直升机飞行原理

合集下载

直升飞机飞行原理

直升飞机飞行原理

直升飞机飞行原理直升机是一种垂直起降的飞行器,它可以在空中悬停、向前、向后、向左、向右飞行,还可以进行定点停留、低高度飞行、复杂地形涂毒、运输货物等,是一种非常灵活多变的飞行器。

那么,直升机是如何实现这种“绕不过去”的飞行方式的呢?下面,我们来了解一下直升机的飞行原理。

一、空气动力学基础不论是飞机还是直升机,它们都要靠空气动力学来实现飞行。

空气动力学是研究空气对物体的作用的学科。

在空气中,物体移动时,空气会对其产生阻力、升力和推力等作用。

在直升机的飞行中,最主要的就是升力了。

升力是空气对直升机产生的向上的支持力,使其能够腾空而起。

而产生升力的关键,则是由于在直升机的旋转叶片上产生了一个向下的气流,这个气流将气体压缩,使其速度加快,压力降低,形成低压区。

而直升机上方的空气则形成高压区,从而产生了升力。

二、基本构造1.机身部分:直升机的主体部分,其中装置有驾驶室、乘客和货物舱、发动机等。

2.旋翼部分:直升机最重要的部分,由主旋翼和尾旋翼组成。

3.主旋翼:是直升机上的最重要的部分,主要产生升力和推进力。

它是一组大型的可旋转叶片,可以轮流地在上下、左右和前后方向调整。

4.尾旋翼:又称为方向舵,主要负责平衡和转向直升机。

5.起落架:支撑直升机在地面或者水面上的装置。

三、飞行原理我们知道,飞机在飞行中通过翼面产生升力和推力来维持飞行。

而直升机则是通过旋翼来产生升力和推力,从而可以实现垂直起降和各种方向的移动。

正常飞行时,主旋翼的旋转速度越快,升力就越大。

主旋翼在旋转时还产生了空气流,对于尾旋翼而言,这种空气流就相当于一束强劲的风,从而也可以产生升力和推力,平衡直升机并控制飞行方向。

直升机的旋翼不仅可以产生升力和推力,还可以调整飞行方向。

当主旋翼向右旋转时,直升机就会向左飞行,反之亦然。

而尾旋翼则可以扭转调整直升机的飞行方向。

在直升机的飞行过程中,由于旋翼旋转的高速气流形成较大的后向力,所以需要加装平衡重量使其平衡。

直升机的升降与飞行原理

直升机的升降与飞行原理

直升机的升降与飞行原理直升机是一种通过主旋翼产生升力并控制飞行方向和高度的特殊飞行器。

它具有垂直起降的能力,且具有较高的机动性和灵活性,可以在狭小的空间中起降,飞越各种复杂地形。

直升机的升降原理是通过主旋翼产生升力。

主旋翼是直升机的关键部件,由数根长而薄的旋翼桨叶组成,固定在旋翼桨毂上,通过发动机的动力带动旋转。

当旋翼快速旋转时,它会产生天线的空气动力学性能,形成向上的升力,将直升机抬起。

主旋翼产生升力的原因是空气的剪切力。

当旋翼运动时,上方的旋翼桨叶相对于下方的叶片的速度更快,所以在上方形成了低气压,而下方则形成了高气压。

这种气压差会随着旋翼旋转而扩大,形成一个向上的剪切力,从而产生升力。

旋翼桨叶的斜度和扭转角度可以调整,以控制升力的大小和方向。

直升机的飞行原理是通过改变主旋翼的控制角度和旋翼的旋转速度来调整飞行方向和高度。

控制角度的调整通过副翼、升降舵和尾翼实现,这些部件可以改变旋翼叶片的攻角和迎角,从而调整升力的大小和方向,使直升机可以向前飞行、后退、左右偏转、上升或下降。

直升机的操纵比较复杂,需要飞行员具备专业的技能和经验。

飞行员通过操纵棒和脚蹬来控制直升机的飞行,以保持平衡和稳定。

悬挂在机身尾部的尾旋翼则用来抵消主旋翼产生的扭矩,防止直升机自转。

直升机的飞行原理也有一些特殊的现象和特点。

例如,当直升机在低速飞行时,空气的动力学特性会发生变化,导致其操纵性和稳定性降低,称为蜗牛效应。

为了克服这个问题,直升机通常会搭配使用尾推力装置或使用复合材料制造旋翼桨叶,以提高飞行性能和安全性。

在飞行过程中,直升机还需要注意气流的影响,例如涡流、气流湍流等。

这些气流会对直升机的稳定性和操控性产生影响,飞行员需要及时调整飞行姿态和操纵。

另外,直升机还需要注意与其他飞机和物体的安全距离,避免发生碰撞事故。

总之,直升机的升降与飞行原理是通过主旋翼产生升力和调整旋翼角度来控制飞行方向和高度。

直升机的飞行是一项复杂的任务,需要飞行员具备专业的技能和经验,同时还需要注意气流和其他飞行物体的影响,以确保飞行的安全和稳定。

直升机反回旋飞行原理

直升机反回旋飞行原理

