合情推理与演绎推理的关系教学设计

合集下载

合情推理与演绎推理优秀教案

合情推理与演绎推理优秀教案

0(1,2,,)ia i n >=2.1合情推理与演绎推理姓名班级【学习目标】(1)结合已学过地数学实例,了解归纳推理、合情推理地含义,通过生活中地实例和已学过地教学地案例,体会演绎推理地重要性;(2)能利用归纳、类比进行简单地推理,体会并认识合情推理、演绎推理在数学发现中地作用.掌握推理地基本方法,并能运用它们进行一些简单推理.【教学重点】能利用归纳、类比、演绎地方法进行简单地推理.【教学难点】用归纳和类比进行推理,作出猜想;分析证明过程中包含地“三段论”形式.【教学过程】问题一:归纳推理一、创设情境1.哥德巴赫猜想:哥德巴赫观察4=2+2, 6=3+3, 8=5+3, 10=5+5, 12=5+7, 12=7+7, 16=13+3, 18=11+7, 20=13+7, ……, 50=13+37, ……, 1000=29+971,, ……猜测:任一不小于6地偶数都等于两个奇质数之和.2.费马猜想:法国业余数学家之王—费马(1601-1665)在1640年通过对20213F =+=,121215F =+=,2222117F =+=,32321257F =+=,4242165537F =+=地观察,发现其结果都是素数,于是提出猜想:任何形如122+=nF (*∈N n )地数都是素数.后来瑞士数学家欧拉,发现5252142949672976416700417F =+==⨯不是素数,从而推翻费马猜想.3.四色猜想:1852年,毕业于英国伦敦大学地弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣地现象:“每幅地图都可以用四种颜色着色,使得有共同边界地国家着上不同地颜色.”,四色猜想成了世界数学界关注地问题.1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学地两台不同地计算机上,用1200个小时,作了100亿逻辑判断,完成证明.4.哥尼斯堡城七桥问题:18世纪在哥尼斯堡城(今俄罗斯加里宁格勒)地普莱格尔河上有7座桥,将河中地两个岛和河岸连结,如图1所示.城中地居民经常沿河过桥散步,于是提出了一个问题:能否一次走遍7座桥,而每座桥只许通过一次,最后仍回到起始地点.这就是七桥问题,一个著名地图论问题.这个问题看起来似乎不难,但人们始终没有能找到答案,最后问题提到了大数学家欧拉那里.欧拉以深邃地洞察力很快证明了这样地走法不存在.欧拉是这样解决问题地:既然陆地是桥梁地连接地点,不妨把图中被河隔开地陆地看成A 、B 、C 、D4个点,7座桥表示成7条连接这4个点地线,如图2所示.图1图2图3于是“七桥问题”就等价于图3中所画图形地一笔画问题了.欧拉注意到,每个点如果有进去地边就必须有出来地边,从而每个点连接地边数必须有偶数个才能完成一笔画.图3地每个点都连接着奇数条边,因此不可能一笔画出,这就说明不存在一次走遍7座桥,而每座桥只许通过一次地走法.二、合作探究:1、归纳推理地概念:由某类事物地部分对象具有某些特征,推出该类事物地全部对象都具有这些特征地推理,或者由个别事实概括出一般结论地推理,称为归纳推理. 简言之,归纳推理是由部分到整体、由个别到一般地推理.讨论:(i)归纳推理有何作用?(ii)归纳推理地结果是否正确?2. 练习:(1)由铜、铁、铝、金、银能导电,能归纳出什么结论? (2)已知,考察下列式子:111()1i a a ⋅≥;121211()()()4ii a a a a ++≥;123123111()()()9iii a a a a a a ++++≥.可以归纳出,对12,,,n a a a 也成立地类似不等式为.(3). 观察等式:2221342,13593,13579164+==++==++++==,能得出怎样地结论? 三、例题讲解例1.已知数列{}n a 地第1项a 1=1,且),3,2,1(11 =+=+n a a a nnn ,试归纳出这个数列地通项公式.例2:汉诺塔问题有三根针和套在一根针上地若干金属片.按下列规则,把金属片从一根针上全部移到另一根针上.1.每次只能移动一个金属片;2.较大地金属片不能放在较小地金属片上面.试推测:把n 个金属片从1号针移到3号针,最少需要移动多少次?123巩固练习:(1)对于任意正整数n ,猜想(2n-1)与(n+1)2地大小关系?(2)已知数列}{n a 满足11=a ,)12111--+=n n n a a a (,()2≥n 求}{n a 地通项公式.问题二:类比推理一、 创设情境(1)鲁班由带齿地草叶和蝗虫地齿牙发明锯; (2)人类仿照鱼类外形及沉浮原理,发明潜水艇; (3)地球上有生命,火星与地球有许多相似点,如都是绕太阳运行、绕轴自转地行星,有大气层,也有季节变更,温度也适合生物生存,科学家猜测:火星上有生命存在.二、合作探究:1、类比概念:由两类对象具有某些类似特征和其中一类对象地某些已知特征,推出另一类对象也具有这些特征地推理. 简言之,类比推理是由特殊到特殊地推理.练习:(1)圆与球地特征地类比(课本P73)(2)在平面内,若,a c b c ⊥⊥,则//a b . 类比到空间,你会得到什么结论?三、例题讲解例1、类比实数地加法和乘法,列出它们相似地运算性质.例2:类比平面内直角三角形地勾股定理,试给出空间中四面体性质地猜想.问题三:演绎推理一、 创设情境(1)所有地金属都能导电,铀是金属,所以铀; (2)太阳系地大行星都以椭圆形轨道饶太阳运行.冥王星是太阳系地大行星,因此冥王星是. (3)三角函数都是周期函数,αtan 是三角函数.因此αtan 是. 问:上述推理有什么共同特征? 二、合作探究1、演绎推理:从一般性地原理出发,推出某个特殊情况下地结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊地推理.2、三段论法:(1)三段论式推理是演绎推理地一般模式,它包括:大前提(M 是P )——;小前提(S 是M )——;结论(S 是P )——.(2)集合观点:若集合M 中地每一个元素都具有属性P 且S 是M 地子集,那么集合S 中地每一个元素都具有属性P .讨论:(1)因为指数函数xay =是增函数,xy )(21=是指数函数,则结论是什么?(结论是否正确,为什么?)(2)演绎推理怎样才结论正确? 3、合情推理与演绎推理地区别:(1)合情推理具有猜测和发现结论,探索和提供思路地作用;合情推理地结论正确,有待于进一步地证明;演绎推理是按照严格地逻辑法则,得到新结论地推理过程.演绎推理在都正确地前提下,得到地结论一定.(2)归纳推理:由到,由到;类比推理:由到; 演绎推理:由到. (3)演绎推理是证明数学结论、建立数学体系地重要思维过程; 合情推理可发现新地数学结论、证明思路等. 三、例题讲解例1:如图所示,在锐角三角形ABC 中,AD ⊥BC,BE ⊥AC,D 、E 是垂足.求证:AB 地中点M 到点D 、E 地距离相等.分析::证明过程→指出:大前题、小前题、结论.例2:证明函数x x x f 2)(2+-= 在(-∞,1)内是增函数.思悟小结巩固提高1.观察下列等式,猜想出一般地结论,并证明.2223sin 30sin 90sin 1502++=,223sin 60sin 120sin 1802++=, 2223sin 45sin 105sin 1652++=,2223sin 15sin 75sin 1352++=.2、证明:通项公式为)0(≠=cq cq a nn 地数列}{n a 为等比数列.并分析证明过程中地三段论.3、类比三角形中地余弦定理,在四面体中有怎样地结论?能否证明?4、平面上有n 个圆,其中每两个都相交于两点,每三个都无公共点,它们将平面分成)(n f 块区域,有8)3(,4)2(,2)1(===f f f ,则)(n f 地表达式为()A 、n2 B 、22+-n n C 、)3)(2)(1(2----n n n nD 、410523-+-n n n5、在圆内画1条线段,将圆分成两部分;画2条线段,彼此最多分割成4条线段,同时将圆分割成4部分;画3条线段,彼此最多分割成9条线段,同时将圆分割成7部分.那么(1)在圆内画4条线段,彼此最多分割成条线段?同时将圆分割成部分? (2)在圆内画5条线段,彼此最多分割成条线段?同时将圆分割成部分? (3)在圆内画n 条线段,彼此最多分割成条线段?同时将圆分割成部分?6、在平面几何里,可以得出正确结论:“正三角形地内切圆半径等于这正三角形地高地31”.拓展到空间,类比平面几何地上述结论,则正四面体地内切球半径.7、在圆222r y x =+中,AB 为直径,C 为圆上异于AB 地任意一点,则有BC AC K k ⋅=-1.你能用类比地方法得出椭圆2222by a x +=1(a>b>0)中有什么样地结论?8、在等差数列}{n a 中,若010=a ,则有n n a a a a a a -+++=+++192121 (n<19,且n )N *∈成立.类比上述性质,在等比数列}b {n 中,若19=b ,则存在怎样地等式?版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.eUts8。

