考研数学概率论与数理统计基础阶段知识点讲解——数字特征(二)吴娜原创

合集下载

概率论与数理统计 --- 第四章{随机变量的数字特征} 第一节:数学期望

概率论与数理统计 --- 第四章{随机变量的数字特征} 第一节:数学期望
32 30 17 21 0 1 2 3 1.27 100 100 100 100
这个数能否作为 X的平均值呢?
若统计100天,
可以想象, 若另外统计100天, 车工小张不出废品, 这另外100天每天的平均废品数也不一定是1.27. 一般来说, 若统计n天 ,
(假定小张每天至多出三件废品)
又设飞机机翼受到的正压力W 是V 的函数 : W kV 2 ( k 0, 常数), 求W 的数学期望.
解: 由上面的公式
1 1 2 E (W ) kv f (v )dv kv dv ka a 3 0
2 2

a
例7 设二维连续型随机变量(X , Y)的概率密度为
A sin( x y ) 0 x , 0 y f ( x, y) 2 2 0 其它 (1)求系数A , ( 2)求E ( X ), E ( XY ).
x f ( x )x
i i i
i
阴影面积近似为
这正是:


f ( xi )xi

x f ( x )dx
的渐近和式.
小区间[xi, xi+1)
定义: 设X是连续型随机变量, 其密度函数为 f (x), 如果积分: xf ( x )dx
概率论


绝对收敛, 则称此积分值为X的数学期望, 即:
2. 设二维连续型随机变量 (X, Y) 的联合概率密度为 f (x, y), 则: E ( X )
E (Y )


xf X ( x )dx

yfY
( y )dy




xf ( x , y )dxdy,

概率论与数理统计第五章随机变量的数字特征

概率论与数理统计第五章随机变量的数字特征

的协方差(Covariance),记为 cov(X , Y ) 即
cov(X , Y ) E[( X E ( X ))(Y E (Y ))]
将 cov(X , Y ) 的定义式展开,可得
cov(X , Y ) E ( XY ) E ( X ) E (Y )
二、协方差性质
Y, X ) 1. cov(X , Y ) cov(
解:
E ( X 2 ) 0 2 0.2 12 0.4 2 2 0.4 2
E (2 X 1) (2 0 1) 0.2 (2 1 1) 0.4 (2 2 1) 0.4 1.4
一、数学期望概念
例3 设随机变量X的概率密度为

E ( X ) 0 0.4 1 0.6 0.6 E (Y ) 0 0.3 1 0.3 2 0.4 1.1
XY
cov( X , Y ) D( X ) D(Y )

46 69 0.24 0.69
0.04
三、相关系数
相关系数 XY 是一个无量纲的量,有如下性质: 1. | XY | 1 2. 当 ;
D(cX ) c 2 D( X )
特别地,若X,Y相互独立,则有 D( X Y ) D( X ) D(Y )
第三节
1 2 3 4
协方差、相关系数和矩
协方差概念
协方差性质 相关系数
矩(Moment)
一、协方差概念
定义4
E[( X E ( X ))(Y E (Y ))] 称为随机变量X与Y
三、相关系数
定义5
XY
D( X ) D(Y ) 称为随机变量X与Y的 cov(X , Y )

