周益春-材料固体力学习题解答习题三

合集下载

材料力学习题解答[第八章49-76]

材料力学习题解答[第八章49-76]

8-49现用某种黄铜材料制成的标准圆柱形试件做拉伸试验。

已知临近破坏时,颈缩中心部位的主应力比值为113321::::=σσσ;并已知这种材料当最大拉应力达到770MPa 时发生脆性断裂,最大切应力达到313MPa 时发生塑性破坏。

若对塑性破坏采用第三强度理论,试问现在试件将发生何种形式的破坏?并给出破坏时各主应力之值。

解: 令主应力分别为:σσ31=,σσσ==32脆性断裂时,由第一强度理论=1r σσσ31==770MPa所以,MPa257≈σ塑性破坏时,由第三强度理论=3r σMPa6262313231=⨯==-σσσ所以MPa 313=σ故,试件将发生脆性断裂。

破坏时MPa 7701=σ,MPa 25732==σσ8-50 钢制圆柱形薄壁压力容器(参见图8-13),其平均直径mm d 800=,壁厚mm 4=δ,材料的MPa ][120=σ,试根据强度理论确定容器的许可内压p 。

解:在压力容器壁上取一单元体,其应力状态为二向应力状态。

p pd 504'==δσ ,p pd1002"==δσ 其三个主应力为p 100"1==σσ, p 50'2==σσ,03=σ据第三强度理论=3r σ[]MPap 120100331=≤=-σσσ所以 ,MPa p 2.13≤,许可内压MPa p 2.13= 据第四强度理论()()()[][]MPa p r 1206.862142132322214=≤≈-+-+-=σσσσσσσσ题 8-50 图所以,MPa p 39.14≤,许可内压MPa p 39.14=8-51 空心薄壁钢球,其平均内径mm d 200=,承受内压MPa p 15=,钢的MPa ][160=σ。

试根据第三强度理论确定钢球的壁厚δ。

解:钢球上任一点应力状态如图示 其三个主应力为:σσσ==21,03=σ而MPa MPa d p R R p δδδδππσ4342.0152222=⨯=⋅=⋅⋅=据第三强度理论=3r σ[]MPa 1604331=≤=-σδσσ 所以 mm m 69.41069.41601433=⨯=⨯≥-δ8-52 图8-77所示两端封闭的铸铁圆筒,其直径mm d 100=,壁厚mm 10=δ,承受内压MPa p 5=,且在两端受压力kN F 100=和外扭矩m kN T ⋅=3作用,材料的许用拉应力MPa ][40=+σ,许用压应力MPa ][160=-σ,泊松比250.=ν,试用莫尔强度理论校核其强度。

材料力学课后习题答案

材料力学课后习题答案

材料力学课后习题答案欢迎大家来到大学网,小编搜集整理了材料力学课后习题答案供大家查阅,希望大家喜欢。

1、解释下列名词。

1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。

2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。

3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。

4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。

5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。

6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。

韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。

7.解理台阶:当解理裂纹与螺型位错相遇时,便形成1个高度为b 的台阶。

8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。

是解理台阶的1种标志。

9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。

10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。

沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。

11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。

弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等决定金属屈服强度的因素有哪些?答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。

