天体运动常见问题总结解析

天体运动常见问题总结解析
天体运动常见问题总结解析

问题9:会讨论重力加速度g 随离地面高度h 的变化情况。

例15、设地球表面的重力加速度为g,物体在距地心4R (R 是地球半径)处,由于地球的引力作用而产生的重力加速度g ,,则g/g ,为

A 、1;

B 、1/9;

C 、1/4;

D 、1/16。

分析与解:因为g= G 2R

M ,g , = G 2)3(R R M +,所以g/g ,=1/16,即D 选项正确。 问题10:会用万有引力定律求天体的质量。

通过观天体卫星运动的周期T 和轨道半径r 或天体表面的重力加速度g 和天体的半径R ,就可以求出天体的质量M 。

例16、已知地球绕太阳公转的轨道半径r=?, 公转的周期T=

?,求太阳的质量M 。

分析与解:根据地球绕太阳做圆周运动的向心力来源于万有引力得:

G

2r

Mm =mr(2π/T)2 M=4π2r 3/GT 2= ?1030kg. 例17 、宇航员在一星球表面上的某高处,沿水平方向抛出一小球。经过时间t ,小球落到星球表面,测得抛出点与落地点之间的距离为L 。若抛出时初速度增大到2倍,则抛出点与落地点之间的距离为3L 。已知两落地点在同一水平面上,该星球的半径为R ,万有引力常数为G 。求该星球的质量M 。

分析与解:设抛出点的高度为h,第一次平抛的水平射程为x,则有

x 2+h 2=L 2

由平抛运动规律得知,当初速度增大到2倍时,其水平射程也增大到2x,可得

(2x )2+h 2=(3L)2

设该星球上的重力加速度为g ,由平抛运动的规律得:

h=2

1gt 2 由万有引力定律与牛顿第二定律得: mg= G

2R Mm 联立以上各式解得M=22

332Gt

LR 。 问题11:会用万有引力定律求卫星的高度。

通过观测卫星的周期T 和行星表面的重力加速度g 及行星的半径R 可以求出卫星的高度。

例18、已知地球半径约为R=?,又知月球绕地球的运动可近似看作匀速圆周运动,则可估算出月球到地球的距离约 m.(结果只保留一位有效数字)。 分析与解:因为mg= G 2R Mm ,而G 2r

Mm =mr(2π/T)2

所以,r= 32224π

T gR =4?108m. 问题12:会用万有引力定律计算天体的平均密度。

通过观测天体表面运动卫星的周期T ,,就可以求出天体的密度ρ。

例19、如果某行星有一颗卫星沿非常靠近此恒星的表面做匀速圆周运动的周期为T ,则可估算此恒星的密度为多少?

分析与解:设此恒星的半径为R ,质量为M ,由于卫星做匀速圆周运动,则有

G 2R

Mm =mR 224T π, 所以,M=2324GT R π 而恒星的体积V=34πR 3,所以恒星的密度ρ=V M =23GT

π。 例20、一均匀球体以角速度ω绕自己的对称轴自转,若维持球体不被瓦解的唯一作用力是万有引力,则此球的最小密度是多少?

分析与解:设球体质量为M ,半径为R ,设想有一质量为m 的质点绕此球体表面附近做匀速圆周运动,则

G 2R

Mm =m ω02R, 所以,ω02=34πG ρ。 由于ω≤ω0得ω2≤3

4πG ρ,则ρ≥G πω432,即此球的最小密度为G πω432。 问题13:会用万有引力定律推导恒量关系式。

例21、行星的平均密度是ρ,靠近行星表面的卫星运转周期是T ,试证明:ρT 2是一个常量,即对任何行星都相同。

证明:因为行星的质量M=23

24GT

R π(R 是行星的半径),行星的体积 V=34πR 3,所以行星的平均密度ρ=V M =23GT π, 即ρT 2=G π3,是一个常量,对任何行星都相同。 例22、设卫星做圆周运动的轨道半径为r,运动周期为T ,试证明:23

T

r 是一个常数,即对于同一天体的所有卫星来说,23

T

r 均相等。 证明:由G 2r Mm = mr(2π/T)2得23T r =24π

GM ,即对于同一天体的所有卫星来说,23T r 均相等。

问题14:会求解卫星运动与光学问题的综合题

例23、(2004年广西物理试题)某颗地球同步卫星正下方的地球表面上有一观察者,

他用天文望远镜观察被太阳光照射的此卫星,试问,春分那天(太阳光直射赤道)在日落12小时内有多长时间该观察者看不见此卫星?已知地球半径为R ,地球表面处的重力加速度为g,地球自转周期为T ,不考虑大气对光的折射。

分析与解:设所求的时间为t ,用m 、M 分别表示卫星和地球的质量,r 表示卫星到地心的距离.有

22)2(T mr r mM G π= 春分时,太阳光直射地球赤道,如图17所示,图中

圆E 表示赤道,S 表示卫星,A 表示观察者,O 表示地心.

由图17可看出当卫星S 绕地心O 转到图示位置以后(设

地球自转是沿图中逆时针方向),其正下方的观察者将看

不见它. 据此再考虑到对称性,有

R r =θsin T t π

θ22= g R M G =2 由以上各式可解得 3122)4arcsin(gT R T t ππ= 问题15:会用运动的合成与分解知识求解影子或光斑的速

度问题。 例24、如图18所示,点光源S 到平面镜M 的距离为d 。光屏AB 与平面镜的初始位置平行。当平面镜M 绕垂直于纸面过中心O 的转轴以ω的角速度逆时针匀速转过300时,垂直射向平面镜的光线SO 在光屏上的光斑P 的即时速度大小为 。

分析与解:当平面镜转过300时,反射光线转过600角,反射光线转动的角速度为平面镜转动角速度的2倍,即为2ω。将P 点速度沿OP 方向和垂直于OP 的方向进行分解,可得:

Vcos600=2ω.op=4ωd,所以V=8ωd.

例25、如图19所示,S 为频闪光源,每秒钟闪光30次,AB 弧对O 点的张角为600,平面镜以O 点为轴顺时针匀速转动,角速度ω=3

πrad/s,问在AB 弧上光点个数最多不超过多少? 分析与解:根据平面镜成像特点及光的反射定律可知,当平面镜以ω转动时,反射光线转动的角速度为2ω。因此,光线扫过AB 弧的时间为t=,则在AB 弧上光点个数最多不会

超过15个。

三、警示易错试题 典型错误之一:错误地认为做椭圆运动的卫星在近地点

和远地点的轨道曲率半径不同。

例26、某卫星沿椭圆轨道绕行星运行,近地点离行星中心的距离是a,远地点离行星中S P

ω O 600 300

V

图18 A B M

d

S O M B A 600 图19 图17

太阳光 E O S A R

r θ

心的距离为b,若卫星在近地点的速率为V a ,则卫星在远地点时的速率V b 多少?

