电路中的存储器设计与存储器技术

合集下载

第三章 微机存储器

第三章 微机存储器

联机外存储器 脱机外存储器
两大类——内存、外存
• 内存——存放当前运行的程序和数据。
– 特点:快,容量小,随机存取,CPU可直接访问。 – 通常由半导体存储器构成 – RAM、ROM
• 外存——存放非当前使用的程序和数据。
– 特点:慢,容量大,顺序存取/块存取。需调入内存后 CPU才能访问。 – 通常由磁、光存储器构成,也可以由半导体存储器构成 – 磁盘、磁带、CD-ROM、DVD-ROM、固态盘
16
读0过程
17
写入数据1的过程
18
写0过程
19
2、存储器芯片的基本组成
20
三、存储器与系统的连接
1、数据线、地址线和控制线的连接

存储芯片通过地址线、数据线和控制线与外部连接。 地址线是单向输入的,其数目与芯片容量有关。CPU发 出的地址信号,部分使芯片的片选端有效,称为“片 选”,部分再选中芯片内部的存储单元实现“字选”。 如容量为1024×4时,地址线有10根。

8
2.常用半导体存储器的特点
(1)静态存储器SRAM




用双稳态触发器存储信息。 速度快(<5ns),不需刷新,外围电路比较简单, 但集成度低(存储容量小,约1Mbit/片),功耗 大。 在PC机中,SRAM被广泛地用作高速缓冲存储Cache。 典型SRAM芯片:CMOS RAM芯片6264(8K*8)
14
二、存储器芯片的基本组成
1、基本存储电路 静态存储器SRAM存储原理:双稳态触发器保存信 息。 T1 通,T2 止存0 ;T1 止,T2 通存1 ; 保持信息时,不送地址信号; 读出:送地址,发读命令; 写入:送地址,送数据发写命令。

存储器接口 (2)

存储器接口 (2)

地把双端口RAM看作是本地RAM一样进行访问,不 仅方便了软件设计,还大大地提高了系统的工作 效率。
二、半导体存储器的主要性能指标 主要从一下几方面考察: 1、存储容量 2、速度 3、功耗 4、集成度 5、可靠性
三、存储芯片的组成
1、地址译码器:接收来自CPU的N位地址信息, 经译码后产生2的N次方个地址选择信号对片内 寻址。
/CS=0,/OE=0时为读; /CS=0,/WE=0时为写。 /WE和/OE分别接CPU的/WR和/RD信号。
2、存储器与CPU数据总线的连接 根据存储器结构选择连接CPU的数据总线。
6.3 主存储器接口
主存储器的类型不同,则接口不同。以 EPROM、SRAM、DRAM为例分别介绍。
一、EPROM与CPU的接口 目前广泛使用的典型EPROM芯片有Intel公
(1)Tc=总容量/N×8/M=128K/8K×8/8 =16片
(2)Tc=128K/8K×16/8=32片
6.2存储器接口技术
一、存储器接口中应考虑的问题
1、存储器与CPU的时序配合
几个问题: (1)什么是总线周期?(2)什么 是时钟周期?(3)什么是T状态?(4)如何实 现二者之间的时序配合?(5)设计产生等待信 号电路应注意那些问题?(见图6-3)
2、如何完成寻址功能?
要完成寻址功能必须具备两种选择:
(1)片选:即首先要从众多存储器中,选中要 进行数据传输的某一存储器芯片,称为片选。一 般由接口电路中的端口译码产生。
(2)字选:然后从该芯片内选择出某一存储单 元,称为字选。由存储器内部的译码电路完成。
3、片选控制的译码方法
常用方法有:线选法、全译码法、部分译码法、 混合译码法等。
或列出地址分配表; ③根据地址分配图或分配表确定译码方法并画出

