大功率直流开关电源模块控制系统设计
大功率充电电源电路设计

大功率充电电源电路设计在大功率充电电源电路设计中,最常用的拓扑结构包括开关电源、变频电源和直流电源。
下面将以开关电源为例进行详细介绍。
1.开关电源设计:开关电源利用开关管进行电能的转换,通过PWM控制器控制开关管的开关时间,实现直流电的输出。
在大功率充电电源设计中,开关电源能够提供较高的转换效率和较低的能耗。
(1)开关电源的基本原理:开关电源由输入端、输出端和控制电路组成。
输入端接入市电交流电源,通过整流电路将交流电转为直流电,进入开关电源主电路。
主电路包括输入滤波电路、变压器、开关管等元件。
控制电路由PWM控制器和反馈电路组成,用于控制开关电源的输出电压和电流稳定。
(2)开关电源的电路保护:在大功率充电电源电路设计中,电路保护至关重要。
常见的保护措施包括过压保护、过流保护、过热保护等。
过压保护可通过电压传感器和比较器实现,一旦输出电压超过设定值,比较器将控制开关电源关闭。
过流保护可通过电流传感器和比较器实现,一旦输出电流超过设定值,比较器将控制开关电源关闭。
过热保护可通过温度传感器和比较器实现,一旦温度超过设定值,比较器将控制开关电源关闭。
(3)开关电源的电磁兼容设计:在大功率充电电源电路设计中,电磁兼容是必须考虑的因素。
开关电源的开关操作会产生噪声和电磁辐射,可能对周围的电子设备造成影响。
为了减小电磁辐射,可以采用滤波电路、屏蔽电路和人工电源消噪等方法。
滤波电路可通过在输入端和输出端添加滤波电容、滤波电感实现。
屏蔽电路可通过在关键部位添加屏蔽罩或屏蔽片实现。
人工电源消噪可通过在输入端和输出端添加电源滤波电容器等元件实现。
2.总结:大功率充电电源电路设计需要综合考虑功率转换效率、电路保护和电磁兼容等因素。
通过合理设计开关电源的主电路和控制电路,可以实现高效、稳定的直流电输出。
在电路保护方面,应考虑过压保护、过流保护和过热保护等功能。
在电磁兼容设计方面,应采用滤波电路、屏蔽电路和人工电源消噪等方法,减小电磁辐射对周围设备的影响。
24 v直流电机控制系统的设计

24 v直流电机控制系统的设计一、引言直流电机广泛应用于各种工业和商业领域,并且在家庭电器中也有着重要的作用。
直流电机的控制系统是保证其正常运行和精确控制的关键。
本文将介绍一个基于24 V直流电机的控制系统设计,并详细介绍其硬件和软件设计。
二、硬件设计1.电机选择:首先需要选择适合的直流电机,考虑到24 V电源的供电情况,选择功率合适的直流电机,同时也要考虑转速和扭矩等工作要求。
2.驱动器选择:直流电机控制系统需要一个驱动器来驱动电机。
驱动器的选择要根据电机的电流要求来确定,同时要考虑其与控制器的接口兼容性。
3.控制器设计:控制器是直流电机控制系统的核心部分,用于控制电机的转速、方向和加速度等参数。
控制器可以使用单片机、FPGA或者PLC等进行设计,根据需求选择合适的控制器,并编写相应的程序。
4.电源模块设计:由于直流电机采用24 V电源供电,需要一个稳定的电源模块来为系统提供稳定可靠的电源。
可以选择开关电源或者线性电源,并根据需求设计合适的电源模块。
三、软件设计1.控制算法设计:针对所需的控制任务,设计合适的控制算法。
常见的控制算法包括PID控制、模糊控制和神经网络控制等。
根据具体情况选择合适的控制算法,并编写相应的代码。
2.编程实现:根据控制算法的设计结果,使用相应的编程语言(如C、C++或者PLC编程语言)实现控制算法。
编程要考虑系统的实时性和稳定性,确保控制算法的准确性和可靠性。
3.用户界面设计:设计一个用户友好的界面,方便用户对控制系统进行操作和监控。
可以使用人机界面和触摸屏等设备,实现控制命令的输入和监测数据的显示。
四、系统测试与调试完成硬件和软件设计后,需要进行系统的测试和调试。
首先进行硬件连接和电源接入的测试,确保电路和连接没有问题。
然后进行软件编程的测试,包括控制算法的功能、编程的准确性和系统的可靠性等方面的测试。
最后进行整个系统的综合测试,包括与电机的实际联动测试、系统的稳定性测试和实际工作情况的测试等。
大功率开关电源的新型模块式设计

大功率开关电源的新型模块式设计——模块PF1000A-360 和IPM-4M的应用本文介绍PF1000A-360型AC/DC功率变换模块和IPM-4M型全桥式DC/AC高频大功率变换模块组合设计出新型模块式高频(22-25KHZ)高压(100V-120V)大功率1000W开关电源。
又阐明这开关电源设计方法和工作原理及模块特点。
1、问题的引出1.1电力电子技术的发展在电力电子技术中,开关电源占有重要地位,而现代电力电子技术的繁荣与开关电源(特别是高频开关电源)的发展紧密联系在一起,则高频化是现代电力电子技术焦点之一。
