考研数学备考:概率论各章节知识点梳理.doc

合集下载

概率论知识点总结精编WORD版

概率论知识点总结精编WORD版

概率论知识点总结精编W O R D版IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】概率论知识点总结第一章 随机事件及其概率第一节 基本概念随机实验:将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用 E 表示。

随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。

不可能事件:在试验中不可能出现的事情,记为Ф。

必然事件:在试验中必然出现的事情,记为Ω。

样本点:随机试验的每个基本结果称为样本点,记作ω.样本空间:所有样本点组成的集合称为样本空间. 样本空间用Ω表示.一个随机事件就是样本空间的一个子集。

基本事件—单点集,复合事件—多点集 一个随机事件发生,当且仅当该事件所包含的一个样本点出现。

事件的关系与运算(就是集合的关系和运算)包含关系:若事件 A 发生必然导致事件B 发生,则称B 包含A ,记为A B ⊇或B A ⊆。

相等关系:若A B ⊇且B A ⊆,则称事件A 与事件B 相等,记为A =B 。

事件的和:“事件A与事件B至少有一个发生”是一事件,称此事件为事件A与事件B 的和事件。

记为 A∪B。

事件的积:称事件“事件A与事件B都发生”为A与B的积事件,记为A∩ B或AB。

事件的差:称事件“事件A发生而事件B不发生”为事件A与事件B的差事件,记为 A-B。

用交并补可以表示为B-。

A=BA互斥事件:如果A,B两事件不能同时发生,即AB=Φ,则称事件A与事件B是互不相容事件或互斥事件。

互斥时BA⋃可记为A+B。

对立事件:称事件“A不发生”为事件A的对立事件(逆事件),记为A。

对立事件的性质:ΩAA,。

B⋂B==⋃Φ事件运算律:设A,B,C为事件,则有(1)交换律:A∪B=B∪A,AB=BA(2)结合律:A∪(B∪C)=(A∪B)∪C=A∪B∪C A(BC)=(AB)C=ABC(3)分配律:A∪(B∩C)=(A∪B)∩(A∪C) A(B∪C)=(A∩B)∪(A∩C)= AB∪AC(4)对偶律(摩根律):BA⋃BA⋂=BA⋃BA⋂=第二节事件的概率概率的公理化体系:(1)非负性:P(A)≥0;(2)规范性:P(Ω)=1(3)可数可加性: ⋃⋃⋃⋃n A A A 21两两不相容时概率的性质:(1)P(Φ)=0(2)有限可加性:n A A A ⋃⋃⋃ 21两两不相容时当AB=Φ时P(A ∪B)=P(A)+P(B)(3))(1)(A P A P -=(4)P(A -B)=P(A)-P(AB)(5)P (A ∪B )=P(A)+P(B)-P(AB)第三节 古典概率模型1、设试验E 是古典概型, 其样本空间Ω由n 个样本点组成,事件A 由k 个样本点组成.则定义事件A 的概率为nk A P =)( 2、几何概率:设事件A 是Ω的某个区域,它的面积为 μ(A),则向区域Ω上随机投掷一点,该点落在区域 A 的概率为)()()(Ω=μμA A P假如样本空间Ω可用一线段,或空间中某个区域表示,则事件A 的概率仍可用上式确定,只不过把μ理解为长度或体积即可.第四节 条件概率条件概率:在事件B 发生的条件下,事件A 发生的概率称为条件概率,记作 P(A|B). 乘法公式:P(AB)=P(B)P(A|B)=P(A)P(B|A)全概率公式:设n A A A ,,,21 是一个完备事件组,则P(B)=∑P(i A )P(B|i A )贝叶斯公式:设n A A A ,,,21 是一个完备事件组,则第五节 事件的独立性两个事件的相互独立:若两事件A 、B 满足P(AB)= P(A) P(B),则称A 、B 独立,或称A 、B 相互独立.三个事件的相互独立:对于三个事件A 、B 、C ,若P(AB)= P(A) P(B),P(AC)= P(A)P(C),P(BC)= P(B) P(C),P(ABC)= P(A) P(B)P(C),则称A 、B 、C 相互独立三个事件的两两独立:对于三个事件A 、B 、C ,若P(AB)= P(A) P(B),P(AC)= P(A)P(C),P(BC)= P(B) P(C),则称A 、B 、C 两两独立独立的性质:若A 与B 相互独立,则A 与B ,A 与B ,A 与B 均相互独立总结:1.条件概率是概率论中的重要概念,其与独立性有密切的关系,在不具有独立性的场合,它将扮演主要的角色。

考研数学概率论备考重点公式与解题思路整理

考研数学概率论备考重点公式与解题思路整理

考研数学概率论备考重点公式与解题思路整理概率论是考研数学中的一大重点,掌握好概率论的基本公式和解题思路对于备考考研数学非常重要。

本文将对考研数学概率论的备考重点公式和解题思路进行整理,帮助考生更好地备考概率论。

一、基本概率公式1.1 事件的概率公式对于一个随机试验,其所有样本点组成的样本空间为S,一个事件A是样本空间S的一个子集。

那么,事件A发生的概率P(A)定义为: P(A) = n(A) / n(S)其中,n(A)表示事件A包含的样本点的个数,n(S)表示样本空间S 中所有样本点的个数。

1.2 事件的互斥与独立若两个事件A和B满足以下条件之一,则称事件A和事件B是互斥的:- 事件A和事件B不可能同时发生,即A∩B = ∅- 事件A和事件B的概率相加等于1,即P(A∪B) = P(A) + P(B)若两个事件A和B满足以下条件之一,则称事件A和事件B是独立的:- 事件A和事件B发生的概率等于事件A发生的概率乘以事件B发生的概率,即P(A∩B) = P(A) * P(B)二、常用的概率公式2.1 全概率公式对于一组互斥事件A₁,A₂,...,An,且它们的并集为样本空间S,那么对于任意一个事件B,可以得到全概率公式:P(B) = P(A₁) * P(B|A₁) + P(A₂) * P(B|A₂) + ... + P(An) * P(B|An)其中,P(Ai)表示事件Ai发生的概率,P(B|Ai)表示在事件Ai发生的条件下事件B发生的概率。

2.2 贝叶斯公式对于一组互斥事件A₁,A₂,...,An,且它们的并集为样本空间S,那么对于任意一个事件B,可以得到贝叶斯公式:P(Ai|B) = P(Ai) * P(B|Ai) / (P(A₁) * P(B|A₁) + P(A₂) *P(B|A₂) + ... + P(An) * P(B|An))其中,P(Ai|B)表示在事件B发生的条件下事件Ai发生的概率。