第6章半导体存储器

第6章半导体存储器

(a)
图6-8
(b)
3.快闪存储器(Flash Memory)
而且浮置栅一源区间的电容要比浮置栅一控制栅间的电容小得多 。 当控制栅和源极间加上电压时,大部分电压都将降在浮置栅与源极 之间的电容上。 快闪存储器的存储单元就是用这样一只单管组成的,如图6-8(b)所 示。
(a)
图6-8
(b)
半导体存储器的技术指标
存取容量:表示存储器存放二进制信息的多少。二值 信息以字的形式出现。一个字包含若干位。一个字的 位数称做字长。
例如,16位构成一个字,那么该字的字长为16位。一个存储 单元只能存放一个一位二值代码,即只能存一个0或者一个1。 这样,要存储字长为16的一个字,就需要16个存储单元。若 存储器能够存储1024个字,就得有1024×16个存储单元。 通常,用存储器的存储单元个数表示存储器的存储容量,即 存储容量表示存储器存放二进制信息的多少。存储容量应表 示为字数乘以位数。 例如,某存储器能存储1024个字 ,每个字4位,那它的存储容 量就为1024×4=4096,即该存储器有4096个存储单元。 存储器写入(存)或者读出(取)时,每次只能写入或读出 一个字。若字长为8位,每次必须选中8个存储单元。 选中哪些存储单元,由地址译码器的输出来决定。即由地址 码来决定。地址码的位数n与字数之间存在2n=字数的关系。 如果某存储器有十个地址输入端,那它就能存210=1024个字。
[例6-1]
[例6-1]
根据表6-2可以写出Y的表达式: Y7=∑(12,13,14,15) Y6=∑(8,9,10,11,14,15) Y5=∑(6,7,10,11,13,15) Y4=∑(4,5,7,9,11,12) Y3=∑(3,5,11,13) Y2=∑(2,6,10,14) Y1=0 Y0=∑(1,3,5,7,9,11,13,15 ) 根据上述表达式可画出ROM存储点阵如图6-9所示。

存储器和可编程逻辑器件

存储器和可编程逻辑器件
An-1
A0
A1





存储矩阵
数据线
读写/控制电路
读/写控制(R/W)
片选(CS)
输入/输出
I/O
.
.
.
.
.
.
23.2.1 RAM的结构和工作原理
图23.2.1 RAM的结构框图
1. 存储矩阵:由存储单元构成,一个存储单元存储一位二进制数码“1”或“0”。与ROM不同的是RAM存储单元的数据不是预先固定的,而是取决于外部输入信息,其存储单元必须由具有记忆功能的电路构成。
2.地址译码器:为了存取的方便,给每组存储单元以确定的标号,这个标号称为地址。图23.1.1中,W0~WN-1称为字单元的地址选择线,简称字线;地址译码器根据输入的代码从W0~WN-1条字线中选择一条字线,确定与地址代码相对应的一组存储单元位置。被选中的一组存储单元中的各位数码经位线D0~DM-1传送到数据输出端。
2. 地址译码器:也是N取一译码器。
3. 读/写控制电路:当R/W=1时,执行读操作,R/W=0时,执行写操作。
4. 片选控制:当CS=0时,选中该片RAM工作, CS=1时该片RAM不工作。
23.2.2 2114静态RAM
MOS型RAM
静态RAM:管子数目多,功耗大,但只要不断电,信息就永久保存。
有二极管
无二极管
2. 双极型晶体管和MOS场效应管构成的存储矩阵
图23.1.4 双极型存储矩阵
存“1”
存“0”
D3
D2
D1
D0
W2
W1
W0
+UDD
W3
2. 双极型晶体管和MOS场效应管构成的存储矩阵

SOC中MBIST结构的设计与实现

SOC中MBIST结构的设计与实现

SOC中MBIST结构的设计与实现作者:黄玮来源:《科技传播》2015年第12期摘要现代SOC电路中,嵌入式存储器所占规模与数量趋于变大,使得测试也越之复杂,目前常用的测试方法是通过eda软件自动生成MBIST电路进行自测试。

该设计基于一个实际的项目,对电路中存储器进行了完整的MBIST结构设计,同时加入了一个标志位移位电路,从而能够准确诊断出故障存储器,最后通过NC_verilog软件完成MBIST结构电路的仿真。

关键词存储器;MBIST;测试;SOC中图分类号TP39 文献标识码 A 文章编号 1674-6708(2015)141-0130-020 引言随着集成电路的规模越来越大,嵌入的存储器也随着变多,传统的测试方法受测试难度和测试成本所制约,已不为芯片设计厂商所接受。

目前存储器最常用的测试方法是通过内建自测试存储器电路[1](MBIST:存储器内建自测试)来实现,其通过eda软件,自动生成存储器的测试电路,根据相应的算法对存储器地址进行读写,完成存储器的测试。

该种测试方法虽然会在电路中加入一些控制逻辑,从而增加芯片的面积,但是对于大规模测试电路,其能够实现测试自动化,减小测试时间,提高测试覆盖率,很大程度上节约测试成本。

本文采用MBIST测试方法,完成对电路中存储器的测试,同时加入了标志位移位电路,能够准确判断错误存储器的位置,从而减少测试诊断时间。

1 MBIST结构介绍MBIST是以存储器为目标,通过采用特定的算法,来检测存储器中存在的某些缺陷的一种测试方法,其主要由bist控制电路,测试向量生成电路,测试响应比较电路三部分组成[2-3],其常用的结构图如图1所示。

图1 MBIST电路结构图1中bist控制电路其内部为一个状态机电路,控制bist电路对存储器进行读写操作;测试向量生成电路根据所选的算法生成不同的测试向量,不同的算法可以得到不同的存储器测试覆盖率;测试响应比较电路是通过对实际存储器输出值与控制电路生成的理想值做对比,来判断存储器是否有问题。