材料力学课后习题答案

材料力学课后习题答案

材料力学课后习题答案材料力学课后习题答案欢迎大家来到聘才网小编搜集整理了材料力学课后习题答案供大家查阅希望大家喜欢1、解释下列名词1弹性比功:金属材料吸收弹性变形功的能力一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示2.滞弹性:金属材料在弹性范围内快速加载或卸载后随时间延长产生附加弹性应变的现象称为滞弹性也就是应变落后于应力的现象3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性4.包申格效应:金属材料经过预先加载产生少量塑性变形卸载后再同向加载规定残余伸长应力增加;反向加载规定残余伸长应力降低的现象5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力7.解理台阶:当解理裂纹与螺型位错相遇时便形成1个高度为b 的台阶8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样是解理台阶的1种标志9.解理面:是金属材料在一定条件下当外加正应力达到一定数值后以极快速率沿一定晶体学平面产生的穿晶断裂因与大理石断裂类似故称此种晶体学平面为解理面10.穿晶断裂:穿晶断裂的裂纹穿过晶内可以是韧性断裂也可以是脆性断裂沿晶断裂:裂纹沿晶界扩展多数是脆性断裂11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时冲击吸收功明显下降断裂方式由原来的韧性断裂变为脆性断裂这种现象称为韧脆转变12.弹性不完整性:理想的弹性体是不存在的多数工程材料弹性变形时可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等决定金属屈服强度的因素有些?答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相外在因素:温度、应变速率和应力状态2、试述韧性断裂与脆性断裂的区别为什么脆性断裂最危险?答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂这种断裂有1个缓慢的撕裂过程在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂断裂前基本上不发生塑性变形没有明显征兆因而危害性很大3、剪切断裂与解理断裂都是穿晶断裂为什么断裂性质完全不同?答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离一般是韧性断裂而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂解理断裂通常是脆性断裂4、何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有些?答:宏观断口呈杯锥形由纤维区、放射区和剪切唇3个区域组成即所谓的断口特征三要素上述断口三区域的形态、大小和相对位置因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化5、论述格雷菲斯裂纹理论分析问题的思路推导格雷菲斯方程并指出该理论的局限性答:只适用于脆性固体,也就是只适用于那些裂纹尖端塑性变形可以忽略的情况第二章金属在其他静载荷下的力学性能一、解释下列名词:(1)应力状态软性系数材料或工件所承受的最大切应力τmax和最大正12应力σmax比值即:max(2)缺口效应绝大多数机件的横截面都不是均匀而无变化的光滑体往往存在截面的急剧变化如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等这种截面变化的部分可视为“缺口”由于缺口的存在在载荷作用下缺口截面上的应力状态将发生变化产生所谓的缺口效应(3)缺口敏感度缺口试样的抗拉强度σbn的与等截面尺寸光滑试样的抗拉强度σb的比值称为缺口敏感度即:(4)布氏硬度用钢球或硬质合金球作为压头采用单位面积所承受的试验力计算而得的硬度(5)洛氏硬度采用金刚石圆锥体或小淬火钢球作压头以测量压痕深度所表示的硬度(6)维氏硬度以两相对面夹角为136的金刚石四棱锥作压头采用单位面积所承受的试验力计算而得的硬度(7)努氏硬度采用2个对面角不等的四棱锥金刚石压头由试验力除以压痕投影面积得到的硬度(8)肖氏硬度采动载荷试验法根据重锤回跳高度表证的金属硬度(9)里氏硬度采动载荷试验法根据重锤回跳速度表证的金属硬度二、说明下列力学性能指标的意义(1)σbc材料的抗压强度(2)σbb材料的抗弯强度(3)τs材料的扭转屈服点(4)τb材料的抗扭强度(5)σbn材料的抗拉强度(6)NSR材料的缺口敏感度(7)HBW压头为硬质合金球的材料的布氏硬度(8)HRA材料的洛氏硬度(9)HRB材料的洛氏硬度(10)HRC材料的洛氏硬度(11)HV材料的维氏硬度在弹性状态下的应力分布:薄板:在缺口根部处于单向拉应力状态在板中心部位处于两向拉伸平面应力状态厚板:在缺口根部处于两向拉应力状态缺口内侧处三向拉伸平面应变状态无论脆性材料或塑性材料都因机件上的缺口造成两向或三向应力状态和应力集中而产生脆性倾向降低了机件的使用安全性为了评定不同金属材料的缺口变脆倾向必须采用缺口试样进行静载力学性能试验八.今有如下零件和材料需要测定硬度试说明选择何种硬度实验方法为宜(1)渗碳层的硬度分布;(2)淬火钢;(3)灰铸铁;(4)鉴别钢中的隐晶马氏体和残余奥氏体;(5)仪表小黄铜齿轮;(6)龙门刨床导轨;(7)渗氮层;(8)高速钢刀具;(9)退火态低碳钢;(10)硬质合金(1)渗碳层的硬度分布HK或显微HV(2)淬火钢HRC(3)灰铸铁HB(4)鉴别钢中的隐晶马氏体和残余奥氏体显微HV或者HK(5)仪表小黄铜齿轮HV(6)龙门刨床导轨HS(肖氏硬度)或HL(里氏硬度)(7)渗氮层HV(8)高速钢刀具HRC(9)退火态低碳钢HB(10)硬质合金HRA第三章金属在冲击载荷下的力学性能冲击韧性:材料在冲击载荷作用下吸收塑性变形功和断裂功的能力【P57】冲击韧度::U形缺口冲击吸收功AKU除以冲击试样缺口底部截面积所得之商称为冲击韧度αku=Aku/S(J/cm2),反应了材料抵抗冲击载荷的能力,用aKU表示P57注释/P67冲击吸收功:缺口试样冲击弯曲试验中摆锤冲断试样失去的位能为mgH1mgH2此即为试样变形和断裂所消耗的功称为冲击吸收功以AK表示单位为JP57/P67低温脆性:体心立方晶体金属及合金或某些密排六方晶体金属及其合金特别是工程上常用的中、低强度结构钢(铁素体珠光体钢)在试验温度低于某一温度tk时会由韧性状态变为脆性状态冲击吸收功明显下降断裂机理由微孔聚集型变为穿晶解理型断口特征由纤维状变为结晶状这就是低温脆性韧性温度储备:材料使用温度和韧脆转变温度的差值保证材料的低温服役行为二、(1)AK:冲击吸收功含义见上面冲击吸收功不能真正代表材料的韧脆程度但由于它们对材料内部组织变化十分敏感而且冲击弯曲试验方法简便易行被广泛采用AKV(CVN):V型缺口试样冲击吸收功.AKU:U型缺口冲击吸收功.