概率论知识点梳理

概率论知识点梳理

第一章:随机事件及其概率这一章的内容基本上属于高中学过的知识,除了第三节的全概率公式和Bayes公式。

但这两个公式只是把条件概率的计算换了一种形式。

一、随机事件及运算二、概率及其运算三、条件概率四、事件的独立性第二章:随机变量这一章将随机事件抽象成数字变量,并分为离散和连续两种进行研究。

最后用函数来表达两种变量的概率分布,再推广到多维变量。

其中运用了一些微积分知识。

一、离散型随机变量介绍离散型随机变量的概念和性质,介绍几种常见的离散性随机变量如:0-1分布、二项分布、泊松分布二、随机变量的分布函数将变量值及其概率用函数联系起来。

其实就是在不同的区间上变量值的概率。

但因为离散的关系,所以更像是数列而不是函数。

三、连续型随机变量变量值有无穷多的可能,所以变量的分布函数在各个区间上是连续的。

它和离散型随机变量的关系有些类似于函数和数列的关系。

四、一维随机变量的函数分布当变量和概率是一一对应时的函数分布,有归一、单调不减等性质。

概率密度是概率分布的导数,概率分布式概率密度的积分。

涉及到已知变量与另外一个变量具有函数关系,求另一个变量概率函数分布问题。

五、二维随机变量的联合分布当变量是成对出现时,概率的函数分布,同样有归一等性质。

变量的划分从各区间变为各区域。

涉及到二重积分、全微分等知识。

六、多维随机变量及其独立性其实就是二维的推广,此处将随机事件的独立性抽象为随机变量的独立性。

七、条件分布还是将随机事件的条件分布抽象化,用数字和符号来表示。

顺便将条件分布推广到多维随机变量。

八、多维随机变量函数的分布第三章:随机变量的数字特征一、随机变量的数学期望和高中所学的期望是一个东西,类似于加权平均分,不过现在要通过概率密度和概率分布去求。

二、方差体现变量的稳定性,和高中所学相同,不过同样需要用新的概念和知识去求解。

三、协方差和相关系数协方差是一个新的概念,用来判断两个随机变量是否相关。

相关系数是用来衡量两个变量之间的相关程度的量。

考研数学备考:概率论各章节知识点梳理

考研数学备考:概率论各章节知识点梳理

考研数学备考:概率论各章节知识点梳理1500字概率论作为考研数学中的一部分,是考生备考的重点之一。

下面将对概率论的各章节知识点进行梳理,帮助考生进行复习备考。

1. 随机事件与概率概率论的基本概念是随机事件和概率。

随机事件是随机现象的结果,概率是事件发生的可能性大小。

在这一章节中,主要涉及到随机事件的定义、事件的性质、事件间的关系等内容。

2. 随机变量及其分布随机变量是随机现象的数值描述,它分为离散随机变量和连续随机变量。

这一章节主要涉及随机变量的定义、分布函数、概率密度函数等内容。

同时还包括常见的离散随机变量和连续随机变量的概率分布,如二项分布、泊松分布、正态分布等。

3. 随机事件的数学描述随机事件可以用随机变量的取值区间来表示,也可以用事件的概率来描述。

这一章节主要包括随机事件的和、差、积等概念,以及离散随机变量和连续随机变量的概率函数之间的关系。

4. 多维随机变量及其分布多维随机变量是指由多个随机变量组成的向量。

这一章节主要包括多维随机变量的定义、联合分布、边缘分布等内容。

同时还包括多维随机变量的独立性、相关性等概念。

5. 随机变量的数字特征随机变量的数字特征包括数学期望、方差、协方差等。

这一章节主要涉及到随机变量的数学期望、方差和协方差的定义、性质以及计算方法。

6. 大数定律和中心极限定理大数定律是指随着试验次数的增加,随机事件的频率趋向于事件的概率。

中心极限定理是指当随机事件的样本量足够大时,其均值的分布接近于正态分布。

这一章节主要涉及到大数定律和中心极限定理的数学表达和推导。

7. 参数估计与假设检验参数估计是根据样本数据对总体参数进行估计,假设检验是根据样本数据对总体参数是否符合某个假设进行检验。

这一章节主要包括点估计、区间估计和假设检验的概念、方法和步骤。

8. 有序与无序排列的计数问题有序排列是指考虑元素的排列顺序,无序排列是指不考虑元素的排列顺序。

这一章节主要涉及到有序与无序排列的计数问题,如排列、组合、多重集合等。

考研数学概率论重要章节知识点总结

考研数学概率论重要章节知识点总结

2018考研数学概率论重要章节知识点总结第一章、随机事件与概率本章需要掌握概率统计的基本概念,公式。

其核心内容是概率的基本计算,以及五大公式的熟练应用,加法公式、乘法公式、条件概率公式、全概率公式以及贝叶斯公式。

第二章、随机变量及其分布本章重点掌握分布函数的性质;离散型随机变量的分布律与分布函数及连续型随机变量的密度函数与分布函数;常见离散型及连续型随机变量的分布;一维随机变量函数的分布。

