电机控制基础知识

电机控制基础知识
电机控制基础知识

1 2 3 4 5 6 7

一、BLDC电机控制算法

无刷电机属于自换流型(自我方向转换),因此控制起来更加复杂。

BLDC电机控制要求了解电机进行整流转向的转子位置和机制。

对于闭环速度控制,有两个附加要求,即对于转子速度/或电机电流以及PWM信号进行测量,以控制电机速度功率。

BLDC电机可以根据应用要求采用边排列或中心排列PWM信号。

大多数应用仅要求速度变化操作,将采用6个独立的边排列PWM 信号。

这就提供了最高的分辨率。

如果应用要求服务器定位、能耗制动或动力倒转,推荐使用补充的中心排列PWM信号。

为了感应转子位置,BLDC电机采用霍尔效应传感器来提供绝对定位感应。

这就导致了更多线的使用和更高的成本。

无传感器BLDC控制省去了对于霍尔传感器的需要,而是采用电机的反电动势(电动势)来预测转子位置。

无传感器控制对于像风扇和泵这样的低成本变速应用至关重要。

在采有BLDC电机时,冰箱和空调压缩机也需要无传感器控制。

空载时间的插入和补充

大多数BLDC电机不需要互补的PWM、空载时间插入或空载时间补偿。

可能会要求这些特性的BLDC应用仅为高性能BLDC伺服电动机、正弦波激励式BLDC电机、无刷AC、或PC同步电机。

二、控制算法

许多不同的控制算法都被用以提供对于BLDC电机的控制。

典型地,将功率晶体管用作线性稳压器来控制电机电压。

当驱动高功率电机时,这种方法并不实用。

高功率电机必须采用PWM控制,并要求一个微控制器来提供起动和控制功能。

控制算法必须提供下列三项功能:

用于控制电机速度的PWM电压

用于对电机进整流换向的机制

利用反电动势或霍尔传感器来预测转子位置的方法

脉冲宽度调制仅用于将可变电压应用到电机绕组。

有效电压与PWM占空度成正比。

当得到适当的整流换向时,BLDC的扭矩速度特性与以下直流电机相同。

可以用可变电压来控制电机的速度和可变转矩。

功率晶体管的换向实现了定子中的适当绕组,可根据转子位置生成最佳的转矩。

在一个BLDC电机中,MCU必须知道转子的位置并能够在恰当的

时间进行整流换向。

三、BLDC电机的梯形整流换向

对于直流无刷电机的最简单的方法之一是采用所谓的梯形整流换向。

图1:用于BLDC电机的梯形控制器的简化框图

在这个原理图中,每一次要通过一对电机终端来控制电流,而第三个电机终端总是与电源电子性断开。

嵌入大电机中的三种霍尔器件用于提供数字信号,它们在60度的扇形区内测量转子位置,并在电机控制器上提供这些信息。

由于每次两个绕组上的电流量相等,而第三个绕组上的电流为零,这种方法仅能产生具有六个方向共中之一的电流空间矢量。

随着电机的转向,电机终端的电流在每转60度时,电开关一次(整流换向),因此电流空间矢量总是在90度相移的最接近30度的位置。

因此每个绕组的电流波型为梯形,从零开始到正电流再到零然后再到负电流。

这就产生了电流空间矢量,当它随着转子的旋转在6个不同的方向上进行步升时,它将接近平衡旋转。

在像空调和冰箱这样的电机应用中,采用霍尔传感器并不是一个不变的选择。

在非联绕组中感应的反电动势传感器可以用来取得相同的结果。

这种梯形驱动系统因其控制电路的简易性而非常普通,但是它们

在整流过程中却要遭遇转矩纹波问题。

四、BDLC电机的正弦整流换向

梯形整流换向还不足以为提供平衡、精准的无刷直流电机控制。

这主要是因为在一个三相无刷电机(带有一个正统波反电动势)中所产生的转矩由下列等式来定义:

转轴转矩= Kt [IRSin(o) + ISSin(o+120) +ITSin(o+240)]

其中:

o为转轴的电角度

Kt为电机的转矩常数

IR, IS和IT为相位电流

如果相位电流是正弦的:IR = I0Sino; IS = I0Sin (+120o); IT = I0Sin (+240o)

将得到:转轴转矩= 1.5I0*Kt(一个独立于转轴角度的常数)

正弦整流换向无刷电机控制器努力驱动三个电机绕组,其三路电流随着电机转动而平稳的进行正弦变化。

选择这些电流的相关相位,这样它们将会产生平稳的转子电流空间矢量,方向是与转子正交的方向,并具有不变量。

这就消除了与北形转向相关的转矩纹波和转向脉冲。

为了随着电机的旋转,生成电机电流的平稳的正弦波调制,就要

求对于转子位置有一个精确有测量。

霍尔器件仅提供了对于转子位置的粗略计算,还不足以达到目的要求。

基于这个原因,就要求从编码器或相似器件发出角反馈。

图3:BLDC电机正弦波控制器的简化框图

由于绕组电流必须结合产生一个平稳的常量转子电流空间矢量,而且定子绕组的每个定位相距120度角,因此每个线组的电流必须是正弦的而且相移为120度。

采用编码器中的位置信息来对两个正弦波进行合成,两个间的相移为120度。

然后,将这些信号乘以转矩命令,因此正弦波的振幅与所需要的转矩成正比。

结果,两个正弦波电流命令得到恰当的定相,从而在正交方向产

生转动定子电流空间矢量。

正弦电流命令信号输出一对在两个适当的电机绕组中调制电流的P-I控制器。

第三个转子绕组中的电流是受控绕组电流的负和,因此不能被分别控制。

每个P-I控制器的输出被送到一个PWM调制器,然后送到输出桥和两个电机终端。

应用到第三个电机终端的电压源于应用到前两个线组的信号的负数和,适当用于分别间隔120度的三个正弦电压。

结果,实际输出电流波型精确的跟踪正弦电流命令信号,所得电流空间矢量平稳转动,在量上得以稳定并以所需的方向定位。

一般通过梯形整流转向,不能达到稳定控制的正弦整流转向结果。

然而,由于其在低电机速度下效率很高,在高电机速度下将会分开。

这是由于速度提高,电流回流控制器必须跟踪一个增加频率的正弦信号。

同时,它们必须克服随着速度提高在振幅和频率下增加的电机的反电动势。

由于P-I控制器具有有限增益和频率响应,对于电流控制回路的时

间变量干扰将引起相位滞后和电机电流中的增益误差,速度越高,误差越大。

这将干扰电流空间矢量相对于转子的方向,从而引起与正交方向产生位移。

当产生这种情况时,通过一定量的电流可以产生较小的转矩,因此需要更多的电流来保持转矩。

效率降低。

随着速度的增加,这种降低将会延续。

在某种程度上,电流的相位位移超过90度。

当产生这种情况时,转矩减至为零。

通过正弦的结合,上面这点的速度导致了负转矩,因此也就无法实现。

五、AC电机控制算法

标量控制

标量控制(或V/Hz控制)是一个控制指令电机速度的简单方法

指令电机的稳态模型主要用于获得技术,因此瞬态性能是不可能实现的。

系统不具有电流回路。

为了控制电机,三相电源只有在振幅和频率上变化。

矢量控制或磁场定向控制

在电动机中的转矩随着定子和转子磁场的功能而变化,并且当两个磁场互相正交时达到峰值。

在基于标量的控制中,两个磁场间的角度显著变化。

矢量控制设法在AC电机中再次创造正交关系。

为了控制转矩,各自从产生磁通量中生成电流,以实现DC机器的响应性。

一个AC指令电机的矢量控制与一个单独的励磁DC电机控制相似。

在一个DC电机中,由励磁电流IF所产生的磁场能量ΦF与由电枢电流IA所产生的电枢磁通ΦA正交。

这些磁场都经过去耦并且相互间很稳定。

因此,当电枢电流受控以控制转矩时,磁场能量仍保持不受影响,并实现了更快的瞬态响应。

三相AC电机的磁场定向控制(FOC)包括模仿DC电机的操作。

所有受控变量都通过数学变换,被转换到DC而非AC。

其目标的独立的控制转矩和磁通。

磁场定向控制(FOC)有两种方法:

