量子力学第五章微扰理论

量子力学第五章微扰理论
量子力学第五章微扰理论

量子力学简答100题及答案 1

1、简述波函数的统计解释; 2、对“轨道”和“电子云”的概念,量子力学的解释是什么? 3、力学量G ?在自身表象中的矩阵表示有何特点? 4、简述能量的测不准关系; 5、电子在位置和自旋z S ?表象下,波函数? ?? ? ??=ψ),,(),,(21z y x z y x ψψ如何归一化?解释各项的几率意义。 6、何为束缚态? 7、当体系处于归一化波函数ψ(,) r t 所描述的状态时,简述在ψ(,) r t 状态中测量力学量F 的可能值及其几率的方法。 8、设粒子在位置表象中处于态),(t r ψ,采用Dirac 符号时,若将ψ(,) r t 改写为ψ(,) r t 有何 不妥?采用Dirac 符号时,位置表象中的波函数应如何表示? 9、简述定态微扰理论。 10、Stern —Gerlach 实验证实了什么? 11、一个物理体系存在束缚态的条件是什么? 12、两个对易的力学量是否一定同时确定?为什么? 13、测不准关系是否与表象有关? 14、在简并定态微扰论中,如 () H 0的某一能级) 0(n E ,对应f 个正交归一本征函数i φ(i =1,2,…, f ),为什么一般地i φ不能直接作为()H H H '+=???0的零级近似波函数? 15、在自旋态χ 1 2 ()s z 中, S x 和 S y 的测不准关系( )( )??S S x y 22?是多少? 16、在定态问题中,不同能量所对应的态的迭加是否为定态Schrodinger 方程的解?同一能量 对应的各简并态的迭加是否仍为定态Schrodinger 方程的解? 17、两个不对易的算符所表示的力学量是否一定不能同时确定?举例说明。 18说明厄米矩阵的对角元素是实的,关于对角线对称的元素互相共轭。 19何谓选择定则。 20、能否由Schrodinger 方程直接导出自旋? 21、叙述量子力学的态迭加原理。 22、厄米算符是如何定义的? 23、据[a ?,+ a ?]=1,a a N ???+=,n n n N =?,证明:1?-=n n n a 。 24、非简并定态微扰论的计算公式是什么?写出其适用条件。 25、自旋 S = 2 σ ,问 σ是否厄米算符? σ是否一种角动量算符? 26、波函数的量纲是否与表象有关?举例说明。

第五章微扰理论习题

第五章 微扰理论 第一部分:基本概念与基本思想题目 1. 定态微扰理论主要研究什么样的物理体系? 2. 00//????? 在微扰理论中,中的和各应满足什么条件?H H H H H =+ 3. 讨论无简并微扰理论的适用条件,说明其表达式的物理意义。 4. 何为吸收和发射? 说明自发发射和受激发射? 为什么量子力学无法解释自发发射? 5. 讨论原子中的电子与光的相互作用时,为什么忽略电子和磁场间的相互作用? 6. 与定态微扰理论相比,含时微扰理论所要解决的问题有何不同? 7. 何为Stark 效应? 8. 试述变分法的基本思想及其所解决的问题? 9. 中心力场中电子跃迁选择定则是什么? 第二部分: 基本技能训练题 1. 设氢原子中价电子所受有效作用势为 222 2020 () 014s s s e e a e U r e r r λλπε=--=<≤其中 试用微扰理论求基态能量(准确到一级). 2. 00102030000123100()()**()()()()()?, : H , |||| ,设在表象中的矩阵表示为其中和试用微扰理论求能量本征方程的本征值准确到二级。 H H E a E b a b E E E E a b E ????=??????<<<<

3. 转动惯量为I 电偶极矩为D 的空间转子处于均匀电场ε中,若电场很小,用微扰法计算转子基态能量的二级修正。 4. 设体系未受微扰时只有二个能级E 10及E 20, 现在受到微扰H /作用, 微扰矩阵元为12211122////, ; a,b ,H H a H H b ====都是实数用微扰公式计算能量到二级修正. 5. 基态氢原子处于平行电场中,若电场是均匀的且随时间按指数下降,即 0t -0 t 0e t 0 ( 0 ) τεετ?当当的参数 求经过长时间后氢原子处于2p 态的几率。 6. 粒子处于宽为a 的一维无限深势阱中,若微扰为 /a 0x 2()a x a 2 b H x b ?-≤≤??=??<≤??求粒子能量的一级修正。 7. 计算氢原子由第一激发态到基态的自发发射几率。 8. 用狄拉克符号求线性谐振子偶极跃迁的选择定则。 9. 对于处于宽度为a 的一维无限深势阱中的粒子(质量为m 0),受到微扰 V(x)=V 0cos (2π/a)x 求体系的能量(准确到二级)。 10. 设在H 0表象中0102()() E a b H b E a ??+= ?+?? (a,b 为实数)