(2)FATT50:通常取结晶区面积占整个断口面积50%时的温度为tk 并记为50%FATT或FATT50%t50(或:结晶区占整个断口面积50%是的温度定义的韧脆转变温度.(3)NDT:以低阶能开始上升的温度定义的韧脆转变温度,称为无塑性或零塑性转变温度(4)FTE:以低阶能和高阶能平均值对应的温度定义tk记为FTE(5)FTP:以高阶能对应的温度为tk记为FTP四、试说明低温脆性的物理本质及其影响因素低温脆性的物理本质:宏观上对于那些有低温脆性现象的材料它们的屈服强度会随温度的降低急剧增加而断裂强度随温度的降低而变化不大当温度降低到某一温度时屈服强度增大到高于断裂强度时在这个温度以下材料的屈服强度比断裂强度大因此材料在受力时还未发生屈服便断裂了材料显示脆性从微观机制来看低温脆性与位错在晶体点阵中运动的阻力有关当温度降低时位错运动阻力增大原子热激活能力下降因此材料屈服强度增加影响材料低温脆性的因素有(P63P73):1.晶体结构:对称性低的体心立方以及密排六方金属、合金转变温度高材料脆性断裂趋势明显塑性差2.化学成分:能够使材料硬度强度提高的杂质或者合金元素都会引起材料塑性和韧性变差材料脆性提高3.显微组织:①晶粒大小细化晶粒可以同时提高材料的强度和塑韧性因为晶界是裂纹扩展的阻力晶粒细小晶界总面积增加晶界处塞积的位错数减少有利于降低应力集中;同时晶界上杂质浓度减少避免产生沿晶脆性断裂②金相组织:较低强度水平时强度相等而组织不同的钢冲击吸收功和韧脆转变温度以马氏体高温回火最佳贝氏体回火组织次之片状珠光体组织最差钢中夹杂物、碳化物等第二相质点对钢的脆性有重要影响当其尺寸增大时均使材料韧性下降韧脆转变温度升高五.试述焊接船舶比铆接船舶容易发生脆性破坏的原因焊接容易在焊缝处形成粗大金相组织气孔、夹渣、未熔合、未焊透、错边、咬边等缺陷增加裂纹敏感度增加材料的脆性容易发生脆性断裂七.试从宏观上和微观上解释为什么有些材料有明显的韧脆转变温度而另外一些材料则没有?宏观上体心立方中、低强度结构钢随温度的降低冲击功急剧下降具有明显的韧脆转变温度而高强度结构钢在很宽的温度范围内冲击功都很低没有明显的韧脆转变温度面心立方金属及其合金一般没有韧脆转变现象微观上体心立方金属中位错运动的阻力对温度变化非常敏感位错运动阻力随温度下降而增加在低温下该材料处于脆性状态而面心立方金属因位错宽度比较大对温度不敏感故一般不显示低温脆性体心立方金属的低温脆性还可能与迟屈服现象有关对低碳钢施加一高速到高于屈服强度时材料并不立即产生屈服而需要经过一段孕育期(称为迟屈时间)才开始塑性变形这种现象称为迟屈服现象由于材料在孕育期中只产生弹性变形没有塑性变形消耗能量所以有利于裂纹扩展往往表现为脆性破坏第四章金属的断裂韧度2.名词解释低应力脆断:高强度、超高强度钢的机件中低强度钢的大型、重型机件在屈服应力以下发生的断裂张开型(?型)裂纹:拉应力垂直作用于裂纹扩展面裂纹沿作用力方向张开沿裂纹面扩展的裂纹应力场强度因子K?:在裂纹尖端区域各点的应力分量除了决定于位置外尚与强度因子K?有关对于某一确定的点其应力分量由K?确定K?越大则应力场各点应力分量也越大这样K?即可表示应力场的强弱程度称K?为应力场强度因子“I”表示I型裂纹小范围屈服:塑性区的尺寸较裂纹尺寸及净截面尺寸为小时(小1个数量级以上)这就称为小范围屈服有效屈服应力:裂纹在发生屈服时的应力有效裂纹长度:因裂纹尖端应力的分布特性裂尖前沿产生有塑性屈服区屈服区内松弛的应力将叠加至屈服区之外从而使屈服区之外的应力增加其效果相当于因裂纹长度增加ry后对裂纹尖端应力场的影响经修正后的裂纹长度即为有效裂纹长度:a+ry裂纹扩展K判据:裂纹在受力时只要满足KI?KIC就会发生脆性断裂.反之即使存在裂纹若KI?KIC也不会断裂新P71:旧832、说明下列断裂韧度指标的意义及其相互关系K?C和KC答:临界或失稳状态的K?记作K?C或KCK?C为平面应变下的断裂韧度表示在平面应变条件下材料抵抗裂纹失稳扩展的能力KC为平面应力断裂韧度表示在平面应力条件下材料抵抗裂纹失稳扩展的能力它们都是?型裂纹的材料裂纹韧性指标但KC值与试样厚度有关当试样厚度增加使裂纹39材料力学性能课后习题答案材料力学课后习题答案尖端达到平面应变状态时断裂韧度趋于一稳定的最低值即为K?C 它与试样厚度无关而是真正的材料常数3、试述低应力脆断的原因及防止方法答:低应力脆断的原因:在材料的生产、机件的加工和使用过程中产生不可避免的宏观裂纹从而使机件在低于屈服应力的情况发生断裂预防措施:将断裂判据用于机件的设计上在给定裂纹尺寸的情况下确定机件允许的最大工作应力或者当机件的工作应力确定后根据断裂判据确定机件不发生脆性断裂时所允许的最大裂纹尺寸4、为什么研究裂纹扩展的力学条件时不用应力判据而用其它判据?答:由41可知裂纹前端的应力是1个变化复杂的多向应力如用它直接建立裂纹扩展的应力判据显得十分复杂和困难;而且当r→0时不论外加平均应力如何小裂纹尖端各应力分量均趋于无限大构件就失去了承载能力也就是说只要构件一有裂纹就会破坏这显然与实际情况不符这说明经典的强度理论单纯用应力大小来判断受载的裂纹体是否破坏是不正确的因此无法用应力判据处理这一问题因此只能用其它判据来解决这一问题5、试述应力场强度因子的意义及典型裂纹K?的表达式答:几种裂纹的K?表达式无限大板穿透裂纹:Ka;有限宽板穿透裂纹:aaK??1.2?a;有限宽板单边直裂纹:Kaf();Kaf()当b?a时bb 受弯单边裂纹梁:K??6Maf();无限大物体内部有椭圆片裂纹远处受3/2(b?a)b2均匀拉伸:Kaa2(sin??2cos2?)1/4;无限大物体表面有半椭圆裂纹远c1.1?a?处均受拉伸:A点的K??7、试述裂纹尖端塑性区产生的原因及其影响因素答:机件上由于存在裂纹在裂纹尖端处产生应力集中当σy趋于材料的屈服应力时在裂纹尖端处便开始屈服产生塑性变形从而形成塑性区影响塑性区大小的因素有:裂纹在厚板中所处的位置板中心处于平面应变状态塑性区较小;板表面处于平面应力状态塑性区较大但是无论平面应力或平面应变塑性区宽度总是与(KIC/σs)2成正比13、断裂韧度KIC与强度、塑性之间的关系:总的来说断裂韧度随强度的升高而降低15、影响KIC的冶金因素:内因:1、学成分的影响;2、集体相结构和晶粒大小的影响;3、杂质及第二相的影响;4、显微组织的影响外因:1、温度;2、应变速率16.有1大型板件材料的σ0.2=1200MPaKIc=115MPa*m1/2探伤发现有20mm长的横向穿透裂纹若在平均轴向拉应力900MPa下工作试计算KI及塑性区宽度R0并判断该件是否安全?解:由题意知穿透裂纹受到的应力为σ=900MPa根据σ/σ0.2的值确定裂纹断裂韧度KIC是否休要修正因为σ/σ0.2=900/1200=0.75>0.7所以裂纹断裂韧度KIC需要修正对于无限板的中心穿透裂纹修正后的KI为:a9000.01?KI168.1322)?0?0.177(0.75)(.177(?/?s)1?KI?塑性区宽度为:??R0比较K1与KIc:22s?因为K1=168.13(MPa*m1/2)KIc=115(MPa*m1/2)所以:K1>KIc裂纹会失稳扩展,所以该件不安全17.