小学奥数 游戏与策略 精选练习例题 含答案解析(附知识点拨及考点)
奥数-游戏与策略

1. 有一筐苹果53个,甲乙两人轮流从中拿走1个或2个苹果,规定谁拿走最后1个苹果,谁获胜。
如果甲先拿,那么他有没有必胜的策略。
【分析与解】这与抢报30所采取的策略类似。
甲要取胜,甲必须先拿到第53个苹果才行。
依此向前倒推,甲要先拿第50个、第47个、第44个,……,第5个,第2个。
2. 有一个3×3的棋盘格以及9张大小为一个方格的卡片,9张卡片上分别写有1、3、4、5、6、7、8、9、10九个数。
甲、乙两人做游戏,轮流取一张卡片放到九格中的一格,由甲方计算上、下两行六个数的和;乙方计算左、右两列六个数字的和,和数大的一方为胜,试问:先取的一方(甲方)一定能胜吗?【分析与解】由于四个角上的数都是两人共有的,因而和数的大小只与放在A、B、C、D这四格中的数有关。
甲方要获胜,必须采取:(1)尽可能地将大数字填入A格或C格;(2)尽可能地将小的数字填入B格或D格。
由于1+10<3+9,甲应先将1放进B格。
接下来,如果乙把10放进D 格,甲再把9放进A格。
这时不论乙怎么放,C格中一定放有大于或等于3的数,因而甲方一定获胜;如果乙把3放进A格,甲方只需将9放进C格,甲方也一定获胜。
3. 有九张卡片,分别写着1、2、3、4、5、6、7、8、9。
甲、乙两人轮流取1张,谁手上的三张卡片数字加起来等于15,谁就取胜。
问保证不败的对策是什么?【分析与解】从1、2、……8、9中选三个数,使得和为15,有如下八组:①1、5、9;②2、4、9;③2、5、8;④2、6、7;⑤3、4、8;⑥3、5、7;⑦4、5、6;⑧1、6、8。
每个人要保证不败,就应使对方不能获胜,选数的原则应该是:(1)使自己所占的可能性尽量多;(2)尽量破坏对方取胜的可能性。
从上面八组数中看出:数字“5”在8组数中出现的次数最多(共4次),所以谁先选5,谁就比较占优势。
不妨假设甲先取5。
对于乙来说,他只剩下2、4、9;2、6、7;3、4、8;1、6、8这四种可能,为了使自己组成15的可能性尽可能大,乙应取2(或4、6、8)。
小学奥数 平移、旋转、割补 精选练习例题 含答案解析(附知识点拨及考点)

图形变换,是指不改变图形的大小、形状,只通过位置关系的改变(旋转、平移、折叠等),构成新的图形. 【例 1】 右图是一块长方形草地,长方形的长是16,宽是10.中间有两条道路,一条是长方形,一条是平行四边形,它们的宽都是2,求草地部分的面积(阴影部分)有多大?【考点】平移、旋转、割补 【难度】2星 【题型】解答 【解析】 如图所示,将道路平移后的()()162102112-⨯-=。
【答案】112【例 2】 如图所示,一个正十二边形的边长是1厘米,空白部分是等边三角形,一共有12个.请算出阴影部分的面积.1cm【考点】平移、旋转、割补 【难度】3星 【题型】解答【解析】 如图,将阴影部分分割成一个正六边形和12个小三角形,再把正六边形分割成6个正三角形,由于正十二边形的每个内角为()180********︒⨯-÷=︒,所以阴影小三角形的顶角等于15060230︒-︒⨯=︒,每个顶角的两边和与其相邻的正三角形的底边所成的角都是306090︒+︒=︒,所以通过如右上图所示的平移可以组成6个边长为1厘米的正方形,所以所求阴影部分面积为2166⨯=平方厘米.【答案】6【例 3】 如图所示,梯形ABCD 中,AB 平行于CD ,又4BD =,3AC =,5AB CD +=.试求梯形ABCD 的面积.D CBAEDCBA【考点】平移、旋转、割补 【难度】3星 【题型】解答【解析】 如右图,将AB 沿AC 平移至CE ,连接BE ,在三角形BDE 中,有4BD =,3BE AC ==,5DE AB CD =+=,有222BD BE DE +=,所以三角形BDE 为直角三角形.由于ABD ABC BCE S S S ∆∆∆==,所以梯形ABCD 的面积与三角形BDE 的面积相等,为13462⨯⨯=.【答案】6例题精讲4-2-5.平移、旋转、割补【例 4】 如下图,六边形ABCDEF 中,AB ED =,AF CD =,BC EF =,且有AB 平行于ED ,AF 平行于CD ,BC 平行于EF ,对角线FD 垂直于BD ,已知24FD =厘米,18BD =厘米,请问六边形ABCDEF 的面积是多少平方厘米?FD BAGFE DCBA【考点】平移、旋转、割补 【难度】5星 【题型】解答【解析】 如图,我们将BCD ∆平移使得CD 与AF 重合,将DEF ∆平移使得ED 与AB 重合,这样EF 、BC 都重合到图中的AG 了.这样就组成了一个长方形BGFD ,它的面积与原六边形的面积相等,显然长方形BGFD 的面积为2418432⨯=平方厘米,所以六边形ABCDEF 的面积为432平方厘米.【答案】432【例 5】 如图2,六边形ABCDEF 为正六边形,P 为对角线CF 上一点,若PBC 、PEF 的面积为3与4,则正六边形ABCDEF 的面积是 .E【考点】平移、旋转、割补 【难度】4星 【题型】解答 【关键词】迎春杯、中年级、初赛、7题【解析】 这是一道几何问题,考察同学们对常见图形性质的认识.正六边形的六条边都相等,每个角都是,每一组对边都互相平行,正六边形可以看作是由六个正三角形拼成的(如图(1)).其中正六边形的面积是正三角形面积的6倍.每相邻两个正三角形拼成的是一个平行四边形.如图(2),连结BF ,三角形ABF 的面积是平行四边形ABFO 面积的一半.六边形ABCDEF 的面积是平行四边形ABFO 的3倍,故六边形ABCDEF 的面积是三角形ABF 的面积的6倍. 如图(3),连结BF ,CE ,三角形BCP 的面积与三角形EFP 的面积和是平行四边形BFEC 面积的一半.而六边形ABCDEF 的面积是平行四边形BFEC 的1.5倍,故六边形ABCDEF 的面积是三角形BCP 的面积与三角形EFP 的面积和的3倍.图(1)OAB CDEF图(2)OB ACDEF图(3)E所以,由PBC △、PEF △的面积分别为3与4, 可知正六边形ABCDEF 的面积是(34)321+⨯=.【答案】21【例 6】 正六边形A1A2A3A4A5A6的面积是2009平方厘米,B1,B2,B3,B4,B5,B6分别是正六边形各边的中点;那么图中阴影六边形的面积是 平方厘米.4A 3【考点】平移、旋转、割补 【难度】5星 【题型】解答 【关键词】迎春杯、六年级、初赛、14题【解析】 如图,设62B A 与13B A 的交点为O ,则图中空白部分由6个与23A OA △一样大小的三角形组成,只要求出了23A OA △的面积,就可以求出空白部分面积,进而求出阴影部分面积.4A 3A 654连接63A A 、61B B 、63B A设116A B B △的面积为“1”,则126B A B △面积为“1”,126A AB △面积为“2”,那么636A A B △面积为126A A B △的2倍,为“4”,梯形1236A A A A 的面积为224212⨯+⨯=,263A B A △的面积为“6”,123B A A △的面积为2根据蝴蝶定理,1263261316B A B A A B B O A O S S ===△△∶∶,故21233612167A OAB A A S S ==+△△, 所以231236A A A A 121277A OA S S =△梯形∶∶∶1∶,即23A OA △的面积为梯形1236A A A A 面积的17,故为六边形123456A A A A A A 面积的114,那么空白部分的面积为正六边形面积的136147⨯=,所以阴影部分面积为32009111487⎛⎫⨯-= ⎪⎝⎭(平方厘米).【答案】1148【例 7】 按照图中的样子,在一平行四边形纸片上割去了甲、乙两个直角三角形.已知甲三角形两条直角边分别为2cm 和4cm ,乙三角形两条直角边分别为3cm 和6cm ,求图中阴影部分的面积.【考点】平移、旋转、割补 【难度】3星 【题型】解答【解析】 如右图,我们将三角形甲与乙进行平移,就会发现平行四边形面积等于平移后两个长方形面积之和.所以阴影部分面积为:2346236242211cm ⨯+⨯-⨯÷+⨯÷=()()【答案】11【例8】在一个等腰三角形中,两条与底边平行的线段将三角形的两条边等分成三段(见右图),求图中阴影部分的面积占整个图形面积的几分之几.【考点】平移、旋转、割补【难度】3星【题型】解答【解析】阴影总值是一个梯形.我们用三种方法解答.⑴割补法从顶点作底边上的高,得到两个相同的直角三角形.将这两个直角三角形拼成一个长方形(见下图).显然,阴影部分正好是长方形的13,所以原题阴影部分占整个图形面积的13.⑵拼补法将两个这样的三角形拼成一个平行四边形(下页左上图).显然,图中阴影面积占平行四边形面积的13.根据商不变性质,将阴影面积和平行四边形面积同时除以2,商不变.所以原题阴影部分占整个图形面积的13.⑶等分法将原图等分成9个小三角形(见右上图),阴影部分占3个小三角形,所以阴影部分占整个图形面积的3193=.注意,后两种方法对任意三角形都适用.也就是说,将例题中的等腰三角形换成任意三角形,其它条件不变,结论仍然成立.【答案】13【例9】如下左图,有两个大小相同的完全重叠在一起的正方形,现在以点P为中心转动一个正方形.