关于整式的加减测试题及答案
整式加减混合练习题及解答

整式加减混合练习题及解答一、整式的加法和减法练习题1、计算下列各式的值并写出结果。
(1) 3x + 4y,当x = 2,y = 5时;(2) 5ab + 2xy,当a = 3,b = 2,x = 1,y = 4时;(3) 2m^2 - 3n^2,当m = 4,n = 1时;(4) 9p^3 - 2q^2 + 5pq + 7,当p = 2,q = 3时。
解答:(1) 3x + 4y = 3(2) + 4(5) = 6 + 20 = 26;(2) 5ab + 2xy = 5(3)(2) + 2(1)(4) = 30 + 8 = 38;(3) 2m^2 - 3n^2 = 2(4)^2 - 3(1)^2 = 2(16) - 3 = 29;(4) 9p^3 - 2q^2 + 5pq + 7 = 9(2)^3 - 2(3)^2 + 5(2)(3) + 7 = 9(8) - 2(9) + 30 + 7 = 72 - 18 + 30 + 7 = 91。
2、将下列两个整式相加,并将结果化简。
(1) 3x^2 - 7xy + 4y^2 + 5xy - 2y^2;(2) 2a^3 - 4b^3 - 6a^2b + 3a^3 - 5a^2b + 2b^3。
解答:(1) 3x^2 - 7xy + 4y^2 + 5xy - 2y^2 = 3x^2 + 5xy - 7xy + 4y^2 - 2y^2 = 3x^2 - 2xy + 2y^2;(2) 2a^3 - 4b^3 - 6a^2b + 3a^3 - 5a^2b + 2b^3 = 2a^3 + 3a^3 - 4b^3 +2b^3 - 6a^2b - 5a^2b = 5a^3 - 2b^3 - 11a^2b。
二、整式的混合加减练习题1、计算下列各式的值并写出结果。
(1) (2x^2 - 3xy) + (4xy - 5x^2),当x = 2,y = 3时;(2) (3a + 2ab) - (4ab - 5a),当a = 1,b = 2时;(3) (5m^2 - 3mn) - (2n^2 - 4mn),当m = 3,n = 4时;(4) (9p^3 - 2q^2 + 5pq) - (3pq - 2p^3 + 4q^2),当p = 2,q = 1时。
整式的加减40题及答案

整式的加减(40题)及答案一.去掉下列各式中的括号(1)(a +b )+(c +d )=_______________(2)(a-b)-(c -d )=_____________(3)-(a +b )+(c -d )=_________________(4)-(a -b )-(c -d )=_________________(5)(a +b)-3(c -d )=_____________________(6)(a +b )+5(c -d )=_______________________(7)(a -b )-2(c +d )=___________________(8)(a -b -1)-3(c -d +2)=_______________(9)0-(x -y -2)=__________________(10)a -[b -2a -(a +b )]=____________________二、先去括号,再合并同类项(1)8x +2y +2(5x -2y ) (2)3a -(4b -2a +1)(3)7m +3(m +2n ) (4)(x 2-y 2)-4(2x 2-3y 2)(5)5(x -y)+2(x -y)-3(x -y) (6) )(2)2(333c b a c b a b a ---+;(7)323722+-++a a a a ; (8)、a+(5a-3b )-(a-2b);(9))23(2)3(12b ab a ab +--; (10)、2a - [a + 2(a-b)] + b.(11))231(34x xy xy -+- (12)b a b a b a 2222132-+ (13)32328476a a a a a a -++--- (14)()()222243258ab b a ab b a ---(15)2()[])2(2324)(22222b ab a a ab a ab a +------三、先化简,再求值1、4(y +1)+4(1-x )-4(x +y ),其中,x =71,y =314。
七年级上册《数学》整式的加减练习题(含答案)

七年级上册《数学》整式的加减练习题2.1 第1课时单项式一、能力提升1.下列结论正确的是()A.a是单项式,它的次数是0,系数为1B.π不是单项式C.是一次单项式D.-是6次单项式,它的系数是-2.已知是8次单项式,则m的值是()A.4B.3C.2D.13.3×105xy的系数是,次数是.4.下列式子:①ab;②-;③;④-a2+a;⑤-1;⑥a-,其中是单项式的是.(填序号)5.写出一个含有字母x,y的五次单项式:.6.观察下面的单项式:a,2a2,4a3,8a4,…,根据你发现的规律,第8个式子是.7.某学校到文体商店买篮球,篮球单价为a元,买10个以上(包括10个)按8折优惠.用单项式填空:(1)购买9个篮球应付款元;(2)购买m(m≥10)个篮球应付款元.8.若单项式(k-3)x|k|y2是五次单项式,则k=.9.观察下列各数,用含n的单项式表示第n个数.-2,-4,-6,-8,-10,…,.二、创新应用10.