但现代高频开关电源技术的进步得力于新理论、新技术、新器件、新材料的支持。
其应用空间迅速扩展,除了计算机、电机变频控制、电悍、电镀、电感加热、超声波加工(清洗)等所用的变流设备在原有基础上升级换代外,荧光灯和新型电光源的镇流器,现代办公设备、通讯装置、运载工具、移动军事装置、航空、航天、航海装置等,都开始将注意力转向以高频变换为代表的现代电力电子技术,许多新的应用领域中其热点也陆续发展并选中高频开关电源(DC/AC)。
1.2市场的需要在上述这些应用领域中很重要的是要求高可靠的高频高压大功率的开关电源。
根据现代电力电子技术关于高频电源电路应集成化、智能化及模块化的又一特点,纵观目前市场,由于国内在此方面起步较晚,因而具备这一特点的高可靠高频大功率开关电源还处于开发研制(包括国外厂商在内)之中,即使有,也只是AC_DC或DC_DC的±48v、±24v等常用通讯用的开关电源。
面对这新的桃战和机遇,我们采用了日本联美兰达(NEMIC-LAMBDA)公司产的PF1000A-360型AC/DC功率变换模块和IPM-4M型全桥式DC/AC高频大功率变换模块并将其前后级相连又与高频大功率脉冲变压器T等一起组合而成新型模块式高频(22-25)KHZ 高压(100V-120V)大功率(1000W)开关电源, 并作为信号源(或称超声波发生器)与换能器匹配组合成高声高强度超声波管道清洗机。
一种大功率可调开关电源的设计方案

一种大功率可调开关电源的设计方案设计方案:大功率可调开关电源一、方案描述本设计方案旨在实现大功率可调开关电源的设计。
开关电源是一种稳定的直流电源,通过调节开关器件的导通和截断来实现输出电压的调节。
本方案将采用开关电源的基本原理,并添加一些改进措施,以提高其功率和可调性。
二、关键技术和参数选择1.输入电压范围:220VAC2.输出电压范围:可调0-60VDC(以60V为例)3.输出电流范围:可调0-20A(以20A为例)4.输出功率:最大功率为1200W5.开关频率:采用高频开关,例如50kHz6.转换效率:高效转换,目标设定在90%以上三、设计流程1.输入电路设计:a.采用220VAC输入,通过整流电路将输入电压转变为整流波形。
b.通过滤波电路对输入电压进行滤波,去除高频杂波和纹波。
2.控制电路设计:a.采用微控制器或专用的开关电源控制IC来实现对开关管的控制和保护功能。
b.设计反馈电路,实时监测输出电压和电流,并通过控制电路对其进行调节。
3.开关电路设计:a.选择适当的功率开关管、二极管和电容,以满足最大输出功率和高效转换的要求。
b.设计恰当的开关电路拓扑结构,如半桥、全桥等,以提高功率密度和性能。
4.输出电路设计:a.通过输出变压器降低输出电压并提高输出电流。
b.根据输出电流的需求选择合适的电感和电容进行滤波和稳压。
5.保护电路设计:a.设置过载保护,当输出电流超过设定值时,自动切断开关管的导通。
b.设置过温保护,当开关管温度达到设定值时,自动切断开关管的导通。
6.效率改进措施:a.选择高效的开关器件,减小开关管的导通和截断过程中的能量损耗。
b.优化电路结构和参数,减小电源电路的损耗和杂散产生。
7.调试和优化:a.进行原理性实验,验证电路的基本工作原理和性能。
b.对电路进行稳定性和可靠性的测试,确定电路在不同负载下的性能。
四、预期效果本设计方案旨在实现大功率可调开关电源的设计,具有可调电压和电流的功能,并满足1200W的最大输出功率。
10kW直流开关电源设计

摘要开关电源具有效率高、体积小、重量轻等显著特点。
目前世界各国都有广泛的应用,特别是对大容量高频开关电源的研究和开发已成为当今电力电子学的主要研究领域,并派生了很多新的研究方向。
本设计的题目为10kW直流开关电源的设计,直流开关电源的工作原理:电网输送来的交流电经整流滤波电路变为直流,经过高频逆变电路变为高频交流,通过高频变压器将高频交流电变压,然后高频交流电经单相桥式整流滤波电路变为直流。
根据直流开关电源的工作原理确定设计方案,选择三相桥式不控整流滤波电路作为主电路的输入级电路,通过分析比较各种变化器的优缺点,选用移相式全桥变换器,设计了高频变压器,选择单相桥式整流电路作为主电路的输出级电路,在电压调节环节上,详细分析了基于UC3825控制芯片的PWM控制电路。
并根据任务要求完成了IGBT驱动电路、系统反馈电路的、保护电路、辅助电源以及均流电路的设计。
本次设计的10kW直流开关电源具有输出电压可调、输出电流大、纹波小等特点。
实验结果表明它基本达到设计要求,从而验证了理论分析的正确性,具有广阔的应用前景。