第三章、多维随机变量的分布在涉及二维离散型随机变量的题中,往往用到“先求取值、在求概率”的做点步骤。

二维连续型随机变量的相关计算,比如边缘分布、条件分布是考试的重点和难点,考生在复习时要总结出求解边缘分布、条件分布的解题步骤。

掌握用随机变量的独立性的判断的充要条件。

最后是要会计算二维随机变量简单函数的分布,包括两个离散变量的函数、两个连续变量的函数、一个离散和一个连续变量的函数、以及特殊函数的分布。

第四章、随机变量的数字特征本章的复习,首先要记住常见分布的数字特征,考试中一定会间接地用到这些结论。

另外,本章可以与数理统计的考点结合,综合后出大题,应该引起考生足够的重视。

第五章、大数定律和中心极限定理本章考查的重点是一个切比雪夫不等式,以及三个大数定律,两个中心极限定理的条件和结论,考试需要记住。

第六章、数理统计的基本概念重点在于“三大分布、八个定理”以及计算统计量的数字特征。

第七章、参数估计本章的重点是矩估计和最大似然估计,经常以解答题的形式进行考查。

对于数一来说,有时还会要求验证估计量的无偏性,这是和数字特征相结合。

区间估计和假设检验只有数一的同学要求,考题中较少涉及到。

考生要对每章的出题重点做到了如指掌,加以题目训练,相信会有好的成绩!。

(完整word版)考研数学一概率论知识点概要

(完整word版)考研数学一概率论知识点概要

本人考研整理的数学概率论知识点,word 版,可编辑、添加、打印。

祝大家学有所得。

第一章随机事件概率随机试验:满足以下三个条件的试验:(1)可重复;(2)知道所有可能;(3)结果不可预知。

样本点:每一个可能的结果叫做一个样本点。

样本空间:全体样本点的集合,记为Ω。

随机事件:随机试验中每一个可能出现的结果,叫做随机事件。

基本事件:试验中不可再分的事件。

不可能事件:不可能发生的事件。

必然事件:必定要发生的事件。

复合事件:由两个或两个以上的事件构成的事件。

事件的关系与运算:事件的关系定义文氏图A B⊂:包含关系:事件B发生必然导致事件A发生,则称事件A包含事件B。

事件相等:A=B 事件A,B 相互包含,就称事件A,B相等。

互斥事件:AB=∅不可能同时发生的事件对立事件:若AB=∅且=0A B,称事件A,B对立事件。

两者之一必然发生,但又不可能同时发生的事件。

事件的并:A B事件A,B中至少有一个发生,称事件A B发生。

事件的差:A-B 事件A发生且B不发生,事件的交:A B AB=事件A,B同时发生,称事件AB发生。

概率:事件发生可能性大小的描述。

条件概率:设A,B 是两个基本事件,且P(A)>0,则:()()()P AB P B A P A =称为事件A 发生的条件下事件B 发生的条件概率。

事件的独立性:如果两事件A,B 满足:()()()P AB P A P B =,则称A 与B 独立。

A,B 独立 ⇔ ()()P A B P A =⇔()()P B A P B A =独立和互斥的关系:()0,()0P A P B >>时,独立一定不互斥,互斥一定不独立。

对于三个以上的事件:相互独立 ⇒ 两两独立, 两两独立退不出相互独立。

取反运算不改变事件的独立性:,A B 相互独立⇔,A B 相互独立⇔,A B 相互独立。

概率的基本性质: 非零性:0()1P A ≤≤ 归一性:()1iP A =∑:()1()1()P A B P A B P AB =-=-古典概率满足: (1),试验的样本空间的元素只有有限个; (2),每个样本点出现的可能性相等: 古典概型事件A 的计算公式:()k P A n=n---样本点数,k---事件A 包含的样本点数。

考研数学《概率论与数理统计》知识点总结

考研数学《概率论与数理统计》知识点总结

第一章概率论的基本概念第二章随机变量及其分布第三章多维随机变量及其分布第四章随机变量的数字特征第五章大数定律及中心极限定理定理三:设),(~pnbnη,则n→∞时,Npnpnpn~)1()(--η(0,1),knknX1=∑=η.第六章样本及抽样分布定义:总体:全部值;个体:一个值;容量:个体数;有限总体:容量有限;无限总体:容量无限.定义:样本:X1,X2,…,X n 相互独立并服从同一分布F的随机变量,称从F得到的容量为n的简单随机样本.频率直方图:图形:以横坐标小区间为宽,纵坐标为高的跨越横轴的几个小矩形.横坐标:数据区间(大区间下限比最小数据值稍小,上限比最大数据值稍大;小区间:均分大区间,组距Δ=大区间/小区间个数;小区间界限:精度比数据高一位).图形特点:外轮接近于总体的率密度曲线.纵坐标:频率/组距(总长度:<1/Δ;小区间长度:频率/组距).定义:样本p分位数:记x p,有1.样本x i中有np个值≤x p.2.样本中有n(1-p)个值≥x p.箱线图:x p选择:记⎪⎩⎪⎨⎧∈+∉=++NnpxxNnpxxnpnpnpp当,当,][211)()()1]([.分位数x0.5,记为Q2或M,称为样本中位数.分位数x0.25,记为Q1,称为第一四分位数.分位数x0.75,记为Q3,称为第三四分位数.第七章参数估计单个总体X~N(μ,σ),两个总体X~N(μ1,σ1),Y~N(μ2,σ2).第八章假设实验。