合情推理与演绎推理教学设计

合情推理与演绎推理教学设计

《合情推理与演绎推理》教学设计(4)一、考情分析从近几年的高考试题来看,归纳推理、类比推理、演绎推理等问题是高考的热点. 归纳推理、类比推理大部分在选择题或填空题中出现,为中低档题,突出“小而巧”,主要考查类比推理、归纳推理的能力.演绎推理大多出现在解答题中,为中高档题目,在知识交汇点处命题,考查学生的逻辑推理能力,以及分析问题、解决问题的能力.二、教学目标①知识与技能(1)了解合情推理的含义,能进行归纳推理和类比推理,体会并认识合情推理在数学发现中的作用.(2)了解演绎推理的含义,理解合情推理和演绎推理的联系和差异;掌握演绎推理的“三段论”,能运用“三段论”进行一些简单的演绎推理.②过程与方法(1)经历合情推理发现数学结论和规律的过程,感受数学再创造的快乐;(2)感受并体会演绎推理的规则与过程,规范严谨地进行逻辑推理.③情感态度与价值观(1)培养学生应用数学的意识和创新精神,体验数学发现的快乐;(2)培养学生认识数学的科学价值与人文价值,养成理性思维的习惯.教学重点和难点教学重点:运用归纳推理和类比推理发现数学规律,解决数学问题.教学难点:运用合情推理发现结论和演绎推理证明结论.教学课时:1课时三、教法分析根据上述考情和目标分析,贯彻启发性教学原则,体现以教师为主导,学生为主体的教学思想. 结合本班学生的实际情况和数学学习能力,尽可能让学生通过独立思考和合作交流的方式自主发现规律与结论,并探究证明方法,让学生充分体验数学发现的快乐. 必要时教师恰当引导,并及时对学生的解答进行评价.四、教学程序2222124310-+-=-照此规律, 第个等式可为 .例2. 小石子中的数学问题(1)(2009湖北理)古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图2中的1,4,9,16,…这样的数为正方形数.下列数中既是三角形数又是正方形数的是 ( )(2)(2012湖北文)传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数. 他们研究过如图所示的三角形数:将三角形数1,3,6,10,记为数列,将可被5整除的三角形数按从小到大的顺序组成一个新数列.可以推测:(Ⅰ)是数列中的第________项; (Ⅱ)21k b -=________.(用k 表示)(3)(2013湖北理)古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,…,第个三角形数为论,体验数学发现的快乐.体会高考源于课本,高于课本和在知识的交汇点命题的思想.写出足够多的项,从特殊项入手,发现一般规律.同时渗透“子数列”的思想,为高等数学级数的学习做铺垫.此题难度较大,可以小组讨论,必要时教师引导,分别从二次项和一次项系数入手纵向找规律.学生从五、方案设计说明美籍匈牙利数学家波利亚曾说:“直观洞察和逻辑证明是感知真理的两种不同方式……直观的洞察可能远远超前于形式逻辑的证明.”新课程强调着重培养学生创新精神和实践能力,而合情推理能力的培养正是实现这一目标的重要方法.本节课从近几年的高考真题和模拟题中精心选择试题,创设问题情景,鼓励学生运用合情推理大胆猜测结论,体验数学发现的乐趣,然后用演绎推理证明.养成“观察——归纳(类比)——猜想——论证”的思维习惯.。

演绎推理教案

演绎推理教案

教学目标:1、理解演绎推理的含义及特点,会将推理写成三段论的形式2、理解并掌握演绎推理的基本模式和并判断正确与否4、能够利用三段论进行相关的演绎推理4、正确理解合情推理与演绎推理的区别用联系教学重点:演绎推理的含义与三段论推理及合情推理和演绎推理的区别与联系教学难点:演绎推理的判断和应用授课方法:讲授法,合作学习法,讲练结合法、自学指导法等教学过程:一、新课引入:1. 合情推理有哪两种?期望学生回答:归纳推理和类比推理2. 讨论:合情推理的结论正确吗?期望学生回答:合情推理的结论不一定正确,有待进一步证明。

那么有什么能使结论正确的推理形式呢?3. 问题导入:①所有的金属都能够导电,铀是金属,所以铀能导电②奇数都不能被2整除,2100+1是奇数,所以2100+1不能被2整除③三角函数都是周期函数,tana是三角函数,所以tana是周期函数讨论:上述例子的推理形式与我们学过的合情推理一样吗?同学们还能举出类似的例子吗?以此导入新课二、演绎推理:1. 概念:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理。