关键词:变换器;开关电源;高频变压器;PWM控制AbstractSwitching power supply with high efficiency, small size, light weight and other significant characteristics. At present, all the countries in the world have a wide range of applications, especially in the research and development of large capacity and high frequency switching power supply has become a main research field of modern power electronics, and derive a lot of new research directions.The subject of this design is the design of 10kW DC switching power supply, the working principle of DC switching power supply: the grid to the AC rectified filter circuit into a DC, after high frequency inverter circuit into a high-frequency alternating current, high frequency alternating current transformer by high-frequency transformer will, then high frequency AC single-phase bridge rectifier filter circuit for dc. According to the design scheme to determine the working principle of DC switching power supply, selection of three-phase uncontrolled rectifier filter circuit as the input circuit of main circuit, comparing the advantages and disadvantages of various changes through the analysis, selection of phase-shift full bridge converter, high frequency transformer design, selection of single phase bridge rectifier circuit as output circuit of the main circuit, on the voltage regulation part, a detailed analysis of the UC3825 control chip control circuit based on PWM. And the IGBT drive circuit, feedback circuit, protection circuit, auxiliary power supply and a flow equalization circuit is designed according to the requirement of the task.The design of 10kW DC switching power supply has the characteristics of adjustable output voltage, output current, low ripple. The experimental results show that it meets the design requirement, which verifies the correctness of the theoretical analysis, has a broad application prospect.Keywords: converter;Switching power supply;high-frequency transformer;PWM control目录第1章绪论 (1)1.1 开关电源的简介 (1)1.2 开关电源的发展及国外现状 (1)1.3 国内开关电源的发展及现状 (3)第2章系统分析和设计方案确定 (5)2.1系统整体概述 (5)2.2变换器的选择 (6)2.3控制电路的实现 (6)2.4 整流滤波电路的选择 (8)2.4.1 输入整流滤波回路 (8)2.4.2 输出整流滤波回路 (8)第3章开关电源主电路的设计 (9)3.1 开关电源的设计要求 (9)3.2 主电路组成框图 (9)3.2.1 输入整流滤波电路 (10)3.2.2移相式全桥变换器的设计 (12)3.2.3 输出整流滤波电路 (16)第4章控制电路的设计 (19)4.1 PWM集成控制器的基本原理 (19)4.2 高速脉宽调制器UC3825 (19)4.2.1 主要特点 (21)4.2.2 极限参数 (21)4.2.3 内部电路工作原理 (22)4.3 UC3825的调试 (24)4.4 反馈电路的设计 (25)第5章保护电路的设计 (28)5.1 软启动电路的设计 (28)5.2 过流过压保护 (29)第6章辅助电源设计 (32)第7章均流电路设计 (34)7.1 均流电路概述 (34)7.2 开关电源并联系统常用的均流方法 (34)第8章结论 (37)参考文献 (38)致谢 (39)附录1 (40)附录2 (41)第1章绪论1.1开关电源的简介开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,一般由脉冲宽度调制(PWM)控制IC和MOSFET 构成。
1000W大功率开关电源设计方案

1000W大功率开关电源设计第1章开关电源的基本原理开关电源中的功率调整管工作在开关状态,具有功耗小、效率高、稳压范围宽、温升低、体积小等突出优点,在通信设备、数控装置、仪器仪表、视频音响、家用电器等电子电路中得到广泛应用。
1.1 开关电源的组成与工作原理1.1.1 开关电源的工作原理开关电源的工作原理可以用图1-1进行说明。
图中输入的直流不稳定电压U经开关S加至输入端,S为受控开关,是一个受脉冲控制的开关调i整管。
开关S按要求改变导通或断开时间,就能把输入的直流电压U变成i矩形脉冲电压。
这个脉冲电压经过滤波电路进行平滑滤波就可得到稳定的直流输出电压U。
o(a)原理电路O O Ot(b)波形图图1-1开关电源工作原理定义脉冲占空比如下:Tt D on = (1-1) 式中,T 表示开关S 的开关重复周期:on t 表示开关S 在一个开关周期中的导通时间。
开关电源直流输出电压o U 与输入电压i U 之间具有如下关系:D U U i o = (1-2)由上面两式可以看出:(1)若开关周期T 一定,改变开光S 的导通时间on t ,即可改变脉冲占空比D ,达到调节输出电压的目的,这种保持T 不变而只改变on t 来实现占空比调节的方式,称为脉冲宽度调节(PWM)。
由于PWM式的开关频率固定,输出滤波电路比较容易设计,易实现最优化,因此PWM式开关电源用的较多。
(2)若保持on t 不变,利用改变开关频率Tf 1=来实现脉冲占空比调节,从而实现输出直流电压o U 稳压的方式,称为脉冲频率调制(PFM)。
由于开关频率不固定,所以PFM方式的输出滤波电路的设计不易实现最优化。
(3)既改变on t ,有改变T ,从而实现脉冲占空比的调节的稳压方式,称为脉冲调频调宽方式。
在各种开关电源中,以上三种脉冲占空比调节方式均有应用。
1.1.2 开关电源的构成开关电源由以下四个基本环节组成(如图1-2):(1)DC/DC 变换器:用以进行功率变换,是开关电源的核心部分。
大功率直流开关电源设计
大功率直流开关电源设计一、引言直流开关电源是一种广泛应用于通信、工业控制和电子设备等领域的电源,其特点是稳定性好、效率高、体积小、重量轻等优点。
本文将介绍大功率直流开关电源的设计过程,包括电源选型、拓扑结构、控制策略和保护电路等内容。
二、电源选型大功率直流开关电源的选型关键是选择合适的功率器件和电源拓扑结构。
功率器件一般选择IGBT或MOSFET,这两种器件都具有开关速度快、功耗低、温升低等特点。
电源拓扑结构可选用单路、多路或多路并联等形式,具体选择要根据实际需求和成本考虑。
三、拓扑结构常见的大功率直流开关电源拓扑结构有Boost、Buck、Buck-Boost、Cuk等。
Boost结构适合于电源输出电压高于输入电压的情况;Buck结构适合于电源输出电压低于输入电压的情况;Buck-Boost结构适合于电源输出电压既可以高于也可以低于输入电压的情况;Cuk结构适合于对输出电流要求较高的情况。
根据实际需求选择合适的拓扑结构。
四、控制策略大功率直流开关电源的控制策略一般采用PWM(脉宽调制)技术。
PWM技术通过调节开关管的导通时间和截止时间来控制输出电压。
在设计过程中需要考虑到输出稳定性、响应速度和抗干扰等因素,选择合适的PWM控制策略。