观察下列单项式:-x,3x2,-5x3,7x4,…,-37x19,39x20,…,回答下列问题:(1)这组单项式的系数的规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n个单项式是什么吗?(4)请你根据猜想,写出第2020,2021个单项式.答案一、能力提升1.D a是单项式,次数、系数均为1,所以A错;因为π是单独的一个数,所以π是单项式,所以B错;的分母中含有字母,无法写成数字与字母的积,所以不是单项式,所以C错;对于D项,它的系数为-,次数为2+3+1=6,所以D正确.2.C由单项式的次数的定义,得2m+3+1=8,将A,B,C,D四选项分别代入验证知C为正确答案.3.3×105;2.4.①②⑤.5.-x4y(答案不唯一).6.128a8.7.(1)9a.(2)0.8ma.8.-3;由题意,得|k|+2=5,且k≠3,解得k=-3.9.-2n;-2,-4,-6,-8,-10,这些数都是负数,且都是偶数,因此第n个数为-2n.二、创新应用10.解:(1)这组单项式的系数的符号规律是(-1)n,系数的绝对值规律是2n-1,故系数的规律是(-1)n(2n-1).(2)次数即x的指数的规律是从1开始的连续自然数.(3)第n个单项式是(-1)n(2n-1)x n.(4)第2020个单项式是4039x2020,第2021个单项式是-4041x2021.2.1 第2课时多项式一、能力提升1.下列说法正确的是()A.多项式ax2+bx+c是二次多项式B.四次多项式是指多项式中各项均为四次单项式C.-ab2,-x都是单项式,也都是整式D.-4a2b,3ab,5是多项式-4a2b+3ab-5中的项2.如果一个多项式是五次多项式,那么它任何一项的次数()A.都小于5B.都等于5C.都不小于5D.都不大于53.一组按规律排列的多项式:a+b,a2-b3,a3+b5,a4-b7,……其中第10个式子是()A.a10+b19B.a10-b19C.a10-b17D.a10-b214.若x n-2+x3+1是五次多项式,则n的值是()A.3B.5C.7D.05.-3x2y-2x2y2+xy-4的最高次项为.6.若一个关于a的二次三项式的二次项系数为2,常数项和一次项系数都是-3,则这个二次三项式为.7.多项式的二次项系数是.8.如图(1)(2),某餐桌桌面可由圆形折叠成正方形(图中阴影部分表示可折叠部分).已知折叠前圆形桌面的直径为am,折叠成正方形后其边长为bm.如果一块正方形桌布的边长为am,并按图(3)所示把它铺在折叠前的圆形桌面上,那么桌布垂下部分的面积是多少?如果按图(4)方式把这块桌布铺在折叠后的正方形桌面上呢?并求当a=2,b=1.4时它们的面积大小(π取3.14).9.四人做传数游戏,甲任取一个数传给乙,乙把这个数加1传给丙,丙再把所得的数平方后传给丁,丁把所得的数减1报出答案,设甲任取的一个数为a.(1)请把游戏最后丁所报出的答案用整式的形式描述出来;(2)若甲取的数为19,则丁报出的答案是多少?二、创新应用10.如图,观察点阵图形和与之对应的等式,探究其中的规律:(1)请在④和⑤后面的横线上分别写出相应的等式:(2)通过猜想,写出与第n个图形相对应的等式.答案一、能力提升1.C.2.D;多项式的次数指的是次数最高项的次数,故一个五次多项式次数最高项的次数为5.3.B;根据多项式排列的规律,字母a的指数是按1,2,3,…的正整数排列,故第10个式子应为a10.字母b的指数是按1,3,5,7,…的奇数排列,故第10个式子应为b19.中间的符号第1个式子是正,第2个式子是负,这样正、负相间,故第10个式子应为a10-b19.4.C;由题意,得n-2=5,解得n=7.5.-2x2y2;6.2a2-3a-3.7.=-,二次项为,故二次项系数为.8.解:m2;(a2-b2)m2;2.04m2.当a=2,b=1.4时,a2-a2=22-×22=4-3.14=0.86(m2),a2-b2=22-1.42=2.04(m2).9.解:(1)由甲传给乙变为a+1;由乙传给丙变为(a+1)2;由丙传给丁变为(a+1)2-1.故丁所报出的答案为(a+1)2-1.(2)由(1)知,代入a=19,得399.二、创新应用10.解:(1)④4×3+1=4×4-3.⑤4×4+1=4×5-3.(2)4(n-1)+1=4n-3.2.2 第1课时合并同类项一、能力提升1.下列各组式子为同类项的是()A.x2y与-xy2B.0.5a2b与0.5a2cC.3b与3abcD.-0.1m2n与nm22.若-2a m b2m+n与5a n+2b2m+n可以合并成一项,则m-n的值是()A.2B.0C.-1D.13.若x a+2y4与-3x3y2b是同类项,则(a-b)2021的值是()A.-2021B.1C.-1D.20214.已知a=-2021,b=,则多项式3a2+2ab-a2-3ab-2a2的值为()A.1B.-1C.2021D.-5.若2x2y m与-3x n y3的和是一个单项式,则m+n=.6.若关于字母x的整式-3x2+mx+nx2-x+3的值与x的值无关,则m=,n=.7.把(x-y)和(x+y)各看作一个字母因式,合并同类项3(x+y)2-(x-y)+2(x+y)2+(x-y)-5(x+y)2=.8.合并下列各式的同类项:(1)-2x2-8y2+4y2-5x2-5x+5x-6xy;(2)3x2y-4xy2-3+5x2y+2xy2+5.9.已知-2a m bc2与4a3b n c2是同类项,求多项式3m2n-2mn2-m2n+mn2的值.10.先合并同类项,再求值:(1)7x2-3+2x-6x2-5x+8,其中x=-2;(2)3x-4x3+7-3x+2x3+1,其中x=-2.