考研数学《概率论与数理统计》知识点总结

考研数学《概率论与数理统计》知识点总结

考研数学《概率论与数理统计》知识点总结第一章概率论的基本概念定义:随机试验E的每个结果样本点组成样本空间S,S的子集为E的随机事件,单个样本点为基本事件.事件关系:1.A⊂B,A发生必导致B发生.2.A Y B和事件,A,B至少一个发生,A Y B发生.3.A I B记AB积事件,A,B同时发生,AB发生.4.A-B差事件,A发生,B不发生,A-B发生.5.A I B=Ø,A与B互不相容(互斥),A与B不能同时发生,基本事件两两互不相容.6.A Y B=S且A I B=Ø,A与B互为逆事件或对立事件,A与B中必有且仅有一个发生,记B=ASA-=.事件运算:交换律、结合律、分配率略.德摩根律:BABA IY=,BABA YI=.概率:概率就是n趋向无穷时的频率,记P(A).概率性质: 1.P(Ø)=0.2.(有限可加性)P(A1Y A2Y…Y A n)=P(A1)+P(A2)+…+P(A n),A i互不相容.3.若A⊂B,则P(B-A)=P(B)-P(A).4.对任意事件A,有)A(1)A(PP-=.5.P(A Y B)=P(A)+P(B)-P(AB).泊松分布:记X~π(λ),!}{kekXPkλλ-==,Λ,2,1,0=k.泊松定理:!)1(limkeppCkknkknnλλ--∞→=-,其中λ=np.当20≥n,05.0≤p应用泊松定理近似效果颇佳.随机变量分布函数:}{)(xXPxF≤=,+∞<<∞-x.)()(}{1221xFxFxXxP-=≤<.连续型随机变量:⎰∞-=x ttfxF d)()(,X为连续型随机变量,)(x f为X的概率密度函数,简称概率密度.概率密度性质:1.0)(≥xf;2.1d)(=⎰+∞∞-xxf;3.⎰=-=≤<21d)()()(}{1221xxxxfxFxFxXxP;4.)()(xfxF=',f(x)在x点连续;5.P{X=a}=0.均匀分布:记X~U(a,b);⎪⎩⎪⎨⎧<<-=其它,,1)(bxaabxf;⎪⎩⎪⎨⎧≥<≤--<=bxbxaabaxaxxF,,,1)(.性质:对a≤c<c+l≤b,有abllcXcP-=+≤<}{指数分布:⎪⎩⎪⎨⎧>=-其它,,1)(xexfxθθ;⎩⎨⎧>-=-其它,,1)(xexFxθ.无记忆性:}{}{tXPsXtsXP>=>+>.正态分布:记),(~2σμNX;]2)(ex p[21)(22σμσπ--=xxf;ttxF x d]2)(ex p[21)(22⎰∞---=σμσπ.性质:1.f(x)关于x=μ对称,且P{μ-h<X≤μ}=P{μ<X≤μ+h};2.有最大值f(μ)=(σπ2)-1.标准正态分布:]2exp[21)(2xx-=πϕ;⎰∞--=Φx ttx d]2ex p[21)(2π.即μ=0,σ=1时的正态分布X~N(0,1)性质:)(1)(xxΦ-=-Φ.正态分布的线性转化:对),(~2σμNX有)1,0(~NXZσμ-=;且有)(}{}{)(σμσμσμ-Φ=-≤-=≤=xxXPxXPxF.正态分布概率转化:)()(}{1221σμσμ-Φ--Φ=≤<xxxXxP;1)(2)()(}{-Φ=-Φ-Φ=+<<-ttttXtPσμσμ.3σ法则:P=Φ(1)-Φ(-1)=68.26%;P=Φ(2)-Φ(-2)=95.44%;P=Φ(3)-Φ(-3)=99.74%,P多落在(μ-3σ,μ+3σ)内.上ɑ分位点:对X~N(0,1),若zα满足条件P{X>zα}=α,0<α<1,则称点zα为标准正态分布的上α分位点.常用0.001 0.005 0.01 0.025 0.05 0.10上ɑ分位点:3.090 2.576 2.326 1.960 1.645 1.282Y服从自由度为1的χ2分布:设X密度函数f X(x),+∞<<∞-x,若Y=X2,则⎪⎩⎪⎨⎧≤>-+=)]()([21)(yyyfyfyyf XXY,,若设X~N(0,1),则有⎪⎩⎪⎨⎧≤>=--21)(221yyeyyfyY,,π定理:设X密度函数f X(x),设g(x)处处可导且恒有g′(x)>0(或g′(x)<0),则Y=g(X)是连续型随机变量,且有⎩⎨⎧<<'=其他,,)()]([)(βαyyhyhfyf XYh(y)是g(x)的反函数;①若+∞<<∞-x,则α=min{g(−∞),g(+∞)},β=max{g(−∞),g(+∞)};②若f X(x)在[a,b]外等于零,g(x)在[a,b]上单调,则α=min{g(a),g(b)},β=max{g(a),g(b)}.应用:Y=aX+b~N(aμ+b,(|a|σ)2).第二章多维随机变量及其分布二维随机变量的分布函数:分布函数(联合分布函数):)}(){(),(yYxXPyxF≤≤=I,记作:},{yYxXP≤≤.),(),(),(),(},{112112222121yxFyxFyxFyxFyYyxXxP+--=≤<≤<.F(x,y)性质:1.F(x,y)是x和y的不减函数,即x2>x1时,F(x2,y)≥F(x1,y);y2>y1时,F(x,y2)≥F(x,y1).2.0≤F(x,y)≤1且F(−∞,y)=0,F(x,−∞)=0,F(−∞,−∞)=0,F(+∞,+∞)=1.3.F(x+0,y)=F(x,y),F(x,y+0)=F(x,y),即F(x,y)关于x右连续,关于y也右连续.4.对于任意的(x1,y1),(x2,y2),x2>x1,y2>y1,有P{x1<X≤x2,y1<Y≤y2}≥0.离散型(X,Y):≥ijp,111=∑∑∞=∞=ijjip,ijyyxxpyxFii∑∑=≤≤),(.连续型(X,Y):vuvufyxF y x dd),(),(⎰⎰∞-∞-=.f(x,y)性质:1.f(x,y)≥0.2.1),(dd),(=∞∞=⎰⎰∞∞-∞∞-Fyxyxf.3.yxyxfGYXPG⎰⎰=∈dd),(}),{(.4.若f(x,y)在点(x,y)连续,则有),(),(2yxfyxyxF=∂∂∂.n维:n维随机变量及其分布函数是在二维基础上的拓展,性质与二维类似.边缘分布:F x(x),F y(y)依次称为二维随机变量(X,Y)关于X和Y的边缘分布函数,F X(x)=F(x,∞),F Y(y)=F(∞,y).离散型:*ip和j p*分别为(X,Y)关于X和Y的边缘分布律,记}{1iijjixXPpp==∑=∞=*,}{1jijijyYPpp==∑=∞=*.连续)(xfX ,)(yfY为(X,Y)关于X和Y的边缘密度函数,记型:⎰∞∞-=yy x f x f X d ),()(,⎰∞∞-=xy x f y fYd ),()(.二维正态分布:]})())((2)([)1(21exp{121),(2222212121212221σμσσμμρσμρρσπσ-+-------=y y x x y x f .记(X ,Y )~N (μ1,μ2,σ12,σ22,ρ)]2)(exp[21)(21211σμσπ--=x x f X ,∞<<∞-x .]2)(exp[21)(22222σμσπ--=y y f Y ,∞<<∞-y .离散型条件分布律: jij j j i j i p p y Y P y Y x X P y Y x X P *=======}{},{}{.*=======i ij i j i i j p p x X P y Y x X P x X y Y P }{},{}{.