错解:卫星运行所受的万有引力提供向心力,在近地点时,有a V m a Mm G a 2

2=,在远地点时有b V m b Mm G b 22=,上述两式相比得a b V V b a =,故a b V b

a V =。 分析纠错:以上错误在于认为做椭圆运动的卫星在近地点和远地点的轨道曲率半径不同。实际做椭圆运动的卫星在近地点和远地点的轨道曲率半径相同,设都等于R 。所以,在

近地点时有R V m a Mm G a 22=,在远地点时有R V m b Mm G b 22=,上述两式相比得a

b V V b a =,故a b V b

a V =。 典型错误之二:利用错误方法求卫星运动的加速度的大小。

例27、发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3,轨道1、

2相切于Q 点,轨道2、3相切于P 点,如图20所示。则在卫星分别在1、2、3轨道上正常运行时,以下说法正确的是: A 、卫星在轨道3上的速率大于在轨道1上的速率。 B 、卫星在轨道3上的角速度小于在轨道1上的角速度。

C 、卫星在轨道1上经过Q 点时的加速度大于它在轨道2 上经过Q 点时的加速度。

D 、卫星在轨道2上经过P 点时的加速度等于它在轨道3 上经过P 点时的加速度。

错解:因为r V m mr r Mm G 222==ω,所以V=r

GM , 3r

GM =ω,即B 选项正确,A 选项错误。 因为卫星在轨道1上经过Q 点时的速度等于它在轨道2上经过Q 点时的速度,而在Q 点轨道的曲率半径1r

21r V a =>22

2r V a =,即C 选项正确。 分析纠错:B 选项正确,但C 选项错误。根据牛顿第二定律可得2r

GM m F a ==,即卫星的加速度a 只与卫星到地心的距离r 有关,所以C 选项错误,D 选项正确。

典型错误之三:错误认为卫星克服阻力做功后,卫星轨道半径将变大。

例28、一颗正在绕地球转动的人造卫星,由于受到阻力作用则将会出现:

A 、速度变小;

B 、动能增大;

C 、角速度变小;

D 、半径变大。

错解:当卫星受到阻力作用时,由于卫星克服阻力做功,故动能减小,速度变小,为P Q

1 2 3 图20

了继续环绕地球,由于卫星速度r GM V =可知,V 减小则半径R 必增大,又因r V =ω,故ω变小,可见应该选A 、C 、D 。

分析纠错:当卫星受到阻力作用后,其总机械能要减小,卫星必定只能降至低轨道上飞行,故R 减小。由r

GM V =可知,V 要增大,动能、角速度也要增大。可见只有B 选项正确。

典型错误之四:混淆稳定运动和变轨运动

例29、如图21所示,a 、b 、c 是在地球大气层外圆形轨道上运动的3颗卫星,下列说法正确的是:

A .b 、c 的线速度大小相等,且大于a 的线速度;

B .b 、c 的向心加速度大小相等,且大于a 的向心加速度;

C .c 加速可追上同一轨道上的b ,b 减速可等候同一轨道上的c ;

D .a 卫星由于某原因,轨道半径缓慢减小,其线速度将增大。

错解:c 加速可追上b ,错选C 。

分析纠错:因为b 、c 在同一轨道上运行,故其线速度大小、加速度大小

均相等。又b 、c 轨道半径大于a 的轨道半径,由r GM V /=

知,V b =V c

当c 加速时,c 受到的万有引力F

b 受到的万有引力F>mv 2/r, 故它将偏离原轨道做向心运动。所以无论如何

c 也追不上b ,b 也等不到c ,故C 选项错。对这一选项,不能用r GM V /=来分析b 、c 轨道半径的变化情况。

对a 卫星,当它的轨道半径缓慢减小时,在转动一段较短时间内,可近似认为它的轨道半径未变,视为稳定运行,由r GM V /=知,r 减小时V 逐渐增大,故D 选项正确。

典型错误之五:混淆连续物和卫星群

例30、根据观察,在土星外层有一个环,为了判断环是土星的连续物还是小卫星群。可测出环中各层的线速度V 与该层到土星中心的距离R 之间的关系。下列判断正确的是:

A 、若V 与R 成正比,则环为连续物;

B 、若V 2与R 成正比,则环为小卫星群;

C 、若V 与R 成反比,则环为连续物;

D 、若V 2与R 成反比,则环为小卫星群。

错解:选BD 。

分析纠错:连续物是指和天体连在一起的物体,其角速度和天体相同,其线速度V 与r 成正比。而对卫星来讲,其线速度r GM V /=,即V 与r 的平方根成反比。由上面分析

可知,连续物线速度V 与r 成正比;小卫星群V 2与R 成反比。故选A 、D 。

a c 地球

图21

高中物理天体运动经典习题

十年高考试题分类解析-物理 1.假设地球是一半径为R 、质量分布均匀的球体。一矿井深度为d 。已知质量分布均匀的球壳对壳内物体的引力为零。矿井底部和地面处的重力加速度大小之比为 A.R d - 1 B.R d +1 C.2)(R d R - D.2 )(d R R - 2.一卫星绕某一行星表面附近做匀速圆周运动,其线速度大小为v 。假设宇航员在该行星表面上用弹簧测力计测量一质量为m 的物体重力,物体静止时,弹簧测力计的示数为N ,已知引力常量为G,,则这颗行星的质量为 A .mv 2 /GN B .mv 4 /GN . C .Nv 2 /Gm .D .Nv 4 /Gm . 3.(2012·北京理综)关于环绕地球运动的卫星,下列说法正确的是 4A C 5A. B.各小行星绕太阳运动的周期均小于一年 C.小行星带内侧小行星的向心加速度值大于外侧小行星的向心 加速度值 D.小行星带内各小行星圆周运动的线速度值大于地球公转的线速度值 6.(2012·全国理综)一单摆在地面处的摆动周期与在某矿井底部摆动周期的比值为k 。设地球的半径为R 。假定地球的密度均匀。已知质量均匀分布的球壳对壳内物体的引力为零,求矿井的深度d . 1.(2011重庆理综第21题)某行星和地球绕太阳公转的轨道均可视为圆。每过N 年,该行星会运行到日地连线的延长线上,如题21图所示。该行星与地球的公转半径比为

A .231N N +?? ??? B.23 1N N ?? ?-?? C .3 2 1N N +?? ??? D.32 1N N ?? ?-?? 2(2011四川理综卷第17题)据报道,天文学家近日发现了 一颗距地球40光年的 “超级地球”,名为“55Cancrie ”,该行星绕母星(中心天体)运行的周期约为地球绕太阳运行周期的 1 480 ,母星的体积约为太阳的60倍。假设母星与太阳密度相同,“55Cancrie ”与地球均做匀速圆周运动,则“55Cancrie ”与地球的 A. B. C.1.m 1、m 2、M (M >>m 1,M >>m 2).在C 的万有引力作用下,a 、b 从2运行周期和相应的圆轨道半径,T 0和R 0是 3.(2010,在月球绕地球运行的轨道处由地球引力产生的加速度大小为2g ,则 A .1g a =B .2g a =C .12g g a +=D .21g g a -= 4(2010四川理综卷第17题).a 是地球赤道上一栋建筑,b 是在赤道平面内做匀速圆周运动、距地面9.6×106 m 的卫星,c 是地球同步卫星,某一时刻b 、c 刚好位于a 的正上方(如图甲所示),经48h ,a 、b 、c 的大致位置 是图乙中的(取地球半径R=6.4×106m ,地球表面重力加速度g=10m/s 2 ,π 5.(2010安徽理综)为了对火星及其周围的空间环境进行探测,我国预计于2011年10月发射第一颗火星探测器“萤火一号”。假设探测器在离火星表面高度分别为h 1和h 2的圆轨道上运动时,周期分别为T 1和T 2。火星可视为质量分布均匀的球体,且忽略火星的自转影响,万有引力常量为G 。仅利用以上数据,可以计算出 A .火星的密度和火星表面的重力加速度