当5AB=厘米,13BC=厘米,12CA=厘米时(如下右图),求右图中的两个正方形相重叠部分的面积(注意,图的尺寸不一定准确).P【考点】平移、旋转、割补【难度】3星【题型】解答【解析】右图由左图旋转而得,则右图中的8个空白小三角形都是完全相同的,右图中重叠部分的面积等于正方形面积减去4个小三角形的面积,从右图中可以看出正方形的边长为5131230++=厘米,所以重叠部分的面积为:2304(5122)780-⨯⨯÷=(平方厘米).【答案】780【例10】如图,在直角三角形中有一个正方形,已知10BD=厘米,7DC=厘米,求阴影部分的面积.【考点】平移、旋转、割补 【难度】4星 【题型】解答【解析】 绕D 点逆时针旋转CED ∆,使E 与F 重合,则C 点落在AB 边上的'C 点处,且'C D CD =.则阴影部分面积转化为直角三角形'BC D 的面积,所以阴影部分的面积为107235⨯÷=平方厘米.【答案】35【例 11】 四边形ABCD 中,AB =30,AD =48,BC =14,CD =40.又已知∠ABD +∠BDC =900,求四边形ABCD 的面积.DBA【考点】平移、旋转、割补 【难度】5星 【题型】解答【解析】 如下图,以BD 的垂直平分线为对称轴L ,做△ABD 关于L 的对称图形△A 'BD .连接A 'C .A 1IABCD因为∠ABD +∠BDC =9000而∠ABD =∠A 'DB =900,所以有∠A 'DB +∠BDC =900.那么A 'CD 为直角三角形,由勾股定理知2A C '=22AB CD +=2500,所以50A C '=.而在△A 'BC 中,有A 'B =AD =48,有482+142=2500,即A 'B 2+BC 2=A 'C 2,即△A 'BC 为直角三角形. 有A CD A BCSS''+130402=⨯⨯114489362+⨯⨯=. 而|ABCDS 四边形A CD A BC S S ''=+936=.评注:Ⅰ.本题以∠ABC +∠BDC =900突破口,通过对称变换构造出与原图形相关的角三角形Ⅱ.对于这道题我们还可以将△BCD 作L 的对称图形.如下:C 1lABCD【答案】936【例 12】 如图,在三角形ABD 中,当AB 和CD 的长度相等时,请求出“?”所示的角是多少度,给出过程.DCAB?30°40°【考点】平移、旋转、割补 【难度】5星 【题型】解答【解析】 因为AB =CD ,于是可以将三角形ABC 的边BA 边与CD 对齐,如下图. 在下图中有∠BCA =110°,所以∠ACD =70°于是∠AC C '=∠ACD +∠DC C '=∠ACD +∠ABC =70°+40°=110°;A 1D C 1CB 1BA即∠AC C '=110°=∠CC D ';又因为C A ''只是CA 移动的变化,所以C A ''=CA ;则A B CA ''是一等腰梯形.于是,∠ADC '=180°-110°=70°;又∠CDC '=30°,所以∠ADC =70°-30°=40°.【答案】40°【例 13】 如图所示的四边形的面积等于多少?DB13131212【考点】平移、旋转、割补 【难度】4星 【题型】解答【解析】 题目中要求的四边形既不是正方形也不是长方形,难以运用公式直接求面积.我们可以利用旋转的方法对图形实施变换:把三角形OAB 绕顶点O 逆时针旋转,使长为13的两条边重合,此时三角形OAB 将旋转到三角形OCD 的位置.这样,通过旋转后所得到的新图形是一个边长为12的正方形,且这个正方形的面积就是原来四边形的面积.因此,原来四边形的面积为1212144⨯=.(也可以用勾股定理)【答案】144【例 14】 如图,三角形ABC 是等腰直角三角形,P 是三角形外的一点,其中90BPC ∠=︒,10cm AP =,求四边形ABPC 的面积.P DCBAP'PDCBA【考点】平移、旋转、割补 【难度】5星 【题型】解答【解析】 因为BAC ∠和BPC ∠都是直角,和为180︒,所以ABP ∠和ACP ∠的和也为180︒,可以旋转三角形APC ,使AC 和AB 重合,则四边形的面积转化为等腰直角三角形'AP P ,面积为1010250⨯÷=平方厘米.【答案】50【例 15】 如图所示,ABC ∆中,90ABC ∠=︒,3AB =,5BC =,以AC 为一边向ABC ∆外作正方形ACDE ,中心为O ,求OBC ∆的面积.【考点】平移、旋转、割补 【难度】5星 【题型】解答 【关键词】武汉明心奥数【解析】 如图,将OAB ∆沿着O 点顺时针旋转90︒,到达OCF ∆的位置.由于90ABC ∠=︒,90AOC ∠=︒,所以180OAB OCB ∠+∠=︒.而OCF OAB ∠=∠, 所以180OCF OCB ∠+∠=︒,那么B 、C 、F 三点在一条直线上.由于OB OF =,90BOF AOC ∠=∠=︒,所以BOF ∆是等腰直角三角形,且斜边BF 为538+=,所以它的面积为218164⨯=.根据面积比例模型,OBC ∆的面积为516108⨯=.【答案】10【例 16】 如图,直角梯形ABCD 中,AD BC ∥,AB BC ⊥,2AD =,3BC =,将腰CD 以D 为中心逆时针旋转90︒至ED ,连接AE 、CE ,则ADE ∆的面积是 .ED CBAH FEDCBA【考点】平移、旋转、割补 【难度】5星 【题型】解答 【关键词】武汉明心奥数【解析】 如图所示,将ADE ∆以D 为中心顺时针旋转90︒,到FDC ∆的位置.延长FD 与BC 交于H .由于ABCD 是直角梯形,AD 与FD 垂直,则四边形ADHB 是长方形,则BH AD =.由于ADE ∆与FDC ∆面积相等,而FDC ∆的底边2FD AD ==,高321CH BC BH =-=-=,所以FDC ∆的面积为2121⨯÷=,那么ADE ∆的面积也为1.【答案】1【例 17】 如图,正方形ABCD 和DEFG 有一个公共点D ,试比较三角形ADG 和三角形CDE 的面积.GFEDC BAA'GFEDCBA【考点】平移、旋转、割补 【难度】5星 【题型】解答【解析】 因为ADC ∠和GDE ∠是直角,所以ADG ∠和CDE ∠是互补角,将三角形ADG 顺时针旋转90︒到达'A DE ∆的位置,则'A 、D 、C 在同一条直线上,且'A D AD CD ==,即D 是'A C 的中点,所以三角形CDE 和三角形'A DE 面积相等,则三角形CDE 和三角形ADG 面积相等.【答案】相等【例 18】 如图,以正方形的边AB 为斜边在正方形内作直角三角形ABE ,90AEB ∠=︒,AC 、BD 交于O .已知AE 、BE 的长分别为3cm 、5cm ,求三角形OBE 的面积.F【考点】平移、旋转、割补 【难度】5星 【题型】解答 【关键词】资优杯【解析】 如图,连接DE ,以A 点为中心,将ADE ∆顺时针旋转90︒到ABF ∆的位置.那么90EAF EAB BAF EAB DAE ∠=∠+∠=∠+∠=︒,而AEB ∠也是90︒,所以四边形AFBE 是直角梯形,且3AF AE ==,所以梯形AFBE 的面积为:()1353122+⨯⨯=(2cm ).又因为ABE ∆是直角三角形,根据勾股定理,222223534AB AE BE =+=+=,所以21172ABD S AB ∆==(2cm ).那么()17125BDE ABD ABE ADE ABD AFBE S S S S S S ∆∆∆∆∆=-+=-=-=(2cm ),所以12.52OBE BDE S S ∆∆==(2cm ).【答案】2.5【例 19】 如图,已知4cm AB AE ==,BC DC =,90BAE BCD ∠=∠=︒,10cm AC =,则S ABC ACE CDE S S ∆∆∆++= 2cm .EDCBADEC 'A 'CBA【考点】平移、旋转、割补 【难度】5星 【题型】解答 【关键词】迎春杯、高年级、复赛、10题【解析】 将三角形ABC 绕A 点和C 点分别顺时针和逆时针旋转90,构成三角形'AEC 和'A DC ,再连接''A C ,显然'AC AC ⊥,'AC A C ⊥,''AC A C AC ==,所以''ACA C 是正方形.三角形'AEC 和三角形'A DC 关于正方形的中心O 中心对称,在中心对称图形''ACA C 中有如下等量关系: ''AEC A DC S S ∆∆=;''AEC A DC S S ∆∆=;'CED C DE S S ∆∆=.所以2'''11101050cm 22ABC ACE CDE AEC ACE CDE ACA C S S S S S S S∆∆∆∆∆∆++=++==⨯⨯=. 【答案】50【例 20】 如图所示的四边形ABCD 中,45A C ∠=∠=°,105ABC ∠=°,15AB CD ==厘米,连接对角线BD ,30ABD ∠=︒.求四边形ABCD 的面积.DCB A DECBA【考点】平移、旋转、割补 【难度】4星 【题型】解答 【关键词】第八届、华杯总决赛【解析】 由45A ∠=°,30ABD ∠=︒,可得1804530105ADB ∠=︒-︒-︒=︒,1053075DBC ∠=︒-︒=︒.将DBC ∆剪下来,翻转,再贴在BD 边上,即将B 点粘在D 点上,D 点粘在B 点上,如右上图所示.