直升机反回旋飞行原理一、引言直升机是一种垂直起降的飞行器,它通过旋转的主旋翼产生升力,从而实现飞行。

然而,在直升机飞行过程中,存在一个很重要的问题,即回旋现象。

回旋是指直升机在飞行中产生的旋转力矩,使其身体产生旋转。

为了解决这个问题,直升机需要采取一系列措施来抵消回旋力矩,从而保持稳定的飞行姿态。

本文将深入探讨直升机反回旋飞行的原理。

二、直升机回旋力矩的来源直升机回旋力矩的产生主要源于两个方面:旋转主旋翼产生的反作用力和尾桨的作用。

2.1 旋转主旋翼产生的反作用力当直升机的主旋翼旋转时,它产生的升力反作用力会使直升机产生一个相反的力矩,即回旋力矩。

这是由牛顿第三定律所决定的,即作用力与反作用力大小相等、方向相反。

为了抵消这个回旋力矩,直升机需要采取一些措施。

2.2 尾桨的作用为了抵消旋转主旋翼产生的回旋力矩,直升机通常会配备一个尾桨。

尾桨的作用是通过产生一个与主旋翼反方向旋转的推力,来抵消回旋力矩。

尾桨的旋转由一个尾桨传动系统驱动,它可以通过调整尾桨叶片的角度和旋转速度来达到准确的抵消效果。

三、直升机反回旋飞行的原理为了实现直升机的反回旋飞行,需要采取一系列的技术手段来控制和平衡飞行姿态。

3.1 主旋翼与尾桨的配合直升机的主旋翼和尾桨需要良好的配合才能实现反回旋飞行。

主旋翼产生的升力和回旋力矩需要通过尾桨来抵消,而尾桨的控制需要通过飞行员的操作来实现。

飞行员通过操纵飞行控制杆和脚蹬,调整主旋翼和尾桨的角度和旋转速度,从而实现反回旋飞行。

3.2 尾桨传动系统的设计尾桨传动系统是直升机反回旋飞行的关键部分。

它通过传动装置将动力源传递给尾桨,从而产生推力。

尾桨传动系统需要具备高效、可靠的特点,以确保尾桨能够准确地抵消主旋翼产生的回旋力矩。

同时,传动系统的设计也需要考虑减小能量损耗和噪音产生,提高整个系统的效率。

3.3 飞行控制系统的作用飞行控制系统是直升机反回旋飞行的核心。

它通过传感器和计算机控制系统来感知和分析直升机的飞行状态,并根据需要进行调整和控制。

无人机飞行原理—无人直升机飞行原理

无人机飞行原理—无人直升机飞行原理
三、无人直升机飞行原理
4.操纵性
1、操纵方式
直升机的操纵都是通过主旋翼及尾桨来实现的,由于直升机的纵向移动与俯仰转动、横侧移动与滚转是 不能独立分开的,因此直升机的操纵主要有以下4种方式:
(1)垂直运动操纵。通过总距杆改变旋翼桨叶角而改变旋翼拉力,操纵直升机升降改变升力的大小来 实现。
(2)纵向运动操纵。通过改变旋翼纵向倾斜角而改变拉力方向,产生附加纵向力来操纵直升机前进或 后退。
(3)横侧运动操纵,通过改变旋翼横向倾斜角而改变拉力方向,产生附加横侧力来实现。 (4)航向运动操纵,通过改变尾桨拉力大小,改变尾桨桨距而改变尾桨拉力来保证原定航向或进行左 右转弯。
三、无人直升机飞行原理
4.操纵性
2、操纵方法
直升机的操纵系统,是指传递操纵指令、进行总操纵、变距操纵和航向操纵的操纵机构和操纵线路。 1)总距操纵 总距操纵,是通过操纵自动倾斜器调节变距铰,使各片桨叶的安装角同时增大或减小,进而使主旋翼的 总桨距改变,从向改变旋翼拉力F的大小。当拉力F大于直升机重力G时,直开机就上升,反之,直升机则 下降。
直升机在垂直飞行状态(轴流状态)时,每片桨叶受到的作用力,除桨叶自身重力外,还有桨叶的拉力 和惯性离心力。由于旋翼周向气流是对称的,每片桨叶在旋转一周中,拉力和惯性离心力不变,所以,桨 叶在各个方向上扬起的角度均相同,主旋翼上的拉力如图。
三、无人直升机飞行原理源自3.稳定性稳定性,是直升机的一种运动属性,通常指直升机保持固有运动状态或抵制外界扰动的能力。 直升机的静稳定性是指平衡状态被破坏瞬间的直升机运动趋势,包括3种形式:静稳定的、静不稳定的和 中性稳定的。 影响直升机稳定性的影响因素很多,主要有如下两点: (1)飞行速度。在低速前飞时平尾提供静不稳定力矩,但随着前飞速度增加,当旋翼尾流不影响到平尾 时,平尾能改善直升机的速度稳定性;同时在较大速度下,平尾也能改善直升机的迎角稳定性。 (2)重心位置。直升机重心对迎角稳定性有明显的影响,后重心时的迎角不稳定性要比正常重心时严重, 这是由于旋翼拉力增量对重心产生的力矩是不稳定的抬头力矩。为了使旋冀对迎角的不稳定程度不是太严 重,要严格限制直升机的后重心。