二、创新应用11.有这样一道题:“当a=0.35,b=-0.28时,求多项式7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3的值.”有一名同学指出,题目中给出的条件“a=0.35,b=-0.28”是多余的,他的说法有没有道理?为什么?答案一、能力提升1.D2.A;∵-2a m b2m+n与5a n+2b2m+n可以合并成一项,∴m=n+2,则m-n=2.故选A.3.C;由同类项的定义,得a+2=3,2b=4,解得a=1,b=2.所以(a-b)2021=(1-2)2021=(-1)2021=-1.4.A;把多项式合并同类项,得原式=-ab,当a=-2021,b=时,原式=1.5.5;2x2y m与-3x n y3的和是一个单项式,说明2x2y m与-3x n y3是同类项,即m=3,n=2,故m+n=5.6.1;3;算式的值与x的值无关,说明合并同类项后,所有含x项的系数均为0.-3x2+mx+nx2-x+3=(-3+n)x2+(m-1)x+3,则m=1,n=3.7.0.8.解:(1)-2x2-8y2+4y2-5x2-5x+5x-6xy=(-2-5)x2+(-8+4)y2+(-5+5)x-6xy=-7x2-4y2-6xy.(2)3x2y-4xy2-3+5x2y+2xy2+5=(3+5)x2y+(-4+2)xy2+(-3+5)=8x2y-2xy2+2.9.解:由同类项定义,得m=3,n=1.3m2n-2mn2-m2n+mn2=(3-1)m2n+(-2+1)mn2=2m2n-mn2.当m=3,n=1时,原式=2×32×1-3×12=18-3=15.10.解:(1)原式=(7-6)x2+(2-5)x+(8-3)=x2-3x+5,当x=-2时,原式=(-2)2-3×(-2)+5=15.(2)原式=-2x3+8,当x=-2时,原式=-2×(-2)3+8=24.二、创新应用11.解:他的说法有道理.因为原式=(7+3-10)a3+(-6+6)a3b+(3-3)a2b=0,所以原式的值与a,b的值无关.即题目中给出的条件“a=0.35,b=-0.28”是多余的.2.2 第2课时去括号一、能力提升1.三角形的第一条边长是(a+b),第二条边比第一条边长(a+2),第三条边比第二条边短3,这个三角形的周长为()A.5a+3bB.5a+3b+1C.5a-3b+1D.5a+3b-12.如果a-3b=-3,那么5-a+3b的值是()A.0B.2C.5D.83.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+3xy)-(2x2+4xy)=-x2【】.【】处被钢笔水弄污了,则此处中的一项是()A.-7xyB.7xyC.-xyD.xy4.化简(3x2+4x-1)+(-3x2+9x)的结果为.5.若一个多项式加上(-2x-x2)得到(x2-1),则这个多项式是.6.已知a-b=3,c+d=2,则(b+c)-(a-d)的值为.7.某轮船顺水航行了5h,逆水航行了3h,已知船在静水中的速度为akm/h,水流速度为bkm/h,则轮船顺水航行的路程比逆水航行的路程多.8.先化简,再求值:(1)(x2-y2)-4(2x2-3y2),其中x=-3,y=2;(2)a-2[3a+b-2(a+b)],其中a=-21,b=1000.9.已知A=2x2+3xy-2x-1,B=-x2+kxy-1,且A+B的值与y无关,求k的值.10.观察下列各式:①-a+b=-(a-b);②2-3x=-(3x-2);③5x+30=5(x+6);④-x-6=-(x+6).探索以上四个式子内的括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目:已知a2+b2=5,1-b=-2,求-1+a2+b+b2的值.二、创新应用11.有理数a,b,c在数轴上的位置如图所示,试化简|a-b|-|c-a|+|b-c|-|a|.答案一、能力提升1.B;三角形的周长为a+b+(a+b+a+2)+(a+b+a+2-3)=a+b+a+b+a+2+a+b+a+2-3=5a+3b+1.2.D;由a-3b=-3,得-(a-3b)=3,即-a+3b=3.因此5-a+3b=5+3=8.3.C.4.13x-1;(3x2+4x-1)+(-3x2+9x)=3x2+4x-1-3x2+9x=13x-1.5.2x2+2x-1;(x2-1)-(-2x-x2)=x2-1+2x+x2=2x2+2x-1.6.-1;由a-b=3,可得a-b的相反数为-3,即-(a-b)=-3,即-a+b=-3,因此(b+c)-(a-d)=b+c-a+d=(-a+b)+(c+d)=-3+2=-1.7.(2a+8b)km轮船在顺水中航行了5(a+b)km,在逆水中航行了3(a-b)km,因此轮船顺水航行的路程比逆水航行的路程多5(a+b)-3(a-b)=5a+5b-3a+3b=(2a+8b)km.8.解:(1)原式=-x2+y2.当x=-3,y=2时,原式=-.(2)原式=2b-a.当a=-21,b=1000时,原式=2021.解:A+B=(2x2+3xy-2x-1)+(-x2+kxy-1)=2x2+3xy-2x-1-x2+kxy-1=x2+(3+k) xy-2x-2.因为A+B的值与y无关,所以3+k=0,解得k=-3.10.解:因为a2+b2=5,1-b=-2,所以-1+a2+b+b2=-(1-b)+(a2+b2)=-(-2)+5=7.二、创新应用11.