2018年高考物理复习天体运动专题练习(含答案)

2018年高考物理复习天体运动专题练习(含答 案) 天体是天生之体或者天然之体的意思,表示未加任何掩盖。查字典物理网整理了天体运动专题练习,请考生练习。 一、单项选择题(本题共10小题,每小题6分,共60分.) 1.(2014武威模拟)2013年6月20日上午10点神舟十号航天员首次面向中小学生开展太空授课和天地互动交流等科 普教育活动,这是一大亮点.神舟十号在绕地球做匀速圆周运动的过程中,下列叙述不正确的是() A.指令长聂海胜做了一个太空打坐,是因为他不受力 B.悬浮在轨道舱内的水呈现圆球形 C.航天员在轨道舱内能利用弹簧拉力器进行体能锻炼 D.盛满水的敞口瓶,底部开一小孔,水不会喷出 【解析】在飞船绕地球做匀速圆周运动的过程中,万有引

力充当向心力,飞船及航天员都处于完全失重状态,聂海胜做太空打坐时同样受万有引力作用,处于完全失重状态,所以A错误;由于液体表面张力的作用,处于完全失重状态下的液体将以圆球形状态存在,所以B正确;完全失重状态下并不影响弹簧的弹力规律,所以拉力器可以用来锻炼体能,所以C正确;因为敞口瓶中的水也处于完全失重状态,即水对瓶底部没有压强,所以水不会喷出,故D正确. 【答案】 A 2.为研究太阳系内行星的运动,需要知道太阳的质量,已知地球半径为R,地球质量为m,太阳与地球中心间距为r,地球表面的重力加速度为g,地球绕太阳公转的周期T.则太阳的质量为() A.B. C. D. 【解析】地球表面质量为m的物体万有引力等于重力,即G=mg,对地球绕太阳做匀速圆周运动有G=m.解得M=,D正确.

【答案】 D 3.(2015温州质检)经国际小行星命名委员会命名的神舟星和杨利伟星的轨道均处在火星和木星轨道之间.已知神舟星平均每天绕太阳运行1.74109 m,杨利伟星平均每天绕太阳运行1.45109 m.假设两行星都绕太阳做匀速圆周运动,则两星相比较() A.神舟星的轨道半径大 B.神舟星的加速度大 C.杨利伟星的公转周期小 D.杨利伟星的公转角速度大 【解析】由万有引力定律有:G=m=ma=m()2r=m2r,得运行速度v=,加速度a=G,公转周期T=2,公转角速度=,由题设知神舟星的运行速度比杨利伟星的运行速度大,神舟星的轨道半径比杨利伟星的轨道半径小,则神舟星的加速度比杨利伟星的加速度大,神舟星的公转周期比杨利伟星的公转周期小,神舟星的公转角速度比杨利伟星的公转角速度大,故选

(完整版)天体运动知识点

第二讲天体运动 一、两种对立的学说 1.地心说 (1)地球是宇宙的中心,是静止不动的;太阳、月亮以及其他行星都绕_地球运动; (2) 地心说的代表人物是古希腊科学家__托勒密__. 2.日心说 (1)__ 太阳_是宇宙的中心,是静止不动的,所有行星都绕太阳做__匀速圆周运动__; (2)日心说的代表人物是_哥白尼_. 二、开普勒三大定律 行星运动的近似处理 在高中阶段的研究中可以按圆周运动处理,开普勒三定律就可以这样表述: (1)行星绕太阳运动的轨道十分接近圆,太阳处在圆心; (2)对某一行星来说,它绕太阳做圆周运动的角速度(或线速度)不变,即行星做匀速圆周运动; (3)所有行星轨道半径的三次方跟它的公转周期的二次方的比值都相等,即r3 T2=k. 三、太阳与行星间的引力 1.模型简化:行星以太阳为圆心做__匀速圆周__运动.太阳对行星的引力,就等于行星做_匀速圆周_运动的向心力. 2.太阳对行星的引力:根据牛顿第二定律F =m v2r 和开普勒第三定律r3T2∝k 可得:F∝___m r 2__.这表明:太阳对 不同行星的引力,与行星的质量成___正比_,与行星和太阳间距离的二次方成___反比___. 3.行星对太阳的引力:太阳与行星的地位相同,因此行星对太阳的引力和太阳对行星的引力规律相同,即F′∝_M r 2 4.太阳与行星间的引力:根据牛顿第三定律F =F′,所以有F∝Mm r 2_,写成等式就是F =_ G Mm r 2__. 四、万有引力定律 1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比、与它们之间距离r 的二次方成反比. 2.公式: F=G Mm r 2 (1)G 叫做 引力常量 , (2)单位:N ·m2/kg2 。在取国际单位时,G 是不变的。 (3)由卡文迪许通过扭秤实验测定的,不是人为规定的。 3.万有引力定律的适用条件 (1)在以下三种情况下可以直接使用公式F =G m1m2 r2 计算: ①求两个质点间的万有引力:当两物体间距离远大于物体本身大小时,物体可看成质点,公式中的r 表示两质点间的距离. ②求两个均匀球体间的万有引力:公式中的r 为两个球心间的距离. ③一个质量分布均匀球体与球外一个质点的万有引力:r 指质点到球心的距离. (2)对于两个不能看成质点的物体间的万有引力,不能直接用万有引力公式求解,切不可依据F =G m1m2 r2得出r→0 时F→∞的结论而违背公式的物理含义. 内容 理解 开普勒第一定律 所有行星绕太阳运动的轨道都 是椭圆,太阳处在椭圆的一个上。 开普勒第一定律又叫轨道定律. 某个行星在一个固定平面的轨道上运动。 不同行星的运动轨道是不同的。 开普勒第二定律 对任意一个行星来说,它与太阳的连线在相等的时间内扫过的相等. 开普勒第二定律又叫面积定律. 行星运动的速度是在变化的,近日点速率最大,远日点速率最小。 开普勒第三定律 所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比 值都相等 表达式 a 3T 2 =k 第三定律也叫周期定律 K 与中心天体的质量有关,与行星的质量无关。 如果围绕着同一个恒星运动,对于所有行星而言,K 是相同的。如果围绕着不同的恒星,K 不同。 此公式使用于所有天体。