考研数学一大纲重点梳理概率论与数理统计部分

考研数学一大纲重点梳理概率论与数理统计部分

考研数学一大纲重点梳理概率论与数理统计部分概率论和数理统计是考研数学一科目中的重要部分,本文将针对概率论与数理统计这一大纲进行重点梳理。

首先,我们将介绍概率论的基本概念和理论,然后详细讨论数理统计的相关内容。

一、概率论的基本概念和理论1. 概率的基本概念概率是研究随机现象的定量描述,用来描述事件发生的可能性大小。

概率可以用数值表示,范围在0到1之间,其中0代表不可能事件,1代表必然事件。

2. 概率的运算规则概率的运算规则包括加法规则和乘法规则。

加法规则适用于互斥事件,乘法规则适用于独立事件。

3. 随机变量和概率分布随机变量是用来描述随机现象的变量,可以分为离散随机变量和连续随机变量。

概率分布描述了随机变量的取值与概率之间的关系,常见的概率分布包括二项分布、泊松分布和正态分布等。

4. 期望和方差期望是随机变量的平均值,用来描述随机变量的集中趋势;方差是随机变量与期望之间的差异程度,用来描述随机变量的离散程度。

二、数理统计的相关内容1. 抽样与抽样分布抽样是指从总体中选取一部分个体进行观察和研究的过程,抽样分布是指样本统计量的概率分布。

常见的抽样分布包括正态分布、t分布和F分布等。

2. 参数估计参数估计是利用样本数据来估计总体参数的值,常见的参数估计方法包括点估计和区间估计。

点估计是用单个数值来估计参数的值,区间估计是用一个区间来估计参数的值。

3. 假设检验假设检验是根据样本提供的信息,对总体的某个参数是否满足某种假设进行判断。

假设检验可以分为单侧检验和双侧检验,常见的假设检验方法包括z检验和t检验等。

4. 方差分析方差分析是用来比较两个或多个总体间均值差异是否显著的统计方法。

方差分析可以分为单因素方差分析和多因素方差分析,常用的方法包括单因素方差分析和双因素方差分析等。

5. 回归分析回归分析是用来研究自变量与因变量之间的关系的方法。

简单线性回归是一种自变量和因变量之间存在线性关系的回归分析方法,多元线性回归是多个自变量和一个因变量之间的回归分析方法。

概率论与数理统计第二章笔记

概率论与数理统计第二章笔记

概率论与数理统计第二章笔记一、引言概率论与数理统计是数学中的一个重要分支,它研究的是随机现象的规律性和统计规律性。

在第二章中,我们将深入探讨随机变量及其分布,以及随机变量的数字特征。

二、随机变量及其分布1. 随机变量的定义及分类在概率论与数理统计中,随机变量是描述随机现象数值特征的变量。

根据随机变量可取的值的性质,可以分为离散随机变量和连续随机变量。

离散随机变量只取有限个或无限可数个值,而连续随机变量则可以取在一定范围内的任意一个值。

2. 随机变量的分布及特征随机变量的分布是描述其取值的概率规律。

对于离散随机变量,常见的分布包括二项分布、泊松分布等;对于连续随机变量,则有均匀分布、正态分布等。

通过对随机变量的分布进行分析,可以推导出其数字特征,如均值、方差等。

三、随机变量数字特征1. 随机变量数字特征的意义随机变量的数字特征是对其分布的定量描述,包括均值、方差、标准差等。

这些数字特征可以帮助我们更直观地理解随机变量的分布规律,从而作出合理的推断和决策。

2. 随机变量数字特征的计算对于离散随机变量,其均值、方差的计算可通过对其分布进行加权平均;对于连续随机变量,则需要进行积分计算。

这些计算方法在实际问题中起着重要作用,例如在风险评估、市场预测等方面的应用。

四、总结和回顾概率论与数理统计第二章主要介绍了随机变量及其分布,以及随机变量的数字特征。

通过对离散和连续随机变量的分类和分布进行深入讨论,我们对随机现象的规律性有了更清晰的认识。

通过数字特征的计算,我们可以更准确地描述和解释随机现象的规律,为实际问题的分析和决策提供了有力工具。

个人观点和理解在学习概率论与数理统计第二章的过程中,我深刻认识到随机变量和其分布对于随机现象的定量分析至关重要。

通过对数字特征的计算,我们可以更准确地描述和解释随机现象的规律,这对于我在日常生活和工作中的决策和分析将有着实质性的帮助。

结论概率论与数理统计第二章所介绍的内容为我们提供了深入了解随机现象规律性的基础,并且为日后的学习和实践奠定了坚实的基础。

概率论与数理统计课件 第七章 数字特征

概率论与数理统计课件 第七章 数字特征

1

dx



( t )
1 2
e
2
dt



t
1 2
t
e
2
dt




1 2
t
2
e
2
dt

3、ξ~N(μ,σ2 ),求Eξ,Eξ2。
E 解:
2




x f ( x ) dx
2



x
2
1 2
(x )
2
e
2
2
dx
2
xe
x
dx
2
0
2
3、ξ~N(μ,σ2 ),求Eξ,Eξ2。 解:
E
~ f (x) 1 2
(x )
2
e
2
2



x f ( x ) dx
t
2



x
1 2
(x )
2
e
2
2
dx
2
令t
x

, dt
E E ( 1 9 ) 9 * 1 . 24 12
三、一维随机变量函数的数学期望 已知r.v.X,且Y = g(X ),求Y的数学期望。
设离散 r.v. X 的概率分布为
P( X xi ) pi , i 1,2,
若无穷级数 g ( xi ) pi 绝对收敛,则
甲乙,乙甲,乙乙,由等可能性知
P(甲胜)=3/4 P(乙胜)=1/4 X表示甲的最终所得,Y表示乙的最终所得。 X