连续型条件分布: 条件概率密度:)(),()(y f y x f y x f Y Y X =|| 条件分布函数:x y f y x f y Y x X P y x F xY Y X d )(),(}{)(⎰∞-==≤=||| )(),()(x f y x f x y f X X Y =||y x f y x f x X y Y P x y F yX X Y d )(),(}{)(⎰∞-==≤=|||含义:当0→ε时,)|(d )|(}|{||y x F x y x f y Y y x X P Y X xY X =≈+≤<≤⎰∞-ε.均匀分布:若⎪⎩⎪⎨⎧∈=其他,0),(,1),(Gy x Ay x f ,则称(X ,Y)在G 上服从均匀分布.独立定若P {X ≤x ,Y ≤y }=P {X ≤x }P {Y ≤y },即F (x ,y )=F x (x )F y (y ),则称随机变量X 和Y 是相互独立的.义:独立条件或可等价为:连续型:f(x,y)=f x(x)f y(y);离散型:P{X=x i,Y=y j}=P{X=x i}P{Y=y j}.正态独立:对于二维正态随机变量(X,Y),X和Y相互对立的充要条件是:参数ρ=0.n维延伸:上述概念可推广至n维随机变量,要注意的是边缘函数或边缘密度也是多元(1~n-1元)的.定理:设(X1,X2,…,X m)和(Y1,Y2,…,Y n)相互独立,则X i和Y j相互独立.又若h,g是连续函数,则h(X1,X2,…,X m)和g(Y1,Y2,…,Y n)相互独立.Z=X +Y分布:若连续型(X,Y)概率密度为f(x,y),则Z=X+Y为连续型且其概率密度为⎰∞∞-+-=yyyzfzfYXd),()(或⎰∞∞-+-=xxzxfzfYXd),()(.f X和f Y的卷积公式:记⎰∞∞-+-==yyfyzfzfffYXYXYXd)()()(*⎰∞∞--=xxzfxfYXd)()(,其中除继上述条件,且X和Y相互独立,边缘密度分别为f X(x)和f Y(y).正态卷积:若X和Y相互独立且X~N(μ1,σ12),记Y~N(μ2,σ22),则对Z=X+Y有Z~N(μ1+μ2,σ12+σ22).1.上述结论可推广至n个独立正态随机变量.2.有限个独立正态随机变量的线性组合仍服从正态分布.伽马分布: 记),(~θαΓX ,0>α,0>θ.⎪⎩⎪⎨⎧>Γ=--其他,,00)(1)(1x e x x f x θαααθ,其中⎰+∞--=Γ01d )(te t t αα.若X 和Y 独立且X ~Γ(α,θ),记Y ~Γ(β,θ),则有X+Y~Γ(α+β,θ).可推广到n 个独立Γ分布变量之和.XYZ =:⎰∞∞-=xxz x f x z f X Y d ),()(,若X 和Y 相互独立,则有⎰∞∞-=xxz f x f x z f Y X X Y d )()()(.XYZ =分布: ⎰∞∞-=x xzx f x z f XY d ),(1)(,若X 和Y 相互独立,则有⎰∞∞-=x xz f x f x z f Y X XY d )()(1)(.大小分布:若X 和Y 相互独立,且有M =max{X ,Y }及N =min{X ,Y },则M 的分布函数:F max (z )=F X (z )F Y (z ),N 的分布函数:F min (z )=1-[1-F X (z )][1-F Y (z )],以上结果可推广到n 个独立随机变量的情况.第四章 随机变量的数字特征数学期望:简称期望或均值,记为E (X );离散型:kkk p x X E ∑=∞=1)(.连续型:⎰∞∞-=xx xf X E d )()(.定理: 设Y 是随机变量X 的函数:Y =g (X )(g 是连续函数). 1.若X 是离散型,且分布律为kk k p x g Y E )()(1∑=∞=. 2.若X 是连续型,概率密度为⎰∞∞-=xx f x g Y E d )()()(.P{X=x k}=p k,则:f(x),则:定理推广:设Z是随机变量X,Y的函数:Z=g(X,Y)(g是连续函数).1.离散型:分布律为P{X=x i,Y=y j}=p ij,则:ijjiijpyxgZE),()(11∑∑=∞=∞=.2.连续型:⎰⎰∞∞-∞∞-=yxyxfyxgZE dd),(),()(期望性质:设C是常数,X和Y是随机变量,则:1.E(C)=C.2.E(CX)=CE(X).3.E(X+Y)=E(X)+E(Y).4.又若X和Y相互独立的,则E(XY)=E(X)E(Y).方差:记D(X)或Var(X),D(X)=Var(X)=E{[X-E(X)]2}.标准差(均方差):记为σ(X),σ(X)= .通式:22)]([)()(XEXEXD-=.kkkpXExXD21)]([)(-∑=∞=,⎰∞∞--=xxfxExXD d)()]([)(2.标准化变量:记σμ-=xX*,其中μ=)(XE,2)(σ=XD,*X称为X的标准化变量.)(*=XE,1)(*=XD.方差性质:设C是常数,X和Y1.D(C)=0.2.D(CX)=C2D(X),D(X+C)=D(X).3.D(X+Y)=D(X)+D(Y)+2E{(X-E(X))(Y-)(xD是随机变量,则:E(Y))},若X,Y相互独立D(X+Y)=D(X)+D(Y).4.D(X)=0的充要条件是P{X=E(X)}=1.正态线性变换:若),(~2iiiNXσμ,i C是不全为0的常数,则),(~22112211iiniiininnCCNXCXCXCσμ∑∑+++==Λ.切比雪夫不等式:22}{εσεμ≤≥-XP或221}{εσεμ-≥<-XP,其中)(X E=μ,)(2XD=σ,ε为任意正数.协方差:记)]}()][({[),Cov(YEYXEXEYX--=.X与Y的相关系数:)()(),Cov(YDXDYXXY=ρ.D(X+Y)=D(X)+D(Y)+2Cov(X,Y),Cov(X,Y)=E(XY)-E(X)E(Y).性质:1.Cov(aX,bY)=ab Cov(X,Y),a,b是常数.2.Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y).系数性质:令e=E[(Y-(a+bX))2],则e取最小值时有)()1(]))([(22minYDXbaYEeXYρ-=+-=,其中)()(XEbYEa-=,)(),Cov(0XDYXb=.1.|ρXY|≤1.2.|ρXY|=1的充要条件是:存在常数a,b使P{Y=a+bX}=1.|ρXY|越大e越小X和Y线性关系越明显,当|ρXY|=1时,Y=a+bX;反之亦然,当ρXY=0时,X和Y不相关.X和Y相互对立,则X和Y不相关;但X和Y不相关,X和Y不一定相互独立.定义:k阶矩(k阶原点矩):E(X k ).n维随机变量X i的协方差矩阵:⎪⎪⎪⎪⎪⎭⎫⎝⎛=nnnnnncccccccccΛMMMΛΛ212222111211C,),Cov(jiijXXc==E{[X i-E(X i)][X j-E(X j)]}.k+l阶混合矩:E(X k Y l ).k阶中心矩:E{[X-E(X)] k }.k+l阶混合中心矩:E{[X-E(X)]k[Y-E(Y)]l}.n维正态分布:)}()(21ex p{det)2(1),,,(1T221μXCμXC---=-nnxxxfπΛ,T21T21),,,(),,,(nnxxxμμμΛΛ==μX.性质:1.n维正态随机变量(X1,X2,…,X n)的每一个分量X i (i=1,2,…,n)都是正态随机变量,反之,亦成立.2.n维随机变量(X1,X2,…,X n)服从n维正态分布的充要条件是X1,X2,…,X n的任意线性组合l1X1+l2X2+…+l n X n服从一维正态分布(其中l1,l2,…,l n不全为零).3.若(X1,X2,…,X n)服从n维正态分布,且Y1,Y2,…,Y k是X j (j=1,2,…,n)的线性函数,则(Y1,Y2,…,Y k)也服从多维正态分布.4.若(X1,X2,…,X n)服从n维正态分布,则“X i 相互独立”与“X i 两两不相关”等价.