直升机和飞机的原理

直升机和飞机的原理

直升机和飞机的原理直升机和飞机是现代航空领域中常见的飞行器,它们在飞行原理和工作原理上存在一些不同。

我们来了解一下直升机的原理。

直升机是一种能够垂直起降和悬停在空中的飞行器。

它的主要特点是具有旋翼,通过旋转旋翼产生升力来维持飞行。

直升机的旋翼由多个桨叶组成,通过发动机提供的动力使其旋转。

旋翼的旋转产生了气流,通过改变桨叶的角度来控制气流的方向和大小,从而实现飞行器的悬停、上升、下降、前进、后退、左移、右移等动作。

直升机的升力产生原理是由旋翼上方的气流产生的。

当旋翼旋转时,桨叶的前缘受到空气的冲击,产生升力。

同时,由于桨叶的扭转和变化的空气流动,也会产生一定的侧向力和推力。

通过调整桨叶的角度和旋转速度,直升机可以实现在空中的各种动作。

与直升机相比,飞机的飞行原理则有所不同。

飞机是一种能够在大气中飞行的飞行器,其主要特点是具有机翼和发动机。

飞机的机翼通过产生升力来维持飞行,而发动机则提供了飞行所需的动力。

飞机的机翼通过空气动力学原理产生升力。

当飞机飞行时,机翼上的气流会产生上升的力量,使飞机能够克服重力并保持在空中飞行。

机翼的形状、面积和攻角等因素都会影响升力的大小。

通过调整发动机的推力和飞机的姿态,飞机可以实现前进、上升、下降等动作。

与直升机不同的是,飞机的飞行速度通常较快,而且无法垂直起降或悬停在空中。

飞机需要一定的起飞距离和降落距离,并且通常需要在专门的机场或跑道上进行起降操作。

总结来说,直升机和飞机虽然都是飞行器,但其飞行原理和工作原理存在一些区别。

直升机通过旋转的旋翼产生升力,能够垂直起降和悬停在空中;而飞机则通过机翼产生升力并依靠发动机提供的推力来维持飞行,速度较快但无法垂直起降。

这些不同的原理使得直升机和飞机在不同的领域和任务中发挥着重要的作用。

直升机与普通飞机区别及飞行简单原理

直升机与普通飞机区别及飞行简单原理

直升机与普通飞机区别及飞行简单原理:不可否认,直升机和飞机有些共同点。

比如,都是飞行在大气层中,都重于空气,都是利用空气动力的飞行器,但直升机有诸多独有特性。

(1)直升机飞行原理和结构与飞机不同飞机靠它的固定机翼产生升力,而直升机是靠它头上的桨叶(螺旋桨)旋转产生升力。

(2)直升机的结构和飞机不同,主要由旋翼、机身、发动机、起落装置和操纵机构等部分组成。

根据螺旋桨个数,分为单旋翼式、双旋翼式和多旋翼式。

(3)单旋翼式直升机尾部还装有尾翼,其主要作用:抗扭,用以平衡单旋翼产生的反作用力矩和控制直升机的转弯。

(4)直升机最显眼的地方是头上窄长的大刀式的旋翼,一般由2~5片桨叶组成一副,由1~2台发动机带动,其主要作用:通过高速的旋转对大气施加向下的巨大的力,然后利用大气的反作用力(相当与直升飞机受到大气向上的力)使飞机能够平稳的悬在空中。