则C 点在E 点的位置.由于10575180ADB EDB ∠+∠=︒+︒=︒,所以A 、D 、E 三点在同一条直线上.由于45A E C ∠=∠=∠=°,所以90ABE ∠=︒,即ABE ∆是等腰直角三角形,它的面积就等于四边形ABCD 的面积,所以四边形ABCD 的面积为1515112.52⨯=平方厘米.【答案】112.5【例 21】 如图,在ABD ∆中,AB CD =,求“?”的度数.40°30°?DCBAD【考点】平移、旋转、割补 【难度】5星 【题型】解答【解析】 如图,由于AB CD =,可以将ABC ∆移动到DCE ∆,由于180(3040)110AC B ∠=︒-︒+︒=︒,18011070ACD ∠=︒-︒=︒,所以7040110ACE ∠=︒+︒=︒,又110CED ∠=︒,而AC DE =,所以四边形ACED 是等腰梯形,有180********ADE CED ∠=︒-∠=︒-︒=︒,703040ADC ∠=︒-︒=︒. 点评:通过构造全等三角形来转化.【答案】40°【例 22】 下图三角形ABC 是等腰三角形,AB AC =,120BAC ∠=︒.三角形ADE 是正三角形,点D 在BC边上,:2:3BD DC =.当三角形ABC 的面积是250cm 时,三角形ADE 的面积是多少?EDCB AGP R Q F EDCA【考点】平移、旋转、割补 【难度】5星 【题型】解答【解析】 以点A 为中心,由三个三角形ABC 可拼成右图:连结QE 、RF 、GD ,则DEQFRG 是一个正六边形.连结RD 、DQ 、RQ ,显然RDQ 是一个等边三角形,并且它的面积是正六边形面积的一半,所以是三角形ADE 的面积的3倍.由于23150cm PBC ABC S S ∆∆=⨯=,根据“鸟头定理”,22336cm 3223DQC PBC S S ∆∆=⨯⨯=++, 所以2342cm RDQ PBC DQC S S S ∆∆∆=-⨯=,则2342314cm ADE RDQS S ∆∆=÷=÷=.【答案】14【例 23】 如图,正方形PQRS 有三个顶点分别在ABC ∆的三条边上,BQ QC =.求正方形PQRS 的面积.【考点】平移、旋转、割补 【难度】5星 【题型】解答【解析】 如下图,我们设ABC ∆的面积为1,有161279341()122132111311143a e c db =---+=-⨯-⨯-⨯=,所以682143a e ==,751143bcd a ++=-=, 所以6875a b c d =++.如下图左,将三角形c 和三角形d 分别以P 、R 为中心按箭头方向旋转90︒,形成由两个直角三角形连在一起的一个四边形,如下图右,b 、c 、d 被虚线分成两个直角三角形,它们的面积之和为:276292230cm b c d ++=⨯÷+⨯÷=,所以2683027.2(cm )75a =⨯=.【答案】27.2【例 24】 如下图,△ABC 是边长为1的等边三角形,△BCD 是等腰三角形BD =CD ,顶角∠BDC =1200,∠MDN =600,求△AMN 的周长.120°60°M BD CNA【考点】平移、旋转、割补 【难度】4星 【题型】解答 【解析】 如下图, 延长AC 至P ,使CP =MB ,连接DP .120°60°M BD C NA则有∠MBD =600+1163ADEDQRDEQSRT SS S ==正六边形01801202-=∠PCD ;CP =BM ;BD =CD ,所以有△MBD ≌△PCD .于是∠MDC =∠PDC ;又因为∠MDB +∠NDC =600,所以∠PDC +∠NDC =∠NDP =600; MD =PD ,在△MDN 、△PND 中,∠NDM =∠NDP ,ND =ND ,MD =PD ,于是△MND ≌△PND .有MN =PN .因为NP =NP =NC +CP ,而AM =AB -MB =AB -CP , 所以AM +AN +MN =(AB -CP )+AN +(NC +CP )=AB +AN +NC =2.即△AMN 的周长为2.【答案】2【例 25】 若干个大小相同的正五边形如右图排成环状,下图中所示的只是3个五边形.那么要完成这一圈共需个正五边形.【考点】平移、旋转、割补 【难度】4星 【题型】解答 【关键词】迎春杯、六年级、初赛、5题【解析】 如图,设O 为圆心,A 、B 、C 、D 为五边形的顶点,连接OA 、OB 、OC .DC BAO从图中可以看出,OAB △和OBC △是完全相同的,所以OBA OBC ∠=∠,又五边形内角和为540°,所以正五边形的每个内角都为5405108÷=°°,即108ABD CBD ∠=∠=°, 那么3601082144ABC ∠=︒-︒⨯=︒,则144272OBA ∠=÷=°°, 又OAB OBA ∠=∠,所以18072236AOB ∠=︒-︒⨯=︒ 所以要用3603610+=°°个正五边形才能围成一圈.【答案】10【例 26】 如图,ABCD 是矩形,BC =6cm , AB=10cm ,AC 和BD 是对角线,图中的阴影部分以C 为轴旋转一周,则阴影部分扫过的立体的体积是多少立方厘米?(π取3.14)【考点】平移、旋转、割补 【难度】3星 【题型】解答 【关键词】华杯赛、决赛、第11题【解析】 ①设三角形BCO 以CD 为轴旋转一周所得到的立体的体积是s ,S 等于高为10厘米,底面半径是6厘米的圆锥的体积减去2个高为5厘米,底面半径是3厘米的圆锥的体积。
小学奥数角度计算精选练习例题含答案解析(附知识点拨及考点)

⼩学奥数⾓度计算精选练习例题含答案解析(附知识点拨及考点)⼀、⾓1、⾓的定义:⾃⼀点引两条射线所成的图形叫⾓2、表⽰⾓的符号:∠3、⾓的分类:锐⾓、直⾓、钝⾓、平⾓、周⾓、负⾓、正⾓、优⾓、劣⾓、0⾓这10种(1)锐⾓:⼤于0°,⼩于90°的⾓叫做锐⾓。
(2)直⾓:等于90°的⾓叫做直⾓。
(3)钝⾓:⼤于90°⽽⼩于180°的⾓叫做钝⾓。
(4)平⾓:等于180°的⾓叫做平⾓。
(5)优⾓:⼤于180°⼩于360°叫优⾓。
(6)劣⾓:⼤于0°⼩于180°叫做劣⾓,锐⾓、直⾓、钝⾓都是劣⾓。
(7)周⾓:等于360°的⾓叫做周⾓。
(8)负⾓:按照顺时针⽅向旋转⽽成的⾓叫做负⾓。
(9)正⾓:逆时针旋转的⾓为正⾓。
(10) 0⾓:等于零度的⾓。
4、⾓的⼤⼩:⾓的⼤⼩与边的长短没有关系;⾓的⼤⼩决定于⾓的两条边张开的程度,张开的越⼤,⾓就越⼤,相反,张开的越⼩,⾓则越⼩。
⼆、三⾓形1、三⾓形的定义:由三条边⾸尾相接组成的封闭图形叫做三⾓形2、内⾓和:三⾓形的内⾓和为180度;外⾓:(1)三⾓形的⼀个外⾓等于另外两个内⾓的和;(2)三⾓形的⼀个外⾓⼤于其他两内⾓的任⼀个⾓。
3、三⾓形的分类(1)按⾓分:锐⾓三⾓形:三个⾓都⼩于90度。
直⾓三⾓形:有⼀个⾓等于90度。
钝⾓三⾓形:有⼀个⾓⼤于90度。
注:锐⾓三⾓形和钝⾓三⾓形可统称为斜三⾓形(2)按边分:不等腰三⾓形;等腰三⾓形(含等边三⾓形)。
模块⼀、⾓度计算【例 1】有下列说法:(1)⼀个钝⾓减去⼀个直⾓,得到的⾓⼀定是锐⾓,(2)⼀个钝⾓减去⼀个锐姥,得到的⾓不可能还是钝⾓. (3)三⾓形的三个内麓中⾄多有⼀个钝⾓. (4)三⾓形的三个内⾓中⾄少有两个锐⾓. (5)三⾓形的三个内⾓可以都是锐⾓.知识点拨4-1-3.⾓度计算(6)直⾓三⾓形中可胄邕有钝⾓.(7)25?的⾓⽤10倍的放⼤镜看就变成了250? 其中,正确说法的个数是【考点】⾓度计算【难度】3星【题型】填空【解析】⼏何问题(1)、(3)、(4)、(5)是正确的说法.【答案】(1)、(3)、(4)、(5)是正确的说法【例 2】下图是3×3的正⽅形⽅格,∠1与∠2相⽐,较⼤的是_____。
二年级奥数必胜策略练习题及答案【三篇】

二年级奥数必胜策略练习题及答案【三篇】
导读:本文二年级奥数必胜策略练习题及答案【三篇】,仅供参考,如果觉得很不错,欢迎点评和分享。
【第一篇:连续报数】有一种游戏称作“抢二十”,游戏规则是两人轮流报数,每人每次至少报1个数,最多报2个数,从1到20按顺序连续报数。
谁先报到20,谁就获胜。
请给出取胜的方法。
答案解析先报2个数
想抢到20必须抢到17,因为当你抢到17的时候,对方无论报1个或2个数,自己都可以抢到20。
要想抢到17,就必须抢到14,原因同上。
那么像17,14这样的数就叫获胜的关键数。
依次类推,关键数是20,17,14,11,8,5,2。
关键数依次相差3。
也就是每次最少报1个数,最多报2个数。
它们的和是1+2=3。
因此第一个报数的时候,就要先抢到2。
【第二篇:拿苹果】有一筐苹果53个,甲乙两人轮流从中拿走1个或2个苹果,规定谁拿走最后1个苹果,谁获胜。
如果甲先拿,那么他有没有必胜的策略。
答案解析第一次拿2个甲要取胜,甲必须先拿到第53个苹果才行。
依此向前倒推,甲要先拿第50个、第47个、第44个,...,第5个,第2个。
【第三篇:聪明方格】练习题答案解析。
小学五年级下册数学奥数知识点讲解第9课《数学游戏》试题附答案