2.特点:由一般到特殊的推理。

3.一般模式:三段论大前提——已知的一般原理;小前提——所研究的特殊情况;结论——根据一般原理,对特殊情况做出的判断.常用格式:大前提——M是P小前提——S是M结论——S是P4.探究探究1 把演绎推理写成三段论(小组解决,老师点评)例:所有的金属都能够导电,铀是金属,所以铀能导电大前提:所有的金属能够导电 小前提:铀是金属 结论:铀能够导电 练习:(1) 正整数是自然数,3是正整数,所以3是自然数(2) 矩形的对角线相等,正方形是矩形,所以正方形的对角线相等 (3) 0.332是有理数(4) 函数y=2x+5的图像是一条直线方法点评:对命题进行分析,找出大前提、小前提、结论然后根据三段论推理的模式进行改写探究2.演绎推理的正误判断分析下面几个推理是否正确,说明为什么?(1) 因为指数函数x a y =是增函数,而x y )21(=是指数函数,所以x y )21(=是增函数(2) 因为无理数是无限不循环小数,而π是无限不循环小数,所以π是无理数(3)因为过不共线的三点有且仅有一个平面 而A 、B 、C 为空间三点 所以过A 、B 、C 三点只能确定一个平面期望学生回答:以上几个推理都是错误的因为(1)大前提错误 (2)推理形式错误(3)小前提错误点评:演绎推理在大前提、小前提和推理形式都正确的前提下,得到的结论才一定是正确的5.合情推理与演绎推理的区别及联系 学生自己先做总结然后再看课本P33页 三、例题讲评例1.如图所示,在锐角三角形ABC 中,AD ⊥BC ,BE ⊥AC ,D ,E 为垂足, 求证:AB 的中点M 到D ,E 的距离相等。

合情推理与演绎推理教学设计及反思

合情推理与演绎推理教学设计及反思

ANLI POUX I案例剖析6735合情推理与演绎推理6教学设计及反思q 沈建军 (北京市第十九中学 100089)一、教材分析11从课标角度分析本节课推理是数学的基本思维过程,也是人们学习和生活中经常使用的思维方式.结合已学过的教学实例和日常生活中的实例,能够较好的让学生体会数学与其他学科的联系,在解决问题的过程中,合情推理和演绎推理相辅相成,共同架起数学与生活的桥梁,形成严谨的理性思维与科学精神,归纳、发现、猜测、探索的过程有利于培养学生的创新精神,合情推理是具有创造性的或然推理,演绎推理形式化程度远比合情推理高,即用演绎法时,一个命题由其他命题推出,其根据是形式结构之间的联系.21学情分析高中必修课程以及选修2-1部分知识已学完,学生对主干知识有了初步的认识,相对系统性较差,而课本给的合情推理和演绎推理讲解基本都是文字性的知识,学生学起来感觉知道几个定义就可以了,推理能力得不到提升,于是本节课运用学案,结合旧知识,做了前期铺垫,共同制定学案,而学案内容选自实际生活,增加趣味性,活跃课堂气氛.数学内容来自必修的五本教材,同时起到了复习的效果,将死板的概念讲活.31根据以上分析,制定重点、难点,教学方法及教学手段,以及课时安排重点:通过案例理解合情推理、演绎推理的定义.难点:将概念深入到解决具体问题.教学方法:5推理与证明6采取小组合作,学案探究式.教学手段:利用多媒体教学手段,实物投影,展示小组合作学习成果.课时:教参3课时,整合为1课时二、教学过程课代表主持整堂课,将班级学生分为5个小组,具体如下表:第一小组第二小组第三小组第四小组第五小组归纳推理部分指出课本疑惑问题类比推理部分指出课本疑惑问题演绎推理部分指出课本疑惑问题完成学案作业1举例:生活化,数学完成学案作业2举例:生活化,数学然后由课代表做总结,最后的工作是教师做本节课的小结.三、附学案(第一课时5合情推理与演绎推理6学案)115合情推理6:归纳推理例1 前提:三角形的内角和是180b ,凸四边形的内角和是360b ,凸五边形的内角和是540b ,,,结论 凸n 边形的内角和是(n -2)@180b .例2 23<2+13+123<2+23+2,23<2+33+3,,,由此我们猜想:b a <b +ma +m(a ,b,m 均为正实数).215合情推理6:类比推理例3 试根据等式的性质猜想不等式的性质.等式的性质:(1)a =b ]a +c =b +c ;(2)a =b ]ac =bc .猜想不等式的性质:(1)a >b ]a +c >b +c ;(2)a >b ]ac >bc .问:这样猜想出的结论是否一定正确?315演绎推理6:阅读材料牛顿对农场主说:多养猫,猪会胖!p 猫吃田鼠,多养猫田鼠少;田鼠吃土蜂,少田鼠多土蜂;p 土蜂传播三叶草,多土蜂多三叶草;猪吃三叶草,多三叶草猪胖.观察与思考11一切奇数都不能被2整除,(2100+1)是奇数,所以,(2100+1)不能被2整除.21三角函数都是周期函数,tan A 是三角函数,所以,tan A 是周期函数.提出问题 像这样的的推理是合情推理吗?四、课后作业11重新整理学案中自己存在的问题.什么是合情推理?什么是演绎推理?它们的特点各是什么?二者有何区别?21上交各小组课堂展示作业.课后反思11收 获通过这四节课的教学,培养了学生思考、分析、研究问题的意识;培养了学生自主学习的习惯;培养了学生从特殊到一般的归纳能力.在课堂上老师为主导,同时让学生真正成为学习的主人、课堂的主体,让他们从中领悟推理与证明的基本思想方法.这种课是一种尝试,也是一种体验.我们觉得虽压缩了课时,但不少知识的含金量,对学生整个高中数学内容的学习起到了很好的引导作用.同时为高考复习迈出了坚实的一步,许多问题的提出都用了类比的方法,让学生对知识温故而知新.21改进的空间合作学习需要精心组织和规划,否则合作学习反而会导致学习效率降低,因此,有效的合作学习情景要像课堂教学指导设计一样进行精心设计.总之,合作学习作为课程改革背景下的一种新的学习方式和教学组织形式,它在高中数学教学中的应用前景是很广阔的,但是合作学习并不是灵丹妙药,没有精心组织和规划,合作学习反而会导致学习效率降低,因此,有效的合作学习情景要像课堂教学指导设计一样进行精心设计.所以我们前期的准备战线拉得很长,主要让学生动起来,教师加强指导作用,上课会大大提高课堂效率.我刚开始觉得课时少了,不能面面俱到,很担心他们会不会迁移,因为检验学习很重要的标准就是能否迁移,通过考试我发现有的推理方法没有强调的同学们也会用的很好.。