三、平衡分析(对单旋翼式):(1)直升飞机的大螺旋桨旋转产生升力平衡重力。

直升飞机的桨叶大概有2—3米长,一般有5叶组成。

普通飞机是靠翅膀产生升力起飞的,而直升飞机是靠螺旋桨转动,拨动空气产生升力的。

直升飞机起飞时,螺旋桨越转越快,产生的升力也越来越大,当升力比飞机的重量还大时,飞机就起飞了。

在飞行中飞行员调节高度时,就只要通过改变大螺旋桨旋转的速度就可以了。

(2)直升飞机的横向稳定。

因为直升飞机如果只有大螺旋桨旋,那么根据动量守衡,机身就也会旋转,因此直升飞机就必须要一个能够阻止机身旋转的装置。

而飞机尾部侧面的小型螺旋桨就是起到这个作用,飞机的左转、右转或保持稳定航向都是靠它来完成的。

同时为了不使尾桨碰到旋翼,就必须把直升飞机的机身加长,所以,直升飞机有一个像蜻蜓式的长尾巴。

四、能量方式分析。

根据能量守恒定律可知:能量既不会消失,也不会无中生有,它只能从一种形式转化成为另一种形式。

在低速流动的空气中,参与转换的能量只有压力能和动能。

一定质量的空气具有一定的压力,能推动物体做功;压力越大,压力能也越大;流动的空气具有动能,流速越大,动能也越大。

直升飞机的原理是什么

直升飞机的原理是什么

直升飞机的原理是什么
直升飞机的原理是基于空气动力学的原理。

直升飞机通过旋转的直升旋翼产生向下的气流,这个气流以高速喷出,产生反作用力从而使飞机升空。

直升旋翼通常由两层或更多的旋翼叶片组成,这些叶片在旋转过程中力求保持相等的升力,通过倾斜变距方式进行操纵,从而实现悬停、垂直起降和向前或向后飞行的能力。

此外,直升飞机通常还配备了尾旋翼,通过控制尾旋翼的旋转速度来抵消旋转作用力,在飞行过程中保持平衡。

用户在操作直升飞机时,通过控制旋翼叶片角度和旋转速度来控制飞机的高度、方向和速度。

直升机的原理及分类【优质PPT】

直升机的原理及分类【优质PPT】

2021/11/7
7
双旋翼式
目前以纵列式的使用较多,即两 个旋翼沿机身长度方向排列,它的重 心移动范围大、机身长,可以把直升 机做得很大,共轴式的紧凑,但操纵 复杂,在小型直升机上有较多的使用。
2021/11/7
8
卡-50双桨共轴武装直升机
2021/11/7
9
2021/11/7
10
纵列式双桨直升机
2021/11/7
4
单旋翼带尾桨式
单旋翼带尾桨式是目前最流行的 形式。这种直升机顶部有一个大的旋 翼,机身后伸出一个尾梁,在尾梁上 装一个尾部旋桨(简称尾桨),尾桨的作 用是平衡由于旋翼旋转而产生的使机 身逆向旋转的扭矩。
2021/11/7
5
直-5
2021/11/7
6
双旋翼式
双旋翼的直升机有多种形式,有 两个旋翼共轴的,有两个旋翼交叉的, 有两个旋翼横列的和两个旋翼纵列的。 它们的共同点是有两个旋翼,两个旋 翼的旋转方向相反,从而使旋翼的反 作用力矩相互抵消保持机身不动。
1、旋翼受力(水平铰)