解:由题意知a-b<0,c-a>0,b-c<0,a<0,因此原式=-(a-b)-(c-a)-(b-c)-(-a)=-a+b-c+a-b+c+a=a.2.3 第3课时整式的加减一、能力提升1.已知一个多项式与3x2+9x的和等于3x2+4x-1,则这个多项式是()A.-5x-1B.5x+1C.-13x-1D.13x+12.化简-3x-的结果是()A.-16x+B.-16x+C.-16x-D.10x+3.如图①,将一个边长为a的正方形纸片剪去两个小长方形,得到一个“”图案,如图②所示,再将剪下的两个小长方形拼成一个新的长方形,如图③所示,则新长方形的周长可表示为()A.2a-3bB.4a-8bC.2a-4bD.4a-10b4.小明在复习课堂笔记时,发现一道题:=-x2-xy+y2,括号处被钢笔弄污了,则括号处的这一项是()A.y2B.3y2C.-y2D.-3y25.已知a3-a-1=0,则a3-a+2020=.6.多项式(4xy-3x2-xy+x2+y2)-(3xy-2x2+2y2)的值与无关.(填“x”或“y”)7.若a2+ab=8,ab+b2=9,则a2-b2的值是.8.若2x-y=1,则(x2+2x)-(x2+y-1)=.9.先化简,再求值:2(a2b+ab2)-(2ab2-1+a2b)-2,其中a=-,b=-2.10.计算:(1)3(a2-4a+3)-5(5a2-a+2);(2)3x2-.11.规定一种新运算:a*b=a+b,求当a=5,b=3时,(a2b)*(3ab)+5a2b-4ab的值.二、创新应用12.扑克牌游戏.小明背对小亮,让小亮按下列四个步骤操作:第一步:分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌现有的张数相同;第二步:从左边一堆拿出两张,放入中间一堆;第三步:从右边一堆拿出一张,放入中间一堆;第四步:左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.这时,小明准确地说出了中间一堆牌现有的张数.你认为中间一堆牌现有的张数是多少?并说明你的理由.13.小黄做一道题“已知两个多项式A,B,计算A-B”.小黄误将A-B看作A+B,求得结果是9x2-2x+7.若B=x2+3x-2,请你帮助小黄求出A-B的正确答案.答案一、能力提升1.A;由题意,得(3x2+4x-1)-(3x2+9x)=3x2+4x-1-3x2-9x=-5x-1.2.B.3.B;所得新长方形的长为a-b,宽为a-3b,则其周长为2[(a-b)+(a-3b)]=2(2a-4b)=4a-8b.4.C;=-x2+3xy-y2+x2-4xy-()=-x2-xy-y2-()=-x2-xy+y2,故括号处的这一项应是-y2.5.2021;由a3-a-1=0,得a3-a=1,整体代入得a3-a+2020=1+2020=2021.6.x;因为(4xy-3x2-xy+x2+y2)-(3xy-2x2+2y2)=4xy-3x2-xy+x2+y2-3xy+2x2-2y2=-y2, 所以多项式的值与x无关.7.-1;a2+ab-(ab+b2)=a2+ab-ab-b2=a2-b2=8-9=-1.8.2;当2x-y=1时,(x2+2x)-(x2+y-1)=x2+2x-x2-y+1=2x-y+1=1+1=2.故答案为2.9.解:原式=2a2b+2ab2-2ab2+1-a2b-2=a2b-1,当a=-,b=-2时,原式=×(-2)-1=×(-2)-1=--1=-.10.解:(1)3(a2-4a+3)-5(5a2-a+2)=3a2-12a+9-25a2+5a-10=-22a2-7a-1.(2)3x2-=3x2-5x+x-3-2x2=x2-x-3.11.解:原式=a2b+3ab+5a2b-4ab=(1+5)a2b+(3-4)ab=6a2b-ab.当a=5,b=3时,原式=6×52×3-5×3=450-15=435.二、创新应用12.解:设第一步每堆各有x张牌;第二步左边有(x-2)张牌,中间有(x+2)张牌,右边有x张牌;第三步左边有(x-2)张牌,中间有x+2+1=x+3张牌,右边有(x-1)张牌;第四步中间有x+3-(x-2)=x+3-x+2=5张牌,因此中间一堆牌现有的张数是5.13.解:因为A+B=9x2-2x+7,B=x2+3x-2,所以A=9x2-2x+7-(x2+3x-2)=9x2-2x+7-x2-3x+2=8x2-5x+9,所以A-B=8x2-5x+9-(x2+3x-2) =8x2-5x+9-x2-3x+2=7x2-8x+11.。
整式的加减》专项练习100题(已排版好,可直接打印,有答案)

整式的加减》专项练习100题(已排版好,可直接打印,有答案)1.3(a+5b) - 2(b-a)2.3x^2 - [7x - (4x - 3) - 2x^2]3.2(2a^2 + 9b) + 3(-5a^2 - 4b)4.(x^3 - 2y^3 - 3x^2y) - (3x^3 - 3y^3 - 7x^2y)5.(2xy - y) - (-y + yx)6.5(a^2b - 3ab^2) - 2(a^2b - 7ab)7.(-2ab + 3a) - 2(2a - b) + 2ab8.(7m^2n - 5mn) - (4m^2n - 5mn)9.(5a^2 + 2a - 1) - 4(3 - 8a + 2a^2)10.-3x^2y + 3xy^2 + 2x^2y - 2xy^211.2(a - 1) - (2a - 3) + 312.-2(ab - 3a^2) - [2b^2 - (5ab + a^2) + 2ab]13.