考研数学《概率论与数理统计》知识点总结

考研数学《概率论与数理统计》知识点总结

考研数学《概率论与数理统计》知识点总结第一章概率论的基本概念定义:随机试验E的每个结果样本点组成样本空间S,S的子集为E的随机事件,单个样本点为基本事件.事件关系:1.A⊂B,A发生必导致B发生.2.A Y B和事件,A,B至少一个发生,A Y B发生.3.A I B记AB积事件,A,B同时发生,AB发生.4.A-B差事件,A发生,B不发生,A-B发生.5.A I B=Ø,A与B互不相容(互斥),A与B不能同时发生,基本事件两两互不相容.6.A Y B=S且A I B=Ø,A与B互为逆事件或对立事件,A与B中必有且仅有一个发生,记B=ASA-=.事件运算:交换律、结合律、分配率略.德摩根律:BABA IY=,BABA YI=.概率:概率就是n趋向无穷时的频率,记P(A).概率性质: 1.P(Ø)=0.2.(有限可加性)P(A1Y A2Y…Y A n)=P(A1)+P(A2)+…+P(A n),A i互不相容.3.若A⊂B,则P(B-A)=P(B)-P(A).4.对任意事件A,有)A(1)A(PP-=.5.P(A Y B)=P(A)+P(B)-P(AB).泊松分布:记X~π(λ),!}{kekXPkλλ-==,Λ,2,1,0=k.泊松定理:!)1(limkeppCkknkknnλλ--∞→=-,其中λ=np.当20≥n,05.0≤p应用泊松定理近似效果颇佳.随机变量分布函数:}{)(xXPxF≤=,+∞<<∞-x.)()(}{1221xFxFxXxP-=≤<.连续型随机变量:⎰∞-=x ttfxF d)()(,X为连续型随机变量,)(x f为X的概率密度函数,简称概率密度.概率密度性质:1.0)(≥xf;2.1d)(=⎰+∞∞-xxf;3.⎰=-=≤<21d)()()(}{1221xxxxfxFxFxXxP;4.)()(xfxF=',f(x)在x点连续;5.P{X=a}=0.均匀分布:记X~U(a,b);⎪⎩⎪⎨⎧<<-=其它,,1)(bxaabxf;⎪⎩⎪⎨⎧≥<≤--<=bxbxaabaxaxxF,,,1)(.性质:对a≤c<c+l≤b,有abllcXcP-=+≤<}{指数分布:⎪⎩⎪⎨⎧>=-其它,,1)(xexfxθθ;⎩⎨⎧>-=-其它,,1)(xexFxθ.无记忆性:}{}{tXPsXtsXP>=>+>.正态分布:记),(~2σμNX;]2)(ex p[21)(22σμσπ--=xxf;ttxF x d]2)(ex p[21)(22⎰∞---=σμσπ.性质:1.f(x)关于x=μ对称,且P{μ-h<X≤μ}=P{μ<X≤μ+h};2.有最大值f(μ)=(σπ2)-1.标准正态分布:]2exp[21)(2xx-=πϕ;⎰∞--=Φx ttx d]2ex p[21)(2π.即μ=0,σ=1时的正态分布X~N(0,1)性质:)(1)(xxΦ-=-Φ.正态分布的线性转化:对),(~2σμNX有)1,0(~NXZσμ-=;且有)(}{}{)(σμσμσμ-Φ=-≤-=≤=xxXPxXPxF.正态分布概率转化:)()(}{1221σμσμ-Φ--Φ=≤<xxxXxP;1)(2)()(}{-Φ=-Φ-Φ=+<<-ttttXtPσμσμ.3σ法则:P=Φ(1)-Φ(-1)=68.26%;P=Φ(2)-Φ(-2)=95.44%;P=Φ(3)-Φ(-3)=99.74%,P多落在(μ-3σ,μ+3σ)内.上ɑ分位点:对X~N(0,1),若zα满足条件P{X>zα}=α,0<α<1,则称点zα为标准正态分布的上α分位点.常用0.001 0.005 0.01 0.025 0.05 0.10上ɑ分位点:3.090 2.576 2.326 1.960 1.645 1.282Y服从自由度为1的χ2分布:设X密度函数f X(x),+∞<<∞-x,若Y=X2,则⎪⎩⎪⎨⎧≤>-+=)]()([21)(yyyfyfyyf XXY,,若设X~N(0,1),则有⎪⎩⎪⎨⎧≤>=--21)(221yyeyyfyY,,π定理:设X密度函数f X(x),设g(x)处处可导且恒有g′(x)>0(或g′(x)<0),则Y=g(X)是连续型随机变量,且有⎩⎨⎧<<'=其他,,)()]([)(βαyyhyhfyf XYh(y)是g(x)的反函数;①若+∞<<∞-x,则α=min{g(−∞),g(+∞)},β=max{g(−∞),g(+∞)};②若f X(x)在[a,b]外等于零,g(x)在[a,b]上单调,则α=min{g(a),g(b)},β=max{g(a),g(b)}.应用:Y=aX+b~N(aμ+b,(|a|σ)2).第二章多维随机变量及其分布二维随机变量的分布函数:分布函数(联合分布函数):)}(){(),(yYxXPyxF≤≤=I,记作:},{yYxXP≤≤.),(),(),(),(},{112112222121yxFyxFyxFyxFyYyxXxP+--=≤<≤<.F(x,y)性质:1.F(x,y)是x和y的不减函数,即x2>x1时,F(x2,y)≥F(x1,y);y2>y1时,F(x,y2)≥F(x,y1).2.0≤F(x,y)≤1且F(−∞,y)=0,F(x,−∞)=0,F(−∞,−∞)=0,F(+∞,+∞)=1.3.F(x+0,y)=F(x,y),F(x,y+0)=F(x,y),即F(x,y)关于x右连续,关于y也右连续.4.对于任意的(x1,y1),(x2,y2),x2>x1,y2>y1,有P{x1<X≤x2,y1<Y≤y2}≥0.离散型(X,Y):≥ijp,111=∑∑∞=∞=ijjip,ijyyxxpyxFii∑∑=≤≤),(.连续型(X,Y):vuvufyxF y x dd),(),(⎰⎰∞-∞-=.f(x,y)性质:1.f(x,y)≥0.2.1),(dd),(=∞∞=⎰⎰∞∞-∞∞-Fyxyxf.3.yxyxfGYXPG⎰⎰=∈dd),(}),{(.4.若f(x,y)在点(x,y)连续,则有),(),(2yxfyxyxF=∂∂∂.n维:n维随机变量及其分布函数是在二维基础上的拓展,性质与二维类似.边缘分布:F x(x),F y(y)依次称为二维随机变量(X,Y)关于X和Y的边缘分布函数,F X(x)=F(x,∞),F Y(y)=F(∞,y).离散型:*ip和j p*分别为(X,Y)关于X和Y的边缘分布律,记}{1iijjixXPpp==∑=∞=*,}{1jijijyYPpp==∑=∞=*.连续)(xfX ,)(yfY为(X,Y)关于X和Y的边缘密度函数,记型:⎰∞∞-=yy x f x f X d ),()(,⎰∞∞-=xy x f y fYd ),()(.二维正态分布:]})())((2)([)1(21exp{121),(2222212121212221σμσσμμρσμρρσπσ-+-------=y y x x y x f .记(X ,Y )~N (μ1,μ2,σ12,σ22,ρ)]2)(exp[21)(21211σμσπ--=x x f X ,∞<<∞-x .]2)(exp[21)(22222σμσπ--=y y f Y ,∞<<∞-y .离散型条件分布律: jij j j i j i p p y Y P y Y x X P y Y x X P *=======}{},{}{.*=======i ij i j i i j p p x X P y Y x X P x X y Y P }{},{}{.