小学五年级下册数学奥数知识点讲解第9课《数学游戏》试题附答案第九讲数学游戏游洗对策问题因常与智力游戏相结台,因此具有很大的趣味庄.又由于解题方法灵活,技巧性强.所以对开阔解题思路,提高分析问题解决问题的能力是很有益处的<例1在一个3X3的方格纸中,甲乙两人轮流(甲先)往方格纸中填写L 3、4、5、6、7、8、9、10九个数中的一个,数不能重复.最后甲的得分是不计中间行的上下两行六个数之和,乙的得分是不计中间列的左右两列六个数之和.待分多者为胜.请你为甲找出一种必胜的策略。
例2在4乂4的方格纸上有一粒石子,它放在左下角的方格里.甲乙二人玩游戏,由甲开始,二人交替地移动这粒石子,每次只能向上,问右或向右上方移动一格,谁把石子移到右上角i隹胜・|、可甲能取胜吗?如果要取胜,应采取什么办混例3甲乙两人玩下面的游戏:有两堆玻璃球,一堆8个,另一堆9个,甲乙两人轮流从中拿取,每次只能从同一堆中拿,个数(>0)不限•规定拿到最后一个球的人为输.问如果甲先拿,他有无必胜的策略?答案第九讲数学游戏游戏对策可题因常与智力游戏相结合,因此具有很大的趣味性.又由于解题方法灵活,技巧性强,所以对开阔解题思路,提高分析问题程决问题的能力是很有益处的。
例1在一个3X3的方格纸中,甲乙两人轮流(甲先)往方格纸中填写1、3、4、5、6、7、8、9、10九个数中的一个,数不能重复.最后甲的得分是不计中间行的上下两行六个数之和,乙的得分是不计中间列的左右两列六个数之和,得分多者为胜.清你为甲找出一种必胜的策略。
分析把题中的九个格标上字母:a、b、c、d、e、f、g、h、io甲的得分为:a+b+c+g+h+i=(a十c+g+i)+(b+h);乙的彳导分为;a+d+g+c+f+i=(a+c+g+i)+(d+f)要想使甲的得分高于乙的得分,必须且只需使b+h〉d+f.要想使b+h>d +f,甲有两种策略:一是增强自己的实力一一使b、h格内填的数尽可能弛大;二是削弱对方的实力一一使d,音&内填的数尽可能地小.下面分两神情况进行讨论:取胜的总策略是“增强自己,削弱对方”两者兼顾°为了使叙述方便起见,我们分别用(甲2)和(购分别表示“甲第二 轮"和"在剥填数字5",其余如(乙1),(甲1,bio)等含义美同。
高斯小学奥数四年级上册含答案第10讲_游戏策略

第十讲游戏策略对策论又称博弈论,研究的现象与政治、经济、军事乃至人们的日常生活学习都有密切的联系.一般地,在具有竞争或对抗性质的行为中,参加竞争对抗的各方具有不同的目标.为了达到各自的目标,各方既要制定出对自己最有利的方案,又要考虑到对手所有可能采取的方案.对策论就是研究竞争对抗中各方是否存在最佳行动方案,以及如何找到这个最佳方案.我们将要学习的对策问题,主要是研究在两人的游戏过程中如何使自己取胜的策略问题.如果说“统筹规划”所研究的是“死的”对象的话,那么“对策问!题”所研究的就是一个“活的”对手,因而在考虑问题时需要设想对手可能采取的各种方案,并使己方的策略能在对手所有可能采取的方案中都处于有利位置, 我们将这种状态称作“必胜状态”(否则称为“必败状态”).那么在给定的游戏 规则下,是否存在必胜状态,以及为了达到必胜状态所采取的策略就成了问题的 关键.需要强调的是,我们的目标不是“可能胜” 而是“必胜” 我们不能存在侥幸心理,不能寄希望于对方的失误,而是要在假定双方都足够聪明的前提下寻找必胜策略.例题 1有 12 枚棋子,甲、乙两人轮流取,规定甲先取,每人每次至少取 1 枚,最多取 3 枚.如果谁取走最后一枚棋子谁赢,那么谁有必胜策略? 如果谁取走最后一枚棋子谁输,那么谁有必胜策略?必胜策略是什 么?「分析」直接考虑 12 枚棋子并不容易,大家不妨试试棋子较少时谁有必胜策略,看看能否找到规律.练习 1有 15 枚棋子,甲、乙两人轮流取,规定甲先取,每人每次至少取 1 枚,最多取 2 枚.如果谁取走最后一枚棋子谁赢.那么谁有必胜策略?如果谁取走最后一枚棋子谁输,那么谁有必胜策略?必胜策略是什么?情况很复杂时,我们往往需要先从比较简单的情况开始尝试,在逐渐变复杂的过程中,寻找规律进而解决题目.这其实是一种非常重要的数学思想,高年级乃至往后的数学学习中应用的递推、数学归纳法等都是以此为基础的.利用互补的想法,我们有更一般的结论.“有 m 枚棋子,两人轮流取棋子,规定每人每次可以取走 1 至 n 枚,直到把棋子取完为止,谁取得最后的一枚棋子谁胜.”其取胜策略是:每次取走棋子数除以 (n + 1) 的余数枚棋子,让对方面对(n + 1) 的倍数枚棋子——必败状态,则可保证取到最后的一枚棋子而获胜.例题2现有2014根火柴.甲、乙两个人轮流从中取出火柴,规定甲先取,每人每次至少从中取出2根,最多取出4根.如果谁无法取出火柴谁就赢,请问谁一定能赢?策略是什么?「分析」本题中每人每次最少要取出2根火柴,如果恰好剩下1根火柴,就已经无法再次取出了.能否像例题1那样,从火柴较少的情况入手,找出规律呢?练习2现有2009个糖豆,甲、乙两个人轮流取从中出糖豆,每次至少从中取出2个,最多取出5个,谁无法取出糖豆谁就赢.如果甲先取,请问谁一定能赢?策略是什么?在一定能分出胜负的对策问题中,一方要么处于必胜状态,要么处于必败状态.处于必胜状态的一方,总能进行一次适当的操作后,把必败状态留给对手.反之,处于必败状态的一方,无论采取什么策略,都只能把必胜状态留给对手.在很多对策问题中,具有对称性的状态往往是解决问题的关键.例题3甲、乙两人玩一个游戏:有两堆小球,甲、乙两人轮流从中取球,每次只能从同一堆中取,个数不为零即可.规定取到最后一个球的人赢,甲先取球.如果开始时两堆分别有五个球和八个球,那么谁有必胜策略?请说明理由.「分析」直接考虑5个和8个并不容易,你能像之前一样,从最简单的情况开始分析,找到规律吗?练习3甲、乙两个海盗分金币:有两堆金币,一堆有2009枚,一堆有2014枚.甲、乙轮流从中拿金币,每次只能从同一堆中拿,个数不为零即可.规定拿到最后一枚金币的人获胜,胜者可以获得所有金币.如果甲先拿,那么谁有必胜策略?请说明理由.例题4B如下图,方格A中放有一枚棋子,甲先乙后轮流移动这枚棋子,只能向上、向右或向右上方沿45°角走1步,最终将棋子走到方格B的人获胜.请问:A谁一定能获胜?必胜策略是什么?「分析」在棋盘中,有一些是必胜格,有一些是必败格.一方想要获胜,必须每次都把棋子走到必胜格子中,使得对手下一步无论采取什么操作,都不得不进入必败格子.本题中方格B就是必胜格.那么其他的格子中哪些是必胜格?哪些是必败格?B 练习4如右图,方格A中放有一枚棋子,甲先乙后轮流移动这枚棋子,只能向上、向右或向右上方沿45°角走1步,A最终将棋子走到方格B的人获胜.请问:谁有必胜策略?必胜策略是什么?例题5如下图,方格A中放有一枚棋子,甲先乙后B 轮流移动这枚棋子,只能向上、向右或向右上方沿45角走1步,最终将棋子走到方格B的人获胜.请问:(1)谁一定能获胜?必胜策略是什么?(2)如果每次允许往同一方向(上、右或A右上)走任意多步,结果又如何呢?「分析」第(1)问中,每次只能走1步,那么B为必胜格,则它相邻的左、下、左下三个格子全是必败格;第(2)问中,每次可以走任意多步,那么B为必胜格,则由B可以直接找出多少个必败格呢?“ 例题 6桌上有一块巧克力,它被直线划分成 3 行 7 列的 21 个小方块,如图 所示.现在让你和对手进行一种两人轮流切巧克力的游戏,规则如下:①每人每次只许沿一条直线把巧克力切成两块; ②拿走其中一块,把另一块留给对手再切;③不断重复前两步,最后谁能恰好留给对手一个小方块,谁获胜. 如果你首先切巧克力,那么你第一次应该切走多少个小方块,才能保证自己最后获胜?「分析」直接分析并不容易,还是先来看看简单情况吧!如果只有一行或一列的小方块,谁会获胜?两行或两 列呢?你能发现什么规律呢?在对策问题中,要想取得胜利,必须使自己能始终保持在必胜状态中,而使对手总是处于必败状态.明确了这一点,我们就知道了解决对策问题的关键在于弄清楚什么是必胜状态,什么是必败状态. 知己知彼,百战不殆.”哪一方的策 略更胜一筹,哪一方就会取得最终的胜利.课堂内外田忌赛马田忌很喜欢赛马.有一回他和齐威王约定,进行一次比赛.将马分成上、中、下三等,比赛的时候,上等马对上等马,中等马对中等马,下等马对下等马.由于齐威王每个等级都比田忌的强,三场比下来,田忌都失败了.田忌觉得很扫兴,垂头丧气地准备离开赛马场.这时,田忌发现,他的好朋友孙膑也在人群里.孙膑招呼田忌过来,拍着他的肩膀,说:“从刚才的情形看,齐威王的马比你的马快不了多少呀……”孙膑还没说完,田忌瞪了他一眼,说:“想不到你也来挖苦我!”孙膑说:“我不是挖苦你,你再同他赛一次,我有办法让你取胜.” 田忌疑惑地看着孙膑:“你是说另换几匹马?” 孙膑摇摇头,说:“一匹也不用换.”田忌没有信心地说:“那还不是照样输!”孙膑胸有成竹地说:“你就照我的主意办吧.”齐威王正在得意洋洋地夸耀自己的马,看见田忌和孙膑过来了,便讥讽田忌:“怎么,难道你还不服气?”田忌说:“当然不服气,咱们再赛一次!”齐威王轻蔑地说:“那就来吧!”一声锣响,赛马又开始了.孙膑让田忌先用下等马对齐威王的上等马,第一场输了.接着进行第二场比赛.孙膑让田忌拿上等马对齐威王的中等马,胜了第二场.齐威王有点儿心慌了.第三场,田忌拿中等马对齐威王的下等马,又胜了一场.这下,齐威王目瞪口呆了.比赛结果,田忌胜两场输一场,赢了齐威王.还是原来的马,只调换了一下出场顺序,就可以转败为胜.作业1.10枚正面朝下的硬币排成一排放在桌子上,两个小朋友玩翻硬币游戏.