五、保护电路为了保护电源和加载电路安全可靠工作,大功率直流开关电源设计中需要考虑各种保护电路。
常见的保护电路包括过压保护、欠压保护、过流保护、过温保护等。
通过合理设计和配置相应保护电路,可以降低故障风险,提高系统可靠性。
六、性能要求大功率直流开关电源设计中需要满足一定的性能要求,如输出电压稳定性、效率、负载能力等。
输出电压稳定性要求越高时,需要采用更精确的控制策略和更优秀的器件;效率越高时,要选择低损耗的器件和优化设计;负载能力要求越高时,需考虑电路稳定性、散热设计等因素。
七、设计实例以下是一个大功率直流开关电源的设计实例:1.选型:-功率器件:采用IGBT,因其开关速度快,适合高频开关模式。
48V50A开关电源整流模块主电路设计
48V50A开关电源整流模块主电路设计一、需求分析开关电源整流模块主要用于将交流电转换为稳定的直流电,常见于多种电子设备中。
根据需求分析,主要要求如下:1.输入电压:48VAC2.输出电流:50ADC3.稳定性:输出电流应具有稳定性,能在一定范围内保持稳定4.效率:输出电流的转换效率应较高1.输入滤波器首先在输入端设计一个滤波器,用于滤除输入电源中的高频干扰和杂波。
可以采用LC滤波器或者C型滤波器。
2.整流桥在滤波器的后面设计一个整流桥,将交流电转换为脉冲电,可以采用非控整流桥,如全型桥。
3.输入电容在整流桥的输出端并联一个电容,用于平衡负载,减小输出脉动,提高稳定性。
4.控制器在输出端设计一个控制器,用于控制输出电流的稳定性和保护电路的功能。
可以采用电压反馈控制器或者电流反馈控制器。
5.输出电感在控制器的后面设计一个输出电感,用于平滑输出电流,减小输出脉动。
同时也可以起到保护负载的作用。
6.输出滤波器在输出电感的后面设计一个滤波器,用于滤除输出电流中的高频干扰和杂波。
可以采用LC滤波器或者L型滤波器。
7.输出电容在滤波器的输出端并联一个电容,用于存储电能,提高输出电流的稳定性。
8.保护电路在整个主电路中添加保护电路,用于过载保护、过压保护、过流保护等。
可以采用过载保护熔断器、过压保护二极管、过流保护电阻等。
三、其他注意事项1.选用合适的元器件:根据输入输出电流要求,选用合适的电容、电阻、电感等元器件,以及整流桥、保护二极管等。
2.散热设计:考虑整流模块在工作时会发热,需要设计合理的散热系统,如散热片或风扇等。
3.PCB布局和走线:根据电路原理图设计合理的PCB布局和走线,减小电路的电磁干扰,提高电路的可靠性。
4.EMC设计:考虑整流模块的EMC设计,采取合适的屏蔽措施,减小电磁辐射和抗干扰能力。
以上是一种基本的开关电源整流模块主电路设计思路,根据实际需求可以进行相应的修改和完善。
在设计过程中,需要根据具体的技术要求、成本预算和可行性来确定最终的设计方案。
大功率直流开关电源设计
第1章绪论1.1 开关电源的发展及国外现状开关电源在通信系统中得到了广泛的应用,并已成为现代通信供电系统的主流,而通信业的迅速发展又极大地推动了开关电源的发展。
在通信领域中,通常将高频整流器称为一次电源而将直流--直流(DC/DC)变换器称为二次电源。
同时,开关电源也在各种电子信息设备中,如计算机、充电电源等得到了广泛的应用。
自1957年第一只可控硅(SCR)问世后,可控硅取代了笨重而且效率低下的硒或氧化亚铜整流器件,可控硅整流器就作为通信设备的一次电源使用。
在随后的20年内,由于半导体工艺的进步,可控硅的电压、电流额定值及其它特性参数得到了不断提高和改进,满足了通信设备不断发展的需要,因此,直到70年代,发达国家还一直将可控硅整流器作为大多数通信设备的一次电源使用。
虽然可控硅整流器工作稳定,能满足通信设备的要求,但它是相控电源,工作于工频,有庞大笨重的电源变压器、电感线圈、滤波电容,噪声大,效率低,功率因数低,稳压精度也较低。
因此,自1947年肖克莱发明晶体管,并在随后的几年内对晶体管的质量和性能不断完善提高后,人们就着力研究利用晶体管进行高频变换的方案。
1955年美国罗耶(GH·Roger)发明的自激振荡推挽晶体管单变压器直流变换器,是实现高频转换电路的开始, 1957年美国查赛(JJ·Jen Sen)又发明了自激式推挽双变压器变换器电路。
在此基础上,1964年,美国科学家提出了取消工频变压器的串联开关电源的设想,并在NEC杂志上发表了“脉宽调制应用于电源小型化”等文章,为使电源实现体积和重量的大幅下降提供了一条根本途径。
随着大功率硅晶体管的耐压提高和二极管反向恢复时间的缩短等元器件性能的改善,1969年终于做成了25KHz的开关电源。
电源界把开关电源的频率提高到20KHz以上称为电源技术的“20KHz革命”。
经过几年的努力,从开关电源的电路拓扑型式到相配套的元器件等研究都取得了相当大的进展。