连续型条件分布: 条件概率密度:)(),()(y f y x f y x f Y Y X =|| 条件分布函数:x y f y x f y Y x X P y x F xY Y X d )(),(}{)(⎰∞-==≤=||| )(),()(x f y x f x y f X X Y =||y x f y x f x X y Y P x y F yX X Y d )(),(}{)(⎰∞-==≤=|||含义:当0→ε时,)|(d )|(}|{||y x F x y x f y Y y x X P Y X xY X =≈+≤<≤⎰∞-ε.均匀分布:若⎪⎩⎪⎨⎧∈=其他,0),(,1),(Gy x Ay x f ,则称(X ,Y)在G 上服从均匀分布.独立定若P {X ≤x ,Y ≤y }=P {X ≤x }P {Y ≤y },即F (x ,y )=F x (x )F y (y ),则称随机变量X 和Y 是相互独立的.义:独立条件或可等价为:连续型:f(x,y)=f x(x)f y(y);离散型:P{X=x i,Y=y j}=P{X=x i}P{Y=y j}.正态独立:对于二维正态随机变量(X,Y),X和Y相互对立的充要条件是:参数ρ=0.n维延伸:上述概念可推广至n维随机变量,要注意的是边缘函数或边缘密度也是多元(1~n-1元)的.定理:设(X1,X2,…,X m)和(Y1,Y2,…,Y n)相互独立,则X i和Y j相互独立.又若h,g是连续函数,则h(X1,X2,…,X m)和g(Y1,Y2,…,Y n)相互独立.Z=X +Y分布:若连续型(X,Y)概率密度为f(x,y),则Z=X+Y为连续型且其概率密度为⎰∞∞-+-=yyyzfzfYXd),()(或⎰∞∞-+-=xxzxfzfYXd),()(.f X和f Y的卷积公式:记⎰∞∞-+-==yyfyzfzfffYXYXYXd)()()(*⎰∞∞--=xxzfxfYXd)()(,其中除继上述条件,且X和Y相互独立,边缘密度分别为f X(x)和f Y(y).正态卷积:若X和Y相互独立且X~N(μ1,σ12),记Y~N(μ2,σ22),则对Z=X+Y有Z~N(μ1+μ2,σ12+σ22).1.上述结论可推广至n个独立正态随机变量.2.有限个独立正态随机变量的线性组合仍服从正态分布.伽马分布: 记),(~θαΓX ,0>α,0>θ.⎪⎩⎪⎨⎧>Γ=--其他,,00)(1)(1x e x x f x θαααθ,其中⎰+∞--=Γ01d )(te t t αα.若X 和Y 独立且X ~Γ(α,θ),记Y ~Γ(β,θ),则有X+Y~Γ(α+β,θ).可推广到n 个独立Γ分布变量之和.XYZ =:⎰∞∞-=xxz x f x z f X Y d ),()(,若X 和Y 相互独立,则有⎰∞∞-=xxz f x f x z f Y X X Y d )()()(.XYZ =分布: ⎰∞∞-=x xzx f x z f XY d ),(1)(,若X 和Y 相互独立,则有⎰∞∞-=x xz f x f x z f Y X XY d )()(1)(.大小分布:若X 和Y 相互独立,且有M =max{X ,Y }及N =min{X ,Y },则M 的分布函数:F max (z )=F X (z )F Y (z ),N 的分布函数:F min (z )=1-[1-F X (z )][1-F Y (z )],以上结果可推广到n 个独立随机变量的情况.第四章 随机变量的数字特征数学期望:简称期望或均值,记为E (X );离散型:kkk p x X E ∑=∞=1)(.连续型:⎰∞∞-=xx xf X E d )()(.定理: 设Y 是随机变量X 的函数:Y =g (X )(g 是连续函数). 1.若X 是离散型,且分布律为kk k p x g Y E )()(1∑=∞=. 2.若X 是连续型,概率密度为⎰∞∞-=xx f x g Y E d )()()(.P{X=x k}=p k,则:f(x),则:定理推广:设Z是随机变量X,Y的函数:Z=g(X,Y)(g是连续函数).1.离散型:分布律为P{X=x i,Y=y j}=p ij,则:ijjiijpyxgZE),()(11∑∑=∞=∞=.2.连续型:⎰⎰∞∞-∞∞-=yxyxfyxgZE dd),(),()(期望性质:设C是常数,X和Y是随机变量,则:1.E(C)=C.2.E(CX)=CE(X).3.E(X+Y)=E(X)+E(Y).4.又若X和Y相互独立的,则E(XY)=E(X)E(Y).方差:记D(X)或Var(X),D(X)=Var(X)=E{[X-E(X)]2}.标准差(均方差):记为σ(X),σ(X)= .通式:22)]([)()(XEXEXD-=.kkkpXExXD21)]([)(-∑=∞=,⎰∞∞--=xxfxExXD d)()]([)(2.标准化变量:记σμ-=xX*,其中μ=)(XE,2)(σ=XD,*X称为X的标准化变量.)(*=XE,1)(*=XD.方差性质:设C是常数,X和Y1.D(C)=0.2.D(CX)=C2D(X),D(X+C)=D(X).3.D(X+Y)=D(X)+D(Y)+2E{(X-E(X))(Y-)(xD是随机变量,则:E(Y))},若X,Y相互独立D(X+Y)=D(X)+D(Y).4.D(X)=0的充要条件是P{X=E(X)}=1.正态线性变换:若),(~2iiiNXσμ,i C是不全为0的常数,则),(~22112211iiniiininnCCNXCXCXCσμ∑∑+++==Λ.切比雪夫不等式:22}{εσεμ≤≥-XP或221}{εσεμ-≥<-XP,其中)(X E=μ,)(2XD=σ,ε为任意正数.协方差:记)]}()][({[),Cov(YEYXEXEYX--=.X与Y的相关系数:)()(),Cov(YDXDYXXY=ρ.D(X+Y)=D(X)+D(Y)+2Cov(X,Y),Cov(X,Y)=E(XY)-E(X)E(Y).性质:1.Cov(aX,bY)=ab Cov(X,Y),a,b是常数.2.Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y).系数性质:令e=E[(Y-(a+bX))2],则e取最小值时有)()1(]))([(22minYDXbaYEeXYρ-=+-=,其中)()(XEbYEa-=,)(),Cov(0XDYXb=.1.|ρXY|≤1.2.|ρXY|=1的充要条件是:存在常数a,b使P{Y=a+bX}=1.|ρXY|越大e越小X和Y线性关系越明显,当|ρXY|=1时,Y=a+bX;反之亦然,当ρXY=0时,X和Y不相关.X和Y相互对立,则X和Y不相关;但X和Y不相关,X和Y不一定相互独立.定义:k阶矩(k阶原点矩):E(X k ).n维随机变量X i的协方差矩阵:⎪⎪⎪⎪⎪⎭⎫⎝⎛=nnnnnncccccccccΛMMMΛΛ212222111211C,),Cov(jiijXXc==E{[X i-E(X i)][X j-E(X j)]}.k+l阶混合矩:E(X k Y l ).k阶中心矩:E{[X-E(X)] k }.k+l阶混合中心矩:E{[X-E(X)]k[Y-E(Y)]l}.n维正态分布:)}()(21ex p{det)2(1),,,(1T221μXCμXC---=-nnxxxfπΛ,T21T21),,,(),,,(nnxxxμμμΛΛ==μX.性质:1.n维正态随机变量(X1,X2,…,X n)的每一个分量X i (i=1,2,…,n)都是正态随机变量,反之,亦成立.2.n维随机变量(X1,X2,…,X n)服从n维正态分布的充要条件是X1,X2,…,X n的任意线性组合l1X1+l2X2+…+l n X n服从一维正态分布(其中l1,l2,…,l n不全为零).3.