规定:每人每次只能翻动一枚或两枚硬币使之正面朝上,翻过的硬币不能再翻.两人轮流翻硬币,翻动最后一枚硬币的人获胜.请问:谁有必胜策略?必胜策略是什么?2.现有200个石子.甲、乙两个人轮流从中取出石子,每次最少从中取出2个,最多取出4个,谁无法取出石子谁就赢.如果甲先取,那么谁有必胜的策略?必胜策略是什么?3.甲、乙两人玩一个游戏:有两堆小球,甲、乙两人轮流从中取球,每次只能从同一堆中取任意多个,但不能不取.规定取到最后一个球的人输,甲先取球.(1)如果开始时两堆各有两个球,那么谁有必胜策略?请说明理由;(2)如果开始时两堆分别有两个球和三个球,那么谁有必胜策略?请说明理由.4.甲、乙二人轮流在一个正十二边形中画对角线(即两个不相邻顶点的连线)规定新画.的对角线不能与已经画出的对角线相交,谁不能继续画谁输.甲先画,请问谁有必胜策略?必胜策略是什么?\5.如下图所示,方格A中放有一枚棋子,甲先乙后轮流移动这枚棋子,只能向上、向右或向右上方沿45角走1步,最终将棋子走到方格B的人获胜.请问:谁一定能获胜?必胜策略是什么?BA第十讲游戏策略1.例题1答案:(1)乙有必胜策略;(2)甲有必胜策略详解:(1)如果剩不到4枚棋子,先取的人把所有棋子取走后获胜;如果剩4枚棋子,无论先取的人如何取,所剩的棋子数都不到4枚,所以后取的人获胜;如果有12枚棋子,甲取1枚时乙取3枚,甲取2枚时乙取2枚,甲取3枚时乙取1枚,在每次甲取完后,乙可以取适当数量的棋子以保证两人一个回合共取4枚棋子,这样乙可以拿到最后1枚,乙胜.(2)如果剩1枚,那么先取的人必败;如果剩2至4枚,先取的人可以剩1枚不取,所以后取的人败.12枚的情况与4枚的情况类似,甲先取3枚,剩下9枚.之后乙取1枚时甲取3枚,乙取2枚时甲取2枚,乙取3枚时甲取1枚,甲保证两人一个回合共取4枚棋子.最后1枚必然被乙拿到,甲胜.2.例题2答案:甲有必胜策略详解:根据上题经验,第二个人总可以保证和第一个人共取6根火柴,2014÷6=335L L4,所以2014根火柴的情况与4枚火柴的情况相同.4枚火柴时甲先取2根火柴即可获胜,因此2014根火柴时甲也先取2根火柴,之后乙无论怎么取,甲再取时都可以保证两人一个回合共取6根火柴.(2014-2)÷6=335L L2,最后剩下的2根火柴留给了乙,甲无法取出火柴,甲获胜.3.例题3答案:甲必胜详解:甲先从8个球的那堆中取出三个球,使得两堆球一样多.之后每次乙取几个球,甲就在另一堆中取相同数量的球,甲获胜.4.例题4答案:甲必胜详解:我们给必胜格子(如方格B)标记“√”,给必败格子标记“×”.从方格B逆推,能一步走到B的格子都要标记“×”.特别地,最上边一行和最右边一列为“√”和“×”相间的标记,如左图.对于左图中的格子1和格子3,对方有办法把它移到必胜格子中,所以格子1和格子3都是必败格子.如果把棋子移到格子2中,对手无论怎么移,都只能移到必败格子中,因此格子2是必胜格子.用类似的方法分析,得到右图.因此甲有必胜策略,每次把棋子移到标有“√”的格子中即可.×√×B1××23√A××√×B ×××××√×√××××5.例题5答案:(1)甲必胜;(2)甲必胜详解:(1)我们给必胜格子(如方格B)标记“√”,给必败格子标记“×”.从方格B逆推,能一步走到B的格子都要标记“×”.特别地,最上边一行和最右边一列为“√”和“×”相间的标记,如左图.对于左图中的格子1和格子3,对方有办法把它移到必胜格子中,所以格子1和格子3都是必败格子.如果把棋子移到格子2中,对手无论怎么移,都只能移到必败格子中,因此格子2是必胜格子.用类似的方法分析,得到右图.因此甲有必胜策略,每次把棋子移到标有“√”的格子中即可.√×√×√×B1××23√×√√×√×√×B ×××××××√×√×√×√×××××××√×√×√×√A×A××××××(2)与第(1)问方法类似,得到下图.甲有必胜策略,每次把棋子移到标有“√”的格子中即可.××××××B××××√×××××××√××√××××××××××××A××√×××6.例题6答案:切走12个小方块详解:当只剩1行(或1列)时,但不是一个小方块,先切的人只要切剩下一个小方块就赢了.当剩2行(或2列)时,如果剩2⨯2的方块,那么先切的人切完后成为1⨯2的方块,所以后切的人必胜;如果剩2⨯3、2⨯4、…等情况,先切的人只要切剩下一个2⨯2的方块就可以取胜.当剩3行(或3列)时,如果剩3⨯3的方块,先切的人切一刀后只能剩下1⨯3或2⨯3的方块,此时后切的人获胜.当有3⨯7块时,先切的人切走3⨯4=12块,给对手留下一个3⨯3的正方形,接着每次都给对手留下一个1⨯1或2⨯2的正方形即可获胜.7.练习1答案:(1)乙必胜;(2)甲必胜详解:(1)甲取1枚时乙取2枚,甲取2枚时乙取1枚,乙只要保证两人一个回合共取3枚棋子,即可拿到最后1枚获胜.(2)甲先取2枚,剩下13枚.之后乙取1枚时甲取2枚,乙取2枚时甲取1枚,甲保证两人一个回合共取3枚棋子,最后1枚必然被乙拿到,甲胜.8.练习2答案:甲必胜详解:2009÷(2+5)=287,甲先取5个糖豆,之后乙无论怎么取,甲再取时都可以保证两人一个回合共取7个糖豆,最后剩下的2个糖豆留给了乙,甲无法再次取出糖豆,甲获胜.9.练习3答案:甲必胜简答:甲先从2014个金币中取出5个金币,使两堆金币一样多.之后每次乙拿几个金币,甲就在另一堆中拿相同数量的金币,最后肯定甲拿走最后一个金币,甲获胜.10.练习4答案:甲必胜简答:策略是每次把棋子走到下图中标有“√”的格子内.√×√×B×××××√×√×√A××××11.作业1答案:先翻动的人必胜简答:先翻硬币的小朋友翻1枚硬币,以后对手翻1枚时自己翻2枚,对手翻2枚时自己翻1枚,保证两人一个回合共翻3枚,即可保证自己翻到最后1枚.12.作业2答案:乙必胜简答:甲取2个乙就取4个,甲取3个乙也取3个,甲取4个乙就取2个.200÷6=33L L2,最后剩下2个石子,甲取完,乙无法再取,乙获胜.13.作业3答案:(1)乙必胜;(2)甲必胜简答:(1)甲取1个乙就取2个,甲取2个乙就取1个.(2)必胜策略是从三个球的那堆中取1个球,之后乙取1个甲就取2个,乙取2个甲就取1个.14.作业4答案:甲必胜简答:策略是先画一条经过正十二边形中心的对角线,以它为对称轴,把图形分成对称的两部分.之后乙每画一条对角线,甲就在对称的位置上画出对角线.最后肯定是乙不能继续画,甲胜.15.作业5答案:乙必胜简答:策略是每次把棋子走到下图中标有“√”的格子内.√×√×√×B×××××××A×√×√×√。
高斯小学奥数含答案二年级(下)第06讲-扫雷游戏

第六讲扫雷游戏前续知识点:二年级第一讲;XX 模块第X 讲 后续知识点:X 年级第X 讲;XX 模块第X 讲把里面的人物换成相应红字标明的人物.小朋友们玩过扫雷游戏吗?这一讲我们会一起学习扫雷游戏的玩法.首先,我我一定要学好扫雷!!!阿呆阿呆阿呆阿呆阿呆阿呆随便画个小人儿要想从此过,先破地雷阵!们一起熟悉一下游戏规则吧!例题1根据侦察兵报告的信息,回答下面的问题.请回答:在9号周围的是哪些? 在11号周围的是哪些? 在16号周围的是哪些?既在6号周围又在12号周围的是哪些?【提示】在某个方框周围就是与这个方框共边共点的方框,即与这个方框有接触的方框.练习1大淘在花园里布置了地雷,小美蛙、奇奇猫和壮壮鼠去扫雷.博士给了他们一张地图,如图所示,让他们认识一下.和7号相邻的是2号、3号、4号、6号、8号、10号、11号、12号.和3号相邻的是2号、4号、6号、7号、8号.和1号相邻的是2号、5号、6号.1 2 3 4 5 678910 11 1213 14 15 16小美蛙:在F区周围的是A、B、G、K、L;奇奇猫:在H区周围的是哪些?壮壮鼠:在M区周围的是哪些?“G”周围一圈的8个字母,分别是“A,B,C,F ,H,K ,L ,M”,它们与“G”都有接触的部分(即与“G”共边共点的方框).因此,“K”周围只有“F,G,L”3个字母.扫雷游戏中,有些方块是雷,有些方块是数,这些数表示它周围的部分有几颗雷.例题2观察雷区,然后填数.【提示】根据题意发现,方框中的数代表的是这个方框周围的地雷数量.练习2观察雷区,在空格里填数.雷区1雷区1中的“2”表示在“2”周围的8个格子里有2个格子里有地雷;雷区2中的“3”表示在“3”周围的5个格子中有3个格子里有地雷.那么你会填雷区3吗?试一试.23雷区2雷区3A B C D EF G H I JK L M N O在已知雷区分布时,我们可以找出与每个空格相邻的格子中地雷的总个数,然后在这个空格中填上这个数.当我们知道雷区中的数时,我们可以找出与这个数所在格子相邻的格子中有多少颗地雷,然后可以判断哪些格子中有地雷,哪些格子中没有地雷.我们一起试试吧!悄悄告诉你,要先标出你确定的地方哦。
小学四年级奥数第16讲:游戏与对策(一)习题