一种大功率可调开关电源的设计方案
一种大功率可调开关电源的设计方案设计方案:大功率可调开关电源一、引言在现代电子设备中,大功率可调开关电源被广泛应用于各种场合,如工业自动化设备、通信设备等。
本文旨在设计一种大功率可调开关电源,满足高效率、稳定性和可调性的需求。
二、电源拓扑结构选择在设计大功率可调开关电源时,选择合适的电源拓扑结构是关键。
常见的拓扑结构有单相桥式、全桥式、半桥式等。
鉴于本设计要求大功率输出,采用半桥式拓扑结构。
三、开关功率器件选取在选择开关功率器件时,需要考虑其导通电阻、开关速度以及工作温度等因素。
本设计选取高性能的MOSFET作为开关功率器件,具有低导通电阻、快速开关速度和良好的热耐受性。
四、控制电路设计为了实现大功率可调输出,需要设计合适的控制电路。
控制电路主要包括反馈信号采集、控制信号产生和保护电路等。
1.反馈信号采集:采用外部反馈电路监测输出电压和电流,并将反馈信号送至控制电路。
2.控制信号产生:采用PWM(脉宽调制)技术产生控制信号,通过对开关器件的开关时间比进行调节,实现输出电压的调节。
3.保护电路:为了确保开关电源的稳定性和可靠性,需要设计过压保护、过流保护以及温度保护等保护电路。
五、过渡过程优化设计由于大功率可调开关电源在输出电流和电压的调整过程中,容易出现过渡过程中的不稳定情况,需要进行优化设计。
1.输出滤波电路:采用适当设计的LC滤波电路,在输出端滤除高频噪声和谐波,确保输出电压和电流的稳定性。
2.脉宽调制优化:通过对控制信号的优化,减少输出电压和电流调节过程中的波动。
3.反馈控制算法:采用先进的控制算法,如PID控制算法,提高输出电压和电流的稳定性。
六、输出电路保护设计在大功率可调开关电源设计中,保护电路的设计尤为重要。
常见的保护功能包括过压保护、过流保护、过温保护等。
1.过压保护:通过监测输出电压,当输出电压超过预设范围时,立即切断开关器件,以防止输出负载受损。
2.过流保护:通过监测输出电流,当输出电流超过预设范围时,立即切断开关器件,以避免开关器件和输出负载过载。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分类号:密级:U D C:编号:学位论文大功率直流开关电源模块控制系统设计王海霞指导教师姓名:伍萍辉 教授 河北工业大学申请学位级别:硕士学科、专业名称:电子与通信工程论文提交日期: 2012年11月论文答辩日期:2012年12月学位授予单位:河北工业大学答辩委员会主席:评阅人:2012年11月Dissertation Submitted toHebei University of TechnologyforThe Master Degree ofElectronic and Communication EngineeringDESIGN HIGH POWER DC SWITCHING POWER MODULE’S CONTROL SYSTEMByWang HaixiaSupervisor:prof.Wu PinghuiNovember 2012原创性声明本人郑重声明:所呈交的学位论文,是本人在导师指导下,进行研究工作所取得的成果。
除文中已经注明引用的内容外,本学位论文的研究成果不包含任何他人创作的、已公开发表或者没有公开发表的作品的内容。
对本论文所涉及的研究工作做出贡献的其他个人和集体,均已在文中以明确方式标明。
本学位论文原创性声明的法律责任由本人承担。
学位论文作者签名:日期:关于学位论文版权使用授权的说明本人完全了解河北工业大学关于收集、保存、使用学位论文的规定。
同意如下各项内容:按照学校要求提交学位论文的印刷本和电子版本;学校有权保存学位论文的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存论文;学校有权提供目录检索以及提供本学位论文全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版;在不以赢利为目的的前提下,学校可以适当复制论文的部分或全部内容用于学术活动。
(保密的学位论文在解密后适用本授权说明)学位论文作者签名:日期:导师签名:日期:河北工业大学硕士学位论文大功率直流开关电源模块控制系统设计摘要模块化、数字化是开关电源未来主要发展方向之一,针对大功率AC-DC-DC开关电源模块的需要,研究开发了数字化控制系统。
控制系统以高性能微处理器STM32F103为核心,并进行了相关的硬件和软件方面的设计。
硬件部分重点设计了高频整流电路的同步SPWM控制信号和软开关的移相PWM控制信号,除此之外,还包括控制系统基本电路、外围电路、外围接口电路、简单的人机交互电路等。