天体运动经典题型分类

万有引力和航天知识的归类分析 一.开普勒行星运动定律 1、开普勒第一定律(轨道定律):所有行星绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。 2、开普勒第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。 3、开普勒第三定律(周期定律):所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等。 实例、飞船沿半径为r 的圆周绕地球运动,其周期为T ,如图所示。若飞船要返回地面,可在轨道上某点处将速率降到适当的数值,从而使飞船沿着以地心为焦点的椭圆轨道运行,椭圆与地球表面在某点相切,已知地球半径为R ,求飞船由远地点运动到近地点所需要的时间。 二.万有引力定律 实例2、设想把质量为m 的物体放到地球的中心,地球的质量为M ,半径为R ,则物体与地球间的万有引力是 ( ) A 、零 B 、无穷大 C 、 2 R GMm D 、无法确定 小结:F= 2 2 1r m Gm 的适用条件是什么 三.万有引力与航天 (一)核心知识 万有引力定律和航天知识的应用离不开两个核心 1、 一条主线 ,本质上是牛顿第二定律,即万有引力提供天体做圆周运动所需要的向心力。 2、 黄金代换式 GM =g R 2 此式往往在未知中心天体的质量的情况下和一条主线结合使用 (二)具体应用 应用一、卫星的四个轨道参量v 、ω、T 、a 向与轨道半径r 的关系及应用 1、理论依据:一条主线 2、实例分析 如图所示,a 、b 是两颗绕地球做匀速圆周运动的人造卫星,它们距地面 的高度 分别是R 和2R(R 为地球半径).下列说法中正确的是( ) A.a 、b 的线速度大小之比是 2∶1 B.a 、b 的周期之比是1∶2 C.a 、b 的角速度大小之比是3 ∶4 D.a 、b 的向心加速度大小之比是9∶4 小结: 轨道模型: 在中心天体相同的情况下卫星的r 越大v 、ω、a 越小,T 越大,r 相同,则卫星的v 、ω、a 、T 也相同,r 、 v 、ω、a 、T 中任一发生变化其它各量也会变化。 应用二、测量中心天体的质量和密度 1、方法介绍 方法一、“T 、r ”计算法 在知道“T 、r ”或“v 、r ”或“ω、r ”的情况下,根据一条主线均可计算出中心天体的质量,这种方法统称为“T 、r ”计算法。在知道中心天体半径的情况下利用密度公式还可以计算出中心天体的密度。 方法二、“g 、R ”计算法 利用天体表面的重力加速度g 和天体半径R. 2、实例分析 例4:已知万有引力常量G,地球半径R,月球和地球之间的距离r,同步卫星距地面的高度h,月球:绕地球的运转周期T 1,地球的自转周期T 2 , 天体密度故天体质量由于,,2 2G gR M mg R Mm G ==.π43π3 43 GR g R M V M = ==

高一物理天体运动方面练习题

物理测试 1、 两颗人造卫星A 、B 绕地球做圆周运动,周期之比为TA :TB=1:8;则轨道半径之比和运动速率之比分别为( ) A 、RA :RB=4:1 vA :vB=1:2 B、RA :RB=4:1 vA :vB=2:1 C、RA :RB=1:4 vA :vB=1:2 D、RA :RB=1:4 vA :vB=2:1 2、如图,在一个半径为R、质量为M的均匀球体中,紧贴着球的边缘挖去一个半径为R/2的球星空穴后,剩余的 阴影部分对位于球心和空穴中心连线上、与球心相距d的质点m的引力是多大? 3、两个球形的行星A、B各有一个卫星a和b,卫星的圆轨迹接近各行星的表面。如果两行星质量之比为MA/MB=p,两个行星半径之比RA/RB=q,则两卫星周期之比TA/TB为______ 4、一颗人在地球卫星以初速度v发射后,可绕地球做匀速圆周运动,若使发射速度为2v,该卫星可能( ) A、绕地球做匀速圆周运动,周期变大 B、绕地球运动,轨道变为椭圆 C、不绕地球运动,轨道变为椭圆 D、挣脱太阳引力的束缚,飞到太阳系以外的宇宙 5、如图,有A、B两颗行星绕同一颗恒星做圆周运动,A行星的周期为T1,B行星的周期为T2,在某一时刻两行星相距最近,则 (1)至少经过多长时间,两行星再次相距最近? (2)至少经过多长时间,两行星相距最远? 6、已知地球的质量为M,地球的半径为R,地球的自传周期为T,地球表面的重力加速度为g,无线电信号的传播 速度为C,如果你用卫星电话通过地球卫星中的转发器发的无线电信号与对方通话,则在你讲完话后要听到对 方的回话,所需要的最短时间为( ) A、322244πT gR c ? B 、322242πT gR c ? C 、)4(43222R T gR c -?π D 、)4(23222R T gR c -?π 7、在天体演变过程中,红色巨星发生爆炸后,可以形成中子星,中子星具有极高的密度。 (1)若已知某中子星的密度为ρ,该中子星的卫星绕它作圆周运动,试求该中子星运行的最小周期。

(完整版)天体运动总结

天体运动 总结 一、处理天体运动的基本思路 1.利用天体做圆周运动的向心力由万有引力提供,天体的运动遵循牛顿第二定律求解,即G Mm r 2=ma ,其中a =v 2r =ω2r =(2π T )2r ,该组公式可称为“天上”公式. 2.利用天体表面的物体的重力约等于万有引力来求解,即G Mm R 2=m g ,gR2=GM ,该公式通常被称为黄金代 换式.该式可称为“人间”公式. 合起来称为“天上人间”公式. 二、对开普勒三定律的理解 开普勒行星运动定律 1.所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。 2.对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。 3.所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等.此比值的大小只与有关,在不 同的星系中,此比值是不同的.(R 3 T 2=k ) 1.开普勒第一定律说明了不同行星绕太阳运动时的椭圆轨道是不同的,但有一个共同的焦点. 2.行星靠近太阳的过程中都是向心运动,速度增加,在近日点速度最大;行星远离太阳的时候都是离心运动,速度减小,在远日点速度最小. 3.开普勒第三定律的表达式为a 3 T 2=k ,其中a 是椭圆轨道的半长轴,T 是行星绕太阳公转的周期,k 是一个常量,与行星无关但与中心天体的质量有关. 三、开普勒三定律的应用 1.开普勒定律不仅适用于行星绕太阳的运转,也适用于卫星绕地球的运转. 2.表达式a 3 T 2=k 中的常数k 只与中心天体的质量有关.如研究行星绕太阳运动时, 常数k 只与太 阳的质量有关,研究卫星绕地球运动时,常数k 只与地球的质量有关. 四、太阳与行星间的引力 1.模型简化:行星以太阳为圆心做匀速圆周运动,太阳对行星的引力提供了行星做匀速圆周运一、太阳与行星间的引力 2.万有引力的三个特性 (1)普遍性:万有引力不仅存在于太阳与行星、地球与月球之间,宇宙间任何两个有质量的物体之间都存在着这种相互吸引的力. (2)相互性:两个有质量的物体之间的万有引力是一对作用力和反作用力,总是满足牛顿第三定律. (3)宏观性:地面上的一般物体之间的万有引力很小,与其他力比较可忽略不计,但在质量巨大的天体之间或天体与其附近的物体之间,万有引力起着决定性作用.