演绎推理教案

演绎推理教案

课 题:§2.1.2演绎推理教学目标:1. 知识与技能:了解演绎推理的含义以及与合情推理之间的联系与差别。

2. 过程与方法:能正确地运用演绎推理进行简单的推理。

3. 情感、态度与价值观:了解合情推理与演绎推理之间的联系与差别。

教学重点:正确地运用演绎推理进行简单的推理教学难点:了解合情推理与演绎推理之间的联系与差别。

教具准备:与教材内容相关的资料、多媒体设备等等。

教学过程:一、 复习合情推理归纳推理 :从特殊到一般 类比推理: 从特殊到特殊过程:从具体问题出发――观察、分析、比较、联想――归纳、类比――提出猜想 二、问题情景情景1:小明是一名高二年级的学生,17岁,迷恋上网络,沉迷于虚拟的世界当中。

由于每月的零花钱不够用,便向亲戚要钱,但这仍然满足不了需求,于是就产生了歹念,强行向路人抢取钱财。

但小明却说我是未成年人而且就抢了50元,这应该不会很严重吧??? 小明到底是不是犯罪呢?刑法规定:抢劫罪是以非法占有为目的,使用暴力、胁迫或其他方法,强行劫取公私财物的行为。

其刑事责任年龄起点为14周岁,对财物的数额没有要求。

小明超过14周岁,强行向路人抢取钱财50元。

所以,小明犯了抢劫罪。

情景2:观察与思考1所有的金属都能导电,铜是金属,所以铜能够导电2.一切奇数都不能被2整除,(12100+)是奇数,所以(12100+)不能被2整除. 提出问题 :像这样的推理是合情推理吗?有什么特点? 三、建构教学推理的定义:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理.1.演绎推理是由一般到特殊的推理;2.“三段论”是演绎推理的一般模式;包括 前提---已知的一般原理;⑵小前提---所研究的特殊情况; ⑶结论-----根据一般原理,对特殊情况做出的判断. 3.三段论的基本格式M —P (M 是P ) (大前提) S —M (S 是M ) (小前提) S —P (S 是P ) (结论)4.三段论推理的依据,用集合的观点来理解:若集合M 的所有元素都具有性质P,S 是M 的一个子集,那么S 中所有元素也都具有性质P. 四、数学运用题型一 用三段论的形式表示演绎推理例1 把下列演绎推理写成三段论的形式.(1)在一个标准大气压下,水的沸点是100 ℃,所以在一个标准大气压下把水加热到100℃时,水会沸腾;(2)0.332是有理数解:(1)在一个标准大气压下,水的沸点是100 ℃ …… 大前提 准大气压下把水加热到100 ℃ …………小前提水会沸腾………………………………… 结论 (2)所有有限小数都是有理数…………… 大前提 32是有限小数…………………… 小前提所以,0.332是有理数………………… 结论练习1:将下列演绎推理写成三段论的形式.(1)平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分. (2)Rt △ABC 的内角和为180°.答案:(1)平行四边形的对角线互相平分,… 大前提 菱形是平行四边形,………………………… 小前提 菱形的对角线互相平分.…………………… 结论(2)因为三角形的内角和是180°,……………… 大前提 Rt △ABC 是三角形,…………………………… 小前提 所以Rt △ABC 的内角和是180°.………………… 结论题型二 三段论在几何证明中的应用例2.如图,在锐角三角形ABC 中,AD ⊥BC, BE ⊥AC, D,E 是垂足,求证AB 的中点M 到D,E 的距离相等.证明:因为有一个内角是直角的三角形是直角三角形, ……… (大前提) 在△ABC 中,AD ⊥BC,即∠ADB=90 ………………………… (小前提)所以△ABD 是直角三角形…………………………………… (结 论) 同理△ABE 是直角三角形因为直角三角形斜边上的中线等于斜边的一半, …………… (大前提) M 是Rt △ABD 斜边AB 的中点,DM 是斜边上的中线……… (小前提)AB DM 21=…………………………………………………… (结 论) AB EM 21=同理 所以EM DM =练习2:如图,D ,E ,F 分别是BC ,CA ,AB 上的点, ∠BFD =∠A ,DE ∥BA ,求证:ED =AF ,写出三段论形式的演绎推理.题型三 三段论在代数证明中的应用()().1,2.32上是增函数在证明函数例∞-+-=x x x f()()()上的增函数。

高中数学选修《合情推理与演绎推理》教案

高中数学选修《合情推理与演绎推理》教案

高中数学选修《合情推理与演绎推理》教案一、教学目标1. 让学生理解合情推理与演绎推理的定义及意义。

2. 培养学生运用合情推理与演绎推理解决数学问题的能力。

3. 引导学生掌握合情推理与演绎推理的基本方法。

二、教学内容第一章:合情推理1. 合情推理的定义及分类2. 合情推理的方法:归纳推理、类比推理、归纳猜想3. 合情推理在数学中的应用第二章:演绎推理1. 演绎推理的定义及分类2. 演绎推理的方法:演绎法、反证法、归纳法3. 演绎推理在数学中的应用三、教学方法1. 采用讲授法讲解合情推理与演绎推理的基本概念和方法。

2. 通过例题展示合情推理与演绎推理在数学问题解决中的应用。

3. 组织学生进行小组讨论,分享解题心得,培养学生的合作能力。

四、教学步骤1. 引入新课:介绍合情推理与演绎推理的定义及意义。

2. 讲解合情推理:讲解归纳推理、类比推理、归纳猜想的方法,并通过例题展示其在数学中的应用。

3. 讲解演绎推理:讲解演绎法、反证法、归纳法的方法,并通过例题展示其在数学中的应用。

4. 练习与巩固:布置适量练习题,让学生巩固所学知识。

5. 总结与拓展:总结合情推理与演绎推理的方法及应用,引导学生思考如何在生活中运用这些方法。

五、教学评价1. 课后作业:检查学生对合情推理与演绎推理方法的掌握情况。

2. 课堂练习:观察学生在课堂练习中的表现,了解他们的学习进度。

3. 小组讨论:评估学生在小组讨论中的参与程度及合作能力。

4. 期中期末考试:全面评估学生对选修内容的掌握情况。

六、教学内容第三章:合情推理与演绎推理的综合应用1. 合情推理与演绎推理在数学证明中的应用2. 合情推理与演绎推理在数学问题解决中的应用3. 合情推理与演绎推理在数学探究活动中的应用第四章:常见的错误与误解1. 合情推理与演绎推理中的常见错误2. 如何避免合情推理与演绎推理中的错误与误解3. 正确评价合情推理与演绎推理的结果七、教学方法1. 通过案例分析,让学生了解合情推理与演绎推理在实际应用中的重要性。

湘教版选修2《合情推理与演绎推理的关系》教案及教学反思

湘教版选修2《合情推理与演绎推理的关系》教案及教学反思前言本篇文档将介绍一份《合情推理与演绎推理的关系》教学案例,以及对该教案的教学反思和总结。

教案的内容以湘教版选修2为基础,以此教案,旨在帮助学生更好地理解合情推理与演绎推理的关系。

教学目标1.了解合情推理与演绎推理的基本概念;2.能够比较合情推理与演绎推理的区别和联系;3.能够运用合情推理和演绎推理解决实际问题;4.能够分析已有的推理结论是否正确或值得信赖。