直接FOC: 转子磁场的方向(Rotor flux angle) 是通过磁通观测器

直接计算得到的

间接FOC: 转子磁场的方向(Rotor flux angle) 是通过对转子速度

和滑差(slip)的估算或测量而间接获得的。

矢量控制要求了解转子磁通的位置,并可以运用终端电流和电压(采用AC感应电机的动态模型)的知识,通过高级算法来计算。

然而从实现的角度看,对于计算资源的需求是至关重要的。

可以采用不同的方式来实现矢量控制算法。

前馈技术、模型估算和自适应控制技术都可用于增强响应和稳定性。

AC电机的矢量控制:深入了解

矢量控制算法的核心是两个重要的转换: Clark转换,Park转换和

它们的逆运算。

采用Clark和Park转换,带来可以控制到转子区域的转子电流。

这种做充许一个转子控制系统决定应供应到转子的电压,以使动态变化负载下的转矩最大化。

Clark转换:Clark数学转换将一个三相系统修改成两个坐标系统:

其中Ia和Ib正交基准面的组成部分,Io是不重要的homoplanar部分

图4:三相转子电流与转动参考系的关系

Park转换:Park数学转换将双向静态系统转换成转动系统矢量

两相α, β帧表示通过Clarke转换进行计算,然后输入到矢量转动模块,它在这里转动角θ,以符合附着于转子能量的d, q帧。

根据上述公式,实现了角度θ的转换。

六、AC电机的磁场定向矢量控制的基本结构

Clarke变换采用三相电流IA, IB 以及IC,这两个在固定座标定子相中的电流被变换成Isd 和Isq,成为Park变换d, q中的元素。

其通过电机通量模型来计算的电流Isd, Isq 以及瞬时流量角θ被用来计算交流感应电机的电动扭矩。

图2:矢量控制交流电机的基本原理

这些导出值与参考值相互比较,并由PI控制器更新。

表1:电动机标量控制和矢量控制的比较:

基于矢量的电机控制的一个固有优势是,可以采用同一原理,选择适合的数学模型去分别控制各种类型的AC, PM-AC 或者BLDC 电机。

七、BLDC电机的矢量控制

BLDC电机是磁场定向矢量控制的主要选择。

采用了FOC的无刷电机可以获得更高的效率,最高效率可以达到95%,并且对电机在高速时也十分有效率。

步进电机控制

步进电机控制通常采用双向驱动电流,其电机步进由按顺序切换绕组来实现。

通常这种步进电机有3个驱动顺序:

1.单相全步进驱动:

在这种模式中,其绕组按如下顺序加电,AB/CD/BA/DC (BA表

示绕组AB的加电是反方向进行的)。

这一顺序被称为单相全步进模式,或者波驱动模式。

在任何一个时间,只有一相加电。

2.双相全步进驱动:

在这种模式中,双相一起加电,因此,转子总是在两个极之间。

此模式被称为双相全步进,这一模式是两极电机的常态驱动顺序,可输出的扭矩最大。

3.半步进模式:

这种模式将单相步进和双相步进结合在一起加电:单相加电,然后双相加电,然后单相加电…,因此,电机以半步进增量运转。

这一模式被称为半步进模式,其电机每个励磁的有效步距角减少了一半,其输出的扭矩也较低。

以上3种模式均可用于反方向转动(逆时针方向),如果顺序相反则不行。

通常,步进电机具有多极,以便减小步距角,但是,绕组的数量和驱动顺序是不变的。

通用DC电机控制算法

通用电机的速度控制,特别是采用2种电路的电机:

现代控制理论在电机中的应用

现代控制理论与电机控制 刘北 070301071 电气工程及其自动化0703班 现代控制理论在电机控制中的具体应用: 自70年代异步电动机矢量变换控制方法提出,至今已获得了迅猛的发展。这种理论的主要思想是将异步电动机模拟成直流机,通过坐标变换的方法,分别控制励磁电流分量与转矩电流分量,从而获得与直流电动机一样良好的动态调速特性。这种控制方法现已较成熟,已经产品化,且产品质量较稳定。因为这种方法采用了坐标变换,所以对控制器的运算速度、处理能力等性能要求较高。近年来,围绕着矢量变换控制的缺陷,如系统结构复杂、非线性和电机参数变化影响系统性能等等问题,国内、外学者进行了大量的研究。伴随着推进矢量控制、直接转矩控制和无传感器控制技术进一步向前发展的是人工智能控制,这是电机现代控制技术的前沿性课题,已取得阶段性的研究成果,并正在逐步实用化。 矢量控制和直接转矩控制技术的一个新的发展方向是直接驱动技术,这种零方式消除了传统机械传动链带来的一系列不良影响,极大地提高了系统的快速响应能力和运动精度。但是,这种机械上的简化,导致了电机控制上的难度。为此,需要电机控制技术的进一步提高和创新。这正是电机现代控制技术有待深入研究和具有广阔开发前景的新领域。 电机的现代控制技术与先进制造装备息息相关,已在为先进制造技术的重要研究领域之一,国内很多学者和科技人员正在从事这方面的研究和开发。 一、三相感应电动机的矢量控制 1、 定、转子磁动势矢量 三相感应电动机是机电能量转换装置,这种的物理基础是电磁间的相互作用或者磁场能量的变化。因此,磁场是机电能量转换的媒介,是非常重要的物理量。为此,对各种电动机都要了解磁场在电动机空间内的分布情况。感应电动机内磁场是由定、转子三相绕组的磁动势产生的,首先要确定电动机内磁动势的分布情况。对定子三相绕组而言,当通以三相电流A i 、B i 、C i 时,分别产生沿着各自绕组轴线脉动的空间磁动势波,取其基波并记为A f 、B f 、C f ,显然它们都是空间矢量。对于分布和短矩绕组,定义正向电流产生的空间磁动势波基波的轴线为该相绕组的轴线,亦即A f 、B f 、C f 是以ABC 为轴线沿圆周正弦分布的空间矢量,各自的幅值是变化的,取决于相电流的瞬时值,即有

电动机基础理论论文

目录 1前言 (3) 1.1电动机技术发展及现状 (3) 2电动机工作原理 (4) 3电动机的运行维护 (6) 3.1电动机启动前的准备 (6) 3.2起动时注意的问题 (7) 3.3电动机运行中的监视 (7) 3.3.1监视电动机的温度 (7) 3.3.2 监视电动机的电流 (8) 3.3.3 监视电动机的电压 (8) 3.4电动机运行中的注意事项 (8) 4 电动机的定期检查和保养 (9) 5 对电动机轴电流的分析及防范 (10) 小结 (12) 参考文献 (13) 致谢 (14)