有一轴件平行轴向工作应力150MPa使用中发现横向疲劳脆性正断断口分析表明有25mm深度的表面半椭圆疲劳区根据裂纹a/c可以确定υ=1测试材料的σ0.2=720MPa试估算材料的断裂韧度KIC为多少?解:因为σ/σ0.2=150/720=0.208<0.7所以裂纹断裂韧度KIC不需要修正对于无限板的中心穿透裂纹修正后的KI为:KIC=Yσcac1/2对于表面半椭圆裂纹Y=1.1/υ=1.13?150?25?10所以KIC=Yσcac1/2=1.1=46.229(MPa*m1/2) 第五章金属的疲劳1.名词解释;应力幅σa:σa=1/2(σmaxσmin)p95/p108平均应力σm:σm=1/2(σmax+σmin)p95/p107应力比r:r=σmin/σmaxp95/p108疲劳源:是疲劳裂纹萌生的策源地一般在机件表面常和缺口裂纹刀痕蚀坑相连P96疲劳贝纹线:是疲劳区的最大特征一般认为它是由载荷变动引起的是裂纹前沿线留下的弧状台阶痕迹P97/p110疲劳条带:疲劳裂纹扩展的第二阶段的断口特征是具有略程弯曲并相互平行的沟槽花样称为疲劳条带(疲劳辉纹疲劳条纹)p113/p132 驻留滑移带:用电解抛光的方法很难将已产生的表面循环滑移带去除当对式样重新循环加载时则循环滑移带又会在原处再现这种永留或再现的循环滑移带称为驻留滑移带P111ΔK:材料的疲劳裂纹扩展速率不仅与应力水平有关而且与当时的裂纹尺寸有关ΔK是由应力范围Δσ和a复合为应力强度因子范围ΔK=KmaxKmin=Yσmax√aYσmin√a=YΔσ√a.p105/p120 da/dN:疲劳裂纹扩展速率即每循环一次裂纹扩展的距离P105 疲劳寿命:试样在交变循环应力或应变作用下直至发生破坏前所经受应力或应变的循环次数p102/p117过载损伤:金属在高于疲劳极限的应力水平下运转一定周次后其疲劳极限或疲劳寿命减小就造成了过载损伤P102/p1172.揭示下列疲劳性能指标的意义疲劳强度σ1σp,τ1,σ1N,P99,100,103/p114σ1:对称应力循环作用下的弯曲疲劳极限;σp:对称拉压疲劳极限;τ1:对称扭转疲劳极限;σ1N:缺口试样在对称应力循环作用下的疲劳极限疲劳缺口敏感度qfP103/p118金属材料在交变载荷作用下的缺口敏感性常用疲劳缺口敏感度来评定Qf=(Kf1)/(kt1).其中Kt为理论应力集中系数且大于一Kf为疲劳缺口系数Kf=(σ1)/(σ1N)过载损伤界P102,103/p117由实验测定测出不同过载应力水平和相应的开始降低疲劳寿命的应力循环周次得到不同试验点连接各点便得到过载损伤界疲劳门槛值ΔKthP105/p120在疲劳裂纹扩展速率曲线的Ⅰ区当ΔK≤ΔKth时da/aN=0,表示裂纹不扩展;只有当ΔK>ΔKth时da/dN>0,疲劳裂纹才开始扩展因此ΔKth是疲劳裂纹不扩展的ΔK临界值称为疲劳裂纹扩展门槛值4.试述疲劳宏观断口的特征及其形成过程(新书P96~98及PPT旧书P109~111)答:典型疲劳断口具有3个形貌不同的区域疲劳源、疲劳区及瞬断区(1)疲劳源是疲劳裂纹萌生的策源地疲劳源区的光亮度最大因为这里在整个裂纹亚稳扩展过程中断面不断摩擦挤压故显示光亮平滑另疲劳源的贝纹线细小(2)疲劳区的疲劳裂纹亚稳扩展所形成的断口区域是判断疲劳断裂的重要特征证据特征是:断口比较光滑并分布有贝纹线断口光滑是疲劳源区域的延续但其程度随裂纹向前扩展逐渐减弱贝纹线是由载荷变动引起的如机器运转时的开动与停歇偶然过载引起的载荷变动使裂纹前沿线留下了弧状台阶痕迹(3)瞬断区是裂纹最后失稳快速扩展所形成的断口区域其断口比疲劳区粗糙脆性材料为结晶状断口韧性材料为纤维状断口6.试述疲劳图的意义、建立及用途(新书P101~102旧书P115~117)答:定义:疲劳图是各种循环疲劳极限的集合图也是疲劳曲线的另1种表达形式意义:很多机件或构件是在不对称循环载荷下工作的因此还需要知道材料的不对称循环疲劳极限以适应这类机件的设计和选材的需要通常是用工程作图法由疲劳图求得各种不对称循环的疲劳极限1、?a?m疲劳图建立:这种图的纵坐标以?a表示横坐标以?m表示然后以不同应力比r条件下将?max表示的疲劳极限?r分解为?a和?m并在该坐标系中作ABC曲线即1?a(?max??min)1?r为?a??m疲劳图其几何关系为:tanm(?max??min)1?r2(用途):我们知道应力比r将其代入试中就可以求得tan?和?而后从坐标原点O引直线令其与横坐标的夹角等于?值该直线与曲线ABC 相交的交点B便是所求的点其纵、横坐标之和即为相应r的疲劳极限?rB?rB??aB??mB2、?max(?min)??m疲劳图建立:这种图的纵坐标以?max或?min表示横坐标以?m表示然后将不同应力比r下的疲劳极限分别以?max(?min)和?m表示于上述坐标系中就形成这种疲劳图几何关系为:tanmax2?max2m?max??min1?r (用途):我们只要知道应力比r,就可代入上试求得tan?和?而后从坐标原点O引一直线OH令其与横坐标的夹角等于?该直线与曲线AHC 相交的交点H的纵坐标即为疲劳极限8.试述影响疲劳裂纹扩展速率的主要因素(新书P107~109旧书P123~125)dac(?K)n答:1、应力比r(或平均应力?m)的影响:Forman提出:dN(1?r)Kc??K残余压应力因会减小r,使因会增大r使da降低和?Kth升高对疲劳寿命有利;而残余拉应力dNda升高和?Kth降低对疲劳寿命不利dN2、过载峰的影响:偶然过载进入过载损伤区内使材料受到损伤并降低疲劳寿命但若过载适当有时反而是有益的da3、材料组织的影响:①晶粒大小:晶粒越粗大其?Kth值越高越低对dN疲劳寿命越有利②组织:钢的含碳量越低铁素体含量越多时其?Kth值就越高当钢的淬火组织中存在一定量的残余奥氏体和贝氏体等韧性组织时可以提da高钢的?Kth降低③喷丸处理:喷丸强化也能提高?KthdN9.试述疲劳微观断口的主要特征答:断口特征是具有略呈弯曲并相互平行的沟槽花样称疲劳条带(疲劳条纹、疲劳辉纹)疲劳条带是疲劳断口最典型的微观特征滑移系多的面心立方金属其疲劳条带明显;滑移系少或组织复杂的金属其疲劳条带短窄而紊乱疲劳裂纹扩展的塑性钝化模型(Laird模型):图中(a),在交变应力为零时裂纹闭合图(b)受拉应力时裂纹张开在裂纹尖端沿最大切应力方向产生滑移图(c),裂纹张开至最大塑性变形区扩大裂纹尖端张开呈半圆形裂纹停止扩展由于塑性变形裂纹尖端的应力集中减小裂纹停止扩展的过程称为“塑性钝化”图(d)当应力变为压缩应力时滑移方向也改变了裂纹尖端被压弯成“耳状”切口图(e)到压缩应力为最大值时裂纹完全闭合裂纹尖端又由钝变锐形成一对尖角12.试述金属表面强化对疲劳强度的影响答:表面强化处理可在机件表面产生有利的残余压应力同时还能提高机件表面的强度和硬度这两方面的作用都能提高疲劳强度表面强化方法通常有表面喷丸、滚压、表面淬火及表面化学热处理等(1)表面喷丸及滚压喷丸是用压缩空气将坚硬的小弹丸高速喷打向机件表面使机件表面产生局部形变硬化;同时因塑变层周围的弹性约束又在塑变层内产生残余压应力表面滚压和喷丸的作用相似只是其压应力层深度较大很适于大工件;而且表面粗糙度低强化效果更好(2)表面热处理及化学热处理他们除能使机件获得表硬心韧的综合力学性能外还可以利用表面。