第五章大数定律及中心极限定理弱大数定理:若X1,X2,…是相互独立并服从同一分布的随机变量序列,且E(Xk)=μ,则对任意ε>0有11lim1=⎭⎬⎫⎩⎨⎧<-∑=∞→εμknknXnP或→μPX,knkXnX11=∑=.定义:Y1,Y2,…,Y n ,…是一个随机变量序列,a是一个常数.若对任意ε>0,有1}|{|lim=<-∞→εaYPnn则称序列Y1,Y2,…,Y n ,…依概率收敛于a.记aY Pn−→−伯努利大数定理:对任意ε>0有1lim=⎭⎬⎫⎩⎨⎧<-∞→εpnfP An或lim=⎭⎬⎫⎩⎨⎧≥-∞→εpnfP An.其中f A是n次独立重复实验中事件A发生的次数,p是事件A在每次试验中发生的概率.中心定理设X1,X2,…,Xn,…相互独立σμnnXknk)(1-∑=N(0,1)或nXσμ-~N(0,1)或X~N(μ,n2σ).~近似的极限定理一:并服从同一分布,且E(Xk)=μ,D(Xk)=σ2 >0,则n→∞时有定理二:设X1,X2,…,Xn,…相互独立且E(X k)=μ k,D(X k)=σk2 >0,若存在δ>0使n→∞时,}|{|1212→-∑+=+δδμkknknXEB,则nknkknkBX)(11μ==∑-∑~N(0,1),记212knknBσ=∑=.定理三:设),(~p n bnη,则n→∞时,Npnpnpn~)1()(--η(0,1),knknX1=∑=η.第六章样本及抽样分布定义:总体:全部值;个体:一个值;容量:个体数;有限总体:容量有限;无限总体:容量无限.定义:样本:X1,X2,…,X n 相互独立并服从同一分布F的随机变量,称从F得到的容量为n的简单随机样本.频率直方图:图形:以横坐标小区间为横坐标:数据区间(大区间下限比最小数据值稍小,上限比最大数据值稍大;小区间:均分大区间,组图形特点:外轮廓接近宽,纵坐标为高的跨越横轴的几个小矩形.距Δ=大区间/小区间个数;小区间界限:精度比数据高一位).于总体的概率密度曲线.纵坐标:频率/组距(总长度:<1/Δ;小区间长度:频率/组距).定义:样本p分位数:记x p,有1.样本x i中有np个值≤x p.2.样本中有n(1-p)个值≥x p.箱线图:x p选择:记⎪⎩⎪⎨⎧∈+∉=++NnpxxNnpxxnpnpnpp当,当,][211)()()1]([.分位数x0.5,记为Q2或M,称为样本中位数.分位数x0.25,记为Q1,称为第一四分位数.分位数x0.75,记为Q3,称为第三四分位数.图形:图形特点:M为数据中心,区间[min,Q1],[Q1,M],[M,Q3],[Q3,max]数据个数各占1/4,区间越短数据密集.四分位数间距:记IQR=Q3-Q1;若数据X<Q1-1.5IQR 或X>Q3+1.5IQR,就认为X是疑似异常值.抽样分布:样本平均值:iniXnX11=∑=样本方差:)(11)(11221212XnXnXXnSiniini-∑-=-∑-===样本标准2SS=样本k阶kinikXnA11=∑=,k≥1样本k阶kinikXXnB)(11-∑==,k≥2min Q1 M Q3 max差: (原点)矩:中心矩:经验分布函数: )(1)(x S nx F n =,∞<<∞-x .)(x S 表示F 的一个样本X 1,X 2,…,X n 中不大于x 的随机变量的个数.自由度为n 的χ2分布: 记χ2~χ2(n ),222212nX X X +++=Λχ,其中X 1,X 2,…,X n 是来自总体N (0,1)的样本.E (χ2 )=n ,D (χ2 )=2n . χ12+χ22~χ2(n 1+n 2). ⎪⎩⎪⎨⎧>Γ=--其他,,00)2(21)(2122y e x n y f y n n .χ2分布的分位点: 对于0<α<1,满足αχχαχα==>⎰∞y y f n P n )(222d )()}({,则称)(2n αχ为)(2n χ的上α分位点.当n 充分大时(n >40),22)12(21)(-+≈n z n ααχ,其中αz 是标准正态分布的上α分位点.自由度为n 的t 分布:记t ~t (n ),n Y Xt /=, 其中X~N (0,1),Y~χ2(n ),X ,Y 相互独立.2)1(2)1(]2[]2)1([)(+-+Γ+Γ=n n t n n n t h π h (t )图形关于t =0对称;当n充分大时,t 分布近似于N (0,1)分布.t 分布对于0<α<1,满足ααα==>⎰∞t t h n t t P n t )(d )()}({,则称)(n tα为)(n t 的上α的分位点:分位点.由h(t)对称性可知t1-α(n)=-tα(n).当n>45时,tα(n)≈zα,zα是标准正态分布的上α分位点.自由度为(n1,n2)的F分布:记F~F(n1,n2),21nVnUF=,其中U~χ2(n1),V~χ2(n2),X,Y相互独立.1/F~F(n2,n1)⎪⎩⎪⎨⎧>+ΓΓ+Γ=+-其他,,]1)[2()2()](2)([)(2)(21211)2(221212111xnynnnynnnny nnnnψF分布的分位点:对于0<α<1,满足αψαα==>⎰∞yynnFFPnnF),(2121d)()},({,则称),(21n nFα为),(21nnF的上α分位点.重要性质:F1-α(n1,n2)=1/Fα(n1,n2).定理一:设X1,X2,…,X n 是来自N(μ,σ2)的样本,则有),(~2nNXσμ,其中X是样本均值.定理二:设X1,X2,…,X n 是来自N(μ,σ2)的样本,样本均值和样本方差分别记为X,2S,则有1.)1(~)1(222--nSnχσ;2.X与2S相互独立.定理三:设X1,X2,…,X n 是来自N(μ,σ2)的样本,样本均值和样本方差分别记为X,2S,则有)1(~--ntnSXμ.定理设X1,X2,…,X n1与X,Y,21S,22S,则有四: Y 1,Y 2,…,Y n 2分别是来自N (μ1,σ12)和N (μ2,σ22)的样本,且相互独立.设这两个样本的样本均值和样本方差分别记为 1.)1,1(~2122212221--n n F S Sσσ.2.当σ12=σ22=σ2时,)2(~)()(21121121-++-----n n t nn S Y X w μμ,其中2)1()1(212222112-+-+-=n n S n S n S w,2wwS S=.第七章 参数估计定义:估计量:),,,(ˆ21nX X X Λθ,估计值:),,,(ˆ21nx x x Λθ,统称为估计.矩估计法: 令)(llX E =μ=li n i l X n A 11=∑=(kl ,,2,1Λ=)(k 为未知数个数)联立方程组,求出估计θˆ. 设总体X均值μ及方差σ2都存在,则有X A ==1ˆμ,212212122)(11ˆX X n X X n A A i n i i n i -∑=-∑=-===σ.最大似然估计法:似然函数:离散:);()(1θθini x p L =∏=或连续:);()(1θθini x f L =∏=,)(θL 化简可去掉与θ无关的因式项. θˆ即为)(θL 最大值,可由方程0)(d d=θθL 或0)(ln d d=θθL 求得.当多个未知参数θ1,θ1,…,θk时:可由方程组0d d=L iθ或0ln d d=L iθ(k i ,,2,1Λ=)求得.最大似然估计的不变性:若u=u(θ)有单值反函数θ=θ(u),则有)ˆ(ˆθuu=,其中θˆ为最大似然估计.截尾样本取样:定时截尾样本:抽样n件产品,固定时间段t0内记录产品个体失效时间(0≤t1≤t2≤…≤t m≤t0)和失效产品数量.定数截尾样本:抽样n件产品,固定失效产品数量数量m记录产品个体失效时间(0≤t1≤t2≤…≤t m).