摘要 近几十年来,随着电力电子技术、微电子技术及现代控制理论的发展,中、小功率电动机在工农业生产及人们的日常生活中都有极其广泛的的应用。特别是乡镇企业及家用电器的迅速,更需要大量的中小功率电动机。由于这种电动机的发展及广泛的应用,它的使用、保养和维护工作也越来越重要。本文主要介绍了电动机技术发展及现状、工作原理、电动机的运行维护。 关键词:技术现状工作原理运行维护

1前言 1.1电动机技术发展及现状 电机是利用电磁感应原理工作的机械。随着生产的发展而发展的,反过来,电机的发展又促进了社会生产力的不断提高。从19世纪末期起,电动机就逐渐代替蒸汽机作为拖动生产机械的原动机,一个多世纪以来,虽然电机的基本结构变化不大,但是电机的类型增加了许多,在运行性能,经济指标等方面也都有了很大的改进和提高,而且随着自动控制系统和计算机技术的发展,在一般旋转电机的理论基础上又发展出许多种类的控制电机,控制电机具有高可靠性﹑好精确度﹑快速响应的特点,已成为电机学科的一个独立分支。 它应用广泛,种类繁多。性能各异,分类方法也很多。电机常用的分类方法主要有两种:一种是按功能用途分,可分为发电机﹑电动机,变压器和控制电机四大类。电动机的功能是将电能转换成机械能,它可以作为拖动各种生产机械的动力,是国民经济各部门应用最多的动力机械,也是最主要的用电设备,各种电动机消耗的电能占全国总发电量的60%~70%。另一种分类方法是按照电机的结构或转速分类,可分为变压器和旋转电机.根据电源电流的不同旋转电机又分为直流电机和交流电机两大类.交流电机又分为同步电机和异步电机。 在现代化工业生产过程中,为了实现各种生产工艺过程,需要各种各样的生产机械。拖动各种生产机械运转,可以采用气动,液压传动和电力拖动。由于电力拖动具有控制简单﹑调节性能好﹑耗损小﹑经济,能实现远距离控制和自动控制等一系列优点,因此大多数生产机械都采用电力拖动。 按照电动机的种类不同,电力拖动系统分为直流电力拖动系统和交流电力拖动系统两大类。 纵观电力拖动的发展过程,交,直流两种拖动方式并存于各个生产领域。在交流电出现以前,直流电力拖动是唯一的一种电力拖动方式,19世纪末期,由于研制出了经济实用的交流电动机,致使交流电力拖动在工业中得到了广泛的应

发电机基础教材知识培训讲义

发电机基础知识 培训讲义
发电机技术处 周华翔 南京汽轮电机(集团)有限责任公司

1. 电机发展的历史 2. 发电机原理 3. 发电机结构 4. 发电机图纸和文件 5. 发电机成套范围

1. 电机发展的历史
在人类的科技发
展史中,对于电现象 和磁现象很早就有认 识了。但对于两者之 间的联系,却直到 183 年 前 才 发 现 。 这 个发现者的名字叫法 拉第,他是一位英国 物理学家。

早在1821年,法拉第发现了载流 导体在磁场中会受到力的作用的现象, 1831年又发现了电磁感应定律,并很 快就出现了原始模型电机。从此电机的 研究和应用迅速发展起来,至今已有 180多年。

z 电机发展的初期主要是直流电机
z 1869年法国电气工程师格拉姆发明了 第一台实用的直流发电机
z 1882年美国发明家爱迪生指挥建造了 第一个用于商业中心的直流照明系
z 1883年塞尔维亚裔美国人特斯拉发明 了第一台两相感应电机
z 1888年俄国电气工程师多利沃-多勃鲁 夫斯基发明了三相感应电机。

? 1912年英国派生斯公司已能生产4极 25MW汽轮发电机。
? 上世纪20年代美国和欧洲一些其他国 家已能生产类似的汽轮发电机,其中德 国西门子公司、匈牙利冈茨厂对发电机 的通风冷却有较多的创新,为后来汽轮 发电机冷却系统的发展奠定了基础。
? 上世纪30年代许多欧美国家可以生产 50~60MW的汽轮发电机。

电机控制入门指南

dsPICDEM? MC1 1.0概述 现在,用户也许手头上拥有了一整套可用来开发自己dsPIC?电机控制应用的设备装置,但却为不知如何将其进行正确连接以使电机运行而烦恼。事实上,有许多技术资料可帮助用户实现上述目标,但用户可将本文档视作使用dsPIC30F运动控制开发硬件实现电机控制的入门指南。 特别指出的是,本文档将对以下内容进行介绍: ?如何设置电机控制硬件、连接电机和使电机运行?何处寻找电机控制文档和电机控制软件例程 1.1所需硬件装置 首先,用户将需要以下硬件装置: ?工具套件随附的dsPICDEM? MC1电机控制开发板(Motor Control Development Board,MCDB)。此控制板为带37引脚连接器的5” x 7” PCB板。 ?供电机控制开发板使用的9伏稳压电源。该电源与Microchip ICD、器件编程器和大多数演示板产品 所使用的9伏电源是相同的。 ?一个dsPICDEM三相(低压或高压)功率模块。?根据应用的实际情况,用户还需要供功率模块使用的电源线或电源。如果使用的是高电压功率模块,用户需使用与所在国家工频交流电源兼容的电源 线。此线缆在其中一端有AC插头而在另一端为剥裂且镀锡的导线。对于低压功率模块,用户则需使用一个可调或固定输出电压的直流电源且其输出电压不应超过功率模块的输入电压限定值。 ?一台可与用户功率模块配套使用的电机。有关电机选择的内容将在本文档后续章节中进行介绍。 ?一只用来将电机和电源连接至功率模块的一字形螺丝刀,该工具包含在用户的工具套件中。1.2文档资源 此文档主要作为用户入门指南,并不包含有关硬件、软件或Microchip开发工具的完整信息。用户在使用本文档时应同时参阅相关相应的用户手册。 用户可从工具套件随附的dsPICDEM?电机控制软件和文档CD-ROM或Microchip网站获得相关硬件用户手册、电机控制示例代码和dsPIC文献。Microchip网站包含最新的信息。 以下文档包含有关dsPICDEM电机控制硬件组件的特定信息: ?dsPICDEM? MC1 Motor Control Development Board User’s Guide(DS70098) ?dsPICDEM? MC1L 3-Phase Low Voltage Power Module User’s Guide(DS70097) ?dsPICDEM? MC1H 3-Phase High Voltage Power Module User’s Guide(DS70096) 以下文档提供有关dsPIC器件的信息: ?dsPIC30F系列参考手册(DS70046D_CN)?dsPIC30F程序员参考手册(DS70157B_CN)?dsPIC30F Data Sheet Motor and Power Conversion Family(DS70082) 注:请参阅本文档的第2.0节“快速入门演示 指导”。 dsPICDEM?电机控制入门指南 2006 Microchip Technology Inc.DS51406A_CN第1页