住宅常见质量问题汇总

中南住宅设计常见问题汇总

中南住宅设计常见问题汇总 总则:针对中南现有工程中一些常见问题作一总结,以引起重视并方便分公司确定审查图纸之审查要点,杜绝设计常见错、漏、碰、缺等问题出现,提高设计施工质量,减少不必要的损失,提高中南住宅品质。 ⑴、总平面设计 一、标高: 1.道路标高坡向与雨水进水口位置不符 ――道路面层标高设计时应向雨水进水口方向找坡(0.5-1 %),并在施工时多 加注意。 2.园路井盖高低不平和有缺损 ――园路、窨井要统一标高,使园路和窨井混凝土同时浇筑。 二、流线设计: 住宅出入口未设置人车分流专用通道,造成交通安全隐患;当住户大堂与流量大 的商业服务空间临近时,问题尤其突出。 三、间距: 1.建筑平面锯齿错位过大影响采光。 2.搭建的售楼处与住宅间距太近影响采光。 四、绿化: 1. 种植树种过高影响采光。 2. 前期环境部分设计时应考虑设计灌溉点,绿化设计选用的某些植物生长期短,物业为便于管理往往进行普遍更换。 五、物业管理、垃圾收放点等附属用房设置: 1.未设置管理用房或太隐蔽。 2.总图中未考虑垃圾收放点、垃圾中转站的设置;垃圾站附近应考虑上下水,以便清理。 3.箱式变电在总图中要综合考虑,不要影响景观。 六、摩托车、自行车存放: 1.总图中未考虑摩托车、自行车存放。 2.出于安全问题,停自行车处不能设在地下车库,应单独考虑。 3.摩托车、自行车存放数量未针对居住对象统筹考虑,中低档次小区摩托车、自行车车库(棚)面积太小不够使用。 七、儿童游戏场: 儿童游戏场设计时未考虑不安全因素:

1.儿童游戏场内的城堡及周边有坚硬的石头,小孩容易受伤。 2.秋千设置不合理,没有考虑活动空间,儿童容易撞到硬物。 八、道路: 1.小区内道路设计要一次到位,后加时易引起客户纠纷; 2.园区内的道路应考虑搬家车辆能够进出。 3.园区内的道路应设马路牙,否则草坪高于路面时,雨天泥水易流到马路。 4. 混凝土割缝不及时,造成道路裂缝――应根据温度、气候变化及时调整割缝时间。 5. 停车位下沉――应加强现场管理,开槽埋管后按规范要求进行,分层夯实; 6.小区园路出现横向裂缝――园路施工应每隔4-6m留伸缩缝。 7.道路混凝土半角偶出现裂缝;窨井周边混凝土出现裂缝――应加设防裂钢筋 和角偶钢筋。 8.混凝土路面起砂、剥落――混凝土抹面时应严禁在混凝土表面洒水或撒水泥; 对已出现的裂缝可采用1:2水泥砂浆修补。 9.机动车道上的排水沟沟盖板未选用带胶边的铸铁产品而采用的水泥盖板,汽车开过后噪音大,并且易碎裂。 九、总平面设计其它问题: 1.化粪池、下水道位置距建筑主体太近,维修开挖时导致建筑沉降,维护成本 高,设计时应考虑足够的间距; 2.部分管线埋深过浅。 ⑵、单元户型设计 一、厨房: 1.厨房未设排烟道:厨房油烟直接排入采光井或生活阳台,空气的作用造成油 烟乱串,使洗衣机及晾晒的衣物受到污染,且油烟从窗户进入室内,影响居住环境。 2.设有洗衣机位的厨房未设地漏,无法排水。 3.厨房详图的布置未重点核对,厨柜、吊柜、洗菜池、炉灶、抽油烟机、排烟 道、冰箱、地漏等的位置布置不合理,橱柜布置未遵循洗、切、炒的流线且与电气、给排水、煤气专业的图纸不一致。 4.厨房电器插座位置设计不当,且未考虑微波炉、消毒柜的位置。 5.北方地区部分厨房未设采暖或散热片位置不当或散热片位置与电器插座位置 相矛盾,影响使用。 6.烟道产品不过关,住户间互相串味;部分项目烟道为单风道设计,烟道本身尺 寸过小,而止逆阀深入井道尺寸过大,排烟净空很小,造成排烟不畅;烟道的倒烟现象,应从烟道种类(单烟道、双烟道)、烟道止逆阀的选择、烟道尺寸给予考虑。 7.煤气等管线设计不合理;中高档项目未设计管道井。

平抛运动常见题型考点分类归纳

平抛运动小结 (一)平抛运动的基础知识 1. 定义:水平抛出的物体只在重力作用下的运动。 2. 特点: (1)平抛运动是一个同时经历水平向的匀速直线运动和竖直向的自由落体运动的合运动。 (2)平抛运动的轨迹是一条抛物线,其一般表达式为c bx ax y ++=2 。 (3)平抛运动在竖直向上是自由落体运动,加速度g a =恒定,所以竖直向上在相等的时间相邻的位移的高度之比为5:3:1::321=s s s …竖直向上在相等的时间相邻的位移之差是一个恒量 2gT s s s s I II II III =-=-。 (4)在同一时刻,平抛运动的速度(与水平向之间的夹角为?)向和位移向(与水平向之间的夹角是θ)是不相同的,其关系式θ?tan 2tan =(即任意一点的速度延长线必交于此时物体位移的水平分量的中点)。 3. 平抛运动的规律 描绘平抛运动的物理量有0v 、y v 、v 、x 、y 、s 、?、t ,已知这八个物理量中的任意两个,可以求出其它六个。

(二)平抛运动的常见问题及求解思路 关于平抛运动的问题,有直接运用平抛运动的特点、规律的问题,有平抛运动与圆运动组合的问题、有平抛运动与天体运动组合的问题、有平抛运动与电场(包括一些复合场)组合的问题等。本文主要讨论直接运用平抛运动的特点和规律来求解的问题,即有关平抛运动的常见问题。 1. 从同时经历两个运动的角度求平抛运动的水平速度 求解一个平抛运动的水平速度的时候,我们首先想到的法,就应该是从竖直向上的自由落体运动中求出时间,然后,根据水平向做匀速直线运动,求出速度。 [例1] 如图1所示, 处低m h 25.1= 解析:在竖直向上,摩托车越过壕沟经历的时间 s s g h t 5.010 25 .122=?== 在水平向上,摩托车能越过壕沟的速度至少为 s m s m t x v /10/5 .050=== 2. 从分解速度的角度进行解题 对于一个做平抛运动的物体来说,如果知道了某一时刻的速度向,则我们常常是“从分解速度”的角度来研究问题。 [例2] 如图2甲所示,以9.8m/s 的初速度水平抛出的物体,飞行一段时间后,垂直地撞在倾角θ为

天体运动和万有引力总结

精心整理 天体运动总结 1. 开普勒三定律 1.1所有绕太阳运动的行星轨道都是椭圆,太阳在椭圆的一个焦点上(后简化为所有轨道都是圆,太阳在圆心上),注意:第一定律只是描述了一个图像,并没有需要计算的东西,而且太阳究竟在哪个焦点上还得看第二定律 1.2对于某一颗行星来说,它的扫面速度是恒定的。这句话也可以说成是:离太阳越近,速度越大。这是判断近日点远日点的根据。 第二定律有个计算是研究近日点远日点速度与到太阳距离关系的。 ab 2.m 1的错误,将会直接导致后面计算错误。 C.万有引力的方向肯定在两物体之间的连线上而指向对方 D.甲对乙的引力和乙对甲的引力是一对作用力反作用力 2.2万有引力的规律 2.2.1从公式上来看,当两个物体质量一定时,万有引力随着距离的增大而减小,并且 和距离的“平方”成反比。所以一定要养成这样的意识,距离是原来n 倍,力就 变为原来的n 2分之一倍,或者,力变为原来的n 分之一倍,倍。这样会缩短做题时间,一般做题的时候不要在这方面浪费时间。 2.2.2地球对地球表面的物体都有吸引力,这个力就表现在重力上,但要清楚,重力只