量子力学发展简史

量子力学发展简史 摘要: 相对论是在普朗克为了克服经典理论解释黑体辐射规律的困难,引入能量子概念的基础上发展起来的,爱因斯坦提出光量子假说、运用能量子概念使量子理论得到进一步发展。玻尔、德布罗意、薛定谔、玻恩、狄拉克等人为解决量子理论遇到的困难,进行了开创性的工作,先后提出电子自旋概念,创立矩阵力学、波动力学,诠释波函数进行物理以及提出测不准原理和互补原理。终于在1925 年到1928年形成了完整的量子力学理论,与爱因斯坦的相对论并肩形成现代物理学的两大理论支柱。 关键词:量子力学,量子理论,矩阵力学,波动力学,测不准原理 量子力学是研究微观粒子(如电子、原子、分子等)的运动规律的物理学分 支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础,是现代物理学的两大基本支柱。经典力学奠定了现代物理学的基础,但对于高速运动的物体和微观条件下的物体,牛顿定律不再适用,相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。量子力学认为在亚原子条件下,粒子的运动速度和位置不可能同时得到精确的测量,微观粒子的动量、电荷、能量、粒子数等特性都是分立不连续的,量子力学定律不能描述粒子运动的轨道细节,只能给出相对机率,为此爱因斯坦和玻尔产生激烈争论,并直至去世时仍不承认量子力学理论的哥本哈根诠释。 量子力学是一个物理学的理论框架,是对经典物理学在微观领域的一次革命。 它有很多基本特征,如不确定性、量子涨落、波粒二象性等,在原子和亚原子的微观尺度上将变的极为显著。爱因斯坦、海森堡、玻尔、薛定谔、狄拉克等人对其理论发展做出了重要贡献。原子核和固体的性质以及其他微观现象,目前已基本上能从以量子力学为基础的现代理论中得到说明。现在量子力学不仅是物理学中的基础理论之一,而且在化学和许多近代技术中也得到了广泛的应用。上世纪末和本世纪初,物理学的研究领域从宏观世界逐渐深入到微观世界;许多新的实验结果用经典理论已不能得到解释。大量的实验事实和量子论的发展,表明微观粒子不仅具有粒子性,同时还具有波动性(参见波粒二象性),微观粒子的运动不能用通常的宏观物体运动规律来描写。德布罗意、薛定谔、海森堡,玻尔和狄拉克等人逐步建立和发展了量子力学的基本理论。应用这理论去解决原子和分子范围内的问题时,得到与实验符合的结果。因此量子力学的建立大大促进了原子物理。固体物理和原子核物理等学科的发展,它还标志着人们对客观规律的认识从宏观世界深入到了微观世界。量子力学是用波函数描写微观粒子的运动状态,以薛定谔方程确定波函数的变化规律,并用算符或矩阵方法对各物理量进行计算。因此量子力学在早期也称为波动力学或矩阵力学。量子力学的规律用于宏观物体或质量和能量相当大的粒子时,也能得出经典力学的结论。在解决原子核和基本粒子的某些问题时,量子力学必须与狭义相对论结合起来(相对论量子力学),并由此逐步建立了现代的量子场论。

量子力学思考题及解答

1、以下说法是否正确: (1)量子力学适用于微观体系,而经典力学适用于宏观体系; (2)量子力学适用于η不能忽略的体系,而经典力学适用于η可以忽略的体系。 解答:(1)量子力学是比经典力学更为普遍的理论体系,它可以包容整个经典力学体系。 (2)对于宏观体系或η可以忽略的体系,并非量子力学不能适用,而是量子力学实际上已 经过渡到经典力学,二者相吻合了。 2、微观粒子的状态用波函数完全描述,这里“完全”的含义是什么? 解答:按着波函数的统计解释,波函数统计性的描述了体系的量子态。如已知单粒子(不考虑自旋)波函数)(r ? ψ,则不仅可以确定粒子的位置概率分布,而且如粒子的动量、能量等其他力学量的概率分布也均可通过)(r ? ψ而完全确定。由于量子理论和经典理论不同,它一般只能预言测量的统计结果,而只要已知体系的波函数,便可由它获得该体系的一切可能物理信息。从这个意义上说,有关体系的全部信息显然已包含在波函数中,所以说微观粒子的状态用波函数完全描述,并把波函数称为态函数。 3、以微观粒子的双缝干涉实验为例,说明态的叠加原理。 解答:设1ψ和2ψ是分别打开左边和右边狭缝时的波函数,当两个缝同时打开时,实验说明到达屏上粒子的波函数由1ψ和2ψ的线性叠加2211ψψψc c +=来表示,可见态的叠加不是概率相加,而是波函数的叠加,屏上粒子位置的概率分布由222112 ψψψ c c +=确定,2 ψ中 出现有1ψ和2ψ的干涉项]Re[2* 21* 21ψψc c ,1c 和2c 的模对相对相位对概率分布具有重要作用。 4、量子态的叠加原理常被表述为:“如果1ψ和2ψ是体系的可能态,则它们的线性叠加 2211ψψψc c +=也是体系的一个可能态”。 (1)是否可能出现)()()()(),(2211x t c x t c t x ψψψ+=; (2)对其中的1c 与2c 是任意与r ? 无关的复数,但可能是时间t 的函数。这种理解正确吗? 解答:(1)可能,这时)(1t c 与)(2t c 按薛定谔方程的要求随时间变化。

量子力学第五章习题

第五章 微扰理论 5.1 如果类氢原子的核不是点电荷,而是半径为0r ,电荷均匀分布的小球,计算这种效应对类氢原子基态能量的一级修正。 解: 这种分布只对0r r <的区域有影响, 对0r r ≥的区域无影响. 根据题意知 ()()0 ?H U r U r '=- 其中()0U r 是不考虑这种效应的势能分布, 即 ()2004ze U r r πε=- ()U r 为考虑这种效应后的势能分布, 在0r r ≥的区域为 ()2 04ze U r r πε=- 在0r r <的区域, ()U r 可由下式 ()r U r e Edr ∞ =-? 其中电场为 () () 3023300000201 4,443434Ze Ze r r r r r r r E Ze r r r ππεπεππε?=≤?? =? ?>? ? 则有: ()()()() 2 2 3 2 000 22222 2200 033000000 1443848r r r r r r U r e Edr e Edr Ze Ze rdr dr r r Ze Ze Ze r r r r r r r r r πεπεπεπεπε∞ ∞ =--=- - =---=--≤??? ? 因此有微扰哈密顿量为 ()()()() 222 200300 031?220s s Ze r Ze r r r r r H U r U r r r ???--+ ≤? ?'=-=????>? 其中s e =类氢原子基态的一级波函数为 ()( 32 10010000032 02exp 2Zr a R Y Z a Zr a Z e a ψ-==-?=?? 按定态微扰论公式,基态的一级能量修正值为 ()()()0 0*0011 11 100100 3 2222222000000?1 31sin 4422Zr r a s s E H H d Z e Ze Z r d d e r dr a r r r ππψψτ?θθπ -''==??????=--+?? ? ????????? ? ???