其中控制系统基本电路包括处理器、时钟电路、电源电路和复位电路等;外围电路包括检测电路、极性转换隔离电路等;外围接口电路包括串口、CAN总线接口、JTAG调试接口等。
高频整流是降低电网侧谐波污染的有效有段,针对高频整流电路应用的需要,基于FPGA设计了一种专用的SPWM波形发生器,该波形发生器克服了目前市场上专用SPWM芯片主要针对逆变器设计、无法与交流电网电压同步的缺陷。
在QUARTUS Ⅱ9.0的软件环境下进行仿真,仿真结果表明该波形发生器输出的SPWM波形对称性好、相位可调、频率可控,能够满足高频整流电路抑制谐波和调节功率因数的要求,并且具有与上位机通信的接口,因此具有广阔的应用前景。
软开关技术能够降低开关电源的开关损耗,从而实现了开关电源小型化,目前软开关大多采用移相PWM信号控制,而现有的PWM芯片的频率和相位的调节范围较窄,且不具有通信接口,因此基于FPGA设计了专用PWM波形发生器。
软件设计采用自底向上的方法,先对底层各模块进行相应的软件设计,然后顶层主程序通过中断的方式对底层模块程序进行访问。
由于时间和能力的关系,只完成了A/D转换接口、CAN总线接口底层模块的设计,最后对CAN总线进行了调试。
关键字:STM32F103微处理器,SPWM/PWM波形发生器,硬件电路设计,软件设计大功率直流开关电源模块控制系统设计Design High Power DC Switching PowerModule’s Control SystemABSTRACTIn the future,modular and digital is one of the main development trend of switch power,according to the need of AC-DC-DC high power switch power,the digital control system is designed.The control system of switch power takes STM32F103 embedded controller as the control core, and then hardware and software are designed.SPWM control signal of high frequency rectifier circuit and the phase shift PWM control signal of soft switch are the key point in the hardware design, in addition, the control system’s basic circuit, peripheral circuit, peripheral interface, simple interactive interfaces, etc. The control system’s basic circuit includes processor, clock circuit, power circuit, reset circuit, and so on; Peripheral circuit includes detection circuit, polar conversion and isolation circuit ; Peripheral interface includes A/D conversion interface, CAN bus, JTAG debug interface, etc.High frequency rectifier can effectively reduce grid harmonic pollution, which needs to generate SPWM signal,then the special SPWM generator based on FPGA is designed. This generator overcome the defects that the special SPWM chips, which designed for inverter, can’t synchronize with the voltage of AC grid. Different frequency and phase, communicationⅡ. The results show that the interface are simulated in the QUARTUS 9.0 software environmentgenerated SPWM has the features of well