(x^2 - xy + y) - 3(x^2 + xy - 2y)14.3x^2 - [7x - (4x - 3) - 2x^2]15.a^2b - [2(a^2b - 2a^2c) - (2bc + a^2c)]16.-2y^3 + (3xy^2 - x^2y) - 2(xy^2 - y^3)17.2(2x - 3y) - (3x + 2y + 1)18.-(3a^2 - 4ab) + [a^2 - 2(2a + 2ab)]19.5m - 2n - 9p20.3(-3a^2 - 2a) - [a^2 - 2(5a - 4a^2 + 1) - 3a]21.3a^2 - 9a + 1022.-3a^2b - (2ab^2 - a^2b) - (2a^2b + 4ab^2)23.(5a - 3a^2 + 1) - (4a^3 - 3a^2)24.2a^2b + 2ab^2 - [2(a^2b - 1) + 2ab^2]25.(2a^2 - 1 + 2a) - 3(a - 1 + a^2)26.2xy - 5a^2 - 6ab + 2b^227.(3x - 2y + 3)28.5a + 2b29.(3a^2 - 3ab + 2b^2) + (a^2 + 2ab - 2b^2)30.2a^2 - 3(a - 1 + a^2)31.2a^2b - 2ab + 265、3x2y-2xy2+5x2y-3xy2;66、(3a2b-ab2)+(-2a2b+3ab2);67、(5x2y-7xy2)-(-2xy2+3x2y);68、4a2b-2ab2+(-3a2b+ab2);69、(x2y+2xy2-3y3)+(-2x2y+3xy2+y3);70、(4a2b-2ab2+3ab)-(-3a2b+ab2+2ab);71、(3x2y-5xy2+4y3)+(-2x2y+3xy2-y3);72、(5a2b2-2ab2+3ab)-(2a2b2+ab2-4ab).34、化简:2(x^2-xy)-3(2x^2-3xy)38、化简:-(3a+2b)+(4a-3b+1)-(2a-b-2[x^2-(2x^2-xy+y^2)]-3)35、化简:-ab+a^2b+ab-(-a^2b)39、化简:4x-(-6x)+(-9x)36、化简:(8xy-x^2+y^2)+(-y^2+x^2-8xy)40、化简:3-2xy+2yx^2+6xy-4x^2y41、化简:1-3(2ab+a)[1-2(2a-3ab)]45、化简:(-x^2+5+4x^3)+(-x^3+5x-4)42、化简:3x-[5x+(3x-2)]43、化简:(3a^2b-ab^2)-(ab^2+3a^2b)44、化简:2x-(-3y+[3x-2(3x-y)])46、化简:(5a^2-2a+3)-(1-2a+a^2)+3(-1+3a-a^2)47、化简:5(3a^2b-ab^2)-4(-ab^2+3a^2b)48、化简:4a^2+2(3ab-2a^2)-(7ab-1)49、化简:xy-(-xy)-2xy^2-(-3y^2x)53、化简:3x^2y-[2x^2y-3(2xy-x^2y)-xy]50、化简:5a-[a-(5a-2a)-2(a-3a)]51、化简:5m-7n-8p+5n-9m+8p52、化简:(5x^2y-7xy^2)-(xy^2-3x^2y)54、化简:3x^2-[5x-4(1/2x-1)]+5x^2/255、化简:2a^3b-a^2b+a^2b-ab^2/256、化简:(a^2+4ab-4b^2)-3(a^2+b^2)-7(b^2-ab)57、化简:a^2+2a^3-2a^3-3a^361、化简:(x^3+3x^2y-5xy^2+9y^3)+(-2y^3+3a^2+2xy^2+x^2y-2x^3)-(4x^2y-x^3-3xy^2+7y^3)58、化简:5ab-(-4a^2b^2)+8ab^2-(-3ab)-(-a^2b)+4a^2b^259、化简:7y-3z-8y+5z60、化简:-3(2x^2-xy)+4(x^2+xy-6)62、化简:-3x^2y+2x^2y+3xy^2-2xy^263、化简:3(a^2-2ab)-2(-3ab+b^2)64、化简:5abc-{2a^2b-[3abc-(4a^2b-ab^2)]}65、化简:3x^2y-2xy^2+5x^2y-3xy^266、化简:(3a^2b-ab^2)+(-2a^2b+3ab^2)67、化简:(5x^2y-7xy^2)-(-2xy^2+3x^2y)68、化简:4a^2b-2ab^2+(-3a^2b+ab^2)69、化简:(x^2y+2xy^2-3y^3)+(-2x^2y+3xy^2+y^3)70、化简:(4a^2b-2ab^2+3ab)-(-3a^2b+ab^2+2ab)71、化简:(3x^2y-5xy^2+4y^3)+(-2x^2y+3xy^2-y^3)72、化简:(5a^2b^2-2ab^2+3ab)-(2a^2b^2+ab^2-4ab)2时,求多项式2x3-3x2+5x-1的值。
整式加减练习题(带详解)