结尾样本最大似然估计:定数截尾样本:设产品寿命服从指数分布X~e(θ),θ即产品平均寿命.产品t i时失效概率P{t=t i}≈f(t i)d t i,寿命超过t m的概率θm tmettF-=>}{,则)(}){()(1imimnmmntPttFCL=-∏>=θ,化简得)(1)(m t sm eL---=θθθ,由0)(lndd=θθL得:m t s m)(ˆ=θ,其中s(t m)=t1+t2+…+t m+(n-m)t m,称为实验总时间.定时截尾样本:与定数结尾样本讨论类似有s(t0)=t1+t2+…+t m+(n-m)t0,)(01)(t sm eL---=θθθ,m t s)(ˆ0=θ,.无偏性:估计量),,,(ˆ21nXXXΛθ的)ˆ(θE存在且θθ=)ˆ(E,则称θˆ是θ的无偏估计量.有效性:),,,(ˆ211nXXXΛθ与),,,(ˆ212nXXXΛθ都是θ的无偏估计量,若)ˆ()ˆ(21θθDD≤,则1ˆθ较2ˆθ有效.相合性:设),,,(ˆ21nXXXΛθθ的估计量,若对于任意0>ε有1}|ˆ{|lim=<-∞→εθθPn,则称θˆ是θ的相合估计量.置信区间:αθθθ-≥<<1)},,,(),,,({2121nnXXXXXXPΛΛ,θ和θ分别为置信下限和置信上限,则),(θθ是θ的一个置信水平为α-1置信区间,α-1称为置信水平,10<<α.正态设X1,枢轴量W W分布a,b不等其中样本置信区间:X2,…,X n是来自总体X~N(μ,σ2)的样本,则有μ的置信区间:式置信水平置信区间)1,0(~NnXσμ-⇒ασμα-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<-12znXP⇒)(2ασznX±zα/2为上α分位点θ置信区间的求解:1.先求枢轴量:即函数W=W(X1,X2,…,X n;θ),且函数W的分布不依赖未知参数.如上讨论标注2.对于给定置信水平α-1,定出两常数a,b使P{a<W<b}=α-1,从而得到置信区间.(0-1)分布p 的区间估计:样本容量n>50时,⇒--∞→)1,0(~)1()(lim NpnpnpXnn{}⇒-≈<--αα1)1()(2zpnpnpXnP)2()(222222<++-+XnpzXnpznαα⇒若令22αzna+=,)2(22αzXnb+-=,2X nc=,则有置信区间(aacbb2)4(2---,aacbb2)4(2-+-).单侧置信区间:若αθθ-≥>1}{P或αθθ-≥<1}{P,称(θ,∞)或(∞-,θ)是θ的置信水平为α-1的单侧置信区间.正态总体均值、方差的置信区间与单侧置信限(置信水平为α-1)待估其他枢轴量W的分布置信区间单侧置信限一个正态总体μσ2已知)1,0(~NnXZσμ-=)(2ασznX±ασμznX+=,ασμznX-=μσ2未知)1(~--=ntnSXtμ⎪⎭⎫⎝⎛±2αtnSXαμtnSX+=,αμtnSX-=σ2μ未知)1(~)1(2222--=nSnχσχ⎪⎪⎭⎫⎝⎛---2212222)1(,)1(ααχχSnSn2122)1(αχσ--=Sn,222)1(αχσSn-=两个正态总体μ1-μ2σ12,σ22已知)1,0(~)(22212121NnnYXZσσμμ+---=⎪⎪⎭⎫⎝⎛+±-2221212nnzYXσσα2221212122212121nnzYXnnzYXσσμμσσμμαα+--=-++-=-μ1-μ2σ12=σ22=σ2未知)2(~)()(21121121-++---=--nntnnSYXtwμμ2)1()1(212222112-+-+-=nnSnSnSw()12112--+±-nnStYXwα2wwSS=121121121121----+--=-++-=-nnStYXnnStYXwwααμμμμσ12/σ22μ1,μ2未知)1,1(~2122212221--=nnFSSFσσ⎪⎪⎭⎫⎝⎛-212221222211,1ααFSSFSSασσ-=1222122211FSS,ασσFSS122212221=单个总体X ~N (μ,σ2),两个总体X ~N (μ1,σ12),Y ~N (μ2,σ22).第八章 假设实验定义: H 0:原假设或零假设,为理想结果假设;H 1:备择假设,原假设被拒绝后可供选择的假设.第Ⅰ类错误:H 0实际为真时,却拒绝H 0.第Ⅱ类错误:H 0实际为假时,却接受H 0.显著性检验:只对犯第第Ⅰ类错误的概率加以控制,而不考虑第Ⅱ类错误的概率的检验.P {当H 0为真拒绝H 0}≤α,α称为显著水平.拒绝域:取值拒绝H 0.临界点:拒绝域边界.双边假设检验:H 0:θ=θ0,H 1:θ≠θ0.右边检验:H 0:θ≤θ0,H 1:θ>θ0.左边检验:H 0:θ≥θ0,H 1:θ<θ0. 正态总体均值、方差的检验法(显著性水平为α)原假设H 0 备择假设H 1 检验统计量 拒绝域 1 σ2已知 μ≤μ0 μ>μ0 nX Z σμ0-=z ≥z αμ≥μ0 μ<μ0 z ≤-z α μ=μ0μ≠μ0 |z |≥z α/2 2 σ2未知 μ≤μ0 μ>μ0 nS X t 0μ-=t ≥t α(n -1)μ≥μ0μ<μ0 t ≤-t α(n -1) μ=μ0 μ≠μ0 |t |≥t α/2(n -1) 3σ1,σ2 已μ1-μ1-222121n n Y X Z σσδ+--=z ≥z α μ1-μ1-z ≤-z α μ1-μ1-|z |≥z α/2 4 σ12μ1-μ1-1211--+--=nn S Y X t w δt ≥t α(n 1+n 2-2)=σ22μ1-μ1-2)1()1(212222112-+-+-=n n S n S n S wt ≤-t α(n 1+n 2-2) μ1-μ1-|t |≥t α/2(n 1+n 2-2) 5 μ未知 σ2≤σ02 σ2>σ02 2022)1(σχSn -=χ2≥χα2(n -1) σ2≥σ02 σ2<σ02χ2≤χ21-α(n -1) σ2=σ02 σ2≠σ02χ2≥χ2α/2(n -1)或χ2≤χ21-α/2(n -1) 6 μ1,μ2 未知 σ12≤σ22σ12>σ22 2221S S F =F ≥F α(n 1-1,n 2-1) σ12≥σ22σ12<σ22F ≤F 1-α(n 1-1,n 2-1)σ12=σ22σ12≠σ22F ≥F α/2(n 1-1,n 2-1)或F ≤F 1-α/2(n 1-1,n 2-1) 7 成对 数据μD ≤0 μD >0 nS D t D 0-=t ≥t α(n -1)μD ≥0μD <0 t ≤-t α(n -1) μD =0μD ≠0|t |≥t α-2(n -1)检验方法选择: 主要是逐对比较法(成对数据)跟两个正态总体均值差的检验的区别,如上表即7跟3、4的区别,成对数据指两样本X 和Y 之间存在一一对应关系,而3和4一般指X 和Y 相互对立,但针对同一实体.关系: 置信区间与假设检验之间的关系:未知参数的置信水平为1-α的置信区间与显著水平为α的接受域相同.定义:施行特征函数(OC函数):β(θ)=Pθ(接受H0).功效函数:1-β(θ).功效:当θ*∈H1时,1-β(θ*)的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考研数学备考:概率论各章节知识点梳理考研备考时间已然快要过半,还在为了备考方法焦灼?不用担心!老司机带你上车,下面由我为你精心准备了“考研数学备考:概率论各章节知识点梳理”,持续关注本站将可以持续获取更多的考试资讯!
考研数学备考:概率论各章节知识点梳理
众所周知,概率论的知识点又多又杂,需要我们系统的归类并掌握,这样才能获得高分。

