′(0)=-1,则a = .8.已知函数f (x )=ln(2x -3)+ax e -x ,若f ′(2)=1,则a = .9.已知函数f (x )的导函数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f ′(2)的值等于( )A .-2B .2C .-94D .94 10.已知f (x )=x 2+2xf ′(1),则f ′(0)=________.11.设函数f (x )在(0,+∞)内可导,其导函数为f ′(x ),且f (ln x )=x +ln x ,则f ′(1)= . 12.已知f ′(x )是函数f (x )的导数,f (x )=f ′(1)ꞏ2x +x 2,则f ′(2)=( )A .12-8ln 21-2ln 2B .21-2ln 2C .41-2ln 2 D .-213.(多选)若函数f (x )的导函数f ′(x )的图象关于y 轴对称,则f (x )的解析式可能为( )A .f (x )=3cos xB .f (x )=x 3+xC .f (x )=x +1x D .f (x )=e x +x 14.f (x )=3e x+1+x 3,其导函数为f ′(x ),则f (2020)+f (-2020)+f ′(2019)-f ′(-2019)的值为( ) A .1 B .2 C .3 D .4 15.已知f (x )=ax 4+b cos x +7x -2.若f ′(2 020)=6,则f ′(-2 020)=______. 16.分别求下列函数的导数:(1)y =e xln x ;(2)y =x ⎝⎛⎭⎫x 2+1x +1x 3;(3)y =x -sin x 2cos x2;(4)y =ln 1+2x .(5)f (x )=x 3+2x -x 2ln x -1x 2.参考答案【例题选讲】[例1] 求下列函数的导数: (1)y =x 2sin x ; (2)y =cos x e x ;(3)y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2; (4)y =ln(2x -5).解析 (1)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x .(2)y ′=⎝⎛⎭⎫cos x e x ′=(cos x )′e x -cos x (e x )′(e x )2=-sin x +cos x e x . (3)∵y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2=12x sin(4x +π)=-12sin4x , ∴y ′=-12sin 4x -12x ꞏ4cos 4x =-12sin 4x -2x cos 4x . (4)令u =2x -5,y =ln u .则y ′=(ln u )′u ′=12x -5ꞏ2=22x -5,即y ′=22x -5. [例2] (1) (2020ꞏ全国Ⅲ)设函数f (x )=e xx +a.若f ′(1)=e 4,则a =________. 答案 1 解析 f ′(x )=e x (x +a )-e x (x +a )2=e x (x +a -1)(x +a )2,则f ′(1)=a e (a +1)2=e 4,整理可得a 2-2a +1=0,解得a =1.(2)已知函数f (x )的导函数为f ′(x ),f (x )=2x 2-3xf ′(1)+ln x ,则f (1)= .答案 -74 解析 ∵f (x )=2x 2-3xf ′(1)+ln x ,∴f ′(x )=4x -3f ′(1)+1x x =1代入,得f ′(1)=4-3f ′(1)+1,得f ′(1)=54.∴f (x )=2x 2-154x +ln x ,∴f (1)=2-154=-74.(3)已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2 022(x )等于( )A .-sin x -cos xB .sin x -cos xC .-sin x +cos xD .sin x +cos x 答案 C 解析 ∵f 1(x )=sin x +cos x ,∴f 2(x )=f 1′(x )=cos x -sin x ,f 3(x )=f 2′(x )=-sin x -cos x ,f 4(x )=f 3′(x )=-cos x +sin x ,f 5(x )=f 4′(x )=sin x +cos x ,∴f n (x )的解析式以4为周期重复出现,∵2 022=4×505+2,∴f 2 022(x )=f 2(x )=cos x -sin x .故选C .(4)(多选)给出定义:若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=(f ′(x ))′,若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在⎝⎛⎭⎫0,π2上是凸函数的是( )A .f (x )=sin x +cos xB .f (x )=ln x -2xC .f (x )=x 3+2x -1D .f (x )=x e x答案 AB 解析 对于A :f ′(x )=cos x -sin x ,f ″(x )=-sin x -cos x ,∵x ∈⎝⎛⎭⎫0,π2,∴f ″(x )<0,f (x )在⎝⎛⎭⎫0,π2上是凸函数,故A 正确.对于B :f ′(x )=1x -2,f ″(x )=-1x 2<0,故f (x )在⎝⎛⎭⎫0,π2上是凸函数,故B 正确;对于C :f ′(x )=3x 2+2,f ″(x )=6x >0,故f (x )在⎝⎛⎭⎫0,π2上不是凸函数,故C 错误;对于D :f ′(x )=(x +1)e x ,f ″(x )=(x +2)e x >0,故f (x )在⎝⎛⎭⎫0,π2上不是凸函数,故D 错误.故选AB . (5)已知f (x )的导函数为f ′(x ),若满足xf ′(x )-f (x )=x 2+x ,且f (1)≥1,则f (x )的解析式可能是( ) A .x 2-x ln x +x B .x 2-x ln x -x C .x 2+x ln x +x D .x 2+2x ln x +x 答案 C 解析 由选项知f (x )的定义域为(0,+∞),由题意得xf ′(x )-f (x )x 2=1+1x ,即⎣⎡⎦⎤f (x )x ′=1+1x ,故f (x )x =x +ln x +c (c 为待定常数),即f (x )=x 2+(ln x +c )x .又f (1)≥1,则c ≥0,故选C .【对点训练】1.下列求导运算正确的是( )A .⎝⎛⎭⎫x +1x ′=1+1x 2B .(log 2x )′=1x ln 2C .(5x )′=5x log 5xD .(x 2cos x )′=-2x sin x 1.答案 B 解析 (log 2x )′=1x ln 2,故B 正确. 2.函数y =x cos x -sin x 的导数为( )A .x sin xB .-x sin xC .x cos xD .-x cos x 2.答案 B 解析 y ′=x ′cos x +x (cos x )′-(sin x )′=cos x -x sin x -cos x =-x sin x . 3.(多选)下列求导运算正确的是( )A .(sin a )′=cos a (a 为常数)B .(sin 2x )′=2cos 2xC .(x )′=12xD .(e x -ln x +2x 2)′=e x -1x +4x3.答案 BCD 解析 ∵a 为常数,∴sin a 为常数,∴(sin a )′=0,故A 错误.由导数公式及运算法则知B ,C ,D 正确,故选BCD .4.已知函数f (x )=sin x cos x +1x 2,则f ′(x )= .4.答案 1cos 2x -2x 3 解析 f ′(x )=(sin x )′ꞏcos x -sin x ꞏ(cos x )′cos 2x+(x -2)′=cos 2x +sin 2x cos 2x +(-2)x -3=1cos 2x -2x 3. 5.已知函数f (x )的导函数为f ′(x ),记f 1(x )=f ′(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x )(n ∈N *),若f (x )=x sin x ,则f 2 019(x )+f 2 021(x )=( )A .-2cos xB .-2sin xC .2cos xD .2sin x5.答案 D 解析 由题意,f (x )=x sin x ,f 1(x )=f ′(x )=sin x +x cos x ,f 2(x )=f ′1(x )=cos x +cos x -x sin x =2cos x -x sin x ,f 3(x )=f ′2(x )=-3sin x -x cos x ,f 4(x )=f ′3(x )=-4cos x +x sin x ,f 5(x )=f ′4(x )=5sin x +x cos x ,…,据此可知f 2 019(x )=-2 019sin x -x cos x ,f 2 021(x )=2 021sin x +x cos x ,所以f 2019(x )+f 2 021(x )=2sin x ,故选D .6.f (x )=x (2 021+ln x ),若f ′(x 0)=2 022,则x 0等于( )A .e 2B .1C .ln 2D .e6.答案 B 解析 f ′(x )=2 021+ln x +x ×1x =2 022+ln x ,又f ′(x 0)=2 022,得2 022+ln x 0=2 022,则ln x 0 =0,解得x 0=1.7.已知函数f (x )=1ax -1+e x cos x ,若f ′(0)=-1,则a = .7.答案 2 解析 f ′(x )=-(ax -1)′(ax -1)2e x cos x -e x sin x =-a (ax -1)2+e x cos x -e xsin x ,∴f ′(0)=-a +1=-1, 则a =2.8.