整式加减练习题(带详解)1. 将下列各式进行加法运算:(a) 3x + 2y - 5z + 4x - 3y + 2z(b) 5a^2b - 3ab^2 + 2a^2b^2 + ab^2 - 4a^2b + 3ab^2解析:(a) 将同类项相加得:(3x + 4x) + (2y - 3y) + (-5z + 2z) = 7x - y - 3z(b) 将同类项相加得:(5a^2b - 4a^2b) + (-3ab^2 + 3ab^2) + (2a^2b^2 + ab^2) = a^2b + 5ab^2 + 2a^2b^22. 将下列各式进行减法运算:(a) 7x^3 - 3x^2 + 5x - 2 - (4x^3 + 2x^2 - x + 3)(b) 9a^2 - 4ab + 5b^2 - (2a^2 + 3ab - 2b^2)解析:(a) 去除括号后,将同类项相减得:7x^3 - 4x^3 - 3x^2 - 2x^2 + 5x - (-x) - 2 - 3 = 3x^3 - 5x^2 + 6x - 5(b) 去除括号后,将同类项相减得:9a^2 - 2a^2 - 4ab - 3ab + 5b^2 - (-2b^2) = 7a^2 - 7ab + 7b^23. 将下列各式进行混合运算:(a) 4x^2 - 3xy + 2y^2 - (2x^2 - xy + 3y^2) + 5x - 2y(b) (3a - 2b)^2 - 4a^2 + 2ab - (2a^2 - b^2 + ab) + 3(ab - 2b)解析:(a) 去除括号后,将同类项相加或相减得:4x^2 - 2x^2 - 3xy + xy +2y^2 - 3y^2 + 5x - 2y = 2x^2 - 2xy - y^2 + 5x - 2y(b) 去除括号后,将同类项相加或相减得:(3a - 2b)(3a - 2b) - 4a^2 +2ab - 2a^2 + b^2 - ab + 3ab - 6b = 9a^2 - 6ab + 4b^2 - 6a^2 + b^2 + 2ab - 6b = 3a^2 - ab + 5b^2 - 6b通过以上练习题的解析,我们学习了整式的加法和减法运算。
整式的加减(含答案)

整式的加减1.下列各题中合并同类项结果正确的是( )A .134=-xy xy B .222632a a a =+C .222532a a a =+D .02222=-mn n m2.下列计算正确的是A .ab b a 523=+B .235=-y yC .277a a a =+D .y x yx y x 22223=-3.计算223a a +的结果是( ) A.23a B.24a C.43a D.44a4.下列运算正确的是( ).A .2323a a a +=B .()2a a a -÷= C .()325a a a -=- D .()32628a a =5.下列运算正确的是( ).A .3x+3y= 6 xyB .-y 2-y 2=0C .3(x+8)=3x +8D .- (6 x +2 y)=-6 x -2 y6.下列运算正确的是( ).A .623x x x ÷=B .532x x x =⋅C .624x x x -=D .325()x x =7.下列各式的变形正确的是( )A.235257a a aB.2276t tC.4x+5y=9xyD.22330x y yx8.下列各式计算正确的是( ).A.266a a a =+B.ab b a 352=+-C.mn mn n m 22422=-D.222253ab a b ab -=-9.如果2592++kx x 是一个完全平方式,那么k 的值是:A .±30B .30C .15 D.±1510.下列各式可以分解因式的是 ( )A .()-22x y -B .+224x 2xy y + C. 22x 4y -+ D.-22x 2xy y -11.计算()()()+2x 1x 1x 1-+的结果是 ( )A.-2x 1B.-3x 1C.+4x 1D.-4x 112.分解因式:m 3-4m 2+4m=____.13.因式分解:3x x -= ;14.分解因式:a -2ax+a 2x = .15.计算(π﹣3)0=_________.16.分解因式:=-2282b a ___________________.17.因式分解:22273b a -= 。
整式的加减练习100题(有答案)

整式的加减练习100题(有答案)不好意思,由于篇幅较长,无法在此处完整呈现100道整式加减的练习题。
以下是30道以及相关答案。
建议在做题之前充分掌握整式的基础知识。
1. (2x+3)+(4x-2)=答案:6x+12. (3x²+5x+7)-(x²+2x+3)=答案:2x²+3x+43. (2x⁴-3x²+5)+(4x²-2)=答案:2x⁴+x²+34. (5x³-2x²+3x)+(3x⁴-4x²+2)=答案:3x⁴+5x³-6x²+3x+25. (3x²+4x-2)-(x²-2x+5)=答案:2x²+6x-76. (2x⁵+3x³-7x)+(4x³-2x)=答案:2x⁵+7x³-9x7. (x⁴+x²+2)+(2x⁴+3x²-1)=答案:3x⁴+4x²+18. (3x⁴-2x²+5)+(2x⁴+3x²-1)=答案:5x⁴+x²+49. (5y⁴-3y²+2)+(2y²+1)=答案:5y⁴-1y²+310. (7x³-5x²+8x)+(2x⁴-7x³+5x²-8x+1)=答案:2x⁴+2x²+111. (4x⁴-2x³+6)+(2x³-3x²+1)+(3x⁴-4x³+2x²-3x+5)=答案:7x⁴-x²+412. (6y⁵-5y³+7)+(5y³-3y²+1)+(2y⁴-4y³+3y²-2y+1)=答案:6y⁵+2y⁴-2y²-2y+913. (2x⁴-3x²+1)-(3x³-5x²+2)+(5x³-2x²+1)=答案:2x⁴-8x³+6x²+214. (3y⁴+2y³+5)-(2y²-3y+1)+(4y²-2y+3)+(5y³-3y^2+y-4)=答案:3y⁴+7y³+4y²-415. (2x³+4x²-5x+7)-(5x³+3x²-2x+1)+(3x⁴-2x²+1)=答案:3x⁴-3x³+3x²-6x+716. (4y³-3y²+6y)+(5y⁴-2y³+4y²-6y+1)-(2y⁴+3y³-2y²+3y-1)= 