为此我整理了相关内容,希望对大家有所帮助。

第一部分:随机事件和概率
(1)样本空间与随机事件
(2)概率的定义与性质(含古典概型、几何概型、加法公式)
(3)条件概率与概率的乘法公式
(4)事件之间的关系与运算(含事件的独立性)
(5)全概公式与贝叶斯公式
(6)伯努利概型
其中:条件概率和独立为本章的重点,这也是后续章节的难点之一,请各位研友务必重视起来。

第二部分:随机变量及其概率分布
(1)随机变量的概念及分类
(2)离散型随机变量概率分布及其性质
(3)连续型随机变量概率密度及其性质
(4)随机变量分布函数及其性质
(5)常见分布
(6)随机变量函数的分布
其中:要理解分布函数的定义,还有就是常见分布的分布律抑或密度函数必须记好且熟练。

第三部分:二维随机变量及其概率分布
(1)多维随机变量的概念及分类
(2)二维离散型随机变量联合概率分布及其性质
(3)二维连续型随机变量联合概率密度及其性质
(4)二维随机变量联合分布函数及其性质
(5)二维随机变量的边缘分布和条件分布
(6)随机变量的独立性
(7)两个随机变量的简单函数的分布
其中:本章是概率的重中之重,每年的解答题定会有一道与此知识点有关,每个知识点都是重点,务必重视!
第四部分:随机变量的数字特征
(1)随机变量的数字期望的概念与性质
(2)随机变量的方差的概念与性质
(3)常见分布的数字期望与方差
(4)随机变量矩、协方差和相关系数
其中:本章只要清楚概念和运算性质,其实就会显得很简单,关键在于计算。

第五部分:大数定律和中心极限定理
(1)切比雪夫不等式
(2)大数定律
(3)中心极限定理
其中:其实本章考试的可能性不大,最多以选择填空的形式,但那也是十年前的事情了。

第六部分:数理统计的基本概念
(1)总体与样本
(2)样本函数与统计量
(3)样本分布函数和样本矩
其中:本章还是以概念为主,清楚概念后灵活运用解决此类问题不在话下
第七部分:参数估计
(1)点估计
(2)估计量的优良性
(3)区间估计。

相关文档
最新文档