数字集成电路设计 pdf

数字集成电路设计 pdf

数字集成电路设计一、引言数字集成电路设计是一个广泛且深入的领域,它涉及到多种基本元素和复杂系统的设计。

本文将深入探讨数字集成电路设计的主要方面,包括逻辑门设计、触发器设计、寄存器设计、计数器设计、移位器设计、比较器设计、译码器设计、编码器设计、存储器设计和数字系统集成。

二、逻辑门设计逻辑门是数字电路的基本组成单元,用于实现逻辑运算。

常见的逻辑门包括与门、或门、非门、与非门和或非门等。

在设计逻辑门时,需要考虑门的输入和输出电压阈值,以确保其正常工作和避免误操作。

三、触发器设计触发器是数字电路中用于存储二进制数的元件。

它有两个稳定状态,可以存储一位二进制数。

常见的触发器包括RS触发器、D触发器和JK触发器等。

在设计触发器时,需要考虑其工作原理和特性,以确保其正常工作和实现预期的功能。

四、寄存器设计寄存器是数字电路中用于存储多位二进制数的元件。

它由多个触发器组成,可以存储一组二进制数。

常见的寄存器包括移位寄存器和同步寄存器等。

在设计寄存器时,需要考虑其结构和时序特性,以确保其正常工作和实现预期的功能。

五、计数器设计计数器是数字电路中用于对事件进行计数的元件。

它可以对输入信号的脉冲个数进行计数,并输出计数值。

常见的计数器包括二进制计数器和十进制计数器等。

在设计计数器时,需要考虑其工作原理和特性,以确保其正常工作和实现预期的功能。

六、移位器设计移位器是数字电路中用于对二进制数进行移位的元件。

它可以对输入信号进行位移操作,并输出移位后的结果。

常见的移位器包括循环移位器和算术移位器等。

在设计移位器时,需要考虑其工作原理和特性,以确保其正常工作和实现预期的功能。

七、比较器设计比较器是数字电路中用于比较两个二进制数的元件。

它可以比较两个数的值,并输出比较结果。

常见的比较器包括并行比较器和串行比较器等。

在设计比较器时,需要考虑其工作原理和特性,以确保其正常工作和实现预期的功能。

八、译码器设计译码器是数字电路中用于将二进制数转换为另一种形式的元件。

ROM存储器内涵EPROM2716存储器的介绍

ROM存储器内涵EPROM2716存储器的介绍

ROM存储器内涵EPROM2716存储器的介绍 课 堂 教 学 实 施 方 案 授 课 时 间: 课 题:只读存储器ROM、主存储器的设计

5.3 只读存储器ROM

指在微机系统的在线运行过程中,只能对其进行读操作,而不能进行写操作的一类存储器,在不断发展变化的过程中,ROM

器件也产生了掩模ROM、PROM、EPROM、EEPROM等各种不同类型。

一、掩模ROM 如图4-11所示,是一个简单的4×4位的MOS ROM存储阵列,采用单译码方式。这时,有两位地址输入,经译码后,输出四条字选择线,每条字选择线选中一个字,此时位线的输出即为这个字的每一位。 此时,若有管子与其相连(如位线1和位线4),则相应的MOS管就导通,这些位线的输出就是低电表平,表示逻辑“0”;而没有管子与其相连的位线(如位线2和位线3),则输出就是高电平,表示逻辑“1”。 二、可编程的ROM

掩模ROM的存储单元在生产完成之后,其所保存的信息就已经固定下来了,这给使用者带来了不便。为了解决这个矛盾,设计制造了一种可由用户通过简易设备写入信息的ROM器件,即可编程的ROM,又称为PROM。 PROM 的类型有多种,我们以二极管破坏型PROM为例来说明其存储原理。 这种PROM存储器在出厂时,存储体中每条字线和位线的交叉处都是两个反向串联的二极管的PN结,字线与位线之间不导通,此时,意味着该存储器中所有的存储内容均为“1”。如果用户需要写入程序,则要通过专门的PROM写入电路,产生足够大的电流把要写入“1”的那个存储位上的二极管击穿,造成这个PN结短路,只剩下顺向的二极管跨连字线和位线,这时,此位就意味着写入了“1”。读出的操作同掩模ROM。 除此之外,还有一种熔丝式PROM,用户编程时,靠专用写入电路产生脉冲电流,来烧断

P+P

+

AlSiO2

SD浮空多

晶硅栅

N基体

字线

EPROM(a)(b)