symmetry, adjustable phase and frequency, which can satisfy the demand of harmonic suppression and power factor adjustment, at the same time, it has communication interface, therefore, it has a board application prospect.Soft switch technology can reduce switch loss of switch power, which lead to the miniaturization of the switch power, and the phase shift PWM technology is used for soft switch. But the frequency and phase of PWM chips can’t reach and have communication interface, therefore the special PWM generator based on FPGA is designed.Software model is designed from bottom to top, the underlying module is design firstly, and then top main program calls the bottom program through the interrupt way. Due to time and ability, only the design of the bottom module including A/D conversion interface, CAN bus are completed, the CAN bus is debugged finally.KEY WORDS:STM32F103 controller, SPWM/PWM generator, hardware circuit design, software design目 录第一章 绪论 (1)§1-1 开关电源发展现状及趋势 (1)§1-2 课题背景 (3)§1-3 课题研究内容 (5)§1-4 本章小结 (5)第二章控制系统总体设计 (6)§2-1 控制系统的功能及技术指标要求 (6)§2-2 控制系统的总体结构及实现方案 (7)§2-3 控制系统的工作过程 (8)§2-4 本章小结 (9)第三章高频整流的SPWM波形发生器 (10)§3-1 高频整流电路及SPWM控制信号 (10)§3-2 SPWM波形产生方案 (11)§3-3 三相SPWM波形FPGA实现总方案 (11)§3-4 同步、频率可变模块的实现 (15)§3-5移相模块 (17)§3-6通信接口模块 (18)§3-7 仿真结果及引脚分配 (19)§3-8 本章小结 (23)第四章控制系统硬件设计 (24)§4-1 控制系统的基本电路 (24)4-1-1 处理器芯片 (24)4-1-2 时钟电路 (24)4-1-3 复位电路 (25)4-1-4 电源电路 (25)§4-2 PWM波形发生器 (26)4-2-1 PWM波形产生方案 (26)4-2-2 PWM波形发生器的FPGA实现方案 (26)4-2-3 PWM波形发生器的仿真结果及引脚分配 (27)§4-3 控制系统检测电路 (29)4-3-1 电压、电流检测电路 (29)4-3-2 温度检测电路 (32)§4-4 极性转换电路 (33)§4-5 控制系统的人机交互电路 (33)4-5-1 显示电路 (33)大功率直流开关电源模块控制系统设计4-5-2 按键电路 (34)§4-6 控制系统的外围接口电路 (35)4-6-1 JTAG测试接口电路 (35)4-6-2 串口电路 (35)4-6-3 CAN总线电路 (36)§4-7 本章小结 (37)第五章控制系统软件设计 (38)§5-1 控制系统软件设计总体方案 (38)§5-2 A/D转换器的软件设计 (38)§5-3 CAN总线软件设计及调试 (39)5-3-1 CAN总线软件设计 (39)5-3-2 CAN总线的调试 (42)§5-4 本章小结 (44)第六章结语 (45)参考文献 (46)致谢 (48)攻读学位期间所取得的相关科研成果 (49)河北工业大学硕士学位论文第一章 绪论§11 开关电源发展现状及趋势开关稳压电源克服了传统线性稳压电源体积大、效率低(一般在45%左右)的缺陷,获得越来越广泛的应用,同时对开关电源的容量、体积、成本、可靠性等提出了越来越高的要求。