若(X1,X2,…,X n)服从n维正态分布,且Y1,Y2,…,Y k是X j (j=1,2,…,n)的线性函数,则(Y1,Y2,…,Y k)也服从多维正态分布.4.若(X1,X2,…,X n)服从n维正态分布,则“X i 相互独立”与“X i 两两不相关”等价.第五章大数定律及中心极限定理弱大数定理:若X1,X2,…是相互独立并服从同一分布的随机变量序列,且E(Xk)=μ,则对任意ε>0有11lim1=⎭⎬⎫⎩⎨⎧<-∑=∞→εμknknXnP或→μPX,knkXnX11=∑=.定义:Y1,Y2,…,Y n ,…是一个随机变量序列,a是一个常数.若对任意ε>0,有1}|{|lim=<-∞→εaYPnn则称序列Y1,Y2,…,Y n ,…依概率收敛于a.记aY Pn−→−伯努利大数定理:对任意ε>0有1lim=⎭⎬⎫⎩⎨⎧<-∞→εpnfP An或lim=⎭⎬⎫⎩⎨⎧≥-∞→εpnfP An.其中f A是n次独立重复实验中事件A发生的次数,p是事件A在每次试验中发生的概率.中心定理设X1,X2,…,Xn,…相互独立σμnnXknk)(1-∑=N(0,1)或nXσμ-~N(0,1)或X~N(μ,n2σ).~近似的极限定理一:并服从同一分布,且E(Xk)=μ,D(Xk)=σ2 >0,则n→∞时有定理二:设X1,X2,…,Xn,…相互独立且E(X k)=μ k,D(X k)=σk2 >0,若存在δ>0使n→∞时,}|{|1212→-∑+=+δδμkknknXEB,则nknkknkBX)(11μ==∑-∑~N(0,1),记212knknBσ=∑=.定理三:设),(~p n bnη,则n→∞时,Npnpnpn~)1()(--η(0,1),knknX1=∑=η.第六章样本及抽样分布定义:总体:全部值;个体:一个值;容量:个体数;有限总体:容量有限;无限总体:容量无限.定义:样本:X1,X2,…,X n 相互独立并服从同一分布F的随机变量,称从F得到的容量为n的简单随机样本.频率直方图:图形:以横坐标小区间为横坐标:数据区间(大区间下限比最小数据值稍小,上限比最大数据值稍大;小区间:均分大区间,组图形特点:外轮廓接近宽,纵坐标为高的跨越横轴的几个小矩形.距Δ=大区间/小区间个数;小区间界限:精度比数据高一位).于总体的概率密度曲线.纵坐标:频率/组距(总长度:<1/Δ;小区间长度:频率/组距).定义:样本p分位数:记x p,有1.样本x i中有np个值≤x p.2.样本中有n(1-p)个值≥x p.箱线图:x p选择:记⎪⎩⎪⎨⎧∈+∉=++NnpxxNnpxxnpnpnpp当,当,][211)()()1]([.分位数x0.5,记为Q2或M,称为样本中位数.分位数x0.25,记为Q1,称为第一四分位数.分位数x0.75,记为Q3,称为第三四分位数.图形:图形特点:M为数据中心,区间[min,Q1],[Q1,M],[M,Q3],[Q3,max]数据个数各占1/4,区间越短数据密集.四分位数间距:记IQR=Q3-Q1;若数据X<Q1-1.5IQR 或X>Q3+1.5IQR,就认为X是疑似异常值.抽样分布:样本平均值:iniXnX11=∑=样本方差:)(11)(11221212XnXnXXnSiniini-∑-=-∑-===样本标准2SS=样本k阶kinikXnA11=∑=,k≥1样本k阶kinikXXnB)(11-∑==,k≥2min Q1 M Q3 max差: (原点)矩:中心矩:经验分布函数: )(1)(x S nx F n =,∞<<∞-x .)(x S 表示F 的一个样本X 1,X 2,…,X n 中不大于x 的随机变量的个数.自由度为n 的χ2分布: 记χ2~χ2(n ),222212nX X X +++=Λχ,其中X 1,X 2,…,X n 是来自总体N (0,1)的样本.E (χ2 )=n ,D (χ2 )=2n . χ12+χ22~χ2(n 1+n 2). ⎪⎩⎪⎨⎧>Γ=--其他,,00)2(21)(2122y e x n y f y n n .χ2分布的分位点: 对于0<α<1,满足αχχαχα==>⎰∞y y f n P n )(222d )()}({,则称)(2n αχ为)(2n χ的上α分位点.当n 充分大时(n >40),22)12(21)(-+≈n z n ααχ,其中αz 是标准正态分布的上α分位点.自由度为n 的t 分布:记t ~t (n ),n Y Xt /=, 其中X~N (0,1),Y~χ2(n ),X ,Y 相互独立.2)1(2)1(]2[]2)1([)(+-+Γ+Γ=n n t n n n t h π h (t )图形关于t =0对称;当n充分大时,t 分布近似于N (0,1)分布.t 分布对于0<α<1,满足ααα==>⎰∞t t h n t t P n t )(d )()}({,则称)(n tα为)(n t 的上α的分位点:分位点.由h(t)对称性可知t1-α(n)=-tα(n).当n>45时,tα(n)≈zα,zα是标准正态分布的上α分位点.自由度为(n1,n2)的F分布:记F~F(n1,n2),21nVnUF=,其中U~χ2(n1),V~χ2(n2),X,Y相互独立.1/F~F(n2,n1)⎪⎩⎪⎨⎧>+ΓΓ+Γ=+-其他,,]1)[2()2()](2)([)(2)(21211)2(221212111xnynnnynnnny nnnnψF分布的分位点:对于0<α<1,满足αψαα==>⎰∞yynnFFPnnF),(2121d)()},({,则称),(21n nFα为),(21nnF的上α分位点.重要性质:F1-α(n1,n2)=1/Fα(n1,n2).定理一:设X1,X2,…,X n 是来自N(μ,σ2)的样本,则有),(~2nNXσμ,其中X是样本均值.定理二:设X1,X2,…,X n 是来自N(μ,σ2)的样本,样本均值和样本方差分别记为X,2S,则有1.)1(~)1(222--nSnχσ;2.X与2S相互独立.定理三:设X1,X2,…,X n 是来自N(μ,σ2)的样本,样本均值和样本方差分别记为X,2S,则有)1(~--ntnSXμ.定理设X1,X2,…,X n1与X,Y,21S,22S,则有四: Y 1,Y 2,…,Y n 2分别是来自N (μ1,σ12)和N (μ2,σ22)的样本,且相互独立.设这两个样本的样本均值和样本方差分别记为 1.)1,1(~2122212221--n n F S Sσσ.2.当σ12=σ22=σ2时,)2(~)()(21121121-++-----n n t nn S Y X w μμ,其中2)1()1(212222112-+-+-=n n S n S n S w,2wwS S=.第七章 参数估计定义:估计量:),,,(ˆ21nX X X Λθ,估计值:),,,(ˆ21nx x x Λθ,统称为估计.矩估计法: 令)(llX E =μ=li n i l X n A 11=∑=(kl ,,2,1Λ=)(k 为未知数个数)联立方程组,求出估计θˆ. 设总体X均值μ及方差σ2都存在,则有X A ==1ˆμ,212212122)(11ˆX X n X X n A A i n i i n i -∑=-∑=-===σ.最大似然估计法:似然函数:离散:);()(1θθini x p L =∏=或连续:);()(1θθini x f L =∏=,)(θL 化简可去掉与θ无关的因式项. θˆ即为)(θL 最大值,可由方程0)(d d=θθL 或0)(ln d d=θθL 求得.当多个未知参数θ1,θ1,…,θk时:可由方程组0d d=L iθ或0ln d d=L iθ(k i ,,2,1Λ=)求得.