电机基本控制原理图简介

电机基本控制原理图简介 一、星三角启动原理图简介 L1/L2/L3分别表示三根相线; QS表示空气开关; Fu1表示主回路上的保险; Fu2表示控制回路上的保险; SP表示停止按钮; ST表示启动按钮; KT表示时间继电器的线圈,后缀的数字表示它不同的触点; KMy表示星接触器的线圈,后缀的数字表示它不同的触点; KM△表示三角接触器的线圈,后缀的数字表示它不同的触点; KM表示主接触器的线圈,后缀的数字表示它不同的触点; U1/V1/W1分别表示电动机绕组的三个同名端; U2/V2/W2分别表示电动机绕组的另三个同名端; 为了叙述方便,将图纸整理了一下,添加了触点的编号。整理后的图纸见附图。 合上QS,按下ST,KT、KMy得电动作。 KMY-1闭合,KM得电动作;KMY-2闭合,电动机线圈处于星形接法,KMY-3断开,避免KM△误动作; KM-1闭合,自保启动按钮;kM-2闭合为三角形工作做好准备;kM-3闭合,电动机得电运转,处于星形启动状态。 时间继电器延时到达以后,延时触点KT-1断开,KMy线圈断电,KMY-1断开,KM通过KM-2仍然得电吸合着;KMY-2断开,为电动机线圈处于三角形接法作准备;KMY-3闭合,使KM△得电吸合; KM△-1断开,停止为时间继电器线圈供电;KM△-2断开,确保KMY不能得电误动作:KM△-3闭合是电动机线圈处于三角形运转状态。 电动机的三角形运转状态,必须要按下SP,才能使全部接触器线圈失电跳开,才能停止运转。

接线图:

二、电机直接启动原理图 图l中,三相电源的火线(相线)Ll、L2和L3接在隔离刀开关QS上端。QS的作用是在检修时断开电源.使受检修电路与电源之间有一个明显的断开点,保证检修人员的安全。FU 是一次回路的保护用熔断器。准备启动电动机时,首先合上刀开关QS,之后如果交流接触器KM主触点闭合,则电动机得电运行:接触器主触点断开,电动机停止运行。接触器触点闭合与否.则受二次电路控制。 图2中.FUl和FU2是二次熔断器. SBl是停止按钮.SB2是启动按钮.FH是热继电器的保护输出触点。按下SB2。交流接触器KMl的线圈得电,其主触点闭合,电动机开始运行。同时,接触器的辅助触点KMl-1也闭合。它使接触器线圈获得持续的工作电源,接触器的吸合状态得以保持。习惯上将辅助触点KMl一1称做自保(持)触点。 电动机运行中.若因故出现过流或短路等异常情况,热继电器FH(见图1)内部的双金属片会因电流过大而热变形,在一定时限内使其保护触点FH(见图2)动作断开,致使接触器线圈失电,接触器主触点断开,电动机停止运行,保护电动机不被过电流烧坏。保护动作后,接触器的辅助触点KMl-1断开,电动机保持在停运状态。 电动机运行中如果按下SBl.电动机同样会停止运行,其动作过程与热保护的动作过程相同。 停止指示绿灯HG和运行指示红灯HR分别受接触器的常『利(动断)或常开(动合)辅助触点KMl-2、KMl一3控制,用作信号指示。电流互感器TA的二次线圈串接电流表PA,电压表PV则直接接在电源线上.

电机的基础知识和详细介绍

电机的基础知识和详细介绍 电机 泛指能使机械能转化为电能、电能转化为机械能的一切机器。特指发电机、电能机、电动机。 电机及电机学概念 电机定义:是指依据电磁感应定律实现电能的转换或传递的一种电磁装置。电动机也称电机(俗称马达),在电路中用字母“M”(旧标准用“D”)表示。它的主要作用是产生驱动转矩,作为用电器或各种机械的动力源。 发电机在电路中用字母“G”表示。它的主要作用是利用机械能转化为电能,目前最常用的是,利用热能、水能等推动发电机转子来发电,随着风力发电技术的日趋成熟,风电也慢慢走进我们的生活。 变压器,在有的书上称之为静止的电机。从电机的定义发现,这么说也有它的道理的。 电动机的种类 1.按工作电源分类根据电动机工作电源的不同,可分为直流电动机和交流电动机。其中交流电动机还分为单相电动机和三相电动机。 2.按结构及工作原理分类根据电动机按结构及工作原理的不同,可分为直流电动机,异步电动机和同步电动机。 同步电动机还可分为永磁同步电动机、磁阻同步电动机和磁滞同步电动机。 异步电动机可分为感应电动机和交流换向器电动机。感应电动机又分为三相异步电动机、单相异步电动机和罩极异步电动机等。交流换向器电动机又分为单相串励电动机、交直流两用电动机和推斥电动机。 直流电动机按结构及工作原理可分为无刷直流电动机和有刷直流电动机。有刷直流电动机可分为永磁直流电动机和电磁直流电动机。电磁直流电动机又分为串励直流电动机、并励直流电动机、他励直流电动机和复励直流电动机。永磁直流电动机又分为稀土永磁直流电动机、铁氧体永磁直流电动机和铝镍钴永磁直流电动机。

3.按起动与运行方式分类根据电动机按起动与运行方式不同,可分为电容起动式单相异步电动机、电容运转式单相异步电动机、电容起动运转式单相异步电动机和分相式单相异步电动机。 4.按用途分类可分为驱动用电动机和控制用电动机。 驱动用电动机又分为电动工具(包括钻孔、抛光、磨光、开槽、切割、扩孔等工具)用电动机、家电(包括洗衣机、电风扇、电冰箱、空调器、录音机、录像机、影碟机、吸尘器、照相机、电吹风、电动剃须刀等)用电动机及其它通用小型机械设备(包括各种小型机床、小型机械、医疗器械、电子仪器等)用电动机。 控制用电动机又分为步进电动机和伺服电动机等。 5.按转子的结构分类根据电动机按转子的结构不同,可分为笼型感应电动机(旧标准称为鼠笼型异步电动机)和绕线转子感应电动机(旧标准称为绕线型异步电动机)。 6.按运转速度分类根据电动机按运转速度不同,可分为高速电动机、低速电动机、恒速电动机、调速电动机。 低速电动机又分为齿轮减速电动机、电磁减速电动机、力矩电动机和爪极同步电动机等。 调速电动机除可分为有级恒速电动机、无级恒速电动机、有级变速电动机和无级变速电动机外,还可分为电磁调速电动机、直流调速电动机、PWM变频调速电动机和开关磁阻调速电动机。 异步电动机的转子转速总是略低于旋转磁场的同步转速。 同步电动机的转子转速与负载大小无关而始终保持为同步转速。 一.、直流电动机 直流电动机是依靠直流工作电压运行的电动机,广泛应用于收录机、录像机、影碟机、电动剃须刀、电吹风、电子表、玩具等。 1.电磁式直流电动机电磁式直流电动机由定子磁极、转子(电枢)、换向器(俗称整流子)、电刷、机壳、轴承等构成, 电磁式直流电动机的定子磁极(主磁极)由铁心和励磁绕组构成。根据其励磁(旧标准称为激磁)方式的不同又可分为串励直流电动机、并励直流电动机、