量子力学与能带理论

量子力学与能带理论 孟令进 专业: 应用物理 班级:1411101 学号:1141100117 摘要:曾谨言先生在《量子力学》一书中用量子力学解释了能带的形成,从定态薛定谔方程出发,将原子中原子实假定固定不动,并且在结构上呈现周期性排列,那么电子则可以看成在原子实以及其他电子的周期性的势场中运动,利用定态薛定谔方程可以解出其能级结构,从而得到能带理论。 一、定态薛定谔方程 1.一维定态薛定谔方程 我们首先利用薛定谔方程解决一类简单的问题,一维定态问题,即能量一定的状态。我们设粒子质量为m ,沿着x 方向运动,势场的势能为V(x),那么薛定谔方程可以写为 ),()(2),(222t x x V x m t x t i ψψ?? ????+??-=?? ,因为处于一定的能量E 状态,定态的波函数可以写为 /)(),(iEt e x t x -=ψψ,两式整理可得,)(x ψ满足的能量本征方程)(),()(2222x E t x x V x m ψψ=?? ????+??- ,或称为一维定态薛定谔方程。求解这个方程时,我们需要带入边界条件,连接条件。 2.定态薛定谔方程与方势垒 在经典力学当中,当一个具有能量E 的粒子射向高度为V 的势垒时,如果E>V ,则粒子能够顺利的越过这个势垒,如果E0的粒子从左方入射,那么在前两个区域的波函数可以用一维定态薛定谔方程解除来,结果如下:

第5章 微扰理论-量子跃迁

§6.含时微扰论 前面,我们解决的是H ?与t 无关,但不能直接求解,而利用0 2 0V m 2P H ?+=有解析解,并且0 1V V H ?-=较小,通过微扰法求解)r (E )r ()p ?,r (H ?ψψ=的近似结果。有时也能用试探波函数,通过变分来获得。 现在要处理的问题是:体系原处于0H ?的本征态(或叠加),而有一与t 有关的微扰)t (H ?1 附加到该体系。显然,这时体系的能量不是运动常数,其状态并不处于定态(即使1H ?在一段时间中不变),在0H ?的各定态中的几率并不是常数,而是随时间变化的。而且无法获得解析结果。有时附加作用在一段时间之后结束,这时体系处于0 H ?的本征态的几率又不随时间变化。当然,这与作用前的几率已有所不同。也就是,体系可以从一个态以一定几率跃迁到另一态,这称为量子跃迁。这就需要利用含时间的微扰论。总之,含时间的微扰论就是处理体系所处的位势随时间发生变化时,或变化后,体系所处状态发生的变化。 H ?与t 有关,体系原处于)P ?,r (H ?0 ,随t 加一微动)t (V ψψH ?t i =?? , )t (V H ?)t (H ?0 += 因0 H ?不显含t ,而有 )r (E )r (H ?n 0n n 0??= 则 ψψ0 H ?t i =?? 的通解为 ∑-=ψn t iE n n 0n e a )t ,r ( ? 0H 的定态 ∑=n n )t ,r (a ψ t iE n n e )r ()t ,r (?ψ= 而 n a 是常数 ))0,r (),r (())t ,r (),t ,r ((a n n n ψ=ψ=?ψ 不随t 变 当nk n a δ=时,即0t =,处于)r (k ?时

量子力学史简介

近代物理学史论文题目:量子力学发展脉络及代表人物简介 姓名: 学号: 学院: 2016年12月27

量子力学发展脉络 量子力学是研究微观粒子运动的基本理论,它和相对论构成近代物理学的两大支柱。可以毫不犹豫的说没有量子力学和相对论的提出就没有人类的现代物质文明。而在原子尺度上的基本物理问题只有在量子力学的基础上才能有合理地解释。可以说没有哪一门现代物理分支能离开量子力学比如固体物理、原子核粒子物理、量子化学低温物理等。尽管量子力学在当前有着相当广阔的应用前景,甚至对当前科技的进步起着决定性的作用,但是量子力学的建立过程及在其建立过程中起重要作用的人物除了业内人对于普通得人却鲜为人知。本文主要简单介绍下量子力学建立的两条路径及其之间的关系及后续的发展,与此同时还简单介绍了在量子力学建立过程中起到关键作用的人物及其贡献。 通过本文的简单介绍使普通人对量子力学有个简单认识同时缅怀哪些对量子力学建立其关键作用的科学家。 旧量子理论 量子力学是在旧量子论的基础上发展起来的旧量子论包括普朗克量子假说、爱因斯坦光电效应光电子假说和波尔的原子理论。 在19世纪末,物理学家存在一种乐观情绪,他们认为当时建立的力学体系、统计物理、电动力学已经相当完善,而剩下的部分不过是提高重要物理学常数的观测精度。然而在物理的不断发展中有些科学家却发现其中存在的一些难以解释的问题,比如涉及电动力学的以太以及观测到的物体比热总小于能均分给出的值。对黑体辐射研究的过程中,维恩由热力学普遍规律及经验参数给出维恩公式,但随后的研究表明维恩公式只在短波波段和实验符合的很好,而在长波波段和实验有很大的出入。随后瑞利和金森根据经典电动力学给出瑞利金森公式,而该公式只在长波波段和实验符合的很好,而在短波波段会导致紫外光灾。普朗克在解决黑体辐射问题时提出了一个全新的公式普朗克公式,普朗克公式和实验数据符合的很好并且数学形式也非常简单,在此基础上他深入探索这背后的物理本质。他发现如果做出以下假设就可以很好的从理论上推导出他和黑体辐射公式:对于一定频率f的电磁辐射,物体只能以hf为单位吸收