已知函数f (x )=ln(2x -3)+ax e -x ,若f ′(2)=1,则a = .8.答案 e 2解析 f ′(x )=12x -3ꞏ(2x -3)′+a e -x +ax ꞏ(e -x )′=22x -3+a e -x -ax e -x ,∴f ′(2)=2+a e -2-2a e -2=2-a e -2=1,则a =e 2.9.已知函数f (x )的导函数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f ′(2)的值等于( )A .-2B .2C .-94D .949.答案 C 解析 因为f (x )=x 2+3xf ′(2)+ln x ,所以f ′(x )=2x +3f ′(2)+1x 所以f ′(2)=2×2+3f ′(2)+12,解得f ′(2)=-94.10.已知f (x )=x 2+2xf ′(1),则f ′(0)=________.10.答案 -4 解析 ∵f ′(x )=2x +2f ′(1),∴f ′(1)=2+2f ′(1),∴f ′(1)=-2,∴f ′(0)=2f ′(1)=2×(-2)=-4. 11.设函数f (x )在(0,+∞)内可导,其导函数为f ′(x ),且f (ln x )=x +ln x ,则f ′(1)= .11.答案 1+e 解析 因为f (ln x )=x +ln x ,所以f (x )=x +e x ,所以f ′(x )=1+e x ,所以f ′(1)=1+e 1=1+e .12.已知f ′(x )是函数f (x )的导数,f (x )=f ′(1)ꞏ2x +x 2,则f ′(2)=( )A .12-8ln 21-2ln 2B .21-2ln 2C .41-2ln 2 D .-212.答案 C 解析 因为f ′(x )=f ′(1)ꞏ2x ln 2+2x ,所以f ′(1)=f ′(1)ꞏ2ln 2+2,解得f ′(1)=21-2ln 2,所以f ′(x )=21-2ln 2ꞏ2x ln 2+2x ,所以f ′(2)=21-2ln 2×22ln 2+2×2=41-2ln 2. 13.(多选)若函数f (x )的导函数f ′(x )的图象关于y 轴对称,则f (x )的解析式可能为( )A .f (x )=3cos xB .f (x )=x 3+xC .f (x )=x +1x D .f (x )=e x +x13.答案 BC 解析 对于A ,f (x )=3cos x ,其导数f ′(x )=-3sin x ,其导函数为奇函数,图象不关于y轴对称,不符合题意;对于B ,f (x )=x 3+x ,其导数f ′(x )=3x 2+1,其导函数为偶函数,图象关于y 轴对称,符合题意;对于C ,f (x )=x +1x ,其导数f ′(x )=1-1x 2,其导函数为偶函数,图象关于y 轴对称,符合题意;对于D ,f (x )=e x +x ,其导数f ′(x )=e x +1,其导函数不是偶函数,图象不关于y 轴对称,不符合题意. 14.f (x )=3e x+1+x 3,其导函数为f ′(x ),则f (2020)+f (-2020)+f ′(2019)-f ′(-2019)的值为( ) A .1 B .2 C .3 D .414.答案 C 解析 f ′(x )=-3e x (e x +1)2+3x 2,f ′(-x )=-3e x (e x +1)2+3x 2,所以f ′(x )为偶函数,f ′(2019)-f ′(-2019) =0,因为f (x )+f (-x )=31+e x+x 3+31+e -x -x 3=31+e x +3e x 1+e x =3,所以f (2020)+f (-2020)+f ′(2019)-f ′(-2019)=3.故选C .15.已知f (x )=ax 4+b cos x +7x -2.若f ′(2 020)=6,则f ′(-2 020)=______.15.答案 8 解析 因为f ′(x )=4ax 3-b sin x +7,所以f ′(-x )=4a (-x )3-b sin(-x )+7=-4ax 3+b sin x +7.所以f ′(x )+f ′(-x )=14.又f ′(2 020)=6,所以f ′(-2 020)=14-6=8. 16.分别求下列函数的导数:(1)y =e xln x ;(2)y =x ⎝⎛⎭⎫x 2+1x +1x 3;(3)y =x -sin x 2cos x2;(4)y =ln 1+2x .(5)f (x )=x 3+2x -x 2ln x -1x 2. 16.解析 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x ꞏ1x =⎝⎛⎭⎫ln x +1x e x . (2)∵y =x 3+1+1x 2,∴y ′=3x 2-2x 3. (3)∵y =x -12sin x ,∴y ′=1-12cos x .(4)∵y =ln 1+2x =12ln(1+2x ),∴y ′=12ꞏ11+2x ꞏ(1+2x )′=11+2x.(5)由已知f (x )=x -ln x +2x -1x 2.所以f ′(x )=1-1x -2x 2+2x 3=x 3-x 2-2x +2x 3.。
高中数学导数难题练习题带答案

高中数学导数难题一.选择题(共20小题)1.对于任意的x∈[0,],总存在b∈R,使得|sin2x+a sin x+b|≤1恒成立,则实数a的取值范围是()A.[﹣3,1]B.[﹣1,3]C.[﹣3,3]D.[﹣1,1]2.设k,b∈R,若关于x的不等式ln(x﹣1)+x≤kx+b在(1,+∞)上恒成立,则的最小值是()A.﹣e2B.﹣C.﹣D.﹣e﹣13.设k,b∈R,若关于x的不等式kx+b+1≥lnx在(0,+∞)上恒成立,则的最小值是()A.﹣e2B.﹣C.﹣D.﹣e4.已知曲线在x=x1处的切线为l1,曲线y=lnx在x=x2处的切线为l2,且l1⊥l2,则x2﹣x1的取值范围是()A.B.(﹣∞,﹣1)C.(﹣∞,0)D.5.若对任意的a∈R,不等式e2a+a2+b2﹣2ab≥20恒成立,则实数b的取值范围是()A.b B.b≥3+ln2C.b≥4+ln2D.b≥5+ln26.已知曲线f(x)=lnx+ax+b在x=1处的切线是x轴,若方程f(x)=m(m∈R)有两个不等实根x1,x2,则x1+x2的取值范围是()A.(0,)B.(0,1)C.(2,+∞)D.(4,+∞)7.已知a∈R,函数f(x)=,则下列说法正确的是()A.若a<﹣1,则y=f(x)(x∈R)的图象上存在唯一一对关于原点O对称的点B.存在实数a使得y=f(x)(x∈R)的图象上存在两对关于原点O对称的点C.不存在实数a使得y=f(x)(x∈R)的图象上存在两对关于y轴对称的点D.若y=f(x)(x∈R)的图象上存在关于y轴对称的点,则a>18.定义在R上的函数f(x)满足e4(x+1)f(x+2)=f(﹣x),且对任意的x≥1都有f'(x)+2f(x)>0(其中f'(x)为f(x)的导数),则下列一定判断正确的是()A.e4f(2)>f(0)B.e2f(3)<f(2)C.e10f(3)<f(﹣2)D.e6f(3)<f(﹣1)9.已知a,b∈R且ab≠0,对于任意x≥0均有(x﹣a)(x﹣b)(x﹣2a﹣b)≥0,则()A.a<0B.a>0C.b<0D.b>010.已知函数,若关于x的不等式在R上恒成立,则实数a的取值范围为()A.B.C.D.11.已知函数y=f(x)在R上的图象是连续不断的,其导函数为f'(x),且f'(x)>﹣f(x),若对于∀x>0,不等式xf(lnx)﹣e ax f(ax)≤0恒成立,则实数a的最小值为()A.e B.C.D.e212.若对任意的x∈R,都存在x0∈[ln2,2],使不等式+4x+m≥0成立,则整数m的最小值为()(提示:ln2≈0.693)A.3B.4C.5D.613.已知函数f(x)=e x﹣ax﹣1,g(x)=lnx﹣ax﹣1,其中0<a<1,e为自然对数的底数,若∃x0∈(0,+∞),使f (x0)g(x0)>0,则实数a的取值范围是()A.B.C.D.14.已知函数f(x)=ae x﹣x(a∈R)有两个零点x1,x2,且x1<x2则下列结论中不正确的是()A.B.0<x1<1C.x1+x2>2D.lnx1﹣x1<lnx2﹣x215.已知函数f(x)=lnx﹣ax有两个零点x1,x2(x1<x2),则下列说法错误的是()A.B.x1+x2<2e C.有极大值点x0,且x1+x2>2x0D.16.已知函数f(x)=,g(x)=xe﹣x,若存在x1∈(0,+∞),x2∈R,使得f(x1)=g(x2)=k(k<0)成立,则最小值为()A.B.﹣C.D.﹣17.已知不等式e x﹣x﹣1>m[x﹣ln(x+1)]对一切正数x都成立,则实数m的取值范围是()A.B.C.(﹣∞,1]D.(﹣∞,e]18.已知函数f(x)是定义在(﹣,)上的奇函数.当时,f(x)+f′(x)tan x>0,则不等式cos x •f(x+)+sin x•f(﹣x)>0的解集为()A.(,)B.(﹣,)C.D.19.若关于x的不等式2lnx≤ax2+(2a﹣2)x+1恒成立,则a的最小整数值是()A.0B.1C.2D.320.已知可导函数f(x)的导函数f'(x),若对任意的x∈R,都有f(x)>f'(x)+2,且f(x)﹣2020为奇函数,则不等式f(x)﹣2018e x<2的解集为()A.(﹣∞,0)B.(0,+∞)C.D.二.填空题(共10小题)21.已知函数f(x)=x3﹣3x,若对任意的实数x,不等式f(x+t)>f(x)+t(t≠0)恒成立,则实数t的取值范围.22.已知函数f(x)对定义域内R内的任意x都有f(x)=f(4﹣x),且当x≠2,其导数f′(x)满足xf′(x)<2f′(x),若f(3)=0,则不等式xf(x)>0的解集为.23.已知函数f(x)=,则过原点且与“曲线y=f(x)在y轴右侧的图象”相切的直线方程为,若f(x)=mx有两个不同的根,则实数m的取值范围是.24.