第三章 材料的力学行为习题参考答案

第三章   材料的力学行为习题参考答案

第三章材料的力学行为习题参考答案一、解释下列名词1、加工硬化2、回复3、再结晶4、热加工5、冷加工答:1、加工硬化:随着塑性变形的增加,金属的强度、硬度迅速增加;塑性、韧性迅速下降的现象。

2、回复:加热温度较低时,变形金属中的一些点缺陷和位错,在某些晶内发生迁移变化的过程。

3、再结晶:被加热到较高的温度时,原子也具有较大的活动能力,使晶粒的外形开始变化。

从破碎拉长的晶粒变成新的等轴晶粒。

和变形前的晶粒形状相似,晶格类型相同,把这一阶段称为“再结晶”。

4、热加工:将金属加热到再结晶温度以上一定温度进行压力加工。

5、冷加工:在再结晶温度以下进行的压力加工。

二、填空题1、塑性变形的方式主要有滑移和孪生,而大多数情况下是滑移。

2、滑移常沿晶体中原子密度最大的晶面及晶向发生。

3、在体心立方晶格中, 原子密度最大的晶面是{110},有 6 个,原子密度最大的晶向是<111>,有2个;在面心立方晶格中, 原子密度最大的晶面是{111},有 4 个,原子密度最大的晶向是<111>,有3个。

两者比较,具有面心立方晶格的金属塑性较好,其原因是滑移系和滑移方向多。

4、多晶体金属的塑性变形由于受到晶界和晶粒位向的影响,与单晶体金属相比,塑性变形抗力增大。

5、金属在塑性变形时,随变形量的增加,变形抗力迅速增大,即强度、硬度升高,塑性、韧性下降,产生所谓加工硬化现象。

这种现象可通过再结晶加以消除。

6、变形金属在加热时,会发生回复、再结晶和晶粒长大三个阶段的变化。

7、冷绕成形的钢质弹簧,成形后应进行回复退火,温度约为250~300℃。

8、回复退火也称去应力退火。

9、冷拉拔钢丝, 如变形量大, 拉拔工序间应穿插再结晶退火,目的是消除加工硬化。

10、热加工与冷加工的划分应以再结晶温度为界线。

在再结晶温度以下的塑性变形称为冷加工;在再结晶温度以上的塑性变形称为热加工。

三、简答题1、产生加工硬化的原因是什么?加工硬化在金属加工中有什么利弊?答:⑴随着变形的增加,晶粒逐渐被拉长,直至破碎,这样使各晶粒都破碎成细碎的亚晶粒,变形愈大,晶粒破碎的程度愈大,这样使位错密度显著增加;同时细碎的亚晶粒也随着晶粒的拉长而被拉长。