游戏与对策练习题一.夯实基础:1.桌子上放着40根火柴,甲、乙二人轮流每次取走1~3根.规定谁取走最后一根火柴谁获胜.如果双方都采用最佳方法,甲先取,那么谁将获胜?2.桌子上放着28根火柴,甲、乙二人轮流每次取走1-2根.规定谁取走最后一根火柴谁获胜.如果双方都采用最佳方法,甲先取,那么谁将获胜?3.桌子上放着55根火柴,甲、乙二人轮流每次取走1~3根.规定谁取走最后一根火柴谁获胜.如果双方采用最佳方法,甲先取,那么谁将获胜?4.桌子上放着55根火柴,甲、乙二人轮流每次取走1~4根,规定谁取走最后一根火柴谁获胜.如果双方都采用最佳方法,甲先取,那么谁将获胜?二.拓展提高:5.桌子上放着18根火柴,甲、乙二人轮流每次取走1~3根.规定谁取走最后一根火柴谁输.如果双方都采用最佳方法,甲先取,那么谁将获胜?6.桌子上放着55根火柴,甲、乙二人轮流每次取走1~3根,规定谁取走最后一根火柴谁失败.如果双方都采用最佳方法,甲先取,那么谁将获胜?7.你和小聪明做游戏,桌上有63根火柴,每次每人可以取1~4根,谁取到最后一根谁就输.你有必胜的方法吗?你先取火柴还是后取,怎么取?8.黑板上写着一排相连的自然数1,2,3,…,51.甲、乙两人轮流划掉连续的3个数.规定在谁划过之后另一人再也划不成了,谁就算取胜.问:甲有必胜的策略吗?9.两个人从1开始按自然数顺序轮流依次报数,每人每次只能报1~5个数,谁先报到50谁获胜.你选择先报数还是后报数?怎样才能获胜?10.两人轮流报数,但报出的数只能是1至8的自然数,同时把所报数一一累加起来,谁先使这个累加的和达到80,谁就获胜.问怎样才能确保获胜?三.超常挑战:11.有两堆火柴,一堆3根,另一堆7根.甲、乙两人轮流取火柴,每次可以从每一堆中取任意根火柴,也可以同时从两堆中取相同数目的火柴.每次至少要取走一根火柴.谁取得最后一根火柴谁胜.如果都采用最佳方法,那么谁将获胜?12.有11根火柴,两人轮流从中拿取,每次至少取1根.先取者第一次取得数目不限(但不能全部取走),以后每人取得数目不得超过另一人上次取得数目的2倍规定取得最后一根者为胜.先取者的获胜策略是什么?13.有一堆火柴,甲先乙后轮流每次取走1~3根.取完全部火柴后,如果甲取得火柴总数是偶数,那么甲获胜,否则乙获胜.试分析这堆火柴的根数在1~11根时,谁将获.答案:1.解析:40÷(1+3)=10乙将获胜。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 通过实际操作寻找题目中蕴含的数学规律2. 在操作过程中,体会数学规律的并且设计最优的策略和方案3. 熟练掌握通过简单操作、染色、数论等综合知识解决策略问题实际操作与策略问题这类题目能够很好的提高学生思考问题的能力,激发学生探索数学规律的兴趣,并通过寻找最佳策略过程,培养学生的创造性思维能力,这也是各类考试命题者青睐的这类题目的原因。
模块一、探索与操作 【例 1】 将1—13这13个自然数分别写在13张卡片上,再将这13张卡片按一定的顺序从左至右排好.然后进行如下操作:将从左数第一张和第二张依次放到最后,将第三张取出而这张卡片上的数是1;再将下面的两张依次放到最后并取出下一张,取出的卡片上面的数是2;继续将下面的两张依次放到最后并取出下一张,取出的卡片上面的数是3……如此进行下去,直到取出最后一张是13为止.则13张卡片最初从左到右的顺序为 .【考点】游戏与策略 【难度】3星 【题型】填空【关键词】北京奥校杯【解析】 这13张卡片依次是原来的第3,第6,第9,第12,第2,第7,第11,第4,第10,第5,第1,第8,第13张,所以原来的顺序为11,5,1,8,10,2,6,12,3,9,7,4,13【答案】11,5,1,8,10,2,6,12,3,9,7,4,13【例 2】 在纸上写着一列自然数1,2,…,98,99.一次操作是指将这列数中最前面的三个数划去,然后把这三个数的和写在数列的最后面.例如第一次操作后得到4,5,…,98,99,6;而第二次操作后得到7,8,…,98,99,6,15.这样不断进行下去,最后将只剩下一个数,则最后剩下的数是 .【考点】游戏与策略 【难度】3星 【题型】填空【关键词】迎春杯【解析】 第一轮:分33次划1~9,后面写上6,15,24,…,294共33个数.第二轮:分11次划去这33个数,后面写上45,126,207,…,855,共11个数.之后的操作一次减少2个数,故还需例题精讲知识点拨教学目标游戏与策略操作5次.设这11个数为:1a ,2a ,…,11a .则接下去的数是:123()a a a ++,456()a a a ++,789()a a a ++,1011123()a a a a a ++++,4567891011123()a a a a a a a a a a a ++++++++++.因此最后一数为:1231112994950a a a a ++++=+++=.【答案】4950【巩固】 在1,9,8,9后面写一串这样的数字:先计算原来这4个数的后两个之和8+9=17,取个位数字7写在1,9,8,9的后面成为1,9,8,9,7;再计算这5个数的后两个之和9+7=16;取个位数字6写在1,9,8,9,7的后面成为1,9,8,9,7,6;再计算这6个数的后两个之和7+6=13,取个位数字3写在1,9,8,9,7,6的后面成为1,9,8,9,7,6,3. 继续这样求和,这样添写,成为数串1,9,8,9,7,6,3,9,2,1,3,4…那么这个数串的前398个数字的和是________.【考点】游戏与策略 【难度】3星 【题型】填空【关键词】迎春杯,决赛【解析】 前16个数字是1,9,8,9,7,6,3,9,2,1,3,4,7,1,8,9可见除去前2个数字1、9后,每12个数字一组重复出现.因此前398个数字的和是1+9+(8+9+7+6+3+9+2+1+3+4+7+1)⨯398212-=10+60⨯33=1990 【答案】1990【例 3】 圆周上放有N 枚棋子,如图所示,B 点的那枚棋子紧邻A 点的棋子.小洪首先拿走B 点处的1枚棋子,然后沿顺时针方向每隔1枚拿走2枚棋子,这样连续转了10周,9次越过A .当将要第10次越过A 处棋子取走其他棋子时,小洪发现圆周上余下20多枚棋子.若N 是14的倍数,请精确算出圆周上现在还有多少枚棋子?【考点】游戏与策略 【难度】3星 【题型】解答【解析】 设圆周上余a 枚棋子,从第9次越过A 处拿走2枚棋子到第10次将要越过A 处棋子时,小洪拿了2a 枚棋子,所以在第9次将要越过A 处棋子时,圆周上有3a 枚棋子.依次类推,在第8次将要越过A 处棋子时,圆周上有23a 枚棋子,…,在第1次将要越过A 处棋子时,圆周上有93a 枚棋子,在第1次将要越过A 处棋子之间,小洪拿走了()92311a -+枚棋子,所以99102(31)1331N a a a =-++=-.1031590491N a a =-=-是14的倍数,N 是2和7的公倍数,所以a 必须是奇数;又()78435417843541N a a a =⨯+-=⨯+-,所以41a -必须是7的倍数.当21a =,25,27,29时,41a -不是7的倍数,当23a =时,4191a -=是7的倍数.所以,圆周上还有23枚棋子.【答案】23【例 4】 有足够多的盒子依次编号0,1,2,…,只有0号是黑盒,其余的都是白盒.开始时把10个球放入白盒中,允许进行这样的操作:如果k 号白盒中恰有k 个球,可将这k 个球取出,并给0号、1号、…,(1)k -号盒中各放1个.如果经过有限次这样的操作后,最终把10个球全放入黑盒中,那么4号盒中原有 个球.【考点】游戏与策略 【难度】3星 【题型】填空【关键词】两岸四地,华杯赛【解析】 使用倒推法.最终各盒中依次有球(10,0,0,0,…),前一次必然分的是1号盒中的球,否则1号盒中最终至少有1个球.所以,倒数第一次分前盒中依次有球(9,1,0,0,…).依次倒推,为:(10,0,0,0,…)←(9,1,0,0,…)←(8,0,2,0,0,…)←(7,1,2,0,0,…)←(6,0,1,3,0,…)←(5,1,1,3,0,…)←(4,0,0,2,4,…)←(3,1,0,2,4,…)←(2,0,2,2,4,…)←(1,1,2,2,4,…)←(0,0,1,1,3,5…),0号盒中此时为0个球,不能再倒推.所以,4号盒中原有3个球.【答案】3【例 5】 一个数列有如下规则:当数n 是奇数时,下一个数是1n +;当数n 是偶数时,下一个数是2n .如果这列数的第一个数是奇数,第四个数是11,则这列数的第一个数是 .【考点】游戏与策略 【难度】3星 【题型】填空【解析】 本题可以进行倒推.11的前一个数只能是偶数22,22的前一个数可以是偶数44或奇数21,44的前一个是可以是偶数88或奇数43,而21的前一个只能是偶数42.由于这列数的第一个是奇数,所以只有43满足.故这列数的第一个数是43.也可以顺着进行分析.假设第一个数是a ,由于a 是奇数,所以第二个数是1a +,是个偶数,那么第三个数是12a +,第四个数是11,11只能由偶数22得来,所以1222a +=,得到43a =,即这列数的第一个数是43.【答案】43【巩固】 在信息时代信息安全十分重要,往往需要对信息进行加密,若按照“乘3加1取个位”的方式逐位加密,明码“16”加密之后的密码为“49”,若某个四位明码按照上述加密方式,经过两次加密得到的密码是“2445”,则明码是 .【考点】游戏与策略 【难度】3星 【题型】填空【关键词】走美杯,初赛,六年级【解析】 0~9这10个数字乘以3所得的数的个位数字互不相同是本题可以进行判断的基础.采用倒推法,可以得到经过一次加密之后的密码是“7118”,再进行倒推,可以得到原来的明码是2009.