教学过程第一步:引入通过提问“你听说过合情推理和演绎推理么?”来引入该教学内容,让学生了解本课所要学的知识点和学习的目的。

第二步:讲解首先是合情推理。

通过讲解实例,解释什么是合情推理以及其与直接经验、归纳推理和演绎推理的区别。

学生讨论并举例子分析生活中的实例。

其次是演绎推理。

以数学、物理等方面的实例,来阐述演绎推理的定义、特点和辨析,同时介绍演绎推理证明的方式和方法,引导学生在理论层面上理解演绎推理的本质。

接下来将合情推理与演绎推理进行对比和联系。

通过练习例题,让学生体会并感受合情推理和演绎推理的不同。

最后,教师通过总结的方式,概括出合情推理和演绎推理的联系、区别和各自的优缺点。

让学生在总结中加深对这两种推理模式的理解。

第三步:操作实践在本节课结束前,教师出若干个实际问题,并在黑板上列举出多种解决方法。

让学生运用所学的理论,对问题进行分析和综合评判,并在小组讨论的基础上总结出最合理和最科学的解决方案。

第四步:教学总结和反思教学过程结束后,老师和学生会对本节课的教学进行总结和反思。

通过平和的讨论方式,了解学生对该教学过程的看法和意见,听取学生对教学内容的感受,并对课堂效率、教师表现等进行评估,以此来更好地改进自己的教学方法。

教学反思本课是一堂综合性的课程。

在教学过程中,老师注重引导学生自主思考,激发学生的创造性思维,让学生更好地领会合情推理和演绎推理的区别和联系。

同时,老师还通过实例和习题展示来帮助学生理解这些理论知识的具体应用。

高中数学选修《合情推理与演绎推理》教案

高中数学选修《合情推理与演绎推理》教案第一章:合情推理概述1.1 推理的定义与分类引导学生理解推理的定义介绍合情推理与演绎推理的区别与联系举例说明合情推理在数学中的应用1.2 合情推理的方法介绍归纳推理、类比推理、归纳猜想等合情推理方法通过具体例子讲解各种合情推理方法的步骤与特点引导学生掌握合情推理的方法并能够运用到实际问题中第二章:演绎推理的基本形式2.1 演绎推理的定义与特点引导学生理解演绎推理的定义与特点强调演绎推理的逻辑严密性与结论的必然性2.2 演绎推理的基本形式介绍演绎推理的三段论形式及其结构引导学生理解假言推理、选言推理等演绎推理的基本形式通过例题讲解各种演绎推理形式的应用与解题步骤第三章:演绎推理的应用3.1 演绎推理在数学证明中的应用引导学生理解演绎推理在数学证明中的重要性通过具体例子讲解演绎推理在证明题中的应用与步骤3.2 演绎推理在解决实际问题中的应用介绍演绎推理在解决实际问题中的应用范围与方法通过具体例子讲解演绎推理在实际问题解决中的步骤与技巧第四章:合情推理与演绎推理的综合应用4.1 合情推理与演绎推理的综合案例分析提供综合案例,要求学生运用合情推理与演绎推理的方法进行分析与解答引导学生理解合情推理与演绎推理在不同情境下的作用与重要性4.2 合情推理与演绎推理的综合练习提供综合练习题目,要求学生运用合情推理与演绎推理的方法进行解答引导学生通过练习巩固合情推理与演绎推理的知识与技能第五章:推理能力培养5.1 推理能力的培养方法介绍推理能力的培养方法与技巧引导学生掌握推理能力的培养方法并能够运用到实际学习中5.2 推理能力的学习与应用提供推理能力的学习与应用题目,要求学生进行练习与解答引导学生通过练习与应用提高自己的推理能力并能够运用到实际问题中第六章:数学归纳法与合情推理6.1 数学归纳法的概念与步骤介绍数学归纳法的定义与基本步骤通过具体例子讲解数学归纳法的应用与解题技巧6.2 数学归纳法在合情推理中的应用引导学生理解数学归纳法在合情推理中的作用与重要性提供合情推理题目,要求学生运用数学归纳法进行解答与证明第七章:演绎推理与数学证明7.1 演绎推理在数学证明中的作用强调演绎推理在数学证明中的重要性通过具体例子讲解演绎推理在数学证明中的应用与步骤7.2 演绎推理在证明题中的综合应用提供证明题目,要求学生运用演绎推理的方法进行解答与证明引导学生通过练习巩固演绎推理在数学证明中的知识与技能第八章:逻辑推理与演绎推理8.1 逻辑推理的基本概念介绍逻辑推理的定义与基本概念强调逻辑推理在演绎推理中的重要性8.2 逻辑推理在演绎推理中的应用提供演绎推理题目,要求学生运用逻辑推理的方法进行解答与证明引导学生通过练习与应用提高逻辑推理在演绎推理中的能力第九章:演绎推理与问题解决9.1 演绎推理在问题解决中的作用强调演绎推理在问题解决中的重要性通过具体例子讲解演绎推理在问题解决中的应用与步骤9.2 演绎推理在实际问题解决中的综合应用提供实际问题题目,要求学生运用演绎推理的方法进行解答与解决引导学生通过练习与应用提高演绎推理在问题解决中的能力第十章:总结与提高10.1 合情推理与演绎推理的总结对本课程的合情推理与演绎推理进行总结与回顾强调合情推理与演绎推理在数学学习与问题解决中的重要性10.2 推理能力的进一步提高提供推理能力提高的练习与题目,要求学生进行解答与实践引导学生通过练习与实践不断提高自己的推理能力,并能够运用到实际学习中。