第五章-微扰理论-习题答案.doc

第五章微扰理论 2 2 1.设氢原子中价电子所受有效作用班厂)二-玉-几兽 其中£ , r 厂 4矶 试用微扰理论求基态能屋(准确到一级)。 [解]:氢原子基态波函 数 ???Eo = E : + E 冷… 「El 守 -a 2r 2r =一手臥九J7石dMQ -2aal&入航 ???E O = E : + E ;+??? 2 ?设在方。表象中方的矩阵为 = _4a\[^£a 。九-— < 2丿 00 2 ——0<2<1 __L 2 -r

’E ;)0 a 、 H= 0 E ; b 其中 E ; < E ; < E ; 问,问《卑 a b" E ; \ 3 / 试用微扰理论求能量木征方程的木征值,准确到二级。 /\ /V [解]表象中的H 的若无微扰吋,应是一个对角矩阵,而此题中H 不是对角阵,但 它的项应是对角阵。 曾 \ a 0 0、 <0 0 a } H = 0 E ; h — E : 0 + 0 0 b ? a E 為 (O E 為 * 2 胪 o > 曾 0、 ‘0 0 a ' 第一项就是H.= 0 E ; 0 第二项是H'= 0 0 h ,0 \ E 為 ? /?* 0, 若准确到二级対三个能级 耳 爲 耳则 E 严 E :)+ E :+E ;+… E' = E ; + E ; + E ;+… 式中已知,只要求出0尽即可 ??? E \ = H\ E\ = H ;2 ??? H ;2 = o H ;3 = a ??. E ;=于g 由的矩阵元中对知 H : H ;=码=0 即 E ; = E ;= £;=() ?? F 2=y \H nn] =y r() m m .R ⑺_ V 冋“」 1 —乙耳)_£; (m 工1) m = 1.3此吋只有三项 E' 耳-E ; ' El-El

量子力学原理及其应用

量子力学原理及其应用 师燕光电8班2012059080029 量子力学是近代自然科学的最重要的成就之一.在量子力学的世界里,一个 量子微观体系的状态是由一个波函数来描述的,而非由粒子的位置和动量描述, 这就是它与经典力学最根本的区别。这是被爱因斯坦和玻尔用“上帝跟宇宙玩掷骰子”来形容的学科,也是研究“极度微观领域物质”的物理学分支,它带来了许许多多令人震惊不已的结论——例如科学家们发现,电子的行为同时带有波和粒子的双重特征(波粒二象性),但仅仅是加入了人类的观察活动,就足以立刻改变它们的特性;此外还有相隔千里的粒子可以瞬间联系(量子纠缠):不确定的光子可以同时去向两个方向(海森堡测不准原理);更别提那只理论假设的猫既死了又活着(薛定谔的猫)?? 诸如以上,这些研究结果往往是颠覆性的,因为它们基本与人们习惯的逻辑思维相违背。以至于爱因斯坦不得不感叹道:“量子力学越是取得成功,它自身就越显得荒诞。” 直到现在,与一个世纪之前人类刚刚涉足量子领域的时候相比,爱因斯坦的观点似乎得到了更为广泛的共鸣。量子力学越是在数理上不断得到完美评分,就越显得我们的本能直觉竟是如此粗陋不堪。人们不得不承认,虽然它依然看起来奇异而陌生,但量子力学在过去的一百年里,已经为人类带来了太多革命性的发明创造。正像詹姆斯·卡卡廖斯在《量子力学的奇妙故事》一书引言中的所述:“量子力学在哪?你不正沉浸于其中吗。” 一、量子计算机 量子力学的海森堡测不准原理决定了粒子的位置和动量是不能同时确定的( )。当计算机芯片的密度很大时(即很小)将导致很大, 电子不再被束缚, 产生 量子干涉效应,而这种干涉效应会完全破坏芯片的功能。为了克服量子力学对计算机发展的限制,计算机的发展方向必然和量子力学相结合,这样不仅可以越过 量子力学的障碍,而且可以开辟新的方向。量子计算机就是以量子力学原理直接 进行计算的计算机.保罗·贝尼奥夫在1981 年第一次提出了制造量子计算机的理论。量子计算机的存储和读写头都以量子态存在的,这意味着存储符号可以是0、1 以及它们的叠加。 近年来的种种试验表明,量子计算机的计算和分析能力都超越了经典计算机。它具有如此优越的性质正在于它的存储读取方式量子化。对量子计算机的原理分析可知,以下两个个特性是令量子计算机优越性的根源所在:存储量大,速度高;可以实现量子平行态。 随着现代科学技术的发展,量子计算机也会逐渐走向现实研制和现实运用。量子计算机不但于未来的计算机产业的发展紧密相关,更重要的是它与国家的保密、电子银行、军事和通讯等重要领域密切相关。实现量子计算机是21 世纪科学技术的最重要的目标之一。 二、晶体管 美国《探索》杂志在线版给出的真实世界中量子力学的一大应用,就是人们早已不陌生的晶体管。1945 年的秋天,美国军方成功地制造出世界上第一台真空管计算机ENIAC。据当时的记载,这台庞然大物总重量超过30 吨,占地面积接近一个小型住宅,总花费高达100 万美元。如此巨额的投入,注定了真空管这种