旋翼的桨叶在运动中产生拉力(向上)其原理和机 翼相同,都是因空气流过翼面产生升力,但是它的运 动是绕轴旋转的,旋翼在旋转一圈时在迎风的半圈 (称为前行)和顺风半圈(后行)中桨叶的相对风速是不 同的,即迎风一半大,而顺风时小,因而会造成升力 不平衡,即前行桨叶升力大,这会使直升机倾斜,并 使桨叶根部产生交变弯矩,使桨叶加速损坏。为了解 决这个问题,桨叶和桨毂之间用一个水平铰链或是柔 性的连接起来,使桨叶可在旋翼平面上、下摆动,这 样由于铰链不传递垂直方向的力,从而使两边升力平 衡,这个铰链称为水平铰或挥舞铰。
2021/11/7
28
§4.7 直升机
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直升机与旋翼机的飞行原理直升机的飞行原理1. 概况与普通飞机相比,直升机不仅在外形上,而且在飞行原理上都有所不同。

一般来讲它没有固定的机翼和尾翼,主要靠旋翼来产生气动力。

这里所说的气动力既包括使机体悬停和举升的升力,也包括使机体向前后左右各个方向运动的驱动力。

直升机旋翼的桨叶剖面由翼型构成,叶片平面形状细长,相当于一个大展弦比的梯形机翼,当它以一定迎角和速度相对于空气运动时,就产生了气动力。

桨叶片的数量随着直升机的起飞重量而有所不同。

重型直升机的起飞重量在20t 以上,桨叶的数目通常为六片左右;而轻、小型直升机,起飞重量在1.5t 以下,一般只有两片桨叶。

直升机飞行的特点是:(1) 它能垂直起降,对起降场地要求较低;(2) 能够在空中悬停。

即使直升机的发动机空中停车时,驾驶员可通过操纵旋翼使其自转,仍可产生一定升力,减缓下降趋势;(3) 可以沿任意方向飞行,但飞行速度较低,航程相对来说也较短。

2. 直升机旋翼的工作原理直升机旋翼绕旋翼转轴旋转时,每个叶片的工作类同于一个机翼。

旋翼的截面形状是一个翼型,如图2.5.1所示。

翼型弦线与垂直于桨毂旋转轴平面(称为桨毂 旋转平面)之间的夹角称为桨叶的安装角,以ϕ表示,有时简称安装角或桨距。

各片桨叶的桨距的平均值称为旋翼的总距。

驾驶员通过直升机的操纵系统可以改变旋翼的总距和各片桨叶的桨距,根据不同的飞行状态,总距的变化范围约为2º~14º。

气流V 与翼弦之间的夹角即为该剖面的迎角α。

显然,沿半径方向每段叶片上产生的空气动力在桨轴方向上的分量将提供悬停时需要的升力;在旋转平面上的分量产生的阻力将由发动机所提供的功率来克服。

旋翼旋转时将产生一个反作用力矩,使直升机机身向旋翼旋转的反方向旋转。

前面提到过,为了克服飞行力矩,产生了多种不同的结构形式,如单桨式、共轴式、横列式、纵列式、多桨式等。

对于最常见的单桨式,需要靠尾桨旋转产生的拉力来平衡反作用力矩,维持机头的方向。

使用脚蹬来调节尾桨的桨距,使尾桨拉力变大或变小,从而改变平衡力矩的大小,实现直升机机头转向(转弯)操纵。

桨毂旋转面 桨毂旋转轴线前缘后缘bϕαV 图2.5.1 直升机的旋翼 (a)(b)3. 直升机旋翼的操纵直升机的飞行控制与飞机的飞行控制不同,直升机的飞行控制是通过直升机旋翼的倾斜实现的。