位线 A1

A2A3A4A5A6A7O1O2O0A0地VCCA8A9VPPOEA10

第8章 扩展存储器

第8章  扩展存储器

P2.4),8条输出线,如何获得16片存储器的
16个片选信号呢? 解决方法:使用两片74LS138。 注意:采用译码器划分的地址空间块都是相等的,如果将地 址空间块划分为不等的块,可采用可编程逻辑器件FPGA对 其编程来代替译码器进行非线性译码。
15
8000H 9000H A000H B000H C000H D000H E000H F000H
总线信号:P0和P2.
27
2.操作时序
AT89S51对片外ROM的操作时序分两种,即执行非MOVX指令
片外锁存 的时序和执行MOVX指令的时序. 器用
(1)应用系统中无片外RAM
28
29
8.3.3 AT89S51单片机与EPROM的接口电路设计
当片内FLASH容量不够用的时候,就要扩展片外的程序存储
控制信号: (1)ALE:用于低8位地址锁存控制。 (2) PSEN :片外程序存储器“读选通”控制信号。它接 外
OE
(3)EA :片内、片外程序存储器访问的控制信号。 扩EPROM的 引脚。
EA =1时,在单片机发出的地址小于片内程
序存储器最大地址时,访问片内程序存储器;
EA =0时,只访问片外程序存储器。
20
8.3 程序存储器EPROM的扩展
程序存储器分类:
(1)掩模ROM: 特征:在制造过程中编程,是以掩模工艺实现的,因此称
为掩模ROM。存储结构简单,集成度高;
使用:掩模工艺成本较高,因此只适合于大批量生产。 (2)可编程ROM(PROM):
特征: 芯片出厂时没有任何程序信息,用独立的编程器
写入。 使用:PROM只能写一次,写入内容后,就不能再修改。
8FFFH 9FFFH AFFFH BFFFH CFFFH DFFFH EFFFH FFFFH
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电路中的存储器设计与存储器技术
在现代科技快速发展的时代,电路中的存储器设计和存储器技术也
随之迅速进步。存储器是一种用于存储和检索数据的设备,它在电子
设备中起着至关重要的作用。本文将从存储器的基本原理、发展历程
和未来趋势几个方面,探讨电路中的存储器设计与存储器技术。

首先,存储器设计的基本原理是电子信号的存储和读取。存储器根
据数据存取方式和存储介质的不同,分为寄存器、缓存、内存和外存。
其中,寄存器是最快速的存储器,用于暂时存储CPU执行的指令和数
据;缓存是介于寄存器和内存之间的存储器,用于缓解CPU和内存之
间的速度差异,提高系统性能;内存是计算机中的主存储器,用于存
储正在执行的程序和数据;外存则主要是硬盘、光盘等,用于长期存
储大量数据。

其次,存储器技术在不断发展和创新。随着计算机性能的提高和存
储需求的增加,研究人员不断寻求更高效、更稳定的存储器技术。例
如,传统的动态随机存储器(DRAM)相对较慢,但容量较大,被广
泛应用于计算机内存;而闪存则是一种非易失性存储器,具有高速读
写、体积小巧的特点,常用于便携式设备和存储器卡等;另外,近年
来,新型的存储器技术如磁阻随机存储器(MRAM)、相变存储器
(PCM)以及穿孔盘存储器(Racetrack Memory)等也在不断涌现,它
们在存储密度、读写速度和功耗等方面都有着巨大的潜力。

然而,存储器设计和技术仍面临一些挑战和难题。首先是存储容量
的需求不断增长,如何实现更大的存储密度是一个问题。其次是存储
器的功耗和散热问题,随着存储器的发展,其功耗也在不断增加,如
何降低功耗成为了一个亟待解决的问题。另外,存储器的可靠性和稳
定性也是需要关注的方面,如何保证数据的长期稳定存储是一个挑战。

在未来,存储器技术将迎来更大的创新和突破。随着计算机科学的
进步,新型存储器技术的研究和应用将不断涌现。例如,近年来兴起
的量子存储器技术,其具备的大容量、高速度优势,很有可能在未来
成为新一代的存储器技术。同时,人们也在研究非常规存储技术,如
基于DNA的存储技术和基于量子点的存储技术,这些技术的应用将带
来存储器领域的巨大变革。

总结起来,电路中的存储器设计和存储器技术在科技发展中起着重
要的作用。它不断带来新颖的存储器设备和技术,提升了计算机系统
性能,满足了人们对数据存储和处理的需求。未来,随着技术的发展,
我们相信存储器技术将不断创新,为人们创造更便捷、高效的存储空
间和体验。

相关文档
最新文档