是万有引力的一个分力。可以这么想:万有引力首先得提供物体由于随地球自转 而所需的向心力,剩下来的那部分就是重力。这样就需要注意,向心力指向自转 轴,所以重力就不能指向地心了。又由于这个向心力很小,所以重力很接近万有 引力。当然,地球不同纬度所需向心力是不同的,赤道所需向心力最大,两极点 不需要向心力,所以赤道表面的重力加速度最小,两极点重力加速度最大。 2.2.3一个物体受到另一个物体的吸引力和第三个物体无关,所以太空中一个物体所受 吸引力应为所有其他物体对它的吸引力的矢量和,只不过我们现在所考虑的都是 吸引力最大的那个力(其他的引力比起这个引力小的不是一点半点)。不过也有例 外情况,最常见的就是在地球和月球的连线上,肯定会有那么一个点,使得地球 和月球对这一点上的物体的吸引力大小相等方向相反。 3.天体运动 参阅八大行星的公转周期。 3.4关于开普勒第三定律 上面三个公式推导过程都是用了万有引力提供向心力,从 2 2 2 Mm G m r r T π ?? = ? ?? 可知: 3 22 4 r GM Tπ =,只要中心天体质量M一样,那么轨道半径的三次方和周期平方只比就 是固定值,这也就是为什么第三定律在应用时必须绕同一中心天体。 其实我们可以推导出这样的定律: 对于所有绕同一中心天体运动的行星来说,轨道半径的三次方与角速度的平方的乘积是固定值

施工图设计中常见问题整理-

施工图设计中常见问题 一.图纸表达: 1.图纸不满足甲的深度要求,漏项较多,如缺出入口钢结构雨棚、室外坡道顶棚等。 2.图纸不满足甲的技术标准及部品标准,如构造做法标准、门窗标准、栏杆标准、空调位 标准、电梯标准等。 3.住宅小区的不同楼号建筑标准不一致,如构造做法、门窗立面、节能设计等。 4.外墙上应予留的洞口水平和竖向定位不全,留洞没有和结构、水暖、电气专业、人防专 业图核对,出现漏留、冲突现象。 5.地下室平面轴网应与地上建筑物轴网有明确的对应关系,地下室平面中应标注与地上建 筑物轴网的相对关系尺寸。 6.总平面中应标注地下室外轮廓线,并在四角处标注轴线、号,轴线交点处标注坐标,保 证出图前总图和单体建筑形成统一整体,避免因设计过程中地上地下单体的局部变动,而总平面未跟踪变动导致的不对照。 7.设计人员提供的审核校对图普遍对设计说明和总平面位置图不重视,甚至不提供总平面 位置图。 二.防火设计: 1.没有结合不同的功能分区进行防火分区划分。 2.防火墙上的门洞没有设置甲级防火门。 3.防火分区两侧的门窗洞口防火间距不足时,没有相应防火分隔措施。 4.上下层之间门窗洞口防火间距不足时,没有相应防火分隔措施。 5.楼梯间及前室与相邻部位门窗洞口防火间距不足时,没有相应防火分隔措施。 6.火灾危险性较大的房间的房门及外窗洞口没有采取防火分隔措施。 7. 不同的功能分区在一层共用出入口,如住宅配套用房与住宅、商业与住宅等。 8. 对汽车库、修车库、停车场设计防火规的理解: 1)地面上无人员进入的机械停车库,可以理解为停车场,停车场的定义是停车的露天场地 或构筑物,很明显它是用于停车的构筑物。这样它与民用建筑的防火间距最少为6米。 2)对于敞开式汽车库,要注意是指多个防火分区都要达到定义的要求,如对于平面尺度很 大的,有可能个别防火分区不直接对外通风,这样就不能认定它是敞开的。 3)新规对汽车库、修车库、停车场的分类增加了面积控制项,是车位和面积的双控,不要 试图少计算车位规避汽车疏散坡道不够的手法。 4)防火规中计算汽车疏散口的数量時,单车道即可。但是建通评价是按双车道计算的,单 车道只能算半个。

高中物理天体运动专题练习

2014—2015学年高三复习———《天体运动》练习 1(2014年海淀零模)“神舟十号”飞船绕地球的运行可视为匀速圆周运动,其轨道高度距离地面约340km,则关于飞船的运行,下列说法中正确的是() A.飞船处于平衡状态 B.地球对飞船的万有引力提供飞船运行的向心力 C.飞船运行的速度大于第一宇宙速度 D.飞船运行的加速度大于地球表面的重力加速度 2(2014东城零模)“探路者”号宇宙飞船在宇宙深处飞行的过程中,发现A、B两颗均匀球形天体,两天体各有一颗靠近其表面飞行的卫星,测得两颗卫星的周期相等,以下判断正确的是() A. 两颗卫星的线速度一定相等 B. 天体A、B的质量一定不相等 C. 天体A 、B的密度一定相等 D. 天体A 、B表面的重力加速度一定不相等 3(2014顺义二模)地球赤道上有一相对于地面静止的物体A,所受的向心力为F1,向心加速度为a1,线速度为v1,角速度为ω1;绕地球表面附近做匀速圆周运动的人造地球卫星B (离地面的高度忽略)所受的向心力为F2,向心加速度为a2,线速度为v2,角速度为ω2;地球同步卫星C所受的向心力为F3,向心加速度为a3,线速度为v3,角速度为ω3。若上述的A、B、C三个物体的质量相等,地球表面重力加速度为g,第一宇宙速度为v,则() A.F1=F2>F3 B.a1=a2=g>a3 C.ω1=ω3<ω2 D. v1=v2=v>v3 4(2014昌平二模)“马航MH370”客机失联后,我国已紧急调动多颗卫星,利用高分辨率对地成像、可见光拍照等技术对搜寻失联客机提供支持。关于环绕地球运动的卫星,下列说法正确的是() A.低轨卫星(环绕半径远小于地球同步卫星的环绕半径)都是相对地球运动的,其环绕速率可能大于7.9km/s B.地球同步卫星相对地球是静止的,可以固定对一个区域拍照,但由于它距地面较远,照片的分辨率会差一些 C.低轨卫星和地球同步卫星,可能具有相同的速率 D.低轨卫星和地球同步卫星,可能具有相同的周期 5(2014丰台二模)“嫦娥三号”探测器已成功在月球表面预选着陆区实现软着陆,“嫦娥三号”着陆前在月球表面附近绕月球做匀速圆周运动,经测量得其周期为T。已知引力常量为G,根据这些数据可以估算出() A.月球的质量B.月球的半径 C.月球的平均密度D.月球表面的重力加速度 6(2014顺义二模)地球赤道上有一相对于地面静止的物体A, 所受的向心力为F1,向心加速度为a1,线速度为v1,角速度 为ω1;绕地球表面附近做匀速圆周运动的人造地球卫星B(离 地面的高度忽略)所受的向心力为F2,向心加速度为a2,线速 度为v2,角速度为ω2;地球同步卫星C所受的向心力为F3,