已知函数f(x)=axlnx+(a>0).(1)当a=1时,f(x)的极小值为;(2)若f(x)≥ax在(0,+∞)上恒成立,则实数a的取值范围为.25.若不等式x﹣2≤x2+ax+b≤4lnx对任意的x∈[1,e]恒成立,则实数b的最大值为.26.若函数f(x)=x3﹣ax﹣2(a∈R)在(﹣∞,0)内有且只有一个零点,则f(x)在[﹣1,2]上的最小值为.27.过曲线上一点P作该曲线的切线l,l分别与直线y=x,y=2x,y轴相交于点A,B,C.设△OAC,△OAB的面积分别为S1,S2,则S1=,S2的取值范围是.28.当x∈[0,+∞)时,不等式x2+3x+2﹣a≥0恒成立,则a的取值范围是.29.若不等式x2﹣|x﹣2a|≤a﹣3在x∈[﹣1,1]上恒成立,则正实数a的取值范围是.30.已知函数,若直线y=2x﹣b与函数y=f(x),y=g(x)的图象均相切,则a的值为;若总存在直线与函数y=f(x),y=g(x)图象均相切,则a的取值范围是.三.解答题(共10小题)31.已知函数f(x)=ax﹣lnx.(Ⅰ)讨论函数f(x)的单调区间;(Ⅱ)当x∈(0,e]时,是否存在实数a,使得f(x)的最小值为4?若存在,求出实数a,若不存在说明理由.32.已知函数f(x)=x sin x+cos x+ax2,x∈[﹣π,π].(1)当a=0时,求f(x)的单调区间;(2)当a>0时,讨论f(x)的零点个数.33.已知函数f(x)=e x+,其导函数为f′(x),函数g(x)=,对任意x∈R,不等式g(x)≥ax+1恒成立.(Ⅰ)求实数a的值;(Ⅱ)若0<m<2e,求证:x2g(x)>m(x+1)lnx.34.设函数f(x)=e x﹣ax﹣1,a∈R.(Ⅰ)讨论f(x)在(0,+∞)上的单调性;(Ⅱ)当a>1时,存在正实数m,使得对∀x∈(0,m),都有|f(x)|>x,求a的取值范围.35.已知函数.(1)讨论f(x)的单调性;(2)若恒成立,求证:.36.已知函数f(x)=.(1)求函数f(x)的极值;(2)令h(x)=x2f(x),若对∀x≥1都有h(x)≥ax﹣1,求实数a的取值范围.37.已知函数f(x)=lnx﹣.(1)求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若函数f(x)存在两个极值点x1,x2,求实数a的取值范围,并证明:f(x1),f(1),f(x2)成等差数列.38.已知函数f(x)=alnx(a≠0)与的图象在它们的交点P(s,t)处具有相同的切线.(1)求f(x)的解析式;(2)若函数g(x)=(x﹣1)2+mf(x)有两个极值点x1,x2,且x1<x2,求的取值范围.39.已知函数f(x)=﹣x+(x+1)ln(x+1)(a∈R).(1)当a=1时,求曲线y=f(x)在x=1处的切线方程;(2)若∀x1,x2∈(0,+∞),x1<x2,都有f(x1)<f(x2),求实数a的取值范围.40.已知实数a≥﹣1,设f(x)=(x+a)lnx,x>0.(1)若a=﹣1,有两个不同实数x1,x2不满足|f'(x1)|=|f'(x2)|,求证:x1+x2>2;(2)若存在实数,使得|f(x)|=c有四个不同的实数根,求a的取值范围.参考答案与试题解析一.选择题(共20小题)1.【解答】解:令t=sin x∈[0,1],则f(t)=t2+at+b,t∈[0,1].由已知得:①当,即a≥0时,则,整理得0≤a≤1;②当,即﹣1<a<0时,则,即,显然始终存在符合题意的b,使原式成立;③当,即﹣2<a≤﹣1时,则,显然符合题意的b存在;④当,即a≤﹣2时,则,即,可得始终存在b,且﹣3≤a≤﹣2.综上可知,a的取值范围是[﹣3,1].故选:A.2.【解答】解:ln(x﹣1)+x≤kx+b在(1,+∞)上恒成立,即为ln(x﹣1)+x﹣kx≤b对x>1恒成立,可令t=x﹣1,t>0,则lnt+t+1﹣k(t+1)≤b,令f(t)=lnt+(1﹣k)t+1﹣k,f′(t)=+1﹣k,若k≤1,则f′(t)>0,可得f(t)在t>1递增,当t→∞时,f(t)→∞,不等式不能成立;故k>1,当=k﹣1时,f(t)取得最大值f(t)max=f()=ln﹣1+1﹣k=﹣ln(k﹣1)﹣k,即﹣ln(k﹣1)﹣k≤b,所以ln(k﹣1)+k﹣1≥﹣2﹣(b﹣1),则≥﹣﹣1,可令k﹣1=u,g(u)=﹣﹣1,g′(u)=﹣=,可得当lnu=﹣1时,u=,g(u)min=﹣2e+e﹣1=﹣e﹣1,则的最小值是﹣e﹣1.故选:D.3.【解答】解:kx+b+1≥lnx在(0,+∞)上恒成立,即为lnx﹣kx﹣1≤b在(0,+∞)上恒成立,令f(x)=lnx﹣kx﹣1,f′(x)=﹣k,若k≤0,则f′(x)>0,可得f(x)在(0,+∞)递增,当x→∞时,f(x)→∞,不等式不能成立;故k>0,当=k时,f(x)取得最大值f(x)max=f()=ln﹣2=﹣lnk﹣2,即﹣lnk﹣2≤b,则≥﹣﹣,k>0,可令g(k)=﹣﹣,k>0,g′(k)=﹣=,可得当lnk=﹣1时,k=,g(k)min=﹣2e+e=﹣e,则的最小值是﹣e.故选:D.4.【解答】解:由,得,则,由y=lnx,得y′=,则,∵l1⊥l2,∴,即.∵x2>0,∴x1>1,又,令h(x)=,x>1.则h′(x)=.当x∈(1,+∞)时,y=2﹣x﹣e x为减函数,故2﹣x﹣e x<2﹣1﹣e<0.∴h′(x)<0在(1,+∞)上恒成立,故h(x)在(1,+∞)上为减函数,则h(x)<h(1)=﹣1.又当x>1时,<,∴h(x)的取值范围为(﹣∞,﹣1).即x2﹣x1的取值范围是(﹣∞,﹣1).故选:B.5.【解答】解:令f(x)=e2x+x2+b2﹣2bx﹣20,f′(x)=2e2x+2x﹣2b,f″(x)=4e2x+2>0,所以f′(x)在R上单调递增,又∵,所以存在x0使得f′(x0)=0,代入化简可得,那么f(x)在(﹣∞,x0)单调递减,在(x0,+∞)上单调递增.∴=,又∵f(x0)≥0,即.令,则t2+t≥20,解得:t≤﹣5 (含去),t≥4,即x0≥ln2,∴,故选:C.6.【解答】解:易知,切点为(1,0),切线斜率为0,而.∴,解得a=﹣1,b=1.∴f(x)=lnx﹣x+1(x>0).∵,易知f′(1)=0,且当x∈(0,1)时,f′(x)>0;x∈(1,+∞)时,f′(x)<0.∴f(x)在(0,1)上是增函数,在(1,+∞)上是减函数,故若方程f(x)=m(m∈R)有两个不等实根x1<x2,则必有0<x1<1<x2,则2﹣x1>1.∵f(x1)=f(x2),∴f(x2)﹣f(2﹣x1)=f(x1)﹣f(2﹣x1),令g(x)=f(x)﹣f(2﹣x)=lnx﹣x﹣1﹣[ln(2﹣x)﹣(2﹣x)﹣1]=lnx﹣ln(2﹣x)﹣2x+2,x∈(0,1),∵(0<x<1),∴g(x)在(0,1)上单调递增,而g(1)=0,故g(x)<0在(0,1)上恒成立,∴f(x2)﹣f(2﹣x1)<0恒成立,即f(x2)<f(2﹣x1)恒成立而此时x2,2﹣x1∈(1,+∞),且f(x)在(1,+∞)上是减函数,∴x2>2﹣x1,即x1+x2>2.故选:C.7.【解答】解:由关于原点对称的点的特点,可将x换为﹣x,y换为﹣y,可得f(x)=﹣x2﹣2x+a(x≤0)关于原点O对称的解析式g(x)=x2﹣2x﹣a(x≥0),令h(x)=e x﹣x2+2x+a(x>0),则h'(x)=e x﹣2x+2,h''(x)=e x﹣2,由x>ln2可得h′(x)递增;0<x<ln2时,h′(x)递减,所以h'(x)≥h′(ln2)=4﹣2ln2>0,因此,h(x)是单调递增的,且h(x)=e x﹣x2+2x+a≥h(0)=1+a,故当a<﹣1,h(x)有唯一零点,当a≥﹣1时,h(x)不存在零点,故A正确;B不正确;由关于y轴对称的点的特点,可将x换为﹣x,y不变,可得f(x)=﹣x2﹣2x+a(x≤0)关于y轴对称的解析式m(x)=﹣x2+2x+a(x≥0),令n(x)=e x+x2﹣2x﹣a(x>0),n′(x)=e x+2x﹣2,n″(x)=e x+2,所以n″(x)>0,n′(x)递增,n′(x)≥n′(0)=﹣1,因此,n(x)不单调,当a<0时,n(x)有零点,当a=1时,n(x)存在两对零点,故C,D都不正确.故选:A.8.【解答】解:设F(x)=e2x•f(x),则F'(x)=2e2x f(x)+e2x f'(x)=e2x[2f(x)+f'(x)],∵对任意的x≥1都有f′(x)+2f(x)>0;则F'(x)>0,则F(x)在[1,+∞)上单调递增;F(x+2)=e2(x+2)•f(x+2);F(﹣x)=e﹣2x•f(﹣x);因为e4(x+1)f(x+2)=f(﹣x),∴e2(x+2)•e2x•f(x+2)=f(﹣x);∴e2(x+2)•f(x+2)=e﹣2x•f(﹣x)∴F(x+2)=F(﹣x),所以F(x)关于x=1对称,则F(﹣2)=F(4),∵F(x)在[1,+∞)上单调递增;∴F(3)<F(4)即F(3)<F(﹣2),∴e6•f(3)<e﹣4•f(﹣2);即e10•f(3)<f(﹣2)成立.故C正确;F(3)=F(﹣1),F(0)=F(2)故A,D均错误;F(3)>F(2)∴e2f(3)>f(2).B错误.故选:C.9.【解答】解:设f(x)=(x﹣a)(x﹣b)(x﹣2a﹣b),可得f(x)的图象与x轴有三个交点,即f(x)有三个零点a,b,2a+b且f(0)=﹣ab(2a+b),由题意知,f(0)≥0在x≥0上恒成立,则ab(2a+b)≤0,a<0,b<0,可得2a+b<0,ab(2a+b)≤0恒成立,排除B,D;我们考虑零点重合的情况,即中间和右边的零点重合,左边的零点在负半轴上.则有a=b或a=2a+b或b=b+2a三种情况,此时a=b<0显然成立;若b=b+2a,则a=0不成立;若a=2a+b,即a+b=0,可得b<0,a>0且a和2a+b都在正半轴上,符合题意,综上b<0恒成立.故选:C.10.