控制电机教学大纲

控制电机课程教学大纲 课程名称:控制电机课程编号:Q90650 英文名称:Controlling-motor 课程属性:选修课 学时:24 学分: 1.5 先修课程:电路、电机原理及拖动 适用专业:自动化专业 一、课程简介 本课程是自动化专业的一门专业课,要求学生掌握各种控制电机的工作原理以及运行特性。控制电机已经成为现代工业自动化系统,现代科学技术和现代军事装备中必不可少的重要元件。学生在学习本课程后,应能理论联系实际,并有助于深刻领会已学过的有关课程内容。为今后的相关工作打下坚实的理论基础。 二、课程内容及学时分配 第一单元:绪论(建议学时数:1学时) 【学习目的和要求】 1.知识掌握:本单元首先从控制电机的国内、外发展概况入手,介绍了控制电机的基本用途和分类,对控制电机的基本要求,控制电机的主要特点。通过本单元学习,应了解控制电机的国内、外发展概况;熟悉控制电机的的基本用途和分类;掌握控制电机的主要特点。 2.能力培养:培养学生理论联系实际,掌握控制电机的主要特点的能力。 3.教学方法:多媒体结合板书讲解,引导式、设问式教学模式。 【重点】 重点掌握控制电机的主要特点。 【难点】 控制电机的主要特点。 第二单元:伺服电动机(建议学时数:4学时) 【学习目的和要求】 1.知识掌握:主要介绍了直流伺服电动机的结构和控制方式,直流伺服电动机的机械特性和调节特性;介绍了交流伺服电动机的磁动势、结构及工作原理、“自转”现象及消除方法、特性及控制方法。通过对本单元学习,应熟悉直流伺

服电动机的结构和控制方式,应掌握其机械特性和调节特性;了解交流伺服电动机的结构,熟悉交流伺服电动机的磁动势及其工作原理,理解“自转”现象的含义及消除方法,掌握其特性及控制方法。 2.能力培养:培养学生利用电磁理论,分析伺服电动机特性的能力。 3.教学方法:多媒体结合板书讲解,引导式、设问式教学模式。 【重点】 直流伺服电动机的机械特性和调节特性;交流伺服电动机的磁动势,“自转”现象及消除方法、特性及控制方法。 【难点】 交流伺服电动机的特性。 第三单元:测速发电机(建议学时数:4学时) 【学习目的和要求】 1.知识掌握:本单元主要介绍了直流测速发电机的基本结构与工作原理、误差和减小误差的方法。介绍了交流测速发电机的结构与工作原理、误差简介。通过对本单元学习,应了解直流测速发电机的基本结构,熟悉其工作原理,掌握其产生误差的原因和减小误差的方法;了解交流测速发电机的结构,熟悉其工作原理,掌握其误差的种类及产生误差的原因。 2.能力培养:培养学生利用电磁理论,分析测速发电机工作原理的能力。 3.教学方法:多媒体结合板书讲解,引导式、设问式教学模式。 【重点】 直流测速发电机的工作原理、误差和减小误差的方法;交流测速发电机的工作原理、误差的种类及产生误差的原因。 【难点】 直流测速发电机减小误差的方法;交流测速发电机产生误差的原因。 第四单元:自整角机(建议学时数:4学时) 【学习目的和要求】 1.知识掌握:本单元主要介绍了自整角机的自整步特性及分类。介绍了自整角机的结构、力矩式自整角机的工作原理。介绍了控制式自整角机的工作原理。通过对本单元学习,应了解自整角机的结构;熟悉自整角机的自整步特性;掌握自整角机的工作原理。 2.能力培养:培养学生利用电磁理论,分析自整角机的工作原理的能力。 3.教学方法:多媒体结合板书讲解,引导式、设问式教学模式。 【重点】 自整角机的自整步特性;自整角机的工作原理。 【难点】 自整角机的工作原理。 第五单元:旋转变压器(建议学时数:3学时) 【学习目的和要求】 1.知识掌握:本单元主要介绍了旋转变压器的基本结构;正、余弦旋转变压器的工作原理;线性旋转变压器的工作原理。通过对本单元学习,应了解旋转变压器的基本结构;熟悉正、余弦旋转变压器及线性旋转变压器的工作原理;掌握正、余弦旋转变压器转子侧和定子侧补偿的工作原理。 2.能力培养:培养学生利用电磁理论,分析正、余弦旋转变压器的工作原理

如何选择伺服电机控制方式

如何选择伺服电机控制方式? 如何选择伺服电机控制方式? 一般伺服电机都有三种控制方式:速度控制方式,转矩控制方式,位置控制方式。 速度控制和转矩控制都是用模拟量来控制的。位置控制是通过发脉冲来控制的。具体采用什么控制方式要根据客户的要求,满足何种运动功能来选择。 如果您对电机的速度、位置都没有要求,只要输出一个恒转矩,当然是用转矩模式。 如果对位置和速度有一定的精度要求,而对实时转矩不是很关心,用转矩模式不太方便,用速度或位置模式比较好。如果上位控制器有比较好的闭环控制功能,用速度控制效果会好一点。如果本身要求不是很高,或者,基本没有实时性的要求,用位置控制方式对上位控制器没有很高的要求。 就伺服驱动器的响应速度来看,转矩模式运算量最小,驱动器对控制信号的响应最快;位置模式运算量最大,驱动器对控制信号的响应最慢。 对运动中的动态性能有比较高的要求时,需要实时对电机进行调整。那么如果控制器本身的运算速度很慢(比如PLC,或低端运动控制器),就用位置方式控制。如果控制器运算速度比较快,可以用速度方式,把位置环从驱动器移到控制器上,减少驱动器的工作量,提高效率(比如大部分中高端运动控制器);如果有更好的上位控制器,还可以用转矩方式控制,把速度环也从驱动器上移开,这一般只是高端专用控制器才能这么干,而且,这时完全不需要使用伺服电机。 换一种说法是: 1、转矩控制:转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小,具体表现为例如10V对应5Nm的话,当外部模拟量设定为5V时电机轴输出为2.5Nm:如果电机轴负载低于2.5Nm时电机正转,外部负载等于2.5Nm时电机不转,大于2.5Nm时电机反转(通常在有重力负载情况下产生)。可以通过即时的改变模拟量的设定来改变设定的力矩大小,也可通过通讯方式改变对应的地址的数值来实现。应用主要在对材质的受力有严格要求的缠绕和放卷的装置中,例如饶线装置或拉光纤设备,转矩的设定要根据缠绕的半径的变化随时更改以确保材质的受力不会随着缠绕半径的变化而改变。 2、位置控制:位置控制模式一般是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。应用领域如数控机床、印刷机械等等。 3、速度模式:通过模拟量的输入或脉冲的频率都可以进行转动速度的控制,在有上位控制装置的外环PID控制时速度模式也可以进行定位,但必须把电机的位置信号或直接负载的位置信号给上位反馈以做运算用。位置模式也支持直接负载外环检测位置信号,此时的电机轴端的编码器只检测电机转速,位置信号就由直接的最终负载端的检测装置来提供了,这样的优点在于可以减少中间传动过程中的误差,增加了整个系统的定位精度。