《材料力学》附录I 截面的几何性质 习题解

《材料力学》附录I  截面的几何性质 习题解

附录I 截面的几何性质 习题解[习题I-1] 试求图示各截面的阴影线面积对x 轴的静积。

(a )解:)(24000)1020()2040(3mm y A S c x =+⨯⨯=⋅=(b )解:)(42250265)6520(3mm y A S c x =⨯⨯=⋅= (c )解:)(280000)10150()20100(3mm y A S c x =-⨯⨯=⋅=(d )解:)(520000)20150()40100(3mm y A S c x =-⨯⨯=⋅=[习题I-2] 试积分方法求图示半圆形截面对x 轴的静矩,并确定其形心的坐标。

解:用两条半径线和两个同心圆截出一微分面积如图所示。

dx xd dA ⋅=)(θ;微分面积的纵坐标:θsin x y =;微分面积对x 轴的静矩为: θθθθθdxd x x dx xd y dx xd y dA dS x ⋅=⋅⋅=⋅⋅=⋅=sin sin )(2半圆对x 轴的静矩为:32)]0cos (cos [3]cos []3[sin 33003002r r x d dx x S r rx =--⋅=-⋅=⋅=⎰⎰πθθθππ因为c x y A S ⋅=,所以c y r r ⋅⋅=232132π π34ry c = [习题I-3] 试确定图示各图形的形心位置。

(a ) 解:解:[习题I-4] 试求图示四分之一圆形截面对于x 轴和y 轴的惯性矩x I 、y I 和惯性积xy I 。

解:用两条半径线和两个同心圆截出一微分面积如图所示。

dx xd dA ⋅=)(θ;微分面积的纵坐标:θsin x y =;微分面积对x 轴的惯性矩为: θθθθθdxd x dx xd x dx xd y dA y dI x ⋅=⋅⋅=⋅==232222sin sin )(四分之一圆对x 轴的惯性矩为: ⎰⎰⎰-⋅==2/0042/02322c o s 1]4[s i n ππθθθθd x d dx x I r rx)]2(2cos 21[2142/02/04θθθππd d r ⎰⎰-⋅= }]2[sin 212{82/04πθπ-=r 164r ⋅=π由圆的对称性可知,四分之一圆对y 轴的惯性矩为:164r I I x y ⋅==π微分面积对x 轴、y 轴的惯性积为:xydA dI xy =8)42(21]42[21)(21444042222022r r r x x r dx x r x ydx xdx I r rx r rxy =-=-=-==⎰⎰⎰- [习题I-5] 图示直径为mm d 200=的圆形截面,在其上、下对称地切去两个高为mm 20=δ的弓形,试用积分法求余下阴影部分对其对称轴x 的惯性矩。

材料力学习题选及其解答定稿版

材料力学习题选及其解答定稿版

材料力学习题选及其解答精编W O R D版IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】5-1. 矩形截面悬臂梁如图所示,已知l =4m ,h/b=2/3,q=10kN/m ,[]=10MPa ,试确定此梁横截面的尺寸。

解:(由弯矩图知:(2)计算抗弯截面模量(3)强度计算5-2. 20a工字钢梁的支承和受力情况如图所示,若[]=160MPa ,试求许可载荷。

解:(1(2)查表得抗弯截面模量(3)强度计算取许可载荷5-3. 图示圆轴的外伸部分系空心轴。

试作轴弯矩图,并求轴内最大正应力。

qxMql 2x解:(1(2C截面:B 截面:(3)轴内的最大正应力值5-8. 压板的尺寸和载荷如图所示。

材料为45钢,s =380MPa ,取安全系数n=1.5。

试校核压板的强度。

(3)强度计算许用应力Mx强度校核压板强度足够。

5-12. ⊥形截面铸铁梁如图所示。

若铸铁的许用拉应力为[t ]=40MPa ,许用压应力为[c ]=160MPa ,截面对形心z c 的惯性矩I zc =10180cm4,h 1=96.4mm ,试求梁的许用载荷P 。

解:(1(2A 截面的最大压应力A 截面的最大拉应力C 截面的最大拉应力取许用载荷值5-15. 铸铁梁的载荷及截面尺寸如图所示。

许用拉应力[l ]=40MPa ,许用压应力[c ]=160MPa 。

试按正应力强度条件校核梁的强度。

若载荷不变,但将T 形截面倒置成为⊥形,是否合理何故x0.6解:(1)画梁的弯矩图截面(2形心位置和形心惯性矩(3)强度计算B 截面的最大压应力B 截面的最大拉应力C 截面的最大拉应力梁的强度足够。

(4)讨论:当梁的截面倒置时,梁内的最大拉应力发生在B 截面上。

梁的强度不够。

5-20. 试计算图示工字形截面梁内的最大正应力和最大剪应力。

解:(1A No16Mx QMx最大剪力和最大弯矩值是(2)查表得截面几何性质(3)计算应力最大剪应力最大正应力5-22. 起重机下的梁由两根工字钢组成,起重机自重Q=50kN,起重量P=10kN。

材料力学习题

材料力学习题

. .. . . . . . w 绪 论

一、 是非题 1.1 材料力学主要研究杆件受力后变形与破坏的规律。 ( ) 1.2 内力只能是力。 ( ) 1.3 若物体各点均无位移,则该物体必定无变形。 ( ) 1.4 截面法是分析应力的基本方法。 ( ) 二、选择题 1.5 构件的强度是指( ),刚度是指( ),稳定性是指( )。 A. 在外力作用下构件抵抗变形的能力 B. 在外力作用下构件保持其原有的平衡状态的能力 C. 在外力作用下构件抵抗破坏的能力 1.6 根据均匀性假设,可认为构件的( )在各点处相同。 A. 应力 B. 应变 C. 材料的弹性常数 D. 位移 1.7 下列结论中正确的是( ) A. 内力是应力的代数和 B. 应力是内力的平均值 C. 应力是内力的集度

D. 内力必大于应力 参考答案:1.1 √ 1.2 × 1.3 √ 1.4 × 1.5 C,A,B 1.6 C 1.7 C . .. . . . . . w 轴向拉压

一、选择题 1. 等截面直杆CD位于两块夹板之间,如图示。杆件与夹板间的摩擦力与杆件自重保持平衡。设杆CD两侧的摩擦力沿轴线方向均匀分布,且两侧摩擦力的集度均为q,杆CD的横截面面积为A,质量密度为,试问下列结论中哪一个是正确的? (A) qgA; (B) 杆内最大轴力NmaxFql;

(C) 杆内各横截面上的轴力N2

gAlF;

(D) 杆内各横截面上的轴力N0F。

2. 低碳钢试样拉伸时,横截面上的应力公式NFA适用于以下哪一种情况?