【解答】解:当x≥1时,f(x)=x2﹣x+4=(x﹣2)2+>0,当x<1时,f(x)=﹣x3+x2﹣x+,则f′(x)=﹣x2+2x﹣1<0,故f(x)在(﹣∞,1)递减,f(x)>f(1)=3>0,若关于x的不等式在R上恒成立,则﹣x2+x﹣4≤x﹣a≤x2﹣x+4且x3﹣x2+x﹣≤x﹣a≤﹣x3+x2﹣x+恒成立,即﹣x2+x﹣4≤a≤x2﹣x+4且x3﹣x2+x﹣≤a≤﹣x3+x2﹣x+恒成立,所以(﹣x2+x﹣4)max≤a≤(x2﹣x+4)min且(x3﹣x2+x﹣)max≤a≤(﹣x3+x2﹣x+)min,对于y=﹣x2+x﹣4(x≥1),对称轴是x=,故x=时y取最大值﹣,对于y=x2﹣x+4(x≥1),对称轴是x=,故x=时y取最小值,故﹣≤a≤①,对于y=x3﹣x2+x﹣(x<1),y′=x2﹣2x+>0,函数在(﹣∞,1)递增,故y<y|x=1=﹣,对于y=﹣x3+x2﹣x+(x<1),y′=﹣(x﹣1)2+,令y′>0,解得<x<1,令y′<0,解得x<,故函数在(﹣∞,)递减,在(,1)递增,y min=y|x==,故﹣≤a≤②,综合①②,得﹣≤a≤.故选:B.11.【解答】解:根据題意,令F(x)=e x•f(x),则F'(x)=e x[f(x)+f'(x)]>0,故函数F(x)在R上单调递增,F(lnx)=e lnx f(lnx)=xf(lnx),F(ax)=e ax f(ax),又∀x>0,不等式xf(lnx)﹣e ax f(ax)≤0恒成立,所以F(lnx)≤F(ax)在(0,+∞)恒成立.从而lnx≤ax,即在(0,+∞)恒成立.令,,令g'(x)=0,则x=e,所以在(0,e)单调递增,在(e,+∞)单调递减.所以,故.则实数a的最小值为,故选:B.12.【解答】解:设,由题意可知f(x)≥0对x∈R恒成立,则在x0∈[ln2,2]上有解,即在x0∈[ln2,2]上有解.设g(x)=x2+2x﹣e x﹣m+4,∴h(x)=g'(x)=2x﹣e x+2,则h'(x)=2﹣e x,∵x∈[ln2,2],∴h'(x)≤h'(ln2)=2﹣e ln2=0,则g'(x)在[ln2,2]上单调递减.∵g'(ln2)=2ln2>0,g'(2)=6﹣e2<0,∴∃x1∈(ln2,2),g'(x1)=0,则g(x)在[ln2,x1)上单调递增,在(x1,2]上单调递减.∵g(ln2)=(ln2)2+2ln2+2﹣m,g(2)=12﹣e2﹣m,∴g(2)﹣g(ln2)=10﹣e2﹣(ln2)2﹣2ln2>0,则g(ln2)≤0,即(ln2)2+2ln2+2﹣m≤0,故m≥(ln2)2+2ln2+2,∵m∈Z,∴m的最小值是4.故选:B.13.【解答】解:由e x﹣ax﹣1,得f′(x)=e x﹣a,∵0<a<1,∴当x∈(0,+∞)时,f′(x)=e x﹣a>0恒成立,则f(x)在(0,+∞)上单调递增,则f(x)>f(0)=0;若∃x0∈(0,+∞),使f(x0)g(x0)>0,则∃x0∈(0,+∞),使g(x0)>0,即∃x0∈(0,+∞),使lnx0﹣ax0﹣1>0,∴∃x0∈(0,+∞),a<,令h(x)=,则h′(x)==,当x∈(0,e2)时,h′(x)>0,h(x)单调递增,当x∈(e2,+∞)时,h′(x)<0,h(x)单调递减,∴h(x)有极大值也是最大值为h(e2)=,则a<,∴实数a的取值范围是,故选:A.14.【解答】解:f′(x)=ae x﹣1,当a≤0时,f′(x)<0在x∈R上恒成立,此时f(x)在R上单调递减,不合题意;当a>0时,由f'(x)=0,解得x=﹣lna,当x<﹣lna时,f'(x)<0,f(x)单调递减,当x>﹣lna时,f'(x)>0,f(x)单调递增,∴当a>0时,f(x)单调减区间为(﹣∞,﹣lna),单调增区间为(﹣lna,+∞),可知当x=﹣lna时,函数取得极小值为f(﹣lna)=ae﹣lna+lna=lna+1,又当x→﹣∞时,f(x)→+∞,x→+∞时,f(x)→+∞,∴要使函数f(x)有两个零点,则,得0<a<,故A正确;由f(0)=a>0,极小值点x=﹣lna>0,可得0<x1<x2.∵x1,x2是f(x)的两个零点,∴,.可得lnx1=lna+x1,lnx2=lna+x2.故lnx1﹣x1=lnx2﹣x2,故D错误;由lnx1﹣x1=lnx2﹣x2=lna,设g(x)=lnx﹣x﹣lna,则x1,x2为g(x)的两个零点,g′(x)=﹣1=,得g(x)在(0,1)上单调增,在(1,+∞)上单调减,∴0<x1<1<x2,故B正确;设h(x)=g(x)﹣g(2﹣x),(0<x<1),则h(x)=lnx﹣ln(2﹣x)+2﹣2x(0<x<1),h′(x)=+﹣2=>0恒成立,则h(x)在(0,1)上单调增,∵h(x)<h(1)=0,∴h(x1)=g(x1)﹣g(2﹣x1)<0,即g(x1)<g(2﹣x1),得g(x2)<g(2﹣x1).又g(x)在(1,+∞)上单调减,x2,2﹣x1∈(1,+∞),∴x2>2﹣x1,即x1+x2>2,故C正确.综上,错误的结论是D.故选:D.15.【解答】解:由f(x)=lnx﹣ax,可得,当a≤0时,f′(x)>0,∴f(x)在x∈(0,+∞)上单调递增,与题意不符;当a>0时,可得当,解得:,可得当时,f′(x)>0,f(x)单调递增,当时,f′(x)<0,f(x)单调递减,可得当时,f(x)取得极大值点,又因为由函数f(x)=lnx﹣ax有两个零点x1,x2(x1<x2),可得,可得,综合可得:,故A正确;由上可得f(x)的极大值为,设,设,其中,可得,可得,可得,易得当时,g′(x)=0,当,g′(x)≤0,故,,故,,由,易得,且,且时,f′(x)<0,f(x)单调递减,故由,可得,即,即:有极大值点,且,故C正确,B不正确;由函数f(x)=lnx﹣ax有两个零点x1,x2(x1<x2),可得lnx1=ax1,lnx2=ax2,可得,,可得,由前面可得,,可得,故D正确.故选:B.16.【解答】解:函数f(x)的定义域为(0,+∞),f′(x)=,∴当x∈(0,e)时,f′(x)>0,f(x)单调递增,当x∈(e,+∞)时,f′(x)<0,f(x)单调递减,又f(1)=0,所以x∈(0,1)时,f(x)<0;x∈(1,+∞)时,f(x)>0,同时g(x)===f(e x),若存在x1∈(0,+∞),x2∈R,使得f(x1)=g(x2)=k(k<0)成立,则0<x1<1且f(x1)=g(x2)=f(),所以x1=,即x2=lnx1,又k=,所以==k,故e k=k3e k,令h(k)=k3e k,k<0,则h′(k)=k2(k+3)e k,令h′(k)<0,解得k<﹣3,令h′(k)>0,解得:﹣3<k<0,∴h(k)在(﹣∞,﹣3)单调递减,在(﹣3,0)单调递增,∴h(k)min=h(﹣3)=﹣,故选:D.17.【解答】解:由题意可知:当x>0时,e x﹣x﹣1﹣m[x﹣ln(x+1)]>0恒成立,设f(x)=e x﹣x﹣1﹣m[x﹣ln(x+1)],则f′(x)=e x﹣1﹣m(1﹣),f″(x)=e x﹣,①m≤0时,f″(x)>0恒成立,∴f′(x)递增,∵f′(0)=0,∴x>0时,f′(x)>f′(0)=0,f(x)递增,又∵f(0)=0,∴x>0时,f(x)>f(0)=0,符合题意,②m>0时,f″′(x)=e x+,∴f′″(x)>0恒成立,f″(x)递增,f″(0)=1﹣m,(i)1﹣m≥0即0<m≤1时,与①同理,m符合题意,(ii)1﹣m<0,即m>1时,f″(0)<0,另一方面,显然当x→+∞时,f″(x)>0,且f″(x)连续,∴由零点定理,存在x0∈(0,+∞),使得f″(x0)=0,∴0<x<x0时,f″(x)<0,f′(x)递减,又∵f′(0)=0,∴0<x<x0时,f′(x)<0,f(x)递减,f(0)=0,∴0<x<x0时,f(x)<0,不合题意,综上,m的范围是(﹣∞,1],故选:C.18.【解答】解:令g(x)=f(x)sin x,g′(x)=f(x)cos x+f′(x)sin x=[f(x)+f′(x)tan x]•cos x,当x∈[0,)时,f(x)+f′(x)tan x>0,∴g′(x)>0,即函数g(x)单调递增.又g(0)=0,∴时,g(x)=f(x)sin x>0,∵f(x)是定义在(﹣,)上的奇函数,∴g(x)是定义在(﹣,)上的偶函数.不等式cos x•f(x+)+sin x•f(﹣x)>0,即sin(x+)f(x+)>sin xf(x),即g(x+)>g(x),∴|x+|>|x|,∴x>﹣①,又﹣<x+<,故﹣π<x<0②,由①②得不等式的解集是(﹣,0).故选:C.19.【解答】解:若关于x的不等式2lnx≤ax2+(2a﹣2)x+1恒成立,问题等价于a≥在(0,+∞)恒成立,令g(x)=,则g′(x)=,令h(x)=﹣x﹣lnx,(x>0),则h′(x)=﹣﹣<0,故h(x)在(0,+∞)递减,不妨设h(x)=0的根是x0,则lnx0=﹣x0,则x∈(0,x0)时,g′(x)>0,g(x)递增,x∈(x0,+∞)时,g′(x)<0,g(x)递减,∴g(x)max=g(x0)===,∵h(1)=1>0,h(2)=﹣ln2<0,∴1<x0<2,<<1,∴a≥1,a的最小整数值是1,故选:B.20.【解答】解:设g(x)=,由f(x)>f′(x)+2,得:g′(x)=<0,故函数g(x)在R递减,由f(x)﹣2020为奇函数,得f(0)=2020,∴g(0)=f(0)﹣2=2018,即g(0)=2018,∵不等式f(x)﹣2018e x<2,∴<2018,即g(x)<g(0),结合函数的单调性得:x>0,故不等式f(x)﹣2018e x<2的解集是(0,+∞),故选:B.二.填空题(共10小题)21.【解答】解:函数f(x)=x3﹣3x,若对任意的实数x,不等式f(x+t)>f(x)+t(t≠0)恒成立,则(x+t)3﹣3(x+t)>x3﹣3x+t,即x3+3x2t+3xt2+t3﹣3x﹣3t>x3﹣3x+t,所以3x2t+3xt2+t3﹣4t>0(t≠0)恒成立,所以t>0,且△=(3t2)2﹣4•3t•(t3﹣4t)=﹣3t4+48t2<0,解得t>4,又t<0时,不等式不恒成立.综上,t的范围是(4,+∞).22.