3、现代量子力学的几个疑难问题讲解

3、现代量子力学的几个疑难问题 核子的结构也不清楚。为什么氦核如此稳定?为什么铀238非常稳定,而铀235却是裂变的?为什么中子的寿命只有十几分钟,可是和质子结合在一起形成原子核以后就可以稳定了?为什么粒子的寿命相差几十个数量级?为什么物质的导电率相差几十个数量级?射电类星体到底是什么东西? 1、高压物理实验:发现许多物质(包括单质、化合物)在超高压力作用下电阻要随之减小。例如,中国科学院物理研究所鲍忠兴等人所做的非晶碳电阻的压力效应实验,在高压物理实验中对非晶碳样品进行了多次电阻随压力变化的实验测量,非晶碳样品在2GPa内电阻发生较大变化,在2GPa时,其电阻值减小72%;在2~4GPa以内,电阻值随压力增加继续减小,在4GPa时,电阻值减小83%;而在4GPa以后,电阻随压力增加变化很小。旧量子论和旧量子力学是不能解释的。【3】 2.阿佛加德罗常数的测定:即阿佛加德罗常数定律:在相同的温度与压强下,相等容积所含任何气体的分子数(摩尔数)相等。并且多次物理实验证明是正确的。即在理想气体状下,任何气体的一摩尔体积内所含的分子数都等于6.022045×1023mol1 。理想气体是对实际气体的简化,它要求分子间除碰撞外没有能量耦合,这使得系统的内能严格地等于各分子动能的总和。当实际气体密度足够小时,它的行为接近理想气体,可以把压强趋于零的实际气体当作理想气体来处理。【4】为什么不同元素气体分子的体积在压强趋于零时其体积趋于一个相等的常数?即为什么任何理想气体分子体积膨胀量相等,并且是一个常数?如何从本质上解释,需要理论突破。 4、物质的热膨胀、冷收缩的实质问题:传统理论认为,物体的状态方程,在压强不变条件下气体的体积随温度升高而增加;对于液体和固体,在平衡位置附近作热振动的粒子间的平均距离随温度而改变,温度越高,距离越大。以上解释,只算得上是一种维象理论,尚未涉及热胀冷缩的本质。这种理论无法回答,当物体(分子)热膨胀的时候,其原子的体积是收缩或是膨胀;当物体(分子)冷收缩的时候,也不能回答其原子的体积是膨胀或是收缩。因此这个问题仍有待进一步的研究【6】。 5、固体的比热问题:1907年,由于Einstein和德拜的工作解释了固定比热在温度进入低温区时,其比热迅速减小的现象。但是,他们的解释并没有回答比热变化与原子内结构变化的相互关系,没有回答比热变化的本质问题。因此,固体比热的本质问题有待进一步探讨,以使理论趋于统一【7】。

第17讲5简并微扰理论零级近似波函数的确定和能级的一级修正

第17讲 第五章 微扰理论 §5.2 简并情况下的定态微扰论—简并微扰理论 零级近似波函数的确定和能级的一级修正 ()()∑==k 1i i 0i 0n C φψ (32-2) 代入()()()()()()()00101n n n n ??H E E H 'ψψ-=- (31-8b ) 式就可以确定()0i C ,并求出()1n E 。即求出波函数的零级近似 ()0n ψ和能量一级修正()1n E 。 具体计算如下: 把(32-2)式代入()()()()()() ()01100??n n n n H E E H ψψ'-=-(31-8b ) 得: ()()()()()()()∑∑=='-=-k i i i k i i i n n n H C C E ψE H 10101100??φφ (32-3) 以*i φ左乘上式两边并对整个空间积分,得: ()()()()()()()∑?∑??=='-=-k 1 i i *0i k 1i i *0i 1n 1n 0n 0*d H ?C d C E d E H ?τφφτφφτψφ 左边=()()( )[]()0d E H ?1n *0n 0=-?τψφ (利用厄米算符的定义式) 定义 ?'='i i *H d H ? τφφ (微扰矩阵元) (32-5) 则 ()() ()0C E H k 1i 0i i 1n i =-' ∑= δ( =1,2,3,…,k ) (32-4) 上式是关于()0i C (i =1,2,3…,k )的齐次线性方程组,它有非零 解(()0i C 不全为0的解)的充要条件为(零解时()00n =ψ,无意 义): ()()()0121212221112111=-''''-''''-') E H (H H H )E H (H H H )E H (n kk k k k n k n (32-7)

量子力学基本原理

量子力学基本原理 量子力学的基本原理包括量子态的概念,运动方程、理论概念和观测物理量之间的对应规则和物理原理。 状态函数 物理体系的状态由状态函数表示,状态函数的任意线性叠加仍然代表体系的一种可能状态。状态随时间的变化遵循一个线性微分方程,该方程预言体系的行为,物理量由满足一定条件的、代表某种运算的算符表示;测量处于某一状态的物理体系的某一物理量的操作,对应于代表该量的算符对其状态函数的作用;测量的可能取值由该算符的本征方程决定,测量的期望值由一个包含该算符的积分方程计算。(一般而言,量子力学并不对一次观测确定地预言一个单独的结果。取而代之,它预言一组可能发生的不同结果,并告诉我们每个结果出现的概率。也就是说,如果我们对大量类似的系统作同样地测量,每一个系统以同样的方式起始,我们将会找到测量的结果为A出现一定的次数,为B出现另一不同的次数等等。人们可以预言结果为A或B的出现的次数的近似值,但不能对个别测量的特定结果做出预言。)状态函数的模平方代表作为其变量的物理量出现的几率。根据这些基本原理并附以其他必要的假设,量子力学可以解释原子和亚原子的各种现象。 根据狄拉克符号表示,状态函数,用<Ψ|和|Ψ>表示,状态函数的概率密度用ρ=<Ψ|Ψ>表示,其概率流密度用(?/2mi)(Ψ*▽Ψ-Ψ▽Ψ*)表示,其概率为概率密度的空间积分。 状态函数可以表示为展开在正交空间集里的态矢比如 ,其中|i>为彼此正交的空间基矢, 为狄拉克函数,满足正交归一性质。态函数满足薛定谔波动方程, ,分离变数后就能得到不显含时状态下的演化方程 ,En是能量本征值,H是哈密顿算子。 于是经典物理量的量子化问题就归结为薛定谔波动方程的求解问题。