答案:3y⁴-3y³+8y²-3y+217. (2a³-5a²+7a)+(3a²-2a+1)+(5a³-2a²+4a-1)-(4a³+a²-3a+5)= 答案:3a³-3a²+12a-418. (3x⁴-2x³+5)-(4x³-2x²+3)+(2x²-3x+1)+(6x⁴-3x³+2x-1)= 答案:9x⁴-6x²19. (5y⁴-3y²+2)+(2y²+1)-(6y³-2y²+3)+(-3y^3+2y^2-y+4)= 答案:5y⁴-9y³+3y²-y+420. (2x³-x+3)-(3x²+x-2)+(5x⁴-2x³+1)-(4x²-3x+7)=答案:5x⁴-x²+421. (6x³-2x²+1)+(2x⁴-5x³+3x²-5x+1)-(3x⁴+4x³-3x²+2x-3)=答案:-x⁴-x³+6x²-6x+322. (2y³-4y²+6y)+(5y⁴-3y³+2y²-1)-(3y⁴+y²+5y-1)+(y⁴-2y³+3y²-2y+7)=答案:4y⁴-y³-2y²+12y+623. (3x²-2x+1)-(x⁴-2x³+3x²-2x+1)+(2x³+x²-3x+5)-(5x⁴-3x³+2x²+1)=答案:-x⁴+6x³-2x²-x+424. (2y²-3y+5)+(5y³-2y²+7)+(3y⁴-4y³+2y²-1)-(4y³+y²+3y-5)=答案:3y⁴+y³-4y²+4y+1225. (4x³-2x²+5x-1)-(5x⁴-3x²+1)+(2x⁴+x³+3x²-5x+1)+(3x³-2x²+x-4)=答案:-3x⁴+2x³+6x²-2x-326. (3a³-2a²+1)+(2a²-3a+5)-(5a³-3a²+2a-1)+(6a⁴-2a³+1)=答案:6a⁴-2a³-6a²+6a+727. (2y⁴-3y³+2y)+(3y⁴-2y³+y²-1)-(4y³+2y²-3y+1)+(y⁴-y³+3y²-4y+7)=答案:1y⁴+4y³-y²+4y+628. (5x²-2x+1)-(2x³+x²-3x+5)-(5x⁴-3x³+2x²+1)+(3x³-4x²+3x-2)= 答案:5x⁴-5x²+529. (2a²-3a+5)-(5a³-2a²+7)+(3a⁴-4a³+2a²-1)+(4a³+a²-3a+5)=答案:3a⁴-2a³+2a²+130. (3x³-2x²+1)+(2x²-x+3)-(3x³+4x²-3x+2)+(5x⁴-2x³+1)=答案:5x⁴-3x²+2整式加减是初中数学中的重点内容之一。
整式的加减练习100题有答案

整式的加减练习100题有答案整式的加减是初中数学中的重要基础知识,通过大量的练习可以帮助我们更好地掌握这部分内容。
以下是 100 道整式加减的练习题及答案,希望能对您有所帮助。
一、选择题1、下列式子中,是单项式的是()A \(x + y\)B \(3x^{2}y\)C \(\dfrac{1}{x} \)D \(x^{2} + 1\)答案:B解析:由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。
选项 A 是多项式,选项 C 是分式,选项 D 是多项式,只有选项 B 是单项式。
2、下列计算正确的是()A \(3a + 2b = 5ab\)B \(5y^{2} 3y^{2} = 2\)C \(7a + a = 7a^{2}\)D \(3x^{2}y 2yx^{2} = x^{2}y\)答案:D解析:选项 A 中,3a 与 2b 不是同类项,不能合并;选项 B 中,\(5y^{2} 3y^{2} = 2y^{2}\);选项 C 中,\(7a + a = 8a\);选项 D 计算正确。
3、化简\((a b)\)的结果是()A \( a + b\)B \( a b\)C \(a b\)D \(a + b\)答案:C解析:\((a b) = a b\)4、一个多项式加上\(3x^{2}y 3xy^{2}\)得\(x^{3} 3x^{2}y\),则这个多项式是()A \(x^{3} + 3xy^{2}\)B \(x^{3} 3xy^{2}\)C \(x^{3} 6x^{2}y + 3xy^{2}\) D \( x^{3} + 6x^{2}y 3xy^{2}\)答案:C解析:这个多项式为:\((x^{3} 3x^{2}y) (3x^{2}y 3xy^{2})= x^{3} 3x^{2}y 3x^{2}y + 3xy^{2} = x^{3} 6x^{2}y + 3xy^{2}\)5、化简\(5(2x 3) + 4(3 2x)\)的结果为()A \(2x 3\)B \(2x + 9\)C \(8x 3\)D \(18x 3\)答案:A解析:\\begin{align}&5(2x 3) + 4(3 2x)\\=&10x 15 + 12 8x\\=&(10x 8x) +(12 15)\\=&2x 3\end{align}\6、若\(A = x^{2} 2xy + y^{2}\),\(B = x^{2} + 2xy + y^{2}\),则\(A B =\)()A \(4xy\)B \( 4xy\)C \(0\)D \(2y^{2}\)答案:B解析:\(A B =(x^{2} 2xy + y^{2})(x^{2} + 2xy +y^{2})= x^{2} 