最大似然估计的不变性:若u=u(θ)有单值反函数θ=θ(u),则有)ˆ(ˆθuu=,其中θˆ为最大似然估计.截尾样本取样:定时截尾样本:抽样n件产品,固定时间段t0内记录产品个体失效时间(0≤t1≤t2≤…≤t m≤t0)和失效产品数量.定数截尾样本:抽样n件产品,固定失效产品数量数量m记录产品个体失效时间(0≤t1≤t2≤…≤t m).结尾样本最大似然估计:定数截尾样本:设产品寿命服从指数分布X~e(θ),θ即产品平均寿命.产品t i时失效概率P{t=t i}≈f(t i)d t i,寿命超过t m的概率θm tmettF-=>}{,则)(}){()(1imimnmmntPttFCL=-∏>=θ,化简得)(1)(m t sm eL---=θθθ,由0)(lndd=θθL得:m t s m)(ˆ=θ,其中s(t m)=t1+t2+…+t m+(n-m)t m,称为实验总时间.定时截尾样本:与定数结尾样本讨论类似有s(t0)=t1+t2+…+t m+(n-m)t0,)(01)(t sm eL---=θθθ,m t s)(ˆ0=θ,.无偏性:估计量),,,(ˆ21nXXXΛθ的)ˆ(θE存在且θθ=)ˆ(E,则称θˆ是θ的无偏估计量.有效性:),,,(ˆ211nXXXΛθ与),,,(ˆ212nXXXΛθ都是θ的无偏估计量,若)ˆ()ˆ(21θθDD≤,则1ˆθ较2ˆθ有效.相合性:设),,,(ˆ21nXXXΛθθ的估计量,若对于任意0>ε有1}|ˆ{|lim=<-∞→εθθPn,则称θˆ是θ的相合估计量.置信区间:αθθθ-≥<<1)},,,(),,,({2121nnXXXXXXPΛΛ,θ和θ分别为置信下限和置信上限,则),(θθ是θ的一个置信水平为α-1置信区间,α-1称为置信水平,10<<α.正态设X1,枢轴量W W分布a,b不等其中样本置信区间:X2,…,X n是来自总体X~N(μ,σ2)的样本,则有μ的置信区间:式置信水平置信区间)1,0(~NnXσμ-⇒ασμα-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<-12znXP⇒)(2ασznX±zα/2为上α分位点θ置信区间的求解:1.先求枢轴量:即函数W=W(X1,X2,…,X n;θ),且函数W的分布不依赖未知参数.如上讨论标注2.对于给定置信水平α-1,定出两常数a,b使P{a<W<b}=α-1,从而得到置信区间.(0-1)分布p 的区间估计:样本容量n>50时,⇒--∞→)1,0(~)1()(lim NpnpnpXnn{}⇒-≈<--αα1)1()(2zpnpnpXnP)2()(222222<++-+XnpzXnpznαα⇒若令22αzna+=,)2(22αzXnb+-=,2X nc=,则有置信区间(aacbb2)4(2---,aacbb2)4(2-+-).单侧置信区间:若αθθ-≥>1}{P或αθθ-≥<1}{P,称(θ,∞)或(∞-,θ)是θ的置信水平为α-1的单侧置信区间.正态总体均值、方差的置信区间与单侧置信限(置信水平为α-1)待估其他枢轴量W的分布置信区间单侧置信限一个正态总体μσ2已知)1,0(~NnXZσμ-=)(2ασznX±ασμznX+=,ασμznX-=μσ2未知)1(~--=ntnSXtμ⎪⎭⎫⎝⎛±2αtnSXαμtnSX+=,αμtnSX-=σ2μ未知)1(~)1(2222--=nSnχσχ⎪⎪⎭⎫⎝⎛---2212222)1(,)1(ααχχSnSn2122)1(αχσ--=Sn,222)1(αχσSn-=两个正态总体μ1-μ2σ12,σ22已知)1,0(~)(22212121NnnYXZσσμμ+---=⎪⎪⎭⎫⎝⎛+±-2221212nnzYXσσα2221212122212121nnzYXnnzYXσσμμσσμμαα+--=-++-=-μ1-μ2σ12=σ22=σ2未知)2(~)()(21121121-++---=--nntnnSYXtwμμ2)1()1(212222112-+-+-=nnSnSnSw()12112--+±-nnStYXwα2wwSS=121121121121----+--=-++-=-nnStYXnnStYXwwααμμμμσ12/σ22μ1,μ2未知)1,1(~2122212221--=nnFSSFσσ⎪⎪⎭⎫⎝⎛-212221222211,1ααFSSFSSασσ-=1222122211FSS,ασσFSS122212221=单个总体X ~N (μ,σ2),两个总体X ~N (μ1,σ12),Y ~N (μ2,σ22).第八章 假设实验定义: H 0:原假设或零假设,为理想结果假设;H 1:备择假设,原假设被拒绝后可供选择的假设.第Ⅰ类错误:H 0实际为真时,却拒绝H 0.第Ⅱ类错误:H 0实际为假时,却接受H 0.显著性检验:只对犯第第Ⅰ类错误的概率加以控制,而不考虑第Ⅱ类错误的概率的检验.P {当H 0为真拒绝H 0}≤α,α称为显著水平.拒绝域:取值拒绝H 0.临界点:拒绝域边界.双边假设检验:H 0:θ=θ0,H 1:θ≠θ0.右边检验:H 0:θ≤θ0,H 1:θ>θ0.左边检验:H 0:θ≥θ0,H 1:θ<θ0. 正态总体均值、方差的检验法(显著性水平为α)原假设H 0 备择假设H 1 检验统计量 拒绝域 1 σ2已知 μ≤μ0 μ>μ0 nX Z σμ0-=z ≥z αμ≥μ0 μ<μ0 z ≤-z α μ=μ0μ≠μ0 |z |≥z α/2 2 σ2未知 μ≤μ0 μ>μ0 nS X t 0μ-=t ≥t α(n -1)μ≥μ0μ<μ0 t ≤-t α(n -1) μ=μ0 μ≠μ0 |t |≥t α/2(n -1) 3σ1,σ2 已μ1-μ1-222121n n Y X Z σσδ+--=z ≥z α μ1-μ1-z ≤-z α μ1-μ1-|z |≥z α/2 4 σ12μ1-μ1-1211--+--=nn S Y X t w δt ≥t α(n 1+n 2-2)=σ22μ1-μ1-2)1()1(212222112-+-+-=n n S n S n S wt ≤-t α(n 1+n 2-2) μ1-μ1-|t |≥t α/2(n 1+n 2-2) 5 μ未知 σ2≤σ02 σ2>σ02 2022)1(σχSn -=χ2≥χα2(n -1) σ2≥σ02 σ2<σ02χ2≤χ21-α(n -1) σ2=σ02 σ2≠σ02χ2≥χ2α/2(n -1)或χ2≤χ21-α/2(n -1) 6 μ1,μ2 未知 σ12≤σ22σ12>σ22 2221S S F =F ≥F α(n 1-1,n 2-1) σ12≥σ22σ12<σ22F ≤F 1-α(n 1-1,n 2-1)σ12=σ22σ12≠σ22F ≥F α/2(n 1-1,n 2-1)或F ≤F 1-α/2(n 1-1,n 2-1) 7 成对 数据μD ≤0 μD >0 nS D t D 0-=t ≥t α(n -1)μD ≥0μD <0 t ≤-t α(n -1) μD =0μD ≠0|t |≥t α-2(n -1)检验方法选择: 主要是逐对比较法(成对数据)跟两个正态总体均值差的检验的区别,如上表即7跟3、4的区别,成对数据指两样本X 和Y 之间存在一一对应关系,而3和4一般指X 和Y 相互对立,但针对同一实体.关系: 置信区间与假设检验之间的关系:未知参数的置信水平为1-α的置信区间与显著水平为α的接受域相同.定义:施行特征函数(OC函数):β(θ)=Pθ(接受H0).功效函数:1-β(θ).功效:当θ*∈H1时,1-β(θ*)的值.。