量子力学基本概念及理解

量子力学基本理论及理解 基本概念 概率波 量子力学最基础的东西就就是概率波了,但我认为对概率波究竟就是什么样一种“波”,却并不就是很容易理解的,这个问题直到理查德,费恩曼(而不就是海森伯或者伯恩)提出了单电子实验,才让我们很清楚的瞧到什么就是概率波?有为什么就是概率波。 什么就是概率波?为什么就是概率波? 要回答这些问题,其实很简单,我们只需瞧下费恩曼的理想电子双缝干涉实验(刚开始时理想实验,不过后来都已经过证明了)就行了,我相信大家都会明白的。 下面我们再瞧一下费恩曼给出了什么结果: 1.单独开启缝1或者缝2都会得到强度分布或者符合衍射的图样, 缝1与缝2都开启时得到强度符合干涉图样 2.由两个单缝的图样无论如何得不到双缝的图样,即 3.每次让一个电子通过,长时间的叠加后就得到一个与一次让很多电子 通过双缝完全相同的图案 4.每次得到的就是“一个”电子 其实从这些结果中我们很容易得到为什么必须就是概率波,并且我们也很容易去除那些对概率波不对的理解,也就就是所谓的向经典靠拢的理解,从而得到必须就是概率波的事实。 概率波从字面上来理解,也就就是这种波表示的就是一种概率分布,还就是在双缝干涉中我们瞧一下很简单的一些表现,若果就是概率波的话,我们很关心的就就是这个粒子分布的具体形状,粒子位置的期望值等,在这里我们可以瞧出来波函数经过归一化之后,就就是说电子还就是只有那一个电子,但就是它的位置不确定了,这才形成在一定的范围内的一个云状分布,您要计算某一个范围内的电荷就是多少,这样您会得到一个分数的电荷量,但这只能告诉您电子在您研究的范围内分布的概率有多大,并不就是说在这一范围内真正存在多少电子。

量子力学讲义V. 定态微扰论

V. 定态微扰论 1.证明:非简并定态微扰中,基态的能量二级修正永为负。 答:已知,微扰论中,对能量为的态,能量二级修正 如态为基态,最低,在上式的取和中,的任一项均有,故永为负。 2.证明:定态微扰论中,能量的一级近似是总哈密顿算符对零级波因数的平均值. 答:设满足的正交归一化零级波函数以表出。已知。则 正是能量一级近似. 3. 能级简并没有解除的解是否必定是近似解?反之,近似解是否必定是能级简并的? 答:能级简并与波方程的近似解这两个概念的意义是不同的,没有什么直接的关联.我们知道,能级简并主要是由于体系哈密顿量具有某种对称性.只要保持这种对称以那么即使是精确解,其能级也是简并的.如氢原子.如果对称性受到彻底破坏或部分破坏,那么—般说来,简并应当消除或部分消除.应用微扰法求解定态问题时,得到的解一般均是近似解.非简并态微扰的近似解,能级当然是非简并的.简并态微扰法中由于微扰的作用.不管能级简并是否能解除,或解除多少,得到的解一般也是近似解. 4.一维谐振子,其能量算符为 (1) 设此谐振子受到微扰作用 (2) 试求各能级的微扰修正(三级近似),并和精确解比较。 解:的本征函数、本征值记为。如众所周知

(3) 在表象(以为基矢)中,的矩阵元中不等于0的类型为 (4) 因此,不等于0的微扰矩阵元有下列类型: (5) (6) 按照非简并态能级三级微扰修正公式,能级的各级微扰修正为: (7) (8) (9)本题显然可以精确求解,因为

令 可以写成 (10) 和式(1)比较,差别在于,因此的本征值为 (11) 因为,将作二项式展开,即得: (12) 和微扰论结果完全一致。 5. 氢原子处于基态.沿z方向加一个均匀弱电场,视电场为微扰,求电场作用后的基态波函数(一级近似).能级(二级近似),平均电矩和电极化系数.(不考虑自旋.) 解:加电场前,基态波函数为 ,(波尔半径)(1) 满足能量方程 (2)