(A) 只适用于≤p

; (B) 只适用于≤e;

(C) 只适用于≤s; (D) 在试样拉断前都适用。

3. 在A和B两点连接绳索ACB,绳索上悬挂物重P,如图示。点A和点B的距离保持不变,绳索的许用拉应力为[]。试问:当角取何值时,绳索的用料最省? (A) 0; (B) 30; (C) 45; (D) 60。

4.6 保角变换解法

4.6 保角变换解法

1
()
1
() ()
1
()
1
2πi

+ 2πi
− ( ) + 2πi

= 2πi

l ( )=∑
在圆外域是解析的
l 位于圆内域
l ( )在圆内域是解析的 l 位于圆内域
1()2πi−源自= (∞) = +
∞ =0
1
()
2πi

= ()
(
)
=

1 2πi
() ()
1
− ( ) + 2πi

上表中的 ( )和 ( )的表达式的右端第一项与变换函数 ( )(即孔的形状)有关,称几何项。第二项与孔边和远 方的外力有关,称为载荷项。
B. 复杂情况求数值解 方法 1
→ →
(如:上面 4 种级数形式的映射关系就没办法逆映射):
(1) 先把应力组合转到像空间,
⎧ + = 2 ( ) + ( ) = 4Re[ ( )]
⎪ − +2
= ( ) 2[ ̅ ( ) + ( )]
(5)

⎪ ⎩
2
[
+
]=
( )−
() ()
( )− ( )
并利用像平面中解得的 ( ), ( )求解应力和位移分量,即分别得到了 (ξ, η)~
接下来就可以利用 4.5 节介绍的复数级数方法,来求解单位圆域的 ( )和 ( )。我们只需要用将 平面 K-M 函数的 级数代入(2)式左边,并把右边已知外力也在 平面展开成 F 级数,比较左右两边的系数就可求解。
2/5
Email:onexf@
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

--第三章 弹性本构关系和弹性问题的求解习题习题1、试利用各向异性理想弹性体的广义虎克定律导出:在什么条件下,理想弹性体中的主应力方向和主应变方向相重合?解:各向异性理想弹性体的广义虎克定律为:zxyz xy zz yy xx zx zx yz xy zz yy xx yz zx yz xy zz yy xx xy zx yz xy zz yy xx zz zx yz xy zz yy xx yy zx yz xy zz yy xx xx c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c γγγεεετγγγεεετγγγεεετγγγεεεσγγγεεεσγγγεεεσ666564636261565554535251464544434241363534333231262524232221161514131211+++++=+++++=+++++=+++++=+++++=+++++= (a )当0===zx yz xy τττ时,三个互相垂直的应力方向为主应力方向。

当0===zx yz xy γγγ时,三个互相垂直的应变方向为主应变方向。

在主应变方向上,剪应力分量为:zzyy xx zx zz yy xx yz zzyy xx xy c c c c c c c c c εεετεεετεεετ636261535251434241++=++=++= (b ) 若使0===zx yz xy τττ,则式中xx ε,yy ε,zz ε具有非零解的条件为0636261535251434241=c c c c c c c c c (c ) 上式即为x ,y ,z 轴同时为应力主轴和应变主轴的条件。

如果材料性能对称于一个平面,如Oxy 平面,则04645363526251615========c c c c c c c c ,而且ji ij c c =,此时(c )式恒等于零。

在此情况下,当存在以x ,y ,z 轴为主方向的应变状态时,其对应的剪应力分量将成为0434241==++=zx yz zz yy xx xy c c c ττεεετ (d )若应变分量之间满足0434241=++=zz yy xx xy c c c εεετ,则此点的应变主方向和应力主方向重合。

如果材料性能对称于Oxy ,Oyz ,Ozx 三个平面,则有056342414====c c c c ,此时(d )式总是满足的。

由此可知,当x ,y ,z 轴为应变的主方向时,也必定为应力的主方向。

但是,当应变主方向和正交轴不重合时,一般它与应力的主方向是不重合的。

对于各向同性弹性体,不需要任何补充条件,应力主方向和应变主方向总是重合的。

习题2、对于各向同性弹性体,试导出正应力之差和正应变之差的关系式。

且进一步证明:当其主应力的大小顺序为321σσσ≥≥时,其主应变的排列顺序为321εεε≥≥。

解:各向同性条件下的广义虎克定律为()[]()[]()[])3___(1)2___(1)1___(1yy xx zz zz zz xx yy yy zz yy xx xx EE E σσνσεσσνσεσσνσε+-=+-=+-=将上式中的(1)-(2),(2)-(3),(3)-(1)分别得:()()()xx zz xx zz zz yy zz yy yy xx yy xx E E Eσσνεεσσνεεσσνεε-+=--+=--+=-111 即 ()()()()()()xx zz xx zz xx zz zz yy zz yy zz yy yy xx yy xx yy xx G EG E G E εεεενσσεεεενσσεεεενσσ-=-+=--=-+=--=-+=-212121 证明:当其主应力的大小顺序为321σσσ≥≥时,其主应变的排列顺序为321εεε≥≥。

0>G 且321σσσ≥≥,利用上述正应力之差和正应变之差的关系式有321εεε≥≥。

习题3、将某一小的物体放入高压容器内,在静水压力2/45.0mm N p =作用下,测得体积应变5106.3-⨯-=e ,若泊松比v =0.3,试求该物体的弹性模量E 。