马达基础理论

微电机常见问题分析 一、 确认马达尺寸(即了解马达型号) 1. A 段尺寸的确定: 3P :A 段尺寸 = 换向器长 + E 段尺寸 + 0.6 5P :A 段尺寸 = 换向器长 + E 段尺寸 + 0.8 为何5P 所留空间为0.8? 因5P 绕线,线堆积较3P 高,会造成以下几点不良: 1. 焊头碰线。 2. 焊压敏电阻时空间小,夹具易将线挤伤。 3. 点焊短路,线堆积过高,点线时传热于线上时将线烧破皮。 2. 制定B 段尺寸的原则: B 段尺寸大,除具有以上三项不良外,还有第四项不良, 即:线高铜介子(它会造成平衡胶碰螺丝的现象) 铁后盖B 段尺寸原则如下: 360H 22片 380H 35片 540H 42片 550H 60片 5512 56片 365H 20片 385H 32片 545H 40片 555H 58片 二、 确定马达的特性因素: 1. 转速(确定转速的因素有:线圈、B 段、碳精、磁石) 线圈(线圈与槽满率有关) 槽满率 = 线截面积 ÷ 转槽的截面积 × 100% 截面积 = n × D 2π ÷ 4 n :线圈圈数, D :漆包线线径, 槽满率高与低对马达特性的影响: 槽满率太高(胖线),不良因素有: 1. 绕线困难(胖线时线拉力过大易断线)。 2. 点焊因难(点焊推动时易破皮)。 3. 平衡作业困难。(加胶难加) 4. 装风叶困难。 5. 高转速马达易飞线。 6. 焊压敏电阻空间小,易将线挤破。 马达尺寸中,变化较多属转子部分,转子主要几个尺寸有:A 段、B 段、E 段、C 段、轴长

槽满率过低的不良因素有: 1. 扭力小(接收磁场小)。 2. 线径小(线径小时 电流密度大 马达易发热 马达烧坏机率大)。 槽满率过低的优点:节约成本 三、 后盖的确定(即:铁盖、胶盖) 铁盖马达电磁屏蔽好 四、 转子线径与圈数的确定: 首先查找与待求马达同电压且转速接近的作为参照物。 如:已知:RS-360SA-13325 12V 测试 RPM :5700 求知:RS-360SA-? 12V 测试 RPM :7500 圈数 = 5700 ÷ 7500 ×325 线径 = 5700 ÷ 7500 × 325 × D 2π÷ 4 = 5700 ÷ 7500 × 325 × 0.132π÷ 4 当试验过程中,转速偏差较大时(如与待求值差2000rpm ), 圈数修改同时线径亦要求修改。(避免槽满率高) 五、 碳精的确定(碳精又名:电刷、碳素、碳刷): 碳精主要成份有铜与石墨。 石墨优点:润滑性好、耐磨、耐温、熔点在3000℃以上 选碳精受约束的因素有: 1.电压 2.寿命 3.声音 4.转速 1. 6V 以下电压:碳精使用70%-----80% 4.8V 以下电压:碳精一般用80% 2V 以下电压:一般用含银碳刷 金属刷一般用于280以上马达及音响马达, 3V 电压或3VRPM10000以下的马达 金属刷的成份有:磷铜、铍铜、贵金属(如:钯、铑、银) 金属刷的优点:导电性好(接触电阻小,则马达压降小) 一般碳刷马达12V 测试时接触电阻其压降为0.6V 而金属刷接触电阻其压降几乎为0 因一般马达有起动电压,再加上压降,所以当2V 测试或1.5V 测试马达用碳刷则不能起动马用铁盖的好处: 1. 耐温(散热快)。 2.芯片多(芯片多----接收磁场大---扭力大)。 3.电磁屏被好(高转速马达一般用铁盖)。 4.强度大。 用铁盖的坏处: 1. 绝缘效果差,如3170装电容时需加绝缘套 管。 2. 成本高

无刷电机控制器基本原理

无刷电机控制器基本原理 电动车采用的电机分有刷电机和无刷电机两种,由于无刷电机具有噪声低、寿命长的特点,因而在电动车中获得比较广泛应用。无刷电机的控制器要比有刷电机控制器复杂得多,在维修上有一定的难度,因此,本文从无刷控制器的原理入手介绍维修要点,以期对广大维修爱好者有所帮助。 基本原理 电动车无刷控制器主要由单片机主控电路、功率管前级驱动电路、电子换向器、霍尔信号检测电路、转把信号电路、欠电检测电路、限流/过流检测电路、刹车信号电路、限速电路、电源电路等部分组成,其原理框图如图1所示,下面介绍主要电路的工作原理。 1. 电子换向器 无刷电机与有刷电机的根本区别就在于无刷电机用电子换向器代替了有刷电机的机械换向器,因而控制方法也就大不相同,复杂程度明显提高。在无刷电机控制器中,用6个功率MOSFET管组成电子换向器,其结构如图2所示。图中MOSFET管VT1、VT4构成无刷电机A相绕组的桥臂,VT3、VT6 构成无刷电机B相绕组的桥臂,VT5、VT2构成无刷电机C相绕组的桥臂,在任何情况,同一桥臂的上下两管不能同时导通,否则要烧坏管子。 6只功率MOSFET管按一定要求顺次导通,就可实现无刷电机A、B、C 三相绕组的轮流通电,完成换相要求,电机正常运转。在电动车无刷电机控制器中,这6只功率管有二二通电方式和三三通电方式的运用,二二通电方式即每一瞬间有两只功率管同时通电,三三通电方式即每一瞬间有三只功率管同时通电。对于二二通电方式,功率管须按VT1、VT2;VT2、VT3;VT3、VT4;VT4、VT5;VT5、VT6;VT6、VT1;VT1、VT2??的通电顺序,电机才能正常运转。对于三三通电方式,功率管须按VT1、VT2、VT3;VT2、VT3、VT4;VT3、VT4、VT5;VT4、VT5、VT6;VT5、VT6、VT1; VT6、VT1、VT2;VT1、VT2 、VT3??的次序通电,电机才能正常运转。

步进电动机控制方法

技能大赛自动线的安装与调试》项目二等奖 心得二 心得二:步进电机的控制方法 我带队参加《2008年全国职业院校技能大赛自动线的安装与调试》项目,我院选手和其他院校的三位选手组成了天津代表队,我院选手所在队获得了《2008年全国职业院校技能大赛自动线的安装与调试》项目二等奖,为天津市代表队争得了荣誉,也为我院争得了荣誉。以下是我这个作为教练参加大赛的心得二:步进电机的控制方法 《2008年全国职业院校技能大赛自动线的安装与调试》项目的主要内容包括如气动控制技术、机械技术(机械传动、机械连接等)、传感器应用技术、PLC控制和组网、步进电机位置控制和变频器技术等。但其中最为重要的就是PLC方面的知识,而PLC中最重要就是组网和步进电机的位置控制。 一、 S7-200 PLC 的脉冲输出功能 1、概述 S7-200 有两个置PTO/PWM 发生器,用以建立高速脉冲串(PTO)或脉宽调节(PWM)信号波形。 当组态一个输出为PTO 操作时,生成一个50%占空比脉冲串用于步进电机或伺服电 机的速度和位置的开环控制。置PTO 功能提供了脉冲串输出,脉冲周期和数量可由用户控制。但应用程序必须通过PLC内置I/O 提供方向和限位控制。 为了简化用户应用程序中位控功能的使用,STEP7--Micro/WIN 提供的位控向导可以帮助您在几分钟内全部完成PWM,PTO 或位控模块的组态。向导可以生成位置指令,用户可以用这些指令在其应用程序中为速度和位置提供动态控制。 2、开环位控用于步进电机或伺服电机的基本信息 借助位控向导组态PTO 输出时,需要用户提供一些基本信息,逐项介绍如下: ⑴最大速度(MAX_SPEED)和启动/停止速度(SS_SPEED) 图1是这2 个概念的示意图。 MAX_SPEED 是允许的操作速度的最大值,它应在电机力矩能力的范围。驱动负载所需的力矩由摩擦力、惯性以及加速/减速时间决定。