【解答】解:∵函数f(x)对定义域R内的任意x都有f(x)=f(4﹣x),∴f(x)关于直线x=2对称;又当x≠2时其导函数f′(x)满足xf′(x)<2f′(x)⇔f′(x)(x﹣2)<0,∴当x>2时,f′(x)<0,f(x)在(2,+∞)上的单调递减;同理可得,当x<2时,f(x)在(﹣∞,2)单调递增;∵f(3)=0,∴f(1)=0,即当1<x<3时,f(x)>0,当x>3或x<1时,f(x)<0,即f(x)的草图如右:则不等式xf(x)>0等价为或,即1<x<3或x<0,即不等式的解集为(﹣∞,0)∪(1,3),故答案为:(﹣∞,0)∪(1,3).23.【解答】解:设切点为(x0,lnx0),由f(x)=lnx,得f′(x)=,则f′(x0)=,∴曲线y=f(x)在y轴右侧的图象在切点处的切线方程为y﹣lnx0=,把原点代入,可得﹣lnx0=﹣1,即x0=e.则切线方程为y﹣1=(x﹣e),即y=;作出函数f(x)=的图象如图:若f(x)=mx有两个不同的根,则m≤0或<m<1.∴m的取值范围为(﹣∞,0]∪(,1).故答案为:y=;(﹣∞,0]∪(,1).24.【解答】解:(1)a=1时,f(x)=xlnx+,(x>0),f′(x)=lnx+1﹣,f″(x)=+>0,故f′(x)在(0,+∞)递增,而f′(1)=0,故x∈(0,1)时,f′(x)<0,f(x)递减,x∈(1,+∞)时,f′(x)>0,f(x)递增,故f(x)极小值=f(1)=1;(2)若f(x)≥ax在(0,+∞)上恒成立,即a(1﹣lnx)≤在(0,+∞)恒成立,①1﹣lnx≤0即x≥e时,∵a>0,(1﹣lnx)≤0,>0,故a(1﹣lnx)≤在(0,+∞)恒成立,②1﹣lnx>0即0<x<e时,问题转化为a≤在(0,+∞)恒成立,即a≤[]min,只需求出g(x)=x2(1﹣lnx)的最大值即可,(0<x<e),g′(x)=x(1﹣2lnx),令g′(x)>0,解得:0<x<,令g′(x)<0,解得:<x<e,故g(x)在(0,)递增,在(,e)递减,故g(x)max=g()=,故a≤=,综上,a∈(0,].故答案为:1,(0,].25.【解答】解:由x﹣2≤x2+ax+b≤4lnx对任意的x∈[1,e]恒成立,得﹣x2+x﹣2≤ax+b≤4lnx﹣x2对任意的x∈[1,e]恒成立,令f(x)=﹣x2+x﹣2,g(x)=4lnx﹣x2.由g(x)=4lnx﹣x2,得g′(x)=(1≤x≤e).当x∈(1,)时,g′(x)>0,g(x)单调递增,当x∈()时,g′(x)<0,g(x)单调递减.在同一平面直角坐标系内,作出函数y=f(x)与y=g(x)的图象如图:设过(1,﹣1)与f(x)=﹣x2+x﹣2相切的直线方程为y+1=k(x﹣1),联立,消去y得x2+(k﹣1)x+1﹣k=0.由△=(k﹣1)2﹣4(1﹣k)=0,解得k=﹣3或k=1.当k=﹣3时,直线方程为y=﹣3x+2.由图可知,满足不等式x﹣2≤x2+ax+b≤4lnx对任意的x∈[1,e]恒成立的实数b的最大值为2.故答案为:2.26.【解答】解:∵f(x)=x3﹣ax﹣2(a∈R),∴f′(x)=3x2﹣a(x<0),①当a≤0时,f′(x)=3x2﹣a>0,函数f(x)在(﹣∞,0)上单调递增,又f(0)=﹣2<0,∴f(x)在(﹣∞,0)上没有零点;②当a>0时,由f′(x)=3x2﹣a>0,解得x<或x>(舍).∴f(x)在(﹣∞,﹣)上单调递增,在(,0)上单调递减,而f(0)=﹣2<0,要使f(x)在(﹣∞,0)内有且只有一个零点,∴f()=,解得a=3,f(x)=x3﹣3x﹣2,f′(x)=3x2﹣3=3(x+1)(x﹣1),x∈[﹣1,2],当x∈(﹣1,1)时,f′(x)<0,f(x)单调递减,当x∈(1,2)时,f′(x)>0,f(x)单调递增.又f(﹣1)=0,f(1)=﹣4,f(2)=0,∴f(x)min=f(1)=﹣4.故答案为:﹣4.27.【解答】解:由y=x+,得y′=1﹣,设P()(x0>0),则,∴曲线在P处的切线方程为.分别与y=x与y=2x联立,可得A(2x0,2x0),B(,),取x=0,可得C(0,),又O(0,0),∴△OAC的面积S1=;OA=,点B到直线x﹣y=0的距离d==.∴△OAB的面积S2===∈(0,2).故答案为:2;(0,2).28.【解答】解:可设t=,由x≥0可得t≥1,由x=,可得不等式恒成立,即为()2+3()+2﹣at﹣a2≥0对t≥1恒成立,化为a2+at﹣(t2+3)(t2+1)≤0对t≥1恒成立,设f(t)=a2+at﹣(t2+3)(t2+1),f′(t)=a﹣(t3+2t),由题意可得f(t)的最大值小于等于0,若f(x)不单调,可得a≥3,再由t≥1时,f(t)=(t3+2t)2+t(t3+2t)﹣﹣(t2+3)(t2+1)的导数为f′(t)=6t5+19t3+10t>0,即有f(t)≥f(1)=10>0,不等式不恒成立,可得f(x)单调,且f(x)在[1,+∞)递减,可得a﹣(t3+2t)≤0,即a≤3;又a2+a﹣×(1+3)×(1+1)≤0,解得﹣2≤a≤1,即a的范围是[﹣2,1].故答案为:[﹣2,1].29.【解答】解:x2﹣|x﹣2a|≤a﹣3即|x﹣2a|≥x2﹣a+3,可得x﹣2a≥x2﹣a+3,或x﹣2a≤﹣x2+a﹣3,即为a≤x﹣x2﹣3或3a≥x2+x+3在﹣1≤x≤1恒成立,由y=x﹣x2﹣3在[﹣1,1]的最小值为﹣1﹣1﹣3=﹣5,可得a≤﹣5;由y=x2+x+3在[﹣1,1]的最大值为1+1+3=5,可得3a≥5,即a≥;由a>0,可得a≥.故答案为:a≥.30.【解答】解:设直线y=2x﹣b与函数y=f(x)的图象相切的切点为(m,2lnm),由f′(x)=,可得=2,即m=1,切点为(1,0),则b=2,切线的方程为y=2x﹣2,联立y=g(x)=ax2﹣x﹣,可得ax2﹣3x+=0,由题意可得△=9﹣4a•=0,解得a=;设y=f(x)与y=g(x)的图象在交点处存在切线y=kx+t,且切点为(n,2lnn),由f′(x)=,g′(x)=2ax﹣1,可得=k=2an﹣1,2lnn=kn+t=an2﹣n﹣,化为kn=2,an2=,则2lnn=,即4lnn+n=1,设h(n)=4lnn+n,h′(n)=+1>0,可得h(n)在(0,+∞)递增,由h(1)=1,可得4lnn+n=1的解为n=1,则a=,由y=ax2﹣x﹣(a>0)的图象可得,当a越大时,抛物线的开口越小,可得此时y=f(x)和y=g(x)的图象相离,总存在直线与它们的图象都相切,则a的范围是[,+∞).故答案为:,[,+∞).三.解答题(共10小题)31.【解答】解:(1)f′(x)=a ﹣=(x>0),当a≤0时,f′(x)<0,∴f(x)递减,当a>0时,令f′(x)<0,得0<x <;令f′(x)>0,得x >,综上:a≤0时减区间为(0,+∞),a>0,时减区间为(0,);增区间为[,+∞);(2)a≤0时,f(x)在(0,e]上为减函数,∴f(x)min=f(e)=ae﹣1=4,∴a =>0,舍去,a>0时①若≥e即a ≤时f(x)在(0,e]上为减函数,∴f(x)min=f(e)=ae﹣1=4,∴a =,舍去,②若<e即a >时f(x)在(0,)上递减,在(,e]上递增,∴f(x)min=f ()=1﹣ln=4,∴a=e3.32.【解答】解:(1)当a=0时,f(x)=x sin x+cos x,x∈[﹣π,π].f'(x)=sin x+x cos x﹣sin x=x cos x.当x在区间[﹣π,π]上变化时,f'(x),f(x)的变化如下表x﹣π(﹣π,﹣)﹣(﹣,0)0(0,)(,π)πf'(x)+0﹣0+0﹣f(x)﹣1极大值极小值1极大值﹣1∴f(x)的单调增区间为(﹣π,﹣),(0,);f(x )的单调减区间为(﹣,0),(,π).(2)任取x∈[﹣π,π].∵f(﹣x)=(﹣x)sin(﹣x)+cos(﹣x)+a(﹣x)2=x sin x+cos x +ax2=f(x),∴f(x)是偶函数.f′(x)=ax+x cos x=x(a+cos x).当a≥1时,a+cos x≥0在[0,π)上恒成立,∴x∈[0,π)时,f′(x)≥0.∴f(x)在[0,π]上单调递增.又∵f(0)=1,∴f(x)在[0,π]上有0个零点.又∵f(x)是偶函数,∴f(x)在[﹣π,π]上有0个零点.当0<a<1时,令f′(x)=0,得cos x=﹣a.由﹣1<﹣a<0可知存在唯一x0∈(,π)使得cos x0=﹣a.∴当x∈[0,x0)时,f′(x)≥0,f(x)单调递增;当x∈(x0,π)时,f′(x)<0,f(x)单调递减.∵f(0)=1,f(x0)>1,f(π)=aπ2﹣1.①当aπ2﹣1>0,即<a<1时,f(x)在[0,π]上有0个零点.由f(x)是偶函数知f(x)在[﹣π,π]上有0个零点.②当aπ2﹣1≤0,即0<a≤时,f(x)在[0,π]上有1个零点.由f(x)是偶函数知f(x)在[﹣π,π]上有2个零点.综上,当0<a≤时,f(x)有2个零点;当a>时,f(x)有0个零点.33.【解答】解:(Ⅰ)f′(x)=e x﹣e﹣x,g(x)=e x,h(x)=e x﹣ax﹣1,h′(x)=e x﹣a,(1)a≤0时,h′(x)>0,h(x)在R递增,又h(﹣1)=﹣1+a<0,与题意不符,舍去,(2)a>0时,由h′(x)>0,解得:x>lna,由h′(x)<0,解得:x<lna,故h(x)在(﹣∞,lna)递减,在(lna,+∞)递增,故h(x)min=h(lna)=a﹣alna﹣1,由已知得e x﹣ax﹣1≥0恒成立,故只需h(x)min≥0,故只需a﹣alna﹣1≥0①,设g(x)=a﹣alna﹣1,g′(x)=﹣lna,由g′(x)>0,解得:0<x<1,由g′(x)<0,解得:x>1,故g(x)在(0,1)递增,在(1,+∞)递减,故g(x)max=g(1)=0,即a﹣alna﹣1≤0②,由①②得实数a的值为1,综上:a=1;证明:(Ⅱ)由(Ⅰ)得:当x>0时,e x﹣x﹣1>0即e x>x+1,x2e x>x2(x+1),欲证x2e x>m(x+1)lnx,x>0,即证x2(x+1)>m(x+1)lnx,即证x2>mlnx(x>0),①当x∈(0,1]时,x2>0>mlnx,②当x∈(1,+∞)时,令F(x)=,则F′(x)=,由F′(x)>0,解得:x>,由F′(x)<0,解得:1<x<,故F(x)在(1,)递减,在(,+∞)递增,故x>1时,F(x)≥F()=2e,由已知0<m<2e,故m<F(x),即当x∈(1,+∞)时,m<,故x∈(1,+∞)时,x2>mlnx,综上,x>0时,x2>mlnx恒成立,故x2(x+1)>m(x+1)lnx,x2e x>m(x+1)lnx成立.34.