天体运动常见问题总结解析

问题9:会讨论重力加速度g 随离地面高度h 的变化情况。 例15、设地球表面的重力加速度为g,物体在距地心4R (R 是地球半径)处,由于地球 的引力作用而产生的重力加速度g ,,则g/g , 为 A 、1; B 、1/9; C 、1/4; D 、1/16。 分析与解:因为g= G 2 R M ,g , = G 2)3(R R M +,所以g/g , =1/16,即D 选项正确。 问题10:会用万有引力定律求天体的质量。 通过观天体卫星运动的周期T 和轨道半径r 或天体表面的重力加速度g 和天体的半径R ,就可以求出天体的质量M 。 例16、已知地球绕太阳公转的轨道半径r=1.49?1011 m, 公转的周期T= 3.16?107 s,求太阳的质量M 。 分析与解:根据地球绕太阳做圆周运动的向心力来源于万有引力得: G 2r Mm =mr(2π/T)2 M=4π2r 3/GT 2=1.96 ?1030 kg. 例17 、宇航员在一星球表面上的某高处,沿水平方向抛出一小球。经过时间t ,小球落到星球表面,测得抛出点与落地点之间的距离为L 。若抛出时初速度增大到2倍,则抛出点与落地点之间的距离为3L 。已知两落地点在同一水平面上,该星球的半径为R ,万有引力常数为G 。求该星球的质量M 。 分析与解:设抛出点的高度为h,第一次平抛的水平射程为x,则有 x 2+h 2=L 2 由平抛运动规律得知,当初速度增大到2倍时,其水平射程也增大到2x,可得 (2x )2+h 2=(3L)2 设该星球上的重力加速度为g ,由平抛运动的规律得: h= 2 1gt 2 由万有引力定律与牛顿第二定律得: mg= G 2R Mm 联立以上各式解得M=2 2 332Gt LR 。 问题11:会用万有引力定律求卫星的高度。 通过观测卫星的周期T 和行星表面的重力加速度g 及行星的半径R 可以求出卫星的高度。 例18、已知地球半径约为R=6.4?106 m,又知月球绕地球的运动可近似看作匀速圆周运动,则可估算出月球到地球的距离约 m.(结果只保留一位有效数字)。 分析与解:因为mg= G 2R Mm ,而G 2 r Mm =mr(2π/T)2

高中物理天体运动多星问题 (2)

双星模型、三星模型、四星模型 天体物理中的双星,三星,四星,多星系统是自然的天文现象,天体之间的相互作用遵循万 有引力的规律,他们的运动规律也同样遵循开普勒行星运动的三条基本规律。双星、三星系统的等效质量的计算,运行周期的计算等都是以万有引力提供向心力为出发点的。双星系统的引力作用遵循牛顿第三定律:F F =',作用力的方向在双星间的连线上,角速度相等,ωωω==21。 【例题1】天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星。双星系统在银 r ,1、 持不变,并沿半径不同的同心轨道作匀速园周运动,设双星间距为L ,质量分别为M 1、M 2,试计算(1)双星的轨道半径(2)双星运动的周期。 解析:双星绕两者连线上某点做匀速圆周运动,即: 22 21212 21L M L M L M M G ωω==---------? ..L L L =+21-------?由以上两式可得:L M M M L 2121+= ,L M M M L 2 12 2+= 又由1 2212214L T M L M M G π=.----------?得:) (221M M G L L T +=

【例题3】我们的银河系的恒星中大约四分之一是双星.某双星由质量不等的星体S 1和S 2构成,两 星在相互之间的万有引力作用下绕两者连线上某一定点C 做匀速圆周运动.由天文观察测得其运动周期为T ,S 1到C 点的距离为r 1,S 1和S 2的距离为r ,已知引力常量为G .由此可求出S 2的质量为(D ) A .2 12)(4GT r r r -2π B .2 312π4GT r C .2 32π4GT r D .2 122π4GT r r 答案:D , 球A 引球看成似处理 这样算得的运行周期T 。已知地球和月球的质量分别为且A 对A 根据牛顿第二定律和万有引力定律得L m M T m L +=22)( 化简得) (23 m M G L T +=π ⑵将地月看成双星,由⑴得) (23 1m M G L T +=π 将月球看作绕地心做圆周运动,根据牛顿第二定律和万有引力定律得 L T m L GMm 2 2 )2(π= 化简得GM L T 3 22π=

天体运动总结

天体运动总结 一、处理天体运动的基本思路 1利用天体做圆周运动的向心力由万有引力提供,天体的运动遵循牛顿第二定律求解,即GM2m I ma其中a= V 2 =w2r = ( 丁)},该组公式可称为天上"公式. r T 2. 利用天体表面的物体的重力约等于万有引力来求解,即G R2 = mg, gR2= GM该公式通常被称为黄金代换式. 该 式可称为人间”公式. 合起来称为天上人间”公式. 二、对开普勒三定律的理解 开普勒行星运动定律 1. 所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。 2. 对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。 3. 所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等.此比值的大小只与有关,在不 同的星系中,此比值是不同的.(T2=k) 1 .开普勒第一定律说明了不同行星绕太阳运动时的椭圆轨道是不同的,但有一个共同的焦点. 2. 行星靠近太阳的过程中都是向心运动,速度增加,在近日点速度最大;行星远离太阳的时候都是离心运动, 速度减小,在远日点速度最小. 3 3. 开普勒第三定律的表达式为旱=k,其中a是椭圆轨道的半长轴,T是行星绕太阳公转的周期,k 是一个常 量,与行星无关但与中心天体的质量有关. 三、开普勒三定律的应用 1 .开普勒定律不仅适用于行星绕太阳的运转,也适用于卫星绕地球的运转. 3 a 常数k只与太2.表达式T2= k中的常数k只与中心天体的质量有关.如研究行星绕太阳运动时, 阳的质量有关,研究卫星绕地球运动时,常数k只与地球的质量有关. 四、太阳与行星间的引力 1. 模型简化:行星以太阳为圆心做匀速圆周运动,太阳对行星的引力提供了行星做匀速圆周运一、太阳与行星 间的引力 2. 万有引力的三个特性 (1) 普遍性:万有引力不仅存在于太阳与行星、地球与月球之间,宇宙间任何两个有质量的物体之间都存在 着这种相互吸引的力. (2) 相互性:两个有质量的物体之间的万有引力是一对作用力和反作用力,总是满足牛顿第三定律.