高中数学选修《合情推理与演绎推理》教案

高中数学选修《合情推理与演绎推理》教案一、教学目标1. 让学生理解合情推理与演绎推理的定义及其相互关系。

2. 培养学生运用合情推理与演绎推理解决问题的能力。

3. 提高学生分析问题、解决问题的能力,培养学生的逻辑思维能力。

二、教学内容1. 合情推理与演绎推理的定义及特点。

2. 合情推理与演绎推理在数学中的应用。

3. 合情推理与演绎推理的练习题解析。

三、教学重点与难点1. 合情推理与演绎推理的定义及其相互关系。

2. 运用合情推理与演绎推理解决实际问题。

四、教学方法1. 采用讲授法,讲解合情推理与演绎推理的定义、特点及应用。

2. 运用案例分析法,分析实际问题中的合情推理与演绎推理。

3. 开展小组讨论,培养学生合作学习的能力。

五、教学过程1. 导入新课:通过生活中的实例,引导学生了解合情推理与演绎推理的概念。

2. 讲解合情推理与演绎推理的定义、特点及相互关系。

3. 案例分析:分析实际问题,展示合情推理与演绎推理的应用。

4. 练习题解析:讲解练习题,巩固所学知识。

5. 小组讨论:学生分组讨论,分享各自的理解和心得。

6. 总结归纳:对本节课的内容进行总结,强调合情推理与演绎推理在数学及生活中的重要性。

7. 布置作业:布置相关练习题,巩固所学知识。

六、教学策略与手段1. 运用多媒体教学,通过动画、图片等形式展示合情推理与演绎推理的过程,增强学生的直观感受。

2. 设计丰富的教学活动,如游戏、竞赛等,激发学生的学习兴趣。

3. 创设问题情境,引导学生主动探究,培养学生的独立思考能力。

七、教学评价1. 课堂问答:检查学生对合情推理与演绎推理的理解程度。

2. 练习题:评估学生运用合情推理与演绎推理解决问题的能力。

3. 小组讨论:观察学生在讨论中的表现,评价其合作学习的能力。

八、教学案例案例一:通过分析一道数学题,引导学生运用合情推理与演绎推理求解。

案例二:以生活中的问题为背景,让学生运用合情推理与演绎推理寻找解决方案。

合情推理与演绎推理教学讲义

合情推理与演绎推理教学讲义ZHI SHI SHU LI知识梳理)1.推理根据一个或几个已知的判断来确定一个新的判断,这种思维方式叫做推理.推理一般分为合情推理与演绎推理两类.2.合情推理归纳推理类比推理定义由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理特点由部分到整体、由个别到一般的推理由特殊到特殊的推理一般步骤(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确的一般性命题(猜想)(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想)3.演绎推理(1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理;(2)特点:演绎推理是由一般到特殊的推理;(3)模式:三段论.“三段论”是演绎推理的一般模式,包括:“三段论”的结构①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理:对特殊情况做出的判断“三段论”的表示④大前提——M是P;⑤小前提——S是M;⑥结论——S是PZHONG YAO JIE LUN重要结论)1.合情推理的结论是猜想,不一定正确;演绎推理在大前提、小前提和推理形式都正确时,得到的结论一定正确.2.合情推理是发现结论的推理;演绎推理是证明结论的推理.SHUANG JI ZI CE双基自测)1.下列结论中正确命题的个数为(B)(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.(2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.(3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.(4)“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定是9的倍数”,这是三段论推理,但其结论是错误的.(5)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.A.1B.2C.3D.4[解析](1)×(2)√(3)×(4)√(5)×,故选B.2.(2018·山东淄博一模,6)有一段“三段论”推理是这样的:对于可导函数f(x),若f′(x0)=0,则x=x0是函数f(x)的极值点,因为f(x)=x3在x=0处的导数值为0,所以x=0是f(x)=x3的极值点,以上推理(A)A.大前提错误B.小前提错误C.推理形式错误D.结论正确[解析]大前提是“对于可导函数f(x),若f′(x0)=0,则x=x0是函数f(x)的极值点”,不是真命题,因为对于可导函数f(x),如果f′(x0)=0,且满足在x0附近左右两侧导函数值异号,那么x=x0才是函数f(x)的极值点,所以大前提错误.故选A.3.(2018·山西高考考前适应性测试,7)完成下列表格,据此可猜想多面体各面内角和的总和的表达式是(A)多面体顶点数V面数F棱数E各面内角和的总和三棱锥46四棱锥55五棱锥6(说明:上述表格内,顶点数V 指多面体的顶点数) A .2(V -2)π B .(F -2)π C .(E -2)π D .(V +F -4)π[解析] 填表如下:多面体 顶点数V面数F 棱数E 各面内角和的总和三棱锥 4 4 6 4π 四棱锥 5 5 8 6π 五棱锥66108π不难发现各面内角和的总和的表达式是2(V -2)π,故选A .4.(教材改编)在平面上,若两个正三角形的边长的比为1︰2,则它们的面积比为1︰4.类似地,在空间中,若两个正四面体的棱长的比为1︰2,则它们的体积比为1︰8.[解析] 因为两个正三角形是相似的三角形,所以它们的面积之比是相似比的平方.同理,两个正四面体是两个相似几何体,体积之比为相似比的立方.所以它们的体积比为1︰8. 5.(2014·课标Ⅰ)甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一城市. 由此可判断乙去过的城市为A .[解析] 由甲的话可知乙没去过B 城市,乙又没去过C 城市,且三个人去过同一个城市,∴乙去过城市A .考点1 类比推理——自主练透例1 (1)(2018·豫南九校第六次质量考评,15)已知函数f (x )=1x +1x +1+1x +2,由f (x-1)=1x -1+1x +1x +1是奇函数,可得函数f (x )的图象关于点(-1,0)对称,类比这一结论,可得函数g (x )=x +2x +1+x +3x +2+…+x +7x +6的图象关于点(-72,6)对称.(2)若等差数列{a n }的公差为d ,前n 项的和为S n ,则数列{S n n }为等差数列,公差为d2.类似,若各项均为正数的等比数列{b n }的公比为q ,前n 项的积为T n ,则等比数列{nT n }的公比为( C ) A . q2B .q 2C .qD .n q(3)(2018·湖北八校联考二模,16)祖暅是我国南北朝时代的数学家,是祖冲之的儿子.他提出了一条原理:“幂势既同,则积不容异.”这里的“幂”指水平截面的面积,“势”指高.这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体体积相等,设由椭圆y 2a 2+x 2b 2=1(a >b >0)所围成的平面图形绕y 轴旋转一周后,得一橄榄状的几何体(称为椭球体)如图所示,课本中介绍了应用祖暅原理求球体体积公式的方法,请类比此法,求出椭球体体积,其体积等于43π×b 2a .