浅谈量子力学的发展

物理学史论文论文题目浅谈量子力学的发展

引言 量子力学诞生至今一百年。经过一百年的发展,它由原子层次的动力学理论,已经向物理学和其他学科以及高新技术延伸。建立在量子概念的量子力学及其物理诠释,促使人类的思想观念产生根本性转变;虽然这新概念很抽象,但就目前文明的空前繁荣而言,量子力学所产生的影响是相当广泛的。而看看量子力学的前沿性进展新貌,则会感到心驰神往。 量子力学的发展 19世纪末20世纪初,人们认为经典物理发展很完美的时候,一系列经典理论无法解释的现象一个接一个的发现了。经典力学时期物理学所探讨的主要是用比较直接的实验研究就可以接触到的物理现象的定理和理论。牛顿定理和麦克斯韦电磁理论在宏观和慢速的世界中是很好的自然规律。而对于微观世界的物理现象,经典物理学就显得无能为力,很多现象没发解释。这些困难被看做是“晴朗天空的几朵乌云”,正是这几朵乌云引发了物理界的变革。下面简述这几个困难: ⑴黑体辐射 完全黑体在与热辐射达到平衡时,辐射能量密度随频率变化会有一个曲线。韦恩从热力学普遍理论考虑以及分析实验数据的得出一个半经验公式。但是韦恩公式并不是与所有实验数据吻合的很好。在长波波段,韦恩公式与实验有严重偏离。瑞利和金斯根据经典电动力学和统计物理学也得出黑体辐射能量分布公式。他们得出的公式在长波部分与实验结果比较符合,而在短波部分则完全不符。这促使普朗克在韦恩公式和瑞利-金斯的公式之间寻求协调统一,结果得出一个两参数的普朗克公式,此公式不仅与实验符合的最好,而且形式最简单(韦恩公式除外)。 普朗克提出这个公式后,许多实验物理学家立即用它去分析了当时最精确的实验数据,发现符合的非常好。他们认为,这样简单的一个公式与实验如此符合,绝非偶然,在这公式中一定蕴藏着一个非常重要但尚为被人们揭示出的科学原理。 ⑵光电效应 直到电子发现后,人们才认识到光电效应是由于紫外线照射,大量电子从金属表面逸出的现象。经过实验研究,发现光电效应呈现下列几个特点:

量子力学中微扰理论的简单论述论文

量子力学中微扰理论的简单论述

摘要:在量子力学中,由于体系的哈密顿函数算符往往比较复杂,薛定谔方程能够严格求解的情况寥寥可数。因此,引入各种近似方法以求解薛定谔方程的问题就什么重要。常用的近似方法有微扰法、变分法、半经典近似和绝热近似等,不同的近似方法有不同的实用范围,在下文中将讨论分立谱的微扰理论。对于体系的不含时的哈密顿函数的分立谱的的微扰理论可以分为非简并定态微扰理论和简并定态微扰理论。 关键词:近似方法;非简并定态微扰理论;简并定态微扰理论

目录 1 非简并定态微扰论 (1) 2 简并定态微扰论 (8) 2.1理论简述: (8) 2.2简并定态微扰论的讨论 (10) (11) 11

v .. . .. 0 引言 微扰理论是量子力学的重要的理论。对于中等复杂度的哈密顿量,很难找到其薛定谔方程的精确解。我们所知道的就只有几个量子模型有精确解,像氢原子、量子谐振子、与箱归一化粒子。这些量子模型都太过理想化,无法适当地描述大多数的量子系统。应用微扰理论,可以将这些理想的量子模型的精确解,用来生成一系列更复杂的量子系统的解答。 量子力学的微扰理论引用一些数学的微扰理论的近似方法。当遇到比较复杂的量子系统时,这些方法试着将复杂的量子系统简单化或理想化,变成为有精确解的量子系统,再应用理想化的量子系统的精确解,来解析复杂的量子系统。基本的方法是,从一个简单的量子系统开始,这简单的系统必须有精确解,在这简单系统的哈密顿量里,加上一个很弱的微扰,变成了较复杂系统的哈密顿量。假若这微扰不是很大,复杂系统的许多物理性质(例如,能级,量子态,波函数)可以表达为简单系统的物理性质加上一些修正。这样,从研究比较简单的量子系统所得到的知识,可以进而研究比较复杂的量子系统。 微扰理论可以分为两类,不含时微扰理论与含时微扰理论。不含时微扰理论的微扰哈密顿量不含时间;而含时微扰理论的微扰哈密顿量含时间。 1 非简并定态微扰论 1.1 理论简述 近似方法的精神是从已知的较简单的问题准确解出发,近似地求较复杂的一些问题的解,当然,还希望了解这些求解方法的近似程度,估算出近似解和准确解之间的最大偏离。下面我们将讨论体系在受到外界与时间无关的微小扰动时,它的能级和波函数所发生的变化。[1] 假设体系的哈密顿量H 不显含t ,定态的薛定谔方程 H E ??=

量子力学早期发展史

量子力学早期发展史 对量子力学发展早期的学派之争作一简要的评述,这有助于更深入地了解量子力学的发展过程。1引言20世纪初建立的量子力学是对经典物理学的革命性的突破。与经典物理学不同,它是研究微观世界的科学。因而对于物理学家来说,需要建立起崭新的概念和思想方法,也就是需要有新的哲学观点来解释它。同时也引发了一场空前的物理学和哲学上的大争论。比如,波函数、不确定关系等量子力学中的主要概念和原理,各学派之间有着不同的看法和观点。然而,这场争论也推动了量子力学的发展。本文对量子力学发展早期的学派之争作一简要的评述,从而有助于更深入地了解量子力学的发展过程。2哥本哈根学派对量子力学的解释哥布哈根学派是20世纪20年代初期形成的,为首的是丹麦著名物理学家尼尔斯*玻尔,玻恩、海森伯、泡利以及狄拉克等是这个学派的主要成员。它的发源地是玻尔创立的哥本哈根理论物理研究所。哥本哈根学派对量子力学的创立和发展作出了杰出贡献,并且它对量子力学的解释被称为量子力学的“正统解释”。玻尔本人不仅对早期量子论的发展起过重大作用,而且他的认识论和方法论对量子力学的创建起了推动和指导作用,他提出的著名的“互补原理”是哥本哈根学派的重要支柱。玻尔领导的哥本哈根理论物理研究所成了量