直升机的控制可分为垂直控制、方向控制、横向控制和纵向控制等,而控制的方式都是通过旋翼实现的,具体来说就是通过旋翼桨毂朝相应的方向倾斜,从而产生该方向上的升力的水平分量达到控制飞行方向的目的。

直升机体放在地面时,旋翼受其本身重力作用而下垂。

发动机开车后,旋翼开始旋转,桨叶向上抬,直观地看,形成一个倒立的锥体,称为旋翼锥体,同时在桨叶上产生向上的升力。

随着旋翼转速的增加,升力逐渐增大。

当升力超过重力时,直升机即铅垂上升(图2.5.2);若升力与重力平衡,则悬停于空中;若升力小于重力,则向下降落。

旋转旋翼桨叶所产生的拉力和需要克服阻力产生的阻力力矩的大小,不仅取决于旋翼的转速,而且取决于桨叶的桨距。

从原理上讲,调节转速和桨距都可以调节拉力的大小。

但是旋翼转速取决于发动机(通常用的是涡轮轴发动机或活塞式发动机)主轴转速;而发动机转速有一个最有利的值,在这个转速附近工作时,发动机效率高,寿命长。

因此,拉力的改变主要靠调节桨叶桨距来实现。

但是,桨距变化将引起阻力力矩变化,所以,在调节桨距的同时还要调节发动机油门,保持转速尽量靠近最有利转速工作。

直升机的平飞依靠升力倾斜所产生的水平分量来实现。

例如,欲向前飞,需将驾驶杆向前推,经过操纵系统,自动倾斜器使旋翼各桨叶的桨距作周期性变化,从而改变旋翼的拉力方向,使旋翼锥体前倾,产生向前的拉力(图),将直升机拉向前进。

直升机的方向是靠尾桨控制的。

欲使直升机改变方向,则需踩脚蹬,改变尾桨的桨距,使尾桨拉力变大或变小,从而改变平衡力矩的大小,实现机头指向的操纵。

图2.5.2 直升机的飞行通过与操纵系统的连接,旋翼叶片的桨距调节变化可以按两种方式进行。

第一种方式是各叶片同时增大或减小桨距(简称总距操纵,驾驶员通过总距操纵杆来操纵控制),从而产生直升机起飞、悬停、垂直上升或下降飞行所需要的拉力。

第二种方式是周期性调节各个叶片的桨距(简称周期性桨距操纵)。

比如打算前飞,就将驾驶杆向前推,推动旋转斜盘(也称自动斜倾器)倾斜,使各个叶片的桨距作周期变化。

每个叶片转到前进方向时,它的桨距减小,产生的拉力也跟着下降,该桨叶向上挥舞的高度也减小;反之,当叶片转到后方时,它的桨距增大,产生的拉力也跟着增加,该桨叶向上挥舞的高度也增大。

结果,各个叶片梢(叶端)运动轨迹构成的叶端轨迹平面或旋翼锥体,将向飞行前进方向倾斜,旋翼产生的总拉力也跟着向前倾斜,旋翼总拉力的一个分量就成为向前飞行的拉力,从而实现了向前飞行。

图2.5.3 旋翼操纵机构图2.5.4 周期变距图解2.5.2 直升机的构型变化直升机旋翼的旋转产生了升力的同时,空气对旋翼的反作用也形成了一个与旋翼旋转方向相反的作用力矩,驱使直升机的机体反向旋转,这就是所谓的直升机力矩及力矩平衡问题。

较早致力于力矩和力矩平衡方面研究的是德国人贝纳恩(B.R.Beenal)和阿赫班奇(Achenbach)。

他们两人分别于1897年和1874年提出安装一个尾桨来平衡直升机旋翼产生的反向力矩的方案。

通过安装尾桨,可产生一个平衡力矩,以抵消旋翼力矩,保证直升机的平衡飞行。

实际上这就是后期发展成熟的单桨式直升机的萌芽。

此后,许多直升机事业的先驱者都试图研究并解决飞行力矩问题,运用两个或更多的旋翼来克服飞行力矩,其原理是使这些旋翼以相反的方向旋转,使各自的飞行力矩彼此抵消保证平衡。