(完整版)电动机绕组基础知识简介

第一章电动机绕组基础知识 绕组是电动机进行电磁能量转换与传递,从而实现将电能转化为机械能的关键部件。绕组是电动机最重要的组成部分,又是电动机最容易出现故障的部分,所以在电动机的修理作业中大多属绕组修理。在本章中,主要介绍与电动机绕组有关的若干基础知识。 第一节电动机绕组的类别 电动机绕组按其结构可有多种类别,今将数种较常用的分类简介于下: 一、集中式绕组与分布式绕组 1、集中式绕组 安装在凸形磁极铁心上的绕组,例如直流电动机定子上的主磁极绕组和换向极绕组,是集中式绕组。对于三相电动机而言,如果每相绕组在每个磁极下只占有一个槽,在这种情况下,则也是集中式绕组。 2、分布式绕组 分散布置于铁心槽内的绕组,例如直流电动机的转子绕组以及三相电动机的定子绕组和转子绕组,都是分布式绕组。 二、短距绕组、整距绕组与长距绕组 1、短距绕组 绕组的节距小于极距的绕组,叫做短距绕组。短距绕组广泛应用于直流电动机的转子绕组以及三相交流单速电动机的定子绕组。 2、整距绕组 绕组的节距等于极距的绕组,叫做整距绕组,又称全距绕组或满距绕组。 3、长距绕组 绕组的节距大于极距的绕组,叫做长距绕组。除了在三相交流单绕组多速电动机中会有长距绕组以外,一般情况下,不用长距绕组。 三、单层绕组、双层绕组与单双层绕组 1、单层绕组 在铁心槽内仅嵌一层线圈边的绕组,叫单层绕组。单层绕组在10千瓦以下的小功率三相电动机中应用较多。 2、双层绕组 在铁心槽内嵌有上、下两层线圈边的绕组,叫双层绕组。双层绕组广泛应用于直流电动机以及功率在10千瓦以上的三相电动机。 3、单双层绕组 有少数三相异步电动机,定子铁心的一部分槽中仅嵌入单层线圈边,而在另一部分槽中则嵌有双层线圈边,这种既有单层又有双层的绕组,即单双层绕组。这种绕组是由双层短距绕组演变而来的。 四、整数槽绕组与分数槽绕组 1、整数槽绕组 三相电动机绕组中,每极每相槽数为整数的叫整数槽绕组。 2、分数槽绕组 三相电动机绕组中,每极每相槽数为分数的叫分数槽绕组。分数槽仅用于双层绕组。 五、600 相带、300 相带、和1200 相带绕组 1、600相带绕组 相带为600的绕组称为600相带绕组。通常单速三相电动机都采用600相带绕组. 2、300相带绕组 在嵌有Y和Δ两套绕组,Y-Δ混合连接的三相电动机中,把600相带一分为二,即形成了300相带绕组。 3、1200相带绕组 在单绕组三相多速电动机中,有1200相带绕组

直流电机原理与控制方法

电机简要学习手册 2015-2-3

一、直流电机原理与控制方法 1直流电机简介 直流电机(DM)是指能将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能 (直流发电机)的旋转电机。 它是能实现直流电能和机械 能互相转换的电机。当它作电 动机运行时是直流电动机,将 电能转换为机械能;作发电机 运行时是直流发电机,将机械 能转换为电能。 直流电机由转子(电枢)、定子(励磁绕组或者永磁体)、换向器、电刷等部分构成,以其良好的调速性能以至于在矢量控制出现 以前基本占据了电机控制领域的整座江山。但随着交流电机控制技 术的发展,直流电机的弊端也逐渐显现,在很多领域都逐渐被交流 电机所取代。但如今直流电机仍然占据着不可忽视的地位,广泛用 于对调速要求较高的生产机械上,如轧钢机、电力牵引、挖掘机 械、纺织机械,龙门刨床等等,所以对直流电机的了解和研究仍然 意义重大。

2 直流电动机基本结构与工作原理 2.1 直流电机结构 如下图,是直流电机结构图,电枢绕组通过换向器流过直流电流与定子绕组磁场发生作用,产生转矩。定子按照励磁可分为直励,他励,复励。电枢产生的磁场会叠加在定子磁场上使得气隙主磁通产生一个偏角,称为电枢反应,通常加补偿绕组使磁通畸变得以修正。 2.2 直流电机工作原理 如图所示给两个电刷加上直流电源,如上图(a)所示,则有直流电流从电刷 A 流入,经过线圈abcd,从电刷 B 流出,根据电磁力定律,载流导体ab和cd 收到电磁力的作用,其 方向可由左手定则判 定,两段导体受到的力 形成了一个转矩,使得 转子逆时针转动。如果 转子转到如上图(b)所

发电机基础知识讲解.doc

生产培训教案 培训题目:发电机知识讲解 培训目的:了解发电机及励磁系统基本知识,发电机保护,运行定期检修试验项目。 内容摘要: 1、发电机工作原理。 2、发电机获得励磁电流的几种方式。 3、发电机保护 4、发电机试验: 培训内容: 发电机基本原理: 三相同步发电机由原动机拖动直流励磁的同步发电机转子,以转速n(rpm)旋转,根据电磁应原理,三相定子绕阻便感应交流电势。定子绕阻若接入用电负载,电机就有交流电能输出。发电机是利用电磁感应现象的原理制成的,它是把机械能转化为电能的装置。交流发电机主要由转子和定子两部分组成,另外还有滑环、电刷等。 感应电势E=4.44fNΦ(N:匝数) 频率f=Pn/60 交流发电机的特点:把机械能转化为电能的一种机器。因为它提供的是方向做周期性变化的交流电,故称为交流发电机。 发电机的主要构造是转子(转动部分)和定子(固定部分),滑环

两个,电刷两个。小型发电机的转子是线圈,定子产生磁场,就像教学演示用的模型一样。大型发电机恰好相反。它的线圈是定子,产生磁场是转子。 同步发电机为了实现能量的转换,需要有一个直流磁场而产生这个磁场的直流电流,称为发电机的励磁电流。根据励磁电流的供给方式,凡是从其它电源获得励磁电流的发电机,称为他励发电机,从发电机本身获得励磁电源的,则称为自励发电机。 发电机获得励磁电流的几种方式: 1、直流发电机供电的励磁方式: 这种励磁方式的发电机具有专用的直流发电机,这种专用的直流发电机称为直流励磁机,励磁机一般与发电机同轴,发电机的励磁绕组通过装在大轴上的滑环及固定电刷从励磁机获得直流电流。这种励磁方式具有励磁电流独立,工作比较可靠和减少自用电消耗量等优点,是过去几十年间发电机主要励磁方式,具有较成熟的运行经验。缺点是励磁调节速度较慢,维护工作量大,故在10mw以上的机组中很少采用。 2、交流励磁机供电的励磁方式 现代大容量发电机有的采用交流励磁机提供励磁电流。交流励磁机也装在发电机大轴上,它输出的交流电流经整流后供给发电机转子励磁,此时,发电机的励磁方式属他励磁方式,又由于采用静止的整流装置,故又称为他励静止励磁,交流副励磁机提供励磁电流。交流