(整理)总图设计常见错误

总图设计常见错误 一、总平面图 1、建议设计说明应包含以下格式内容:1、设计依据1.1顾客提供的现状规划红线地形图; 1.2经有关部门批准的我院编制的该项目初步设计总平面布置图;1.3由建筑、结构、水、电和暖通等各专业提供的设计资料;1.4现行的国家有关规范、规程、标准、规定和武汉市的有关法规、条例及规定;1.5由顾客提供的设计委托书、本阶段的设计要求及各种有关设计的基础资料和双方会商意见。2、建筑定位及设计标高 2.1坐标系为武汉市城市坐标系;2.2新建建(构)筑定位坐标为建(构)筑物的轴线交点;2.3高程为黄海高程系统。3、间距、单位及制图标准 3.1建筑物相互间标注尺寸为外墙面(或阳台外边缘)之间的尺寸,道路宽度为路缘石内缘尺寸;3.2本设计所注尺寸和标高均以米为单位;3.3本图除补充图例外均符合《总图制图标准BG/T50103-2001的规定》。4、建筑层数及建筑高度 4.1图中*F/-*F表示:建筑地上层数/建筑地下层数;4.2 h=***m表示建筑高度。 2、风玫瑰图,武汉主导风向应是西北风(详新版建筑设计资料及气象部分)。 1、图例应改为补充图例(凡制图标准中已有的图例无需再列出)。 2、一栋楼中不同层数均应注明。应用中实线表示建筑轮廓内不同层数的投影范围。所有建 筑均应标注两个方向及以上的轴线尺寸。 3、根据《武汉市城市规划管理技术规定》:建筑系数应改为建筑密度。 4、依据《民用建筑设计通则》GB 50352-2005,建构筑物占地面积应改为建筑基底面积。 5、总平面主要技术经济指标应加入规划部门《建设工程方案综合技术经济指标一览表(表 二)所要求的内容。 6、图例中应增补公厕、垃圾收集点、生化池等配套设施,并在图中表明位置。 7、应注明所有建筑物的出入口位置。应注明所有建筑物出入口处的室外标高,并与建筑首 层平面一致。该标高是确定±0.00标高,计算建筑高度和小区道路标高的依据之一。 8、室内±0.000标高和室外标高与建筑首层平面都不相符。 9、应规划出停车场位置。图例中应增补室外停车位。 10、应表达出建筑物所有出入口与室外道路的关系。 11、特大型车库,车辆出入口应不少于3个。双车道不小于7m;单车道不小于5m。 12、特大、大、中型车库出入口应设于城市次干道,不应直接与主干道连接。 13、车辆出入口距城市道路的规划红线不应小于7.5m。,并在距入口边线内2m处作视 点的1200范围内之边线外7.5m以上不应有遮挡视线障碍物。 14、出入口与城市人行过街天桥、地道、桥梁或隧道等引道口的距离应大于50m;距离 道路交叉口切点应大于80m。 15、厂区出入口数量不宜少于两个,且应在不同方向分开设置。 16、地下车库排风口离室外地坪高度应大于2.5m,并应作消声处理。 17、个别道路未标注转弯半径。表示道路的线条应适当加粗。 18、个别子项未注明建筑层数。 19、应用文字注明用地四周建筑红线、道路红线、道路中心线及用地边界线的位置。 20、表中高度应为建筑高度(由建筑专业提供),该数值是核算房屋间距是否满足规划 技术规定的前提条件。应在图中或一览表中标明新建建筑物建筑高度,以便核对建筑间距是否满足规定要求。 21、应在图中或建筑一览表中注明建筑层数、建筑高度、厂房生产的火灾危险性类别和 仓库类别,以便核对规划及防火间距。 22、应统一将建筑高度标注在图中层数下方。栋楼中有不同层数时,应分别注明不同层

平抛运动常见题型考点分类汇总

平抛运动常见题型考点分类汇总

————————————————————————————————作者:————————————————————————————————日期: 2

平抛运动小结 (一)平抛运动的基础知识 1. 定义:水平抛出的物体只在重力作用下的运动。 2. 特点: (1)平抛运动是一个同时经历水平方向的匀速直线运动和竖直方向的自由落体运动的合运动。 (2)平抛运动的轨迹是一条抛物线,其一般表达式为c bx ax y ++=2 。 (3)平抛运动在竖直方向上是自由落体运动,加速度g a =恒定,所以竖直方向上在相等的时间内相邻的位移的高度之比为5:3:1::321=s s s …竖直方向上在相等的时间内相邻的位移之差是一个恒量2 gT s s s s I II II III =-=-。 (4)在同一时刻,平抛运动的速度(与水平方向之间的夹角为?)方向和位移方向(与水平方向之间的夹角是θ)是不相同的,其关系式θ?tan 2tan =(即任意一点的速度延长线必交于此时物体位移的水平分量的中点)。 3. 平抛运动的规律 描绘平抛运动的物理量有0v 、y v 、v 、x 、y 、s 、?、t ,已知这八个物理量中的任意两个,可以求出其它六个。 运动分类 加速度 速度 位移 轨迹 分运动 x 方向 0v t v x 0= 直线 y 方向 g gt 2 2 1gt y = 直线 合运动 大小 g 220)(gt v + 2220)2 1 ()(gt t v + 抛物线 与x 方向的夹角 ?90 tan v gt = ? 0 2tan v gt = θ (二)平抛运动的常见问题及求解思路 关于平抛运动的问题,有直接运用平抛运动的特点、规律的问题,有平抛运动与圆周运动组合的问题、有平抛运动与天体运动组合的问题、有平抛运动与电场(包括一些复合场)组合的问题等。本文主要讨论直接运用平抛运动的特点和规律来求解的问题,即有关平抛运动的常见问题。 1. 从同时经历两个运动的角度求平抛运动的水平速度 求解一个平抛运动的水平速度的时候,我们首先想到的方法,就应该是从竖直方向上的自由落体运动中求出时间,然后,根据水平方向做匀速直线运动,求出速度。 [例1] 如图1所示,某人骑摩托车在水平道路上行驶,要在A 处越过m x 5=的壕沟,沟面对面比A 处低m h 25.1=,摩托车的速度至少要有多大?

万有引力定律与天体运动知识总结

万有引力定律与天体运动知识总结 一、开普勒行星运动定律 1) 轨道定律:近圆,太阳处在圆心(焦点)上 2) 面积定律:对任意一个行星来说, 它与太阳的连线在相等的时间内扫过的面积相等。 K= k 取决于中心天体 3) 周期定律:所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值相等。 k= ,[r 为轨道半径] 二、万有引力定律 F 引=2r Mm G G=6.67×10-11Nm 2/kg 2 卡文迪许扭秤 测量出来 三、重力加速度 1. 星体表面:F 引≈G =mg 所以:g = GM/ R 2(R 星体体积半径) 2. 距离星体某高度处:F ’引 ≈G’ =mg ’ 3. 其它星体与地球 重力加速度的比值 四、星体(行星 卫星等)匀速圆周运动 状态描述 1. 假设星体轨道近似为圆. 2. 万有引力F 引提供星体圆周运动的向心力Fn F n =r m v 2 F n=22T mr 4π F n = m ω2r Fn=F 引 r m v 2=2r Mm G =2 2T mr 4π = m ω2r r GM v =,r 越大,ν越小; 3r GM =ω,r 越大,ω越小 GM r T 3 24π=,r 越大,T 越大。 23 T a 23T r

3. 计算中心星体质量M 1) 根据 g 求天体质量 mg= M= M 为地球质量,R 为物体到地心的距离 2 )根据环绕星体的圆周运动状态量, F 引=Fn 2r Mm G =22T mr 4π M= (M 为中心天体质量,m 为行星(绕行天体)质量 4. 根据环绕星体的圆周运动状态量(已知绕行天体周期T ,环绕半径≈星体半径), 计算中心星体密度ρ ρ=v m =323R GT r 3π [v=3r 34π] 若r≈R ,则ρ=2GT 3π 5. 计算卫星最低发射速度 (第一宇宙速度VI = (近地)= (r 为地球半径 黄金代换公式) 第一宇宙速度(环绕速度):s km v /9.7=; 第二宇宙速度(脱离速度,飞出地月系):s km v /2.11=; 第三宇宙速度(逃逸速度,飞出太阳系):s km v /7.16=。 6. 人造卫星上失重的现象 分析卫星上某物体受合力及圆周运动的状态 F 万 – N = m v 2/r 物体视重 N= F 万 - m v 2/r ( r=R 地 + h ) ∵F 万 = m v 2/r ∴ N=0 即卫星在围绕地球做圆周运动时,它上面物体处于失重状态 7. 同步卫星升轨,全球通信 8. 其它功能人造卫星: 1)全球定位系统 GPS ,由24颗卫星组成 分布在6个轨道平面 2)人造月球卫星 G 2 23 2GT r 4πr GM

相关文档
最新文档