【解答】解:(Ⅰ)由f(x)=e x﹣ax﹣1,得f′(x)=e x﹣a,∵x∈(0,+∞),∴e x>1,当a>1时,由f′(x)=e x﹣a>0,得x>lna,即函数y=f(x)在(lna,+∞)上单调递增,由f′(x)<0,得0<x<lna,即函数y=f(x)在(0,lna)上单调递减;当a≤1时,f′(x)>0在(0,+∞)上恒成立,即函数y=f(x)在(0,+∞)上单调递增.综上所述,当a≤1时,函数y=f(x)在(0,+∞)上单调递增;当a>1时,函数y=f(x)在在(0,lna)上单调递减,(lna,+∞)上单调递增.(3分)(Ⅱ)f(0)=0,当a>1时,由(1)结合函数y=f(x)的单调性知,∃x0>0,使得对任意x∈(0,x0),都有f(x)<0,则由|f(x)|>x得(a﹣1)x+1﹣e x>0.设t(x)=(a﹣1)x+1﹣e x,则t′(x)=a﹣1﹣e x,由t′(x)>0得x<ln(a﹣1),由t′(x)<0得x>ln(a﹣1).(1)若1<a≤2,则ln(a﹣1)≤0,故(0,x0)⊆(ln(a﹣1),+∞),即函数y=t(x)在(0,x0)上单调递减,∵t(0)=0,∴对任意x∈(0,x0),都有t(x)<0,不合题意;(2)若a>2,则ln(a﹣1)>0,故(0,ln(a﹣1))⊆(﹣∞,ln(a﹣1)),∴y=t(x)在(0,ln(a﹣1))上单调递增,∵t(0)=0,∴对任意x∈(0,ln(a﹣1)),都有t(x)>0,符合题意,此时取0<m≤min{x0,ln(a﹣1)},可使得对∀x∈(0,m),都有|f(x)|>x.综上可得a的取值范围是(2,+∞).(12分)35.【解答】解:(1)因为,所以当时,f′(x)=﹣≤0,f(x)在R递减,当时,时,时,f′(x)<0,f(x)在上单调递增,在上单调递减,当时,时,时,f′(x)<0,f(x)在(,2)递增,在(﹣∞,),(2,+∞)递减,综上,时,f(x)在R递减,当时,f(x)在(2,)递增,在(﹣∞,2),(,+∞)递减,a>时,f(x)在(,2)递增,在(﹣∞,),(2,+∞)递减;证明:(2)由>0,(x>0)知:ax2﹣x+1>0在(0,+∞)上恒成立,即a>﹣+在(0,+∞)上恒成立,∵﹣+=﹣+≤,故a>,又1﹣2a>0,故<a<,由(1)知:<a<时,f(x)在(,)递减,故f(a)<f()=<=.36.【解答】解:(1)由题意,函数f(x)=,则f′(x)=,当x∈(0,e)时,f′(x)>0,函数f(x)单调递增,当x∈(e,+∞)时,f′(x)<0,函数f(x)递减,当x=e时,f(x)取得极大值,没有极小值;(2)h(x)=x2f(x)=xlnx,对∀x≥1,有xlnx≥ax﹣1,即a≤=lnx+,令g(x)=lnx+,则g′(x)=,当x>1时,g′(x)>0,g(x)在(1,+∞)递增,故g(x)min=g(1)=1,故a≤1,即实数a的取值范围是(﹣∞,1].37.【解答】解:(1)由f(x)=lnx﹣得f′(x)=+,故切线斜率k=f′(1)=1+,又f(1)=﹣,故切线方程为:y+=(1+)(x﹣1),即(4+a)x﹣4y﹣4﹣3a=0;(2)f′(x)=+=(x>0),由题意知:x1,x2是方程f′(x)=0在(0,+∞)内的两个不同实数解,令g(x)=x2+(2+a)x+1(x>0),注意到g(0)=1>0,其对称轴为直线x=﹣2﹣a,故只需,解得:a<﹣4,即实数a的取值范围是(﹣∞,﹣4),由x1,x2是方程x2+(2+a)x+1=0的两根,得:x1+x2=﹣2﹣a,x1x2=1,故f(x1)+f(x2)=(lnx1﹣)+(lnx2﹣)=ln(x1x2)﹣a•=﹣a•=﹣a,又f(1)=﹣,即f(x1)+f(x2)=2f(1),故f(x1),f(1),f(x2)成等差数列.38.【解答】解:(1)根据题意,函数f(x)=alnx(a≠0)与y=x2可知f′(x)=,y′=x,两图象在点P(s,t)处有相同的切线,所以两个函数切线的斜率相等,即•s=,化简得s=①,将P(s,t)代入两个函数可得=alns②,综合上述两式①②可解得a=1,所以f(x)=lnx.(2)函数g(x)=(x﹣1)2+mf(x)=(x﹣1)2+mlnx,定义域为(0,+∞),g′(x)=2(x﹣1)+=,因为x1,x2为函数g(x)的两个极值点,所以x1,x2是方程2x2﹣2x+m=0的两个不等实根,由根与系数的关系知x1+x2=1,x1x2=,(*),又已知x1<x2,所以0<x1<<x2<1,=,将(*)式代入得==1﹣x2+2x2lnx2,令h(t)=1﹣t+2tlnt,t∈(,1),h′(t)=2lnt+1,令h′(t)=0,解得:t=,当t∈(,)时,h′(t)<0,h(t)在(,)单调递减;当t∈(,1)时,h′(t)>0,h(t)在(,1)单调递增;所以h(t)min=h()=1﹣=1﹣,h(t)<max{h(),h(1)},h()=﹣ln2<0=h(1),即的取值范围是[1﹣,0).39.【解答】解:(1)f(x)=﹣x+(x+1)ln(x+1)的导数为f′(x)=a•﹣1+ln(x+1)+1=ln(x+1)﹣,当a=1时,f′(x)=ln(x+1)﹣,可得曲线y=f(x)在x=1处的切线的斜率为k=ln2﹣,又f(1)=﹣1+2ln2,则曲线y=f(x)在x=1处的切线方程为y﹣(﹣1+2ln2)=(ln2﹣)(x﹣1),化为(ln2﹣)x﹣y+﹣1+ln2=0;(2)f(x)的导数f′(x)=ln(x+1)﹣,由∀x1,x2∈(0,+∞),x1<x2,都有f(x1)<f(x2),可得f(x)在(0,+∞)递增,则f′(x)≥0在(0,+∞)内恒成立,即为a≤在(0,+∞)内恒成立,设g(x)=,由于x>0,所以e x>1,ln(x+1)>0,g(x)>0,设h(x)=g(x)﹣1=,由y=e x ln(x+1)﹣x的导数为y′=e x(ln(x+1)+)﹣1,且y″=e x(ln(x+1)+﹣)=e x[ln(x+1)+]>0,可得函数y′=e x(ln(x+1)+)﹣1在x>0递增,即有y′>0,可得函数y=e x ln(x+1)﹣x在x>0递增,可得e x ln(x+1)>x恒成立,则h(x)>0恒成立,可得g(x)>1,则a≤1.40.【解答】解:(1)证明:a=﹣1时,f(x)=(x﹣1)lnx(x>0),.因为f'(x)在x∈(0,+∞)上单调递增,故f'(x1)+f'(x2)=0(即)以下主要有三种做法:法一:由基本不等式得:(等号可不写)因此.令,可知f'(t)≥0.因为f'(t)在x>0上单调递增,且f'(1)=0,因此.因为x1≠x2,由基本不等式得:((6分),若写x1+x2≥2不得分)法二:先证明:x1x2≥1.因为f'(1)=0,故不妨x1>1,0<x2<1.设.由基本不等式知:.因为f'(x)在x>0上单调递增且f'(x1)+f'(x2)=0,所以x1>x2′即x1x2≥1.因为x1≠x2,由基本不等式得:((6分),若写x1+x2≥2不得分)法三:因为f'(1)=0,故不妨x1>1,0<x2<1.设x2′=2﹣x2>1.由基本不等式得:(即x2x2′<1).因为f'(x)在x>0上单调递增,且f'(1)=0,因此f'(x2′)+f'(x2)<0.所以x1+x2>x2′+x2>2.((6分),若写x1+x2≥2不得分)(2)原题即f(x)=±c共有四个不同的实数根..①﹣1≤a≤0,因为f'(x)在x>0上单调递增,且当x→0时f'(x)→﹣∞,当x→+∞时f'(x)→+∞,故存在唯一实数x0>0,使得f'(x0)=0,即a=﹣x0(lnx0+1).因此f(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增.由﹣1≤a≤0可知.把a=﹣x0(lnx0+1)代入得:f(x)的极小值.令h(x)=﹣x(lnx)2,h'(x)=﹣lnx(lnx+2).当时,h′(x)<0;当时,h′(x)>0.因此h(x)在上单调递减,在上单调递增.故,所以f(x)=c上至多有两个不同的实数根,f(x)=﹣c上至多有一个的实数根,故不合题意.②a>0,当x→0时f'(x)→+∞,当x→+∞时f'(x)→+∞,.当x∈(0,a)时,f''(x)<0;当x∈(a,+∞)时,f''(x)>0,f'(a)=2+lna.因此f'(x)在(0,a)上单调递减,在(a,+∞)上单调递增.(i)若a≥,则f'(x)≥0(当且仅当时取等),故f(x)在x>0上单调递增.因此f(x)=±c上至多有两个不同的实数根,故不合题意.(ii)若,则f'(a)<0,故存在x1∈(0,a)和,使得f'(x1)=f'(x2)=0.因此f(x)在(0,x1)和(x2,+∞)上单调递增,在(x1,x2)上单调递减.因为当x→0时f(x)→﹣∞,当x→+∞时f'(x)→+∞,且,故f(x)=c上有且仅有一个实数根.由①的h(x)可知:,.故存在﹣c∈(f(x2),f(x1)),使得.此时f(x)=﹣c上恰有三个不同的实数根.此时f(x)=±c共有四个不同的实数根.综上:满足条件.。
2023-2024学年高考数学一元函数的导数及其应用专项练习题(附答案)