戏谈电机及电机控制的基本原理

戏谈电机及电机控制的 基本原理 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

好久都没有认真回答过专业问题了,今天来一发。电磁换能魔法师要布阵了!希望这个回答给所有没学电机的童鞋一个简单的认识,给正在学电机的童鞋一个帮助,给学过电机的以另一个角度。本答案将不含任何公式,从本质上切入问题。所有的电机原理都如下图(纯V i s i o手绘,轻拍):两个灰色的轮子一个是定子,一个是转子。具体哪个做定子,哪个做转子。随意。 所有电机的原理都是这么简单!真的只有这么简单,那就是:转动其中一个轮子,另一个轮子就会跟着转。很熟悉啊有木有,就是初中物理的讲的“异性相吸”啊。可是为什么所有教材讲的都接近于玄幻呢因为——我国教育擅长学而不擅长教……如果能上Youtube 或者看看有几位IEEE电机祖师爷写的教材,你就会发现他们写的书真的就跟连环画似的,好亲民……而目前我还没有看到过任何一本能与之等价的中文读物…… 言归正传,参考上图,磁铁都紧紧的吸在了一起,凭直觉,如果错开任何一个角度,比如下图: 不稳定啊有木有!有一种如果松手肯定会发生什么的感觉啊有木有。不错!这就是力!力就这么产生了!力乘以距离就是力矩,在这里我们就称之为转矩。如果我用手转动外面的壳,里面的轮子如果能动肯定也会跟着转,这样电机就动起来啦~ 重要的事情再重复一遍:所有电机的原理都是这样的!就是这么简单! OK,所有交流电机都是有一个旋转的磁场带动另一个磁场使之旋转~那个旋转的磁场是三相对称电流产生的,这个我想大家都是懂得。如果不懂,那就去看书吧,这一段教材上写的还是蛮形象的。这个发明是意大利的一位物理学家最先提出的,后来被特斯拉发扬光大。接下来的所有例子中,都是外面那个磁铁在转,里面那个轮子跟着动。那么问题来了,从上面的两张图我们能得到一些什么结论呢?

电工基础知识(电工培训教程)

电工基础知识 1.电是什么? 答:有负荷存在和电荷变化的现象。电是一种和重要的能源。 2.什么叫电场? 答:带电体形成的场,能传递带电体之间的相互作用。 3.什么叫电荷? 答:物体或构成物体的质点所带的正电或负电。 4.什么叫电位? 答:单位正电荷在某点具有的能量,叫做该点的电位。 5.:什么叫电压?它的基本单位和常用单位是什么? 答:电路中两点之间的电位差称为电压。它的基本单位是伏特。简称伏,符号v,常用单位千伏(kv),毫伏(mv) 。 6.什么叫电流? 答:电荷在电场力作用下的定向运动叫作电流。 7.什么叫电阻? 它的基本单位和常用单位是什么? 答:电流在导体中流动时,要受到一定的阻力,,这种阻力称之为导体的电阻。 它的基本单位是欧姆,简称欧,符号表示为?,常用的单位还有千欧( k? ),兆欧(m? ) 8.什么是导体?绝缘体和半导体? 答:很容易传导电流的物体称为导体。在常态下几乎不能传导电流的物体称之为绝缘体。导电能力介于导体和绝缘体之间的物体称之为半导体。 9.什么叫电容? 它的基本单位和常用单位是什么? 答:电容器在一定电压下储存电荷能力的大小叫做电容。它的基本单位是法拉,符号为F,常用符号还有微法(MF),微微法拉(PF),1F=106MF=1012MMf(PF) 。 10.什么叫电容器? 答: 储存电荷和电能(电位能)的容器的电路元件。 11.什么是电感? 它的基本单位和常用单位是什么? 答:在通过一定数量变化电流的情况下,线圈产生自感电势的能力,称为线圈的电感量。简称为电感。 它的常用单位为毫利,符号表示为H,常用单位还有毫亨(MH) 。1H=103MH 12.电感有什么作用? 答:电感在直流电路中不起什么作用,对突变负载和交流电路起抗拒电流变化的作用。13.什么是容抗?什么是感抗?什么是电抗?什么是阻抗?他们的基本单位是什么? 答:电容在电路中对交流电所起的阻碍作用称为容抗。 电感在电路中对交流电所起的阻碍作用称为感抗。 电容和电感在电路中对交流电引起的阻碍作用总称为电抗。 电阻, 电容和电感在电路中对交流电引起的阻碍作用阻抗。 他们的基本单位都是欧姆( ? ) 。 14.什么叫电路? 答:电流在电器装置中的通路。电路通常由电源,开关,负载和直接导线四部分组成。 15.什么叫直流电路和交流电路?

电机基础知识

电动机基本知识介绍 1.电机基本概念介绍: 1.1电机的基本运行条件: 1.1.1电机的现场运行条件: 1)除非另有约定或规定,电机应适合于下列现场运行条件,如有偏差则按1.1.2条件进行修正 2)海拔:应不超过1000m 3)最高环境温度:应不超过40℃ 4)最低环境温度:对于任何电机应不低于-15℃,但在下述电机不低于0℃: A)额定输出功率>3300KW(KVA)/1000r/min; B)额定输出功率<0.6KW(KVA) ; C)带换向器; D)带滑动轴承; E)以水作为冷却介质的。 5)对于水冷电机或空水冷却的电机:冷却水温在+5℃~+25℃,特殊情况下最高不超过33℃; 1.1.2电气运行条件: 1)电源:三相50Hz或60Hz交流电机的电压应符合GB156《标准电压》所规定的标称电压。选用电机的额定电压时,应考虑配电系统与用电系统两者电压的差别。对静止变流电源供电的交流电动机,电压、频率和波形的规定均不使用,额定电压应按协议规定。 2)电压和电流的波形和对称性:对用于由交流发电机供电,频率为固定的电源上的交流电动机,供电电压谐波压因数(HVF)应不超过以下0.02。 HVF=(ΣU2n/n)1/2 U N——谐波电压的标么值 N——谐波次数(5、7、11、13)。 三相交流电动机在三相电压系统的电压负序分量不超过正序分量的1%(长期运行),或不超过1.5%(不超过几分钟的短时运行)且零序分量不超过正序分量1%的条件下运行。 即使HVF和负序分量和零序分量的限值在电机额定负载运行时同时发生,也不应导致在电机中产生任何有害的温度。建议其温升或温度允许超过本标准规定限值,但不能超过10K。 3)运行期间电压和频率的变化:对用于由交流发电机供电(无论是地区供电或经电网),且频率为固定的电源上的交流电机,电压和频率的综合变化分为A和B两个区电机应能在区域A内连续运行,并实现规定的基本功能(对电动机应能输出额定转距),但其性能不必与额定电压和频率时的性能完全符合,可能呈现某些差异,温升可较额定电压和频率时高。 电机应能在区域B内运行,并实现其基本功能,但其性能与额定电压和频率时的差异,将大于区域A内运行的电机,温升可较额定电压和频率时高,并很可能高于区域A。不推荐在区域B的边界上持续运行。 A)在实际使用和运行条件下,有时要求电机在区域A的边界之外运行,但应在数值、持续时间及发生频度等方面加以限制。若有可能,应在合理的时间内采取校正措施,例如降低输出,这种措施可以避免应温度影响而缩短电机的寿命。 B)本标准规定的温升或温度限值仅使用于定额运行点。当运行点逐步偏离定额点时,

相关文档
最新文档