概率论及数理统计:第四章 随机变量的数字特征


E(X k) E(| X |k )
— X 的 k 阶原点矩 — X 的 k 阶绝对原点矩
E(( X E( X ))k ) — X 的 k 阶中心矩
E(( X E( X ))2 ) D( X )
— X 的 方差
E( X kY l )
Ch4-12
— X ,Y 的 k + l 阶混合原点矩
E ( X E( X ))k (Y E(Y ))l
B(n,p)
P()
几何分布
P( X 1) p
P( X 0) 1 p
p
P(X
k)
C
k n
pk (1
p)nk
np
k 0,1, 2, , n
ke
P(X k)
k!
k 0,1, 2,
P( X k ) p(1 p)k1
1
0 p 1 k 0,1, 2,
p
分布 区间(a,b)上的 均匀分布
Ch4-27
例 将 4 个球随机地放入 4 个盒子中,每盒容纳 的球数无限,求空着的盒子数的数学期望.
解一 设 X 为空着的盒子数,则 X 的概率分布为
X0 1
P
4! C41C
1 3
P42
44
44
2
3
C
2 4
(C
2 4
C21C43
)
C41
44
44
E( X ) 81 64
解二 再引入 X i ,i = 1,2,3,4
注:逆命题不成立,即 E (X Y ) = E (X )E (Y ) X,Y 不一定 相互独立, 反例有兴趣见后续
若存在常数 a 使 P(X a) = 1, 则 E (X ) a ;

概率论与数理统计第4章 随机变量的数字特征与极限定理

4.2.1 随机变量方差的概念 数学期望是随机变量重要的数字特征.但是,在 刻画随机变量的性质时,仅有数学期望是不够的.例如, 有两批钢筋,每批各10根,它们的抗拉强度指数如下:
25
定义4.3 设X是随机变量,若E[X-E(X)]2存 在,则称它为X的方差,记为D(X),即
由定义4.2,随机变量X的方差反映了X的可能取值 与其数学期望的平均偏离程度.若D(X)较小,则X的 取值比较集中,否则,X的取值比较分散.因此,方差 D(X)是刻画X取值离散程度的一个量.
3
定义4.1 设离散型随机变量X的分布律为
4
5
6
7
8
9
4.1.2 几个常用分布的数学期望 1.0—1分布 设随机变量X服从以p为参数的(0—1)分布,则X 的数学期望为
2.二项分布 设随机变量X~B(n,p),则X的数学期望为
10
3.泊松分布 设随机变量X~P(λ)分布,则X的数学期望为
41
Hale Waihona Puke 424.3 协方差、相关系数及矩
4.3.1 协方差 对于二维随机变量(X,Y),除了分量X,Y的数 字特征外,还需要找出能体现各分量之间的联系的数字 特征.
43
44
4.3.2 相关系数 定义4.5 设(X,Y)为二维随机变量,cov (X,Y),D(X),D(X)均存在,且D(X)>0,D(X) >0,称
15
16
17
定理4.2 设(X,Y)是二维随机变量,z=g(x,y) 是一个连续函数. (1)如果(X,Y)为离散型随机变量,其联合分布 律为
18
19
20
4.1.4 数学期望的性质 数学期望有如下常用性质(以下的讨论中,假设所 遇到的数学期望均存在):