2023-2024学年高考数学一元函数的导数及其应用小专题一、单选题1.已知函数在区间上不单调,则实数a 的取值范围为( )()ln 2f x x ax =--(1,2)A .B .1,12⎡⎤⎢⎥⎣⎦1,12⎛⎫⎪⎝⎭C .D .11,32⎛⎫ ⎪⎝⎭12,23⎛⎫ ⎪⎝⎭2.已知函数若有两个零点,则的取值范()ln ,11,12x x f x xx ≥⎧⎪=⎨-<⎪⎩()[]()1F x f f x m =++12,x x 12x x +围是( )A .B .C .D .[)42ln2,-+∞)1e,⎡++∞⎣)42ln2,1e ⎡-+⎣(),1e -∞+3.已知为定义在上的可导函数,为其导函数,且恒成立,其中是()f x R ()f x '()()f x f x '<e 自然对数的底,则一定成立的是( )A .B .(2019)e (2020)<f f e (2019)(2020)<f f C .D .e (2019)(2020)>f f ()()2019e 2020f f >4.函数的图象在点处的切线方程是( )()4e 2x f x x =--()()0,0f A .B .C .D .310x y ++=310x y +-=310x y -+=310x y --=5.已知函数,若函数有三个零点,则实数的取()()()210e 210xxx f x x x x ⎧+≥⎪=⎨⎪++<⎩()()1y f f x a =--a 值范围是( )A .B .(]11,12,3e ⎛⎫+ ⎪⎝⎭ (]111,12,33e e ⎛⎫⎧⎫++⎨⎬⎪⎝⎭⎩⎭ C .D .[)111,12,33e e ⎛⎫⎧⎫++⎨⎬ ⎪⎝⎭⎩⎭ (]21,12,3e ⎛⎫+ ⎪⎝⎭ 6.已知函数的极值点为,函数的最大值为,则( )()2e ln 2xx f x x =+-1x ()ln 2xh x x =2x A .B .C .D .12x x >21x x >12x x ≥21x x ≥7.若对于任意的,都有,则的最大值为( )120x x a <<<211212ln ln 2x x x x x x ->-a A .1B .C .D .e1e128.已知是方程的一个根,则的值是( )0x 34e 2ln 40x x x -+-=042e2ln x x -+A .3B .4C .5D .6二、多选题9.曲线在点处的切线与其平行直线l 的距离为,则直线l 的方程可能为2e cos3xy x =()0,15( )A .B .26y x =+24y x =-C .D .31y x =+34y x =-10.已知函数是自然对数的底数,则( )ln (),e xf x x =A .(2)(3)f f >B .若,则1221ln ln =x x x x 212ex x +=C .的最大值为()f x 1eD .若关于的不等式有正整数解,则x 119x x λ⎛⎫≤⎪⎝⎭6λ≥11.设函数,定义域交集为,若存在,使得对任意都有()f x ()g x I 0x I ∈x I ∈,则称构成“相关函数对”.则下列所给两个函数构成“相()()()()00f x g x x x --≥()()(),f x g x 关函数对”的有( )A .B .()()()()e R ,1R xf x xg x x x =∈=+∈()()()()1ln 0,0f x x x g x x x=>=>C .D .()()()()10,R 2xf x x xg x x ⎛⎫=≥=∈ ⎪⎝⎭()()()()2R ,R f x x x g x x x =∈=∈12.已知函数,,是其导函数,恒有,则( )()y f x =π0,2x ⎛⎫∈ ⎪⎝⎭()f x '()()sin cos f x f x x x '>A .B .ππ234f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭π2π426f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭C .D .()2cos11π6f f ⎛⎫<⋅ ⎪⎝⎭π2(1)cos13f f ⎛⎫> ⎪⎝⎭三、填空题13.曲线在点处的切线的斜率为.21()ln 2f x x x x =+()()1,1f 14.已知函数在上存在唯一零点x ,则实数k 的值为.()e x f x kx=-()0,∞+15.函数的极小值点为.()3231f x x x =-+16.设函数的定义域为,若对任意,存在,使(为()f x D x D ∈y D ∈()()2f x f y C-=C 常数)成立,则称函数在上的“半差值”为.下列四个函数中,满足所在定义域上“半()f x D C 差值”为2的函数是(填上所有满足条件的函数序号).①②③31y x =-()e 1xy x =+④2log y x =sin y x=答案:1.B【分析】由于函数在区间上不单调,等价于函数在区间上存在极值点,对()f x (1,2)()f x (1,2)函数求导,对分类讨论,求出极值点,根据极值点在区间内,可得关于的不等()f x a (1,2)a 式,即可求出结果.【详解】由.11()'-=-=ax f x a x x ①当时,函数单调递增,不合题意;0a ≤()f x ②当时,函数的极值点为,0a >()f x 1x a =若函数在区间不单调,必有,解得;()f x (1,2)112a <<112a <<综上所述:实数a 的取值范围为.1,12⎛⎫⎪⎝⎭故选:B.2.A【分析】依题意可得有两个根,根据的解析式,分别求出的表()e 1m f x -=-12,x x ()f x 12,x x 达式,再根据导数求的取值范围.12x x +【详解】由题意可知,当时,,所以;1x ≥()1ln 11f x x +=+≥()()()1ln 1f f x f x ⎡⎤+=+⎣⎦当时,,所以,1x <()311121222x x f x +=-+=->>()()()1ln 1f f x f x ⎡⎤+=+⎣⎦综上,对,有,R x ∀∈()()()1ln 1f f x f x ⎡⎤+=+⎣⎦由有两个零点,即方程有两个根,()[]()1F x f f x m=++12,x x ()()ln 10f x m ++=12,x x 即方程有两个根,不妨设,()e 1m f x -=-12,x x 12x x <易知函数在上单调递减,在上单调递增,()f x (),1∞-[)1,+∞当时,,当时,1x ≥2ln e1mx -=-1x <11e 12m x --=-令,因为,所以,e 1mt -=-11122x ->12t >所以,则,21e ,22tx x t ==-121e 22,2t x x t t +=-+>令,()1e 22,2t g t t t =-+>,令,解得,()e 2t g t '=-()0g t '>ln 2t >所以函数在上单调递增,在上单调递减, ()g t ()ln2,∞+1,ln22⎛⎫ ⎪⎝⎭当时.ln2t =()ln2min e 2ln2242ln2g t =-+=-所以函数的值域为,()g t [)42ln2,∞-+即的取值范围是.12x x +[)42ln2,∞-+故选:A.3.B【分析】构造新函数,通过导数研究该函数的单调性,利用单调性比较大小,()()e xf x F x =可得结果.【详解】令,则,()()e xf x F x =()()()-=''x f x x f x F e 由,所以,()()f x f x '<()0F x '>故函数为上的单调递增,所以,()F x R ()()20202019F F >故,即,故B 正确,C 错误;20202019(2020)(2019)>e f f e ()()e 20192020f f <对于AD 无法判断其正误,例如,则,满足题意,()-=-x f x e ()-'=xf x e 此时,即20192019(2019)e ,e (2020)e --=-=-f f ()()2019e 2020=f f 故AD 不一定成立.故选:B 4.D【分析】先求导数,得切线的斜率,再根据点斜式得切线方程.【详解】因为,所以.因为,()44e 1x f x '=-()03k f '==()01f =-所以切线方程为,即.13y x +=310x y --=故选:D.5.B当时,由得0x <()10f x -=x 点为-2,0,函数有三个零点,当且仅当(())1y f f x a =--()2f x a =-()f x a =所以实数的取值范围是.a 11(1,1)(2,3]{3}e e ++ 故选:B.关键点睛:本题的关键是利用作出函数图象,利用换元法解决嵌套函数问题,最后转化为直线与函数图象交点个数问题.6.A【分析】根据题目条件求出,,即可判断.111,42x ⎛⎫∈ ⎪⎝⎭2112e 4x =<【详解】的定义域为,()2e ln 2xx f x x =+-()0,∞+在上单调递增,且,,()1e x f x x x '=+-()0,∞+1213022e f ⎛⎫=-> ⎪⎝⎭41e 154104f ⎛⎫=-< ⎪⎝⎭所以,,111,42x ⎛⎫∃∈ ⎪⎝⎭1111e 0xx x +-=所以当时,当时,即在上单调递减,在10x x <<()0f x '<1x x >()0f x ¢>()f x ()10,x 上单调递增,()1,x +∞则在处取得极小值且.()f x 1x x =111,42x ⎛⎫∈ ⎪⎝⎭的定义域为,由,()ln 2x h x x =()0,∞+()2222ln 1ln 42x x h x x x --'==当时,,当时,,()0,e x ∈()0h x '>()e,+x ∈∞()0h x '<故在处取得极大值,也是最大值,,()ln 2x h x x =e x =()()max ln e 1e 2e 2e h x h ===即.所以.2112e 4x =<12x x >故选:A 7.C【分析】问题转化为,构造函数,易得在定义域上单调1212ln 2ln 2x x x x ++<ln 2()x f x x +=()f x (0,)a 递增,所以在上恒成立,进而可求出的最大值.