子理论研究中心,由此该学派成为当时世界上力量最雄厚的物理学派。哥本哈根学派的解释在定量方面首先表述为海森伯的不确定关系。这类由作用量量子h表述的数学关系,在1927年9月玻尔提出的互补原理中从哲学得到了概括和总结,用来解释量子现象的基本特征——波粒二象性。所谓互补原理也就是波动性和粒子性的互相补充。该学派提出的量子跃迁语言和不确定性原理(即测不准关系)及其在哲学意义上的扩展(互补原理)在物理学界得到普遍的采用。因此,哥本哈根学派对量子力学的物理解释以及哲学观点,理所当然是诸多学派的主体,是正统的、主要的解释。3玻恩的量子力学统计解释对量子力学解释的统计观点认为,量子力学对客观世界的描述只能是统计性的,而不是决定论的,也不能描述单独发生的事件。最早提出这概念的是玻恩,1926年他写了一篇不到5页的文章——“论碰撞过程的量子力学”,认为波函数服从统计原理,波函数模量的平方代表粒子出现的概率。值得说明一点的是,玻恩的观点最早也为玻尔、海森伯等人所接受,就其哲学思想来说和哥本哈根学派是一致的,但在量子力学解释的看法上却是有差别的,尽管都承认概率的概念,但哥本哈根学派认为这种概率可以描述单个事件,而这里所说的统计解释则刚好否认这一点。在这一点上爱因斯坦的观点是与玻恩一致的。玻恩受爱因斯坦思想的启发,认识到可以通过概率的途径将“粒子与波”合理地联系

求解量子力学微扰论的高级修正

求解量子力学微扰论的高级修正 贵州师范大学侯天江 摘要:本文从理论上详细求解了非间并定态微扰情况下波函数的三级近似,间并定态情微扰情况下能量至三级波函数至二级修正,最后综合应用上述两种情况的方法来解决氢原子二级斯塔克效应。在很多高校量子力学教材和网络期刊上非间并定态微扰理论已经求解到了能量到二级修正波函数到二级修正,而能量三级修正在部分习题书上已经求解,但波函数三级修正目前为止还未有人求解。间并情况下很大部分书籍由久期方程求解了能量的一级修正,只提及了求解零级波函数的思想,并没有对此理论作出深入讨论。为此,在已有的理论基础之上本章将对微扰论进一步继续发展。 关键词:微扰论;非间并波函数三级修正;间并修正;二级斯塔克效应 Abstract:In this paper, a detailed theory for solving the inter-and non-steady-state wave function under the perturbation of the three-level approximation, and steady-state conditions between the perturbation energy to the three cases, the wave function to two amendments to the comprehensive application of the last two cases above to solve the hydrogen atom Stark effect II. Colleges and universities in many quantum mechanics textbooks and online journals and non-inter-state perturbation theory has been set for solving the energy wave function to the two amendments to the two amendments, and amendments to the energy in the three books have been part of exercises to solve, but the wave function c class so far has not been amended to solve. And is among the majority of cases of books from the equation to solve the energy level of the amendment refers only to the solution of zero-order wave function of thinking, did not conduct an in-depth discussion of the theory. To this end, the existing theory based on perturbation theory in this chapter will continue to develop further.

量子力学中的微扰论

第一章近似方法 无论是经典力学还是量子力学,可以严格求解的物理系统总是少数。如在经典力学中,两个物体在万有引力作用下运动,即二体问题是可以严格解的,解出来就是位置随时间变化的关系;如果再加上一个物体,即三个物体之间存在着引力,它们的运动规律就是经典力学中著名的三体问题。19世纪末,法国数学家彭加勒证明了三体问题是不可解的,或说是不可积的,即无法表示为一个轨道的方程甚至无法表示为一个不定积分。彭加勒证明:对可积问题,初始条件作微量调整,最终轨道也只要作微量修正就行了;如果是不可积问题,初始条件的微小变动就会导致轨道完全不一样,即轨道对初始条件十分敏感。 实际的物理系统大多属于无法严格求解的问题。为了研究这些数学上无法严格求解的问题,我们可以使用各种近似方法、计算机模拟或数值计算等进行处理。在什么情况下使用什么样的近似方法,考虑哪些因素,忽略哪些因素,取舍之间蕴涵着丰富的物理内容。 如:经典力学中的三体问题,通常使用微扰论来解决,即把第三个物体的影响当作微扰来处理。譬如,地球与太阳是两体问题,加上月亮就构成了三体问题。月亮对地球轨道也有影响,但这个影响很小,这就可以用微扰的方法来处理。微扰论在经典力学中取得的主要成就有:海王星的发现、星际航行。 量子力学处理的是微观粒子,而实际问题大多包含多个微观粒子,因此量子力学处理实际问题的复杂性还来自于——多体性。对于具体物理问题的薛定谔方程,能够像粒子在一维无限深势井中运动和氢原子体系这样的问题能够精确求解的问题很少。在通常遇到的许多问题中,由于系统的哈密顿算符比较复杂,往往不能求出精确的解,只能求近似解。因此,量子力学中用来求问题的近似解的方法,就显得非常重要。近似方法通常从简单的问题的精确解出发来求比较复杂的问题的近似解。 在量子力学中,由于体系的哈密顿算符往往比较复杂,薛定谔方程能够严格求解的情况寥寥可数,因此,引入各种即时方法以求解薛定谔方程的问题显得十分重要。常用的近似方法有微扰论、变分法、半经典近似、绝热近似、自洽场理论、玻恩-奥本哈默近似等。不同的近似方法有不同的适用范围,其中应用最广泛的近似方法就是微扰论。微扰论一般可以分为两大类:一类用于体系的哈密顿算符不是时间的显函数,主要讨论的是定态问题;另一类用于体系的哈密顿算符是时间的显函数的情况,主要讨论的是体系状态之间的跃迁问题。

相关文档
最新文档