《概率论与数理统计》课件 第七章 随机变量的数字特征


i 1,2, , 如果 xi pi , 则称 i 1 E( X ) xi pi 为随机变量X的数学期望; i 1
或称为该分布的数学期望,简称期望或均值.
(2)设连续随机变量X的密度函数为p( x),
如果
+
x p( x)dx ,
则称
-
E( X ) xp( x)dx 为随机变量X的数学期望.
5
例2.求二项分布B(n, p)的数学期望.
P(X
k)
n!
k!n
k !
pk
(1
p)nk ,k
1, 2,
, n.
n
解:EX kP{ X k}
k0
n
k
k0
n!
k!n
k !
pk
(1
p)nk
n
np
k 1
k
n 1! 1!n
pk1
k!
(1
p)nk
np[ p (1 p)]n1 np.
特别地,若X服从0 1分布,则EX p.
6
例3. 求泊松分布P( )的数学期望.
注:P( X k) k e , k 1, 2, .
k!
解:EX k k e e
k1
e
k1
k0 k !
k1 k 1 !
k1 k 1 !
ee
e x 1 x 1 x2 1 xn [这里,x ]
当 a 450时,平均收益EY 最大.
28
第二节 方差与标准差
29
引例
比较随机变量X、Y 的期望
X3 4 5 Y1 4 7 P 0.1 0.8 0.1 P 0.4 0.2 0.4
01 2 3 4 5 67

考研数学概率与数理统计考试内容总结3篇

考研数学概率与数理统计考试内容总结3篇考研数学概率与数理统计考试内容总结3篇在进行考研的时候,数学的概率与数理统计考试内容一直是考生们十分关注的问题,下面就让小编给大家带来考研数学概率与数理统计考试内容,希望大家喜欢!下面就和小编一起来看看吧。

考研数学概率与数理统计考试内容篇1概率论与数理统计是考研数学一和数学三的必考内容,数学二的考生不考。

这部分的内容相对于高等数学而言算是较简单的部分,与线性代数一样都是考生必须要抓住的地方。

接下来跨考教育数学教研室吴方方老师就为考生归纳总结概率论与数理统计的考点,希望对考生复习有所帮助。

概率统计的考点每年都差不多,没什么大的变化。

从历年的考研真题来看,概率统计这部分的内容考查单一知识点比较少,即使是填空题和选择题都是这样。

大部分的考题都是考查考生的理解能力和综合应用能力,因此要求我们考生要能够灵活地应用所学的知识建立正确的概率模型。

要能够熟练的应用高等数学里的知识来解决我们概率统计上的问题,比如定积分和二重积分是我们同学们要必须掌握的住的知识,其在概率统计中一维和二维随机变量求概率都能用的上。

概率统计第一章的古典概型和几何概型是大部分考生所头疼的,其中古典概型更是让很多同学摸不着头脑,其实古典概型考试大都是以小题形式出现的,它并不是考试的重点,但确实是考试的难点。

而几何概型就是一个事件发生的概率等于这个事件的度量与整个样本空间度量的比,这个度量可以是长度、面积、体积。

相对于古典概型,几何概型是重要的。

接下来,就是随机变量的内容了。

我们主要考的是离散和连续两种随机变量,一维随机变量和二维随机变量主要考点包括:分布函数,概率密度,分布律,联合分布函数,联合概率密度,联合分布律,边缘分布函数,边缘概率密度,边缘分布律,条件分布律,条件概率密度,以及一维和二维随机变量的函数的分布。

其中随机变量函数的分布是考试的重点,一般是与第四章数字特征(期望、方差、协方差以及相关系数)结合来考大题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考研数学概率论与数理统计基础阶段知识点之数字特征(二)
万学教育 海文考研 考研教学与研究中心 吴娜
在考研数学概率论与数理统计基础阶段知识点之数字特征(一)中讲解了一维离散性随机变量的数学期望的定义及其算法,接下来咱们看一下关于一维离散型随机变量函数的数学期望。

一维离散型随机变量函数的期望
若X 是离散型随机变量,其概率分布为{},1,2,
i i P X x p i ===,()g x 为连续函数,
()Y g X =,若级数()1
i i i g x p ∞
=∑绝对收敛,则[]()E g X 存在,且[]1
()()i i i E g X g x p ∞
==∑.
对于一维离散型随机变量函数的期望我们需要注意:
①公式当中的()i i g x p ,是随机变量在i x 点的函数值与对应概率的乘积.
②当我们求E
Y ()时,有两种方法:第一,可先计算Y 的概率分布,计算时要将()Y g X =对应重复取值取一次,对应概率相加;再利用期望公式计算E
Y ().第二,不必算出Y 的概率分布,而只需要利用X 的概率分布就可以了. 即其概率分布为:
例题讲解:已知随机变量的概率分布如下,
求2
Y X =的数学期望.
本题的选题依据是通过例题熟记计算一维离散型随机变量函数的期望方法与步骤,可以用两种方法。

【解析】方法一:利用表格法,先求概率分布,再计算期望.
P
13 14 14 16
故Y
从而71116126E
Y ⋅+⋅+⋅=1()04=13
4
. 方法二:直接计算期望
根据随机变量函数的数学期望的定义[]1
()()i
i
i EY E g X g x p

===
∑,我们可以得到
4
2
21
()i i i E Y E X x p =-==∑()=22
221
111(1)0143446-+++=134
. 这就是一维离散型随机变量函数的数学期望的计算方法,同学们可以好好理解一下这两
种做法,看你自己习惯哪种做法,记住一种方法即可.当然咱们在接下来还要讲解二维离散型随机变量函数的数学期望.。

相关文档
最新文档