【答案】2009【例 6】 设有25个标号筹码,其中每个筹码都标有从1到49中的一个不同的奇数,两个人轮流选取筹码.当一个人选取了标号为x 的筹码时,另一个人必须选取标号为99x -的最大奇因数的筹码.如果第一个被选取的筹码的编号为5,那么当游戏结束时还剩 个筹码.【考点】游戏与策略 【难度】3星 【题型】解答【关键词】武汉,明星奥数挑战赛【解析】 解若 x 99x -5 4747 1313 4343 77 2323 1919 5当一个人拿到19时,下一个人就要拿5了,故游戏结束,拿了7个.剩25718-=(个).【答案】18【例 7】 一个盒子里有400枚棋子,其中黑色和白色的棋子各200枚,我们对这些棋子做如下操作:每次拿出2枚棋子,如果颜色相同,就补1枚黑色棋子回去;如果颜色不同,就补1枚白色的棋子回去.这样的操作,实际上就是每次都少了1枚棋子,那么,经过399次操作后,最后剩下的棋子是 颜色(填黑或者白)【考点】游戏与策略 【难度】3星 【题型】填空【关键词】北大附中,资优博雅杯【解析】 由于起初白子200枚是偶数,若同色,补黑子1枚,白子仍为偶数;若异色,补白子1枚,白子仍为偶数.因此最后1枚不可能是白子,故应是黑子.【答案】黑【巩固】 30粒珠子依8粒红色、2粒黑色、8粒红色、2粒黑色、的次序串成一圈.一只蚱蜢从第2粒黑珠子起跳,每次跳过6粒珠子落在下一粒珠子上.这只蚱蜢至少要跳几次才能再次落在黑珠子上.【考点】游戏与策略 【难度】3星 【题型】解答【关键词】走美杯,试题【解析】 这些珠子按8粒红色、2粒黑色、8粒红色、2粒黑色、的次序串成一圈,那么每10粒珠子一个周期,我们可以推断出这30粒珠子数到第9和10、19和20、29和30、39和40、49和50粒的时候,会是黑珠子.刚才是从第10粒珠子开始跳,中间隔6粒,跳到第17粒,接下来是第24粒、31粒、38粒、45粒、52粒、59粒,一直跳到59粒的时候会是黑珠子,所以至少要跳7次.【答案】7次【巩固】 在黑板上写上1、2、3、4、……、2008,按下列规定进行“操怍”:每次擦去其中的任意两个数a 和b ,然后写上它们的差(大数减小数),直到黑板上剩下一个数为止.问黑板上剩下的数是奇数还是偶数?为什么?【考点】游戏与策略 【难度】3星 【题型】解答【解析】 根据等差数列求和公式,可知开始时黑板上所有数的和为123200820091004++++=⨯是一个偶数,而每一次“操作”,将a 、b 两个数变成了()a b -,它们的和减少了2b ,即减少了一个偶数.那么从整体上看,总和减少了一个偶数,其奇偶性不变,还是一个偶数.所以每次操作后黑板上剩下的数的和都是偶数,那么最后黑板上剩下一个数时,这个数是个偶数.【答案】偶数【例 8】 桌上有一堆石子共1001粒。
第一步从中扔去一粒石子,并把余下的石子分成两堆。
以后的每一步,都从某个石子数目多于1的堆中扔去一粒,再把某一堆分作两堆。
问:能否在若干步之后,桌上的每一堆中都刚好有3粒石子?【考点】游戏与策略 【难度】3星 【题型】解答【解析】 不可能.事实上,如果可能的话,那么假定最后在桌上剩下了n 堆石子,每堆3粒,则在此之前一共进行了(1)n -次操作(开始时只有一堆石子,每操作一次,多分出一堆,操作1n -次后分成n 堆).而每操作一次,都扔去一粒石子,所以一共扔去(1)n -粒石子.因此,3(1)1001n n +-=,得到41002n =,但1002不是4的倍数,说明n 不是整数,导致矛盾.所以不可能.【答案】不可能【巩固】 有3堆小石子,每次允许进行如下操作:从每堆中取走同样数目的小石子,或是将其中的某一石子数是偶数的堆中的一半石子移入另外的一堆.开始时,第一堆有1989块石子,第二堆有989块石子,第三堆有89块石子.问,能否做到:⑴某2堆石子全部取光?⑵3堆中的所有石子都被取走?【考点】游戏与策略 【难度】3星 【题型】解答【解析】要使得某两堆石子全部取光,只需使得其中有两堆的石子数目一样多,那么如果我们把最少的一堆先取光,只要剩下的两堆中有一堆数目是偶数,再平分一下就可以实现了.而题中数字正好能满足要求.所以,全部取光两堆是可以的.对于第二个问题,要取走全部3堆,则必须3堆石子的总数是3的倍数才有可能,但1989、989、89之和并非3的倍数,所以是不可能的.⑴可以取光其中的两堆石子.如进行如下的操作:第1堆第二堆第三堆1989 989 891900 900 0 (第一步:三堆各取走89块)1900 450 450 (第二步:第二堆900是偶数,将其一半移入第三堆)1450 0 0 (第三步:三堆各取走450块)⑵不能将三堆全部取光.因为每一次取走石子是从三堆中同时取走相同数目的石子,那么每次取走的石子数都是3的倍数,则不论怎么取,取走的石子总数是3的倍数,而1989989893067++=,3067被3除余1,不是3的整数倍,所以不能将三堆石子全部取光.【答案】⑴可以;⑵不能【例9】今有101枚硬币,其中有100枚同样的真币和1枚伪币,伪币和真币的重量不同.现需弄清楚伪币究竟比真币轻还是重、但只有一架没有砝码的天平,那么怎样利用这架天平称两次,来达到目的?【考点】游戏与策略【难度】3星【题型】解答【解析】略【答案】101枚硬币,如果进行称重的话应该保证天平两边的硬币数相等.因此应该首先拿掉一个,把剩下的100枚硬币在天平两边各放50个.如果这时天平两边重量相等的话,就说明剩下的那个是伪币.只要任意拿出一个真币和这个伪币再称一次就可以知道真币和伪币那种比较重了.如果天平两边重量不相等的话,就是说伪币还在这100个硬币中.可以拿出其中比较轻的50个.这时同样还是把他们分成两个25枚,分到天平两边称重.如果两边重量相等,说明这50个硬币都是真的.伪币在比较重的那50个中,因此伪币就应该比真币重.如果两边重量不相等,说明伪币就在这50个比较轻的硬币中,显然伪币就应该比真币轻.同样道理,也可以把比较重的那50个硬币分成两个25进行称重,同样也可以得出结论【巩固】9个金币中,有一个比真金币轻的假金币,你能用天平称两次就找出来吗(天平无砝码)? 【考点】游戏与策略【难度】3星【题型】解答【解析】第一次在左右两托盘各放置3个:(一)如果不平衡,那么较轻的一侧的3个中有一个是假的.从中任取两个分别放在两托盘内:①如果不平衡,较低的一侧的那个是假的;②如果平衡,剩下的一个是假的;(二)如果平衡,剩下的三个中必有一个为假的.从中任取两个分别放在两托盘内:①如果不平衡,较低的一侧的那个是假的;②如果平衡,剩下的那个是假的.这类称量找假币的问题,一定要会分类,并尽量是每一类对应天平称量时的不同状态(轻,重,平),所以分成3堆是很常见的分法.【答案】能【巩固】你有四个装药丸的罐子,每个药丸都有一定的重量,被污染的药丸是没被污染的重量+1.只称量一次,如何判断哪个罐子的药被污染了?【考点】游戏与策略【难度】3星【题型】解答【解析】 略.【答案】第一瓶拿一个药丸,第二瓶拿两个药丸,第三瓶拿三个,第四瓶拿四个,称一下比标准的10个药丸重多少,重多少就是第几个瓶子里的药丸被污染【例 10】 有大,中,小3个瓶子,最多分别可以装入水1000克,700克和300克.现在大瓶中装满水,希望通过水在3个瓶子间的流动使得中瓶和小瓶上标出100克水的刻度线,问最少要倒几次水?【考点】游戏与策略 【难度】3星 【题型】解答【解析】 通过对三个数字的分析,我们发现700-300-300=100,是计算步数最少的得到100的方法.而由于我们每计算一步就相当于倒一次水,所以倒水最少的方案应该是:1.大瓶往中瓶中倒满水.2.中瓶往小瓶中倒满水,这时中瓶中还剩下400克水.3.小瓶中水倒回大瓶.4.中瓶再往小瓶中倒满水,这时中瓶中只剩下100克水,标记.5.小瓶中水倒回大瓶.6.中瓶中100克水倒入小瓶,标记.所以最少要倒6次水.本题关键是,小瓶中的水每次都要倒掉,不然无法再往小瓶中倒水的.【答案】6次【例 11】 对一个自然数作如下操作:如果是偶数则除以2;如果是奇数则加1. 如此进行直到为1操作停止. 求经过9次操作变为1的数有多少个?【考点】游戏与策略 【难度】3星 【题型】解答【关键词】华杯赛,决赛【解析】 可以先尝试一下,得出下面的图:其中经1次操作变为1的1个,即2,经2次操作变为1的1个,即4,经3次操作变为1的2个,即3,8,…,经6次操作变为1的有8个,即11,24,10,28,13,30,64,31.于是,经1、2、…次操作变为1的数的个数依次为1,1,2,3,5,8,… ①这一串数中有个特点:自第三个开始,每一个等于前两个的和,即2=1+1,3=2+1,5=3+2,8=5+3,…如果这个规律正确,那么8后面的数依次是8+5=13,13+8=21,21+13=34,…即经过9次操作变为1的数有34个.为什么上面的规律是正确的呢?道理也很简单. 设经过n 次操作变为1的数的个数为n a ,则1a =1,2a =1,3a =2,…10241112513283031641514167638421从上面的图看出,1n a +比n a 大. 一方面,每个经过n 次操作变为1的数,乘以2,就得出一个偶数,经过1n +次操作变为1;反过来,每个经过1n +次操作变为1的偶数,除以2,就得出一个经过n次操作变为1的数. 所以经过n 次操作变为1的数与经过1n +次操作变为1的偶数恰好一样多.