[解析](1)由题意得g (x )-6=x +2x +1-1+x +3x +2-1+x +4x +3-1+x +5x +4-1+x +6x +5-1+x +7x +6-1=1x +1+1x +2+1x +3+1x +4+1x +5+1x +6, 则g (x -72)-6=1x -72+1+1x -72+2+1x -72+3+1x -72+4-1x -72+5+1x -72+6=1x -52+1x -32+1x -12+1x +12+1x +32+1x +52=h (x ), ∴h (-x )=1-x -52+1-x -32+1-x -12+1-x +12+1-x +32+1-x +52=-h (x ),∴h (x )是奇函数,∴函数g (x )=x +2x +1+x +3x +2+…+x +7x +6的图象关于点(-72,6)对称.故填(-72,6).(2)由题设得,T n =b 1·b 2·b 3·…·b n =b 1·b 1q ·b 1q 2·…·b 1q n -1=b n 1q q 1+2+…+(n -1)=b n 1qq (n -1)n2.所以nT n =b 1q n -12,所以等比数列{nT n }的公比为q .(3)椭圆的长半轴长为a ,短半轴长为b ,现构造两个底面半径为b ,高为a 的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,根据祖暅原理得出椭球体的体积V =2(V 圆柱-V 圆锥)=2(π×b 2×a -13π×b 2×a )=43πb 2a .考点2 归纳推理——多维探究角度1 数字的归纳例2 (2018·山东淄博部分学校联考)《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:223=223,338=338,4415=4415,5524=5524,则按照以上规律,若88n=88n具有“穿墙术”,则n =( C ) A .35 B .48 C .63 D .80[解析] 探求规律 223=223,…2×2-1=3 338=338,…3×3-1=8 4415=4415,…4×4-1=15 5524=5524,…5×5-1=24 ……由此猜想…8×8-1=n . 即n =63,故选C . 角度2 式子的归纳例3 (2018·河北衡水中学第十次模拟考试,16)观察下列各式: 13=1;23=3+5; 33=7+9+11; 43=13+15+17+19; ……若m 3(m ∈N *)按上述规律展开后,发现等式右边含有“2017”这个数,则m 的值为45. [解析] 由题意可得第n 个式子的左边是n 3,右边是n 个连续奇数的和, 设第n 个式子右边的第一个数为a n ,则有a 2-a 1=3-1=2, a 3-a 2=7-3=4,……,a n -a n -1=2(n -1),以上(n -1)个式子相加可得a n -a 1=(n -1)[2+2(n -1)]2,故a n =n 2-n +1,可得a 45=1981,a 46=2071, 故可知2017在第45个式子中,故m =45. 角度3 图形的归纳例4 (2018·宁夏平罗中学期中)如图所示,第n 个图形是由正n +2边形拓展而来(n =1,2,…),则第n -2(n ≥3)个图形共有n 2+n 个顶点.[解析] 第一个图有3+3×3=4×3个顶点; 第二个图有4+4×4=5×4个顶点; 第三个图有5+5×5=6×5个顶点; 第四个图有6+6×6=7×6个顶点; …第n 个图有(n +3)(n +2)个顶点,第n -2个图形共有n (n +1)=n 2+n 个顶点.名师点拨 ☞归纳推理问题的常见类型及解题策略(1)与数字有关的数阵(或数表)问题,要观察数字特征,数字与序号间的关系及其变化规律,一般要结合数列知识求解.(2)与式子有关的问题:①要特别注意所给几个等式(或不等式)中项数和次数等方面的变化规律;②要特别注意所给几个等式(或不等式)中结构形式的特征;③提炼出等式(或不等式)的综合特点;④运用归纳推理得出一般结论.(3)与图形有关的问题:①从图形的数量规律入手,找到数值变化与序号的关系;②从图形的结构变化规律入手,找到图形的结构每发生一次变化后,与上一次比较,结构、数值发生了怎样的变化,探求规律. 〔变式训练1〕(1)(角度1)(2018·安徽安庆二模,11)对大于1的自然数的三次幂可以分解成几个奇数的和,比各23=3+5,33=7+9+11,43=13+15+17+19,……,以此规律,453的分解和式中一定不含有( D ) A .2069 B .2039 C .2009D .1979(2)(角度2)(2016·山东,5分)观察下列等式: (sin π3)-2+(sin 2π3)-2=43×1×2; (sin π5)-2+(sin 2π5)-2+(sin 3π5)-2+(sin 4π5)-2=43×2×3; (sin π7)-2+(sin 2π7)-2+(sin 3π7)-2+…+(sin 6π7)-2=43×3×4; (sin π9)-2+(sin 2π9)-2+(sin 3π9)-2+…+(sin 8π9)-2=43×4×5; …… 照此规律,(sin π2n +1)-2+(sin 2π2n +1)-2+(sin 3π2n +1)-2+…+(sin 2n π2n +1)-2=4n (n +1)3.(3)(角度3)(2018·山东青岛一模,4)中国有个名言“运筹帷幄之中,决胜千里之外”,其中的“筹”原意是指《孙子算经》中记载的算筹,古代是用算筹来进行计算的,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式,如图,当表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,以此类推.例如6613用算筹表示就是,则8335用算筹可表示为( B )A .B .C .D .[解析] (1)由规律得453中第一项为45+(45-1)2=1981,所以一定不含有1979,选D . (2)观察前4个等式,由归纳推理可知(sin π2n +1 )-2+(sin 2π2n +1 )-2+…+(sin 2n π2n +1)-2=43×n ×(n +1)=4n (n +1)3.(3)各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,则8335用算筹可表示为,故选B .考点3 演绎推理——师生共研例5 (2018·山西孝义模拟,7)有编号依次为1,2,3,4,5,6的6名学生参加数学竞赛选拔赛,今有甲、乙、丙、丁四位老师在猜谁将得第一名,甲猜不是3号就是5号;乙猜6号不可能;丙猜2号,3号,4号都不可能;丁猜是1号,2号,4号中的某一个.若以上四位老师中只有一位老师猜对,则猜对者是( C ) A .甲 B .乙 C .丙D .丁[分析] 根据题意,逐一讨论第1名分别是1,2,3,4,5,6号时,甲、乙、丙、丁的对错,进而得结论.[解析] 若1号是第1名,则甲错,乙对,丙对,丁对,不符合题意;若2号是第1名,则甲错,乙对,丙错,丁对,不符合题意;若3号是第1名,则甲对,乙对,丙错,丁错,不符合题意;若4号是第1名,则甲错,乙对,丙错,丁对,不符合题意;若5号是第1名,则甲对,乙对,丙对,丁错,不符合题意;若6号是第1名,则甲错,乙错,丙对,丁错,符合题意.故猜对者是丙.[方法总结] 解决此类推理问题,正确理解逻辑关系是关键.名师点拨 ☞演绎推理的结构特点演绎推理是由一般到特殊的推理,其最常见的形式是三段论,它是由大前提、小前提、结论三部分组成的.三段论推理中包含三个判断:第一个判断称为大前提,它提供了一个一般性的原理;第二个判断叫小前提,它指出了一个特殊情况.这两个判断联合起来,提示了一般原理和特殊情况的内在联系,从而产生了第三个判断:结论.〔变式训练2〕(2018·湖北武汉武昌区调研)一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”,经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是(B)A.甲B.乙C.丙D.丁[解析]由题可知,乙、丁两人的观点一致,即同真同假,假设乙、丁说的是真话,那么甲、丙两人说的是假话,由乙说的是真话,推出丙是罪犯,由甲说假话,推出乙、丙、丁三人不是罪犯,显然两个结论相互矛盾,所以乙、丁两人说的是假话,而甲、丙两人说的是真话,由甲、丙供述可得,乙是罪犯.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.1.4 合情推理与演绎推理的关系