解:设kk zz yy xx σσσσ=++=Θ为第一应力不变量,而p zz yy xx -===σσσ,pa mm N p zz yy xx 621035.1/35.13⨯-=-=-=++=Θσσσ据各向同性条件下的广义虎克定律为有:Θ-=Ee ν21,其中体积应变5106.3-⨯-=++=zz yy xx e εεε,故有()2421065/105.1/105.11035.1106.33.02121mm N m N e E ⨯=⨯=⨯-⨯-⨯-=Θ-=-ν 。

习题4、在各向同性柱状弹性体的轴向施加均匀压力p ,且横向变形完全被限制住(如图所示)。

试求应力与应变的比值(称为名义杨氏模量,以c E 表示)。

解:设柱体的轴线z 轴,p zz -=σ。

因为横向变形被限制, 所以0==yy xx εε。

据各向同性条件下的广义虎克定律()[]()[]()[]yy xx zz zz zz xx yy yy zz yy xx xx EE E σσνσεσσνσεσσνσε+-==+-==+-=10101得:()zz yyxx σσνσ+=,()zz xx yy σσνσ+=,将此两式相减得:()xx yy yy xx σσνσσ-=-,而泊松比v 的理论取值范围为2/11<<-v ,故ννσσσ-==1zzyy xx ,将其代入广义虎克定律得: []⎥⎦⎤⎢⎣⎡--=-=νσνσνσσε121212zz zz xx zz zz E E从而()()()νννεσ2111-+-==E E zz zz c ,得解。

习题5、在某点测得正应变的同时,也测得与它成60。

和90。

方向上的正应变,其值分别为6010100-⨯-=ε,6601050-⨯=ε,69010150-⨯=ε,试求该点的主应变、最大剪应变和主应力(25/101.2mmN E ⨯=,3.0=ν)。

解:设该点的x ,y 轴向的正应变分别为x ε,y ε,剪应变为xy γ。

任意方向α(α为与x 轴正向的夹角)上的正应变为:αγαεεεεεα2sin 22cos 22xyyx yx --++=,所以220yx yx εεεεε-++=,0060120sin 2120cos 22xyyx yx γεεεεε--++=,2290yx yx εεεεε--+=,解由此三式组成的方程组得该点的x ε,y ε和xy γ分别为:6906010150,10100--⨯==⨯-==εεεεy x ,66090010350343-⨯=-+=εεεγxy 。

(1)计算该点的主应变:图3-1由x ε、y ε 、xy γ和2221222⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛-±+=⎭⎬⎫xy y x y x γεεεεεε得该点的主应变为: max 611029.157εε=⨯=-,min 621029.107εε=⨯-=-。

(2)该点的最大剪应变621max 1058.264-⨯=-=εεγ。

(3)计算该点的主应力:现611029.157-⨯=ε、621029.107-⨯-=ε、03=ε,据向同性条件下的广义虎克定律得εI σG e 2+=λ,即()()ij ij kk ij Ee Eενδνννσ++-+=1211,所以 ()()11111211ενδνννσ++-+=E e Ekk ()()22221211ενδνννσ++-+=E e Ekk ()()33331211ενδνννσ++-+=E e Ekk 将611029.157-⨯=ε、621029.107-⨯-=ε、03=ε、63211050-⨯=++=εεεkk e 及25/101.2mm N E ⨯=、3.0=ν代入上面三式得:21/46.31mm N =σ,22/27.11mm N -=σ,23/06.6mm N =σ。

习题6、根据弹性应变能理论的应变能公式ij ij W εσ21=,导出材料力学中杆件拉伸、弯曲及圆轴扭转的应变能公式分别为:()dx dx du EA dx EA x N U ll20022121⎰⎰⎪⎭⎫ ⎝⎛==拉伸()dx dx d EI dx EI x M U ll⎰⎰⎪⎪⎭⎫ ⎝⎛==0222022121ω弯曲()dz dz d GI dz GI z M U lP lP 20022121⎪⎭⎫⎝⎛==⎰⎰φ扭转。

解:(1)杆件拉伸的应变能公式推导:设杆件横截面积为A ,弹性模量为E ,如图建立坐标系。

杆件为单向拉伸,只存在轴向的伸长或缩短,轴向纤维间无剪切变形,即0===zx yz xy γγγ。

同时轴向纤维间无相互作用力,即0==zz yy σσ。

据弹性应变能理论的应变能公式xx xx ij ij W εσεσ2121==(其余分量产生的应变能为零)。

现在杆件上x 处取一微段dx ,其体积为Adx dV =,其应变能dUAdx WdV dU xx xx εσ21==,而EAx N E A x N xx xx xx )()(===σεσ, dx EAx N Adx EA x N A x N dU )(21)()(212=⋅⋅⋅=∴整个杆件的拉伸应变能为: dx EA x N dU U l L⎰⎰==002)(21拉伸而dxduE E dx du xx xx xx ===εσε,, 故 dx dx du EA Adx dx du E dx du Adx WdV dU xx xx 2212121⎪⎭⎫⎝⎛=⋅===εσ整个杆件的拉伸应变能为:dx EA x N dx dx du EA dU U ll l ⎰⎰⎰=⎪⎭⎫⎝⎛==02002)(2121拉伸(2)杆件弯曲的应变能公式的推导:在材料力学中杆件在)(x M 外力作用下发生纯弯曲,仅轴向纤维发生拉伸或压缩变形(其中中性层以内的纤维层受压缩,中兴层以外的纤维层伸长),而轴向纤维之间无相互作用的内力,即0===zx yz xy γγγ和0==zz yy σσ。

在杆件上沿轴向去取一微段dx ,在此微段的横截面上取一个微面dA ,在dA 上的应力可为相同的xx σ,而EIyx M E I y x M xx xx xx )(,)(===σεσ。

222)(212121y EI x M W xx xx ij ij ===∴εσεσ,Wdydzdx WdAdx WdV dU ===。

图3-2故dx dz dy y EI x M WdV dU U l b b h h l l ⎰⎰⎰⎰⎰⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎪⎪⎭⎫ ⎝⎛===--0222222200)(21弯曲,其中)(x M 只与x 有关。

相关文档
最新文档