()0f x '≥(0,)a a 【详解】解:,,,120x x a <<< 120x x ∴-<211212ln ln 2()x x x x x x ∴-<-,,∴121221ln ln 22x x x x x x -<-∴1212ln 2ln 2x x x x ++<函数在定义域上单调递增,∴ln 2()x f x x +=(0,)a 在上恒成立,∴221(ln 2)ln 1()0x x f x x x -+--'==>(0,)a 则,解得,故的最大值是.ln 10x -->10e x <<a 1e 故选:C .8.B【分析】化简方程,利用构造函数法,结合导数求得,由此求得34e 2ln 40x x x -+-=42ex x -=的值.042e2ln x x -+【详解】依题意,,0x >由,得,34e 2ln 40x x x -+-=3ln 4e e 3ln 4ln x x x x x x -⋅++-=+,3ln 4ln e 3ln 4e ln x x x x x x +-++-=+设单调递增,()()()e ,e 10,x x f x x f x f x '=+=+>由得,()()3ln 4ln f x x f x +-=3ln 4ln x x x +-=即,即,所以,2ln 4x x +=4ln 2x x -=42e xx -=所以.042000e2ln 2ln 4x x x x -=++=故选:B 9.AB【分析】由导数的几何意义求出切线方程,再根据平行直线间的距离公式可求出结果.【详解】,,()222e cos3e 3sin 3x x y x x '=+-()2e 2cos33sin 3x x x =-0|2x y ='=所以曲线在点处的切线方程为,即,2e cos3xy x =()0,112(0)y x -=-210x y -+=设直线(),:20l x y t -+=1t ≠依题意得,解得或,22|1|521t -=+6t =4t =-所以直线的方程为或.l 26y x =+24y x =-故选:AB 10.CD【分析】根据已知,利用特值法、导数与函数的单调性以及结合函数图象进行计算求解.又因为,所以ln 2ln 8ln 3ln 92636=<=当时,由可知,必有0λ<ln ln 90x x λ≥>故选:CD.右侧图象中的图象高于的图象,在的左侧图象中的图象低于的图象.()f x ()g x 0x x =()f x ()g x 对于A 项,令,()()()e 1xh x f x g x x =-=--则,()e 1xh x '=-,,()00h x x >⇒>'()00h x x <⇒<'所以在上单调递减,在上单调递增,()h x (,0)-∞(0,)+∞所以,()(0)0h x h ≥=即恒成立,所以不符合题意,故A 项不成立;()()f x g x ≥对于B 项,令,,1()()()ln x f x g x x x ϕ=-=-0x >则,211()0x x x ϕ'=+>所以在上单调递增,()ϕx (0,)+∞又因为,,(1)ln1110ϕ=-=-<1(e)ln e 0eϕ=->所以由零点存在性定理知,存在唯一,使得,0(1,e)x ∈0()0x ϕ=则对任意,不等式恒成立,符合题意,故B 项正确;,()0x ∈+∞0[()()]()0f x g x x x --≥对于C 项,,1()()()()2xm x f x g x x =-=-则,1211()()ln 2022x m x x -'=+>所以在单调递增,()m x [0,)+∞又因为,,(0)10m =-<1(1)02m =>所以由零点存在性定理知,存在唯一,使得,0(0,1)x ∈0()0m x =则对任意,不等式恒成立,符合题意,故C 项正确;[0,)x ∈+∞0[()()]()0f x g x x x --≥对于D 项,因为,解得:或,()()f x g x =0x =1x =所以图象与图象有两个交点,不符合题意,故D 项不成立.()f x ()g x 故选:BC.12.AD【分析】由题设得,构造并应用导数研究单调性,()cos ()sin f x x f x x '>()()cos g x f x x =【详解】因为,所以,又,π0,2x ⎛⎫∈ ⎪⎝⎭sin 0,cos 0x x >>()()sin cos f x f x x x '>所以,()cos ()sin f x x f x x '>构造函数,,则,()()cos g x f x x =π0,2x ⎛⎫∈ ⎪⎝⎭()()cos ()sin 0g x f x x f x x ''=->所以在上为增函数,()g x π0,2⎛⎫ ⎪⎝⎭因为,所以,即,即,故A 正确;ππ34>ππ34g g ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭ππππcos cos 3344f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭ππ234f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭因为,所以,即,故,故B 错ππ46>ππ46g g ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭ππππcos cos 4466f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭π6π426f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭误;因为,所以,即,故,故C 错误;π16<()π16g g ⎛⎫< ⎪⎝⎭ππcos (1)cos166f f ⎛⎫< ⎪⎝⎭π23(1)cos163f f ⎛⎫< ⎪⎝⎭因为,所以,即,故,故D 正确.π13>()π13g g ⎛⎫> ⎪⎝⎭ππcos (1)cos133f f ⎛⎫> ⎪⎝⎭π2(1)cos13f f ⎛⎫> ⎪⎝⎭故选:AD 关键点点睛:将已知条件转化为,进而构造研究单调()cos ()sin f x x f x x '>()()cos g x f x x =性为关键.13.2【分析】利用导数的几何意义求得切线斜率即可.()1f '【详解】由可得,21()ln 2f x x x x =+()ln 1f x x x =++'于是.()11ln112f +'=+=所以曲线在点处的切线的斜率为.21()ln 2f x x x x =+()()1,1f 2故答案为.214.e【分析】根据零点定义,结合导数的性质进行求解即可.【详解】因为函数在上存在唯一零点x ,()e x f x kx =-()0,∞+所以当时,函数有最小值所以当时,两个函数的图象有唯一交点,符合题意,e =k 故e方法点睛:函数的零点问题一般可以转化为方程实根问题或者转化为两个函数交点问题15.2【分析】利用导数判断单调性,进而判断极小值点【分析】①③中函数值域为,可直接判断;②④中求出的值域和值域,看R ()f x ()4f y +是否符合题目要求的包含关系来判断.【详解】①:因为函数的值域是全体实数集,所以对于任意,存在,31y x =-x ∈R R y ∈使成立,符合题意()()22f x f y -=②:,()()e 1e 2x x y x y x '=+⇒=+当时,,该函数此时单调递增,当时,,该函数此时单调递减,2x >-0'>y <2x -0'<y 所以当时,函数有最小值,2x =-2e --若是“半差值”为2的函数,因此有,存在,使成立,()e 1xy x =+x ∀∈R R y ∈()()22f x f y -=即,即的值域是值域的子集,()()4f x f y =+()f x ()4f y +对于,,而,显然,不一定存在,使x ∀∈R ()2e f x -≥-()24e 4f y -+≥-+x ∀∈R R y ∈成立,故本函数不符合题意;()()22f x f y -=③:因为函数的值域是全体实数集,所以对于,存在,使2log y x =x ∀∈R R y ∈成立,符合题意;()()22f x f y -=④:若是实数集上的“半差值”为2的函数,因此有,存在,使sin y x =x ∀∈R R y ∈,即,即的值域是值域的子集()()22f x f y -=()()4f x f y =+()f x ()4f y +对于,,而,显然恒不成立,故假设不成x ∀∈R ()11f x -≤≤()345f y ≤+≤()()4f x f y =+立,所以本函数不符合题意.故①③.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学倒数练习题答案
1. 2的倒数是1/2。
解释:2的倒数可以表示为1/2,即分数形式中的分子为1,分母
为2。
2. 5的倒数是1/5。
解释:5的倒数可以表示为1/5,即分数形式中的分子为1,分母
为5。
3. 10的倒数是1/10。
解释:10的倒数可以表示为1/10,即分数形式中的分子为1,分
母为10。
4. 1/3的倒数是3/1,即3。
解释:1/3的倒数可以表示为3/1,即分数形式中的分子为3,分
母为1。
5. 1/4的倒数是4/1,即4。
解释:1/4的倒数可以表示为4/1,即分数形式中的分子为4,分
母为1。
6. 1/6的倒数是6/1,即6。
解释:1/6的倒数可以表示为6/1,即分数形式中的分子为6,分
母为1。
7. 1/8的倒数是8/1,即8。
解释:1/8的倒数可以表示为8/1,即分数形式中的分子为8,分
母为1。
8. 1/9的倒数是9/1,即9。
解释:1/9的倒数可以表示为9/1,即分数形式中的分子为9,分
母为1。
9. 1/11的倒数是11/1,即11。
解释:1/11的倒数可以表示为11/1,即分数形式中的分子为11,
分母为1。
10. 1/12的倒数是12/1,即12。
解释:1/12的倒数可以表示为12/1,即分数形式中的分子为12,
分母为1。
通过上面的例子可以看出,一个数的倒数可以通过将分数形式中的
分子和分母互换来表示。同时,倒数的结果通常是一个大于1的数。
倒数在数学中具有重要的应用,它在分数运算、科学计算等领域都有
广泛的应用。对于初中数学学习来说,掌握倒数的概念和运算规则是
非常重要的。希望通过这些练习题答案,能够帮助你更好地理解和掌
握倒数的相关知识。