一、教学目标
(一)知识目标:
通过具体实例,了解合情推理和演绎推理之间的联系和差异.初步了解探索自然规律的原理与方法:使用合情推理发现问题提出猜想,再使用合情推理总结出解决方案或猜想,最后利用演绎推理加以论证.
(二)情感目标:
通过学习让学生体会探索自然规律和证明定理过程中激动人心的一幕,促使学生爱数学、学数学、应用数学并发现数学,养成学生勤于观察、思考,擅于提出问题、解决问题的优良品质.
(三)能力目标:
进一步提高学生归纳与类比的推理能力,进一步提高学生演绎推理的能力,并能在实际问题中综合应用合情推理与演绎推理.
二、教学重点
了解合情推理和演绎推理之间的联系和差异,在实际问题中综合应用合情推理与演绎推理.
三、教学难点
在实际问题中综合应用合情推理与演绎推理.
四、教学过程
(一)引入课题
在我们学习了合情推理与演绎推理之后,必须认识到,归纳、类比和演绎不是孤立地出现的,它们紧密地交织在一起.
在数学史中,有许多世界著名的数学问题如哥德巴赫猜想、“四色定理”、费马大定理等主要是数学家依靠合情推理得以发现或解决的,但在发现和解决它们的时候也离不开演绎推理.
(二)传授新知
(配合多媒体演示)古希腊亚历山大城有一位久负盛名的学者——海伦,有一天,一位远道而来的将军向他请教一个问题:
从A地出发到河边饮完马再到B地去,在河边哪个地方饮马可使路途最短?如下图6-3所示:
A
B
M N
P 河岸
图6-3
N A
B
M P 河岸
A/
P/
图6-4
如何用更数学化的语言表述这个要解决的问题?
(学生)要解决的问题就是,如何在MN 上选出一个点P ,使AP +BP 最短. 这是一个路径最短的问题,我们在平面几何中知道,一个平面上两个点之间最短的路径是什么?
(学生 )连结这两个点的直线段.
现在的问题是一个折线段路径最短的问题,请思考,如何解决这个问题? (提示学生化折为直)
(学生)将折线段路径最短问题转化为直线段路径最短问题.
在宇宙间最大的速度是光的速度,光总是走最短路径,这样,我们又可以展开类比的合情推理:假设一条光线从点A 出发射到直线上的点P ,再从点P 反射经过点B ,因为光总是走最短路径,可以猜想,最短路径可能就是光的入射线与反射线的路径.
师生共同用合情推理构思证明:如果把MN 看成镜子,把点B 看作一只眼睛,从镜子里看点A 的像点A ',点A '应该在镜子的背后,并且点A '在BP 的延长线上.由此先作点A 关于MN 的对称点A ',连接BA ',交MN 于P ,点P 即为所求.
用演绎法证明如下:如图6-4所示,在MN 上任取一点P '(异于点P ),则AP P A '''=,AP PA '=,从而AP P B A P P B A B A P PB AP PB '''''''+=+>=+=+.
由此可知:A 到B 经点P 距离最短.
(三)课堂小结
以上是一个经典的几何最短路径问题的提出与解决的全过程,从中可以总结出探索自然规律的原理与方法:使用合情推理发现问题提出猜想,再使用合情推理得到解决方案或猜想,最后利用演绎推理加以论证.
合情推理和演绎推理的主要区别是思维进程的不同,比如合情推理中的归纳推理的思维进程是从个别到一般.而演绎推理的思维进程是从一般到特殊,是一个必然得出的思维进程.合情推理和演绎推理有着紧密的联系,一方面,归纳、类比推理的可靠性不仅要用许多事例去验证,而且也要用较一般的原理、较一般的规律去验证(即用演绎法来验证);另一方面,演绎的前提是过去通过归纳得出的.任何一门科学的发展都有一个通过观察、实验而积累材料的阶段.当材料积累到一定程度,就要整理材料,从中概括出带普遍性的结论,即提出假说、定理、定律或公式.
逻辑史上曾出现两个相互对立的派别——全归纳派和全演绎派.全归纳派把归纳说成惟一科学的思维方法,否认演绎在认识中的作用.全演绎派把演绎说成是惟一科学的思维方法,否认归纳的意义.这两种观点都是片面的.正如恩格斯所说:“归纳和演绎,正如分析和综合一样,是必然相互联系着的.不应当牺牲一个而把另一个捧到天上去,应当把每一个都用到该用的地方,而要做到这一点,就只有注意它们的相互联系、它们的相互补充.”
(四)技能训练
1. 教材P.137 例1.
2.直角三角形中有勾股定理:“△ABC 两边AB ,AC 互相垂直,则
AB 2+AC 2=BC 2”,将勾股定理推广到直四面体可以猜想所得的结果应是:“设直四面体A —BCD 的三个侧面ABC, ACD, ADB 两两相互垂直,且三个侧面面积分
别等于1S ,2S ,3S ,底面△BCD 的面积S ,则2
322212S S S S ++=.”现将二者的证明类比如下:
勾股定理的证明△ABC 中,如图6-5,过点A 作斜边BC 的垂线,垂足为D ,由AB
BD BC AB =得BC BD AB ⋅=2,同理,CB CD AC ⋅=2,两式相加得222BC AC AB =+.
类比勾股定理的证明,在三棱锥中,如图6-6,设二面角B CD A --的平面角
大小为α,由立体几何知识有ACD
COD BCD ACD S S S S ∆∆∆∆==αcos ,故有BCD COD ACD S S S ∆∆∆⋅=2,同理有BCD BOC ABC S S S ∆∆∆⋅=2,BCD BOD ABD S S S ∆∆∆⋅=2,三式相加得2
322212S S S S ++=.
(五)思维与拓展
在探索自然规律时,首先要确定一个目标,或者提出一个要解决的问题;然后通过日常的实践、分析和合情推理,总结出一个预期的解决方案或猜想;最后还需对此猜想作出严格的证明.证明的过程中则需要按演绎推理的规则进行.证明完前一步,下一步又该如何演绎,仍需依靠合情推理提供思路,直到完成全部证明.
美国著名的数学教育家G 波利亚曾指出:“数学的创造过程是与其他知识的创造一样的,在证明一个定理之前,你先得猜想这个定理的内容,在你完全作出详细的证明之前,你得猜想证明的思路.你要先把观察到的结果加以综合,然后加以类比,你得一次又一次地尝试.数学家的创造性成果是论证推理(演绎推理),即证明.但这个证明是通过合情推理,通过猜想而发现的.”
在平面几何与立体几何中存在着许多类比发现的过程,比如:
1.正三角形的中心位于高线的三等分点处,类比发现正四面体的中心位于高线的四等分点处;
2.三角形的内切圆半径为r ,各边长为,,a b c ,则三角形的面积为
1()2
S r a b c =++,类比发现四面体的内切球半径为R ,各表面三角形面积为1234,,,,S S S S 其体积为12341()3
V R S S S S =+++. 五、布置作业
教材P.141 习题 16,17,18,20.
A
C 图6-5 A B C
D O 图6-6。

相关文档
最新文档