前者的个数是n a ,因此后者也是n a 个.另一方面,每个经过n 次操作变为1的偶数,减去1,就得出一个奇数,它经过1n +次操作变为1,反过来.每个经过1n +次操作变为1的奇数,加上1,就得出一个偶数,它经过n 次操作变为1. 所以经过n 次操作变为1的偶数经过1n +次操作变为1的奇数恰好一样多.而由上面所说,前者的个数就是1n a -,因此后者也是1n a -.经过n +1次操作变为1的数,分为偶数、奇数两类,所以11n n n a a a +-=+ ②即上面所说的规律的确成立.满足规律②,并且12a a ==1的一串数 ①称为裴波那契数列,斐波那契(Fibonacci ,约1175—1250)是意大利数学家,以他的名字命名的这种数列有很广泛的应用.【答案】34模块二、染色与操作(证明)【例 12】 六年级一班全班有35名同学,共分成5排,每排7人,坐在教室里,每个座位的前后左右四个位置都叫作它的邻座.如果要让这35名同学各人都恰好坐到他的邻座上去,能办到吗?为什么?【考点】游戏与策略【难度】3星【题型】解答【解析】建议建议教师在本讲可以以游戏的形式激发学生自主解决问题.划一个57⨯的方格表,其中每一个方格表示一个座位.将方格黑白相间地染上颜色,这样黑色座位与白色座位都成了邻座.因此每位同学都坐到他的邻座相当于所有白格的坐到黑格,所有黑格坐到白格.但实际上图中有17个黑格,18个白格,黑格与白格的个数不相等,故不能办到.【答案】不能【例13】图是学校素质教育成果展览会的展室,每两个相邻的展室之间都有门相通.有一个人打算从A室开始依次而入,不重复地看过各室展览之后,仍回到A室,问他的目的能否达到,为什么?A【考点】游戏与策略【难度】3星【题型】解答【解析】采用染色法.如右图,共有9个展览室,对这9个展览室,黑白相间地进行染色,从白室A出发走过第1扇门必至黑室,再由黑室走过第2扇门至白室,由于不重复地走遍每一间展览室,因此将走过黑白相间的8个展览室,再回到白室A,共走过9扇门.由于走过奇数次门至黑室,走过偶数次门至白室.现在,走过9扇门,必至黑室,所以无法回到原来的白室A.【答案】无法回到【例14】右图是某套房子的平面图,共12个房间,每相邻两房间都有门相通.请问:你能从某个房间出发,不重复地走完每个房间吗?【考点】游戏与策略【难度】3星【题型】解答【解析】如图所示,将房间黑白相间染色,发现有5个白格,7个黑格.因为每次只能由黑格到白格或由白格到黑格,路线必然黑白相间,这样白格数目与黑格数目之差最多为1才能不重复,但图中黑格比白格多2个,所以无法实现不重复走遍.【答案】无法实现【巩固】有一次车展共6636⨯=个展室,如右图,每个展室与相邻的展室都有门相通,入口和出口如图所示.参观者能否从入口进去,不重复地参观完每个展室再从出口出来?【考点】游戏与策略【难度】3星【题型】解答【解析】如右图,对每个展室黑白相间染色,那么每次只能从黑格到白格或从白格到黑格.由于入口处和出口处都是白格,而路线黑白相间,首尾都是白格,于是应该白格比黑格多1个,而实际上白格、黑格都是18个,故不可能做到不重复走遍每个展室.【答案】不可能【例15】如右图,在55⨯方格的A格中有一只爬虫,它每次总是只朝上下左右四个方向爬到相邻方格中.那么它能否不重复地爬遍每个方格再回到A格中?A【考点】游戏与策略【难度】3星【题型】解答【解析】由小虫的爬法,仍可黑白相间对方格自然染色,于是小虫只能由黑格爬到白格或由白格爬到黑格.所以,它由A出发回到A,即黑格爬到黑格,必须经过偶数步.而小方格为5525⨯=个,每格爬过一次,就应该为25步,不是偶数.于是这只爬虫不可能不重复地爬遍每格再回到A格.【答案】不可能【例16】右图是半张中国象棋盘,棋盘上放有一只马.众所周知,马是走“日”字的.请问:这只马能否不重复地走遍这半张棋盘上的每一个点,然后回到出发点?马【考点】游戏与策略【难度】3星【题型】解答【解析】马走“日”字,在中国象棋盘上走有什么规律呢?为方便研究规律,如下图所示:先在棋盘各交点处相间标上○和●,图中共有22个○和23个●.因为马走“日”字,每步只能从○跳到●,或由●跳到○,所以马从某点跳到同色的点(指○或●),要跳偶数步;跳到不同色的点,要跳奇数步.现在马在○点,要跳回这一点,应跳偶数步,可是棋盘上共有232245+=个点,所以不可能做到不重复地走遍所有的点后回到出发点.讨论:如果马的出发点不是在○点上而是在●点上,那么这只马能不能不重复地走遍这半张棋盘上的每个点,最后回到出发点上呢?按照上面的分析,显然也是不可能的.但是如果放弃“回到出发点”的要求,那么情况就不一样了.从某点出发,跳遍半张棋盘上除起点以外的其它44个点,要跳44步,44是偶数,所以起点和终点应是同色的点(指○或●).因为44步跳过的点○与点●各22个,所以起点必是●,终点也是●.也就是说,当不要求回到出发点时,只要从●出发,就可以不重复地走遍半张棋盘上的所有点.【答案】不可能【巩固】一只电动老鼠从右图的A点出发,沿格线奔跑,并且每到一个格点不是向左转就是向右转.当这只电动老鼠又回到A点时,甲说它共转了81次弯,乙说它共转了82次弯.如果甲、乙二人有一人说对了,那么谁正确?【考点】游戏与策略【难度】3星【题型】解答【解析】如右图所示:格点黑白相间染色,因为老鼠遇到格点必须转弯,所以经过多少个格点就转了多少次弯.如右上图所示,老鼠从黑点出发,到达任何一个黑点都转了奇数次弯,所以甲正确.【答案】甲正确模块三、染色与操作(剪拼)【例17】有7个苹果要平均分给12个小朋友,园长要求每个苹果最多分成5份.应该怎样分?【考点】游戏与策略【难度】3星【题型】解答【解析】显然每人应该分712=412+312=13+14.于是,拿4个苹果,每个苹果3等分;拿3个苹果,每个苹果4等分.【答案】拿4个苹果,每个苹果3等分;拿3个苹果,每个苹果4等分【例18】右图是由14个大小相同的方格组成的图形.试问能不能剪裁成7个由相邻两方格组成的长方形?【考点】游戏与策略【难度】3星【题型】解答【解析】将这14个小方格黑白相间染色(见右下图),有8个黑格,6个白格.相邻两个方格必然是一黑一白,如果能剪裁成7个小长方形,那么14个格应当是黑、白各7个,与实际情况不符,所以不能剪裁成7个由相邻两个方格组成的长方形.【答案】不能【巩固】你能把下面的图形分成7个大小相同的长方形吗?动手画一画.【考点】游戏与策略【难度】3星【题型】解答【解析】可以通过染色发现黑白方格个数相同,可以按一黑一白分成7块含有2个小方格的长方形,答案如下(答案不唯一):【答案】【巩固】有6张电影票(如右图) ,想撕成相连的3张,共有________种不同的撕法.【考点】游戏与策略【难度】3星【题型】填空【解析】形如的有2种,形如的有8种.所以共有2810+=(种)【答案】10种【巩固】右图是由40个小正方形组成的图形,能否将它剪裁成20个相同的长方形?【考点】游戏与策略【难度】3星【题型】解答【解析】将40个小正方形剪裁成20个相同的长方形,就是将图形分割成20个12⨯的小长方形,将图形黑白相间染色后,发现有21黑,19白,黑、白格数目不等,而12⨯的小长方形覆盖的总是黑白格各一个,所以不可能做到.【答案】不可能【巩固】右面的三个图形都是从4×4的正方形纸片上剪去两个1×1的小方格后得到的. 问:能否把它们分别剪成1×2的七个小矩形.【考点】游戏与策略【难度】3星【题型】解答【解析】如右图(1)能,黑白格数相等;(2)(3)不能,黑白格数不等,而1×2的小矩形一次覆盖黑白格各一个. 【答案】(1)能;(2)(3)不能【例19】用9个14⨯的正方形?请说明理由.⨯的长方形能不能拼成一个66444444433333333222222222111111114321【考点】游戏与策略 【难度】3星 【题型】解答【解析】 本题若用传统的自然染色法,不能解决问题.因为要用14⨯来覆盖,我们对66⨯正方形用四种颜色染色.为了方便起见,这里用1、2、3、4分别代表四种颜色.为了使每个14⨯长方形在任何位置盖住的都一样,我们采用沿对角线染色,如右图.这样,可以发现无论将14⨯长方形放于何处,盖住的必然是1、2、3、4各一个.要不重叠地拼出66⨯,需9个14⨯长方形,则必然盖住1、2、3、4各9个.但实际上图中一共是9个1、10个2、9个3、8个4,因而不可能用9个14⨯长方形拼出66⨯正方形.【答案】不可能【例 20】 能否用9个所示的卡片拼成一个66⨯的棋盘?【考点】游戏与策略 【难度】3星 【题型】解答【解析】 不能.将66⨯的棋盘黑白相间染色(见右图),有18个黑格.而每张卡片盖住的黑格数只能是1或者3,所以每张卡片盖住的黑格数是个奇数,9张卡片盖住的黑格数之和也是奇数,不可能盖住18个黑格.【答案】不可能【巩固】 如右图,缺两格的88⨯方格有62个格,能否用31个图不重复地盖住它且不留空隙?【考点】游戏与策略 【难度】3星 【题型】解答 【解析】 这种覆盖问题是典型的用染色方法解决的问题之一.用来覆盖,则用黑白相间染色,可以发现它无论横放、竖放,必然盖住一白一黑.要不重复不留空白,那总共盖住的黑格数与白格数应该相等.但从染色后整个图来看,黑格30个,白格32个,故不可能将整个图不重不漏地盖住.【答案】不可能【巩固】 用11个和5个能否盖住88⨯的大正方形?。