2xy + y^{2} x^{2} 2xy y^{2} = 4xy\)7、下列去括号正确的是()A \(a +(b c) = a + b + c\)B \(a (b c) = a b c\)C \(a ( b + c) = a + b c\)D \(a ( b c) = a + b c\)答案:C解析:选项 A,\(a +(b c) = a + b c\);选项 B,\(a (bc) = a b + c\);选项 C 正确;选项 D,\(a ( b c) = a + b + c\)8、化简\((a b) (a + b)\)的结果是()A \( 2b\)B \(2b\)C \( 2a\)D \(2a\)答案:C解析:\\begin{align}&(a b) (a + b)\\=&a b a b\\=&(a a) +( b b)\\=& 2b\end{align}\9、若单项式\( 3a^{m}b^{3}\)与\(4a^{2}b^{n}\)是同类项,则\(m + n =\)()A \(5\)B \(6\)C \(8\)D \(9\)答案:B解析:因为单项式\( 3a^{m}b^{3}\)与\(4a^{2}b^{n}\)是同类项,所以\(m = 2\),\(n = 3\),则\(m + n = 2 + 3 =5\)10、下列式子中,正确的是()A \(3x + 5y = 8xy\)B \(3y^{2} y^{2} = 3\)C \(15ab 15ba = 0\) D \(29x^{3} 28x^{3} = x\)答案:C解析:选项 A 中,\(3x\)与\(5y\)不是同类项,不能合并;选项 B 中,\(3y^{2} y^{2} = 2y^{2}\);选项 C 正确;选项 D 中,\(29x^{3} 28x^{3} = x^{3}\)二、填空题11、单项式\(\dfrac{2\pi ab^{2}}{5}\)的系数是_____,次数是_____。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于整式的加减测试题及答案
关于整式的加减测试题及答案
整式的加减测试题及答案
◆随堂检测
1、多项式x3-2x2+x-4与2x3-5x+6的和是()
A、3x3+2x2-4x+2
B、3x3-2x2-4x+2
C、-3x3+2x2-4x+2
D、3x3-2x2-4x-2
2、若A是一个四次多项式,且B也是一个四次多项式,则A-B 一定是()
A、八次多项式
B、四次多项式
C、三次多项式
D、不高于四次的多项式或单项式
3、代数式9x2-6x-5与10x2-2x-7的差是()
A、x2-4x-2
B、-x2+4x+2
C、-x2-4x+2
D、-x2+4x-2
4、已知多项式与另一个多项式B的和是,则B=___________________________。
5、减去-2a等于6a2-2a-4的代数式是_________________。
◆典例分析
例:(1)一个多项式减去3a4-a3+2a-1得5a4+3a2-7a+2,求这个多项式。
(2)某式减去,因误认为加上此式而得到错误答案,试求原题应得的正确答案。
解:(1)这个多项式是
5a4+3a2-7a+2+(3a4-a3+2a-1)=5a4+3a2-7a+2+3a4-
a3+2a-1=8a4-a3+3a2-5a+1。
(2)正确答案为-2()=-=。
评析:(1)首先是利用“被减式=差+减式”正确列出计算式,然后运用去括号法则和合并同类项法则进行运算。
(2)此例由于误将“减去”看成“加上”,使得答案产生错误。
因
此我们可以列出式子“-()”先求出此式,然后再列出式子“-()-()”去求原题的正确答案。
◆课下作业
●拓展提高
1、把下式化简求值,得()
(a3—3a2+5b)+(5a2—6ab)—(a3—5ab+7b),其中a=—1,b=—2
A、4
B、48
C、0
D、20
2、一个多项式A与多项式B=2x2-3xy-y2的差是多项式C=x2+xy+y2,则A等于( )
A、x2-4xy-2y2
B、-x2+4xy+2y2
C、3x2-2xy-2y2
D、3x2-2xy
3、若A是一个三次多项式,B是一个四次多项式,则A+B一定是( )
A、三次多项式
B、四次多项式
C、七次多项式
D、四次七项式
4、多项式3an+3-9an+2+5an+1-2an与-an+10an+3-5an+1-7an+2的差是。
5、已知,求的`值。
(用的代数式表示)
6、一位同学做一道题:“已知两个多项式A、B,计算2A+B”。
他误将“2A+B”看成“A+2B”,求得的结果为9x2-2x+7。
已知B=x2+3x-2,求正确答案。
7、已知,,,试说明对于、、为何值是常数。
●体验中考
1、(2009年山西太原中考题)已知一个多项式与的和等于,则这个多项式是()
A、B、C、D、
2、(2009年湘西自治州中考题改编)如果,且,求C。
3、(2009年湖南长沙中考题改编)化简求值
(1),其中
(2),其中,
参考答案:
◆随堂检测
1、B
2、D
3、C
4、
5、6a2—4a—4
◆课下作业
●拓展提高
1、A
2、D
3、B
4、—7an+3-2an+2+10an+1-an
5、2a+3b
6、A=9x2-2x+7—2(x2+3x-2)=7x2-8x+11,
2A+B=2(7x2-8x+11)+(x2+3x-2)=15x2-13x+20
7、=+
+=13是一个常数。
●体验中考
1、A
2、由可得:,
即:=
3、(1),;(2),—11。