探索的结果导致了直升机几种不同的结构形式:单桨式、共轴式、横列式、纵列式、多桨式等的问世。

单桨式成为后来实用直升机的主要形式。

这种形式最早出现于1874年,是阿赫班奇设计的。

这架水蒸气机驱动的直升机包含一个举力旋翼和一个推进式螺旋桨,一个方向舵和一个尾桨。

这是用尾桨平衡直升机力矩的第一架直升机。

共轴式结构是在同一个轴上安装两个旋转方向相反的旋翼,这样两旋翼所产生的力矩就彼此抵消了。

早期直升机多采用这种结构形式,其最早的设计是布莱特于1859年作出的。

由于动力的缘故,这架直升机没有进行过试验。

早期取得一定成功的共轴式直升机是美国人埃米尔·贝林纳(E.Beliner)于1909年设计的。

他的直升机安装了两台发动机,与共轴的旋翼相连。

旋翼采用坚硬的木质桨叶,通过倾斜整个族翼及部分机身来达到控制。

这架直升机成功地飞行了三次。

图2.5.5 直升机的构型(a) 单旋翼直升机(b) 共轴双旋翼直升机(c) 纵列双旋翼直升机(d) 横列双旋翼直升机纵列式结构是通过沿身体前后排列的两个旋向相反的旋翼,来克服直升机的力矩的。

1907年,法国人泡特·科努(P.Comu)制造了一个外形结构与纵列式结构非常相似的直升机,并成功地进行了—它行试验,但这种结构在早期发展的直升机中较多采用,主要原因是机身长,重心变化范围大,稳定性差。

横列式结构是通过沿机体横向左右排列的两个旋转方向相反的旋翼来克服直升机力矩的。

这种结构的直升机最早出现在1908年与1909年间,是由美国人贝林纳设计制造的。

它将两个旋翼并排安装在机翼两端,通过倾斜整个旋翼及部分机身实现飞行控制。

同样,这种结构形式后来也较少采用。

多桨式结构一般用于大型直升机上,它运用三个或更多的旋翼。

在早期的研究中,这种型式运用较多。

法国的孔萨斯于1845年设计的直升机就是这种直升机最早的代表。

它以蒸气机为动力,有一个主旋翼和两个分别用于控制和推进的副旋翼。

由于这种结构形式比较复杂,所以后来没有得到采用。

2.5.3 旋翼机的飞行原理从外形看,旋翼机和直升机几乎一模一样:机身上方安装有大直径的旋翼,在飞行中靠旋翼的旋转产生升力。

但是除去这些表面上的一致性,旋翼机和直升机却是两种完全不同的飞行器。

旋翼机实际上是一种介于直升机和飞机之间的飞行器,它除去旋翼外,还带有推进螺旋桨以提供前进的动力,有时也装有较小的机翼在飞行中提供部分升力。

旋翼机的旋翼不与发动机传动系统相连,在旋翼机飞行的过程中,由前方气流吹动旋翼旋转产生升力,是被动旋转;而直升机的旋翼与发动机传动系统相连,既能产生升力,又能提供飞行的动力,是主动旋转。

在飞行中,旋翼机同直升机最明显的分别为:直升机的旋翼面向前倾斜,而旋翼机的旋翼则是向后倾斜的。

由于旋翼机的旋翼为自转式,传递到机身上的扭矩很小,因此旋翼机无需单旋翼直升机那样的尾桨,但是一般装有尾翼,以控制飞行。

有的旋翼机在起飞时,旋翼也可通过“离合器”同发动机连接,靠发动机带动旋转而产生升力,这样可以缩短起飞滑跑距离。

等升空后再松开离合器随旋翼在空中自由旋转。

旋翼机飞行时,升力主要由旋翼产生,固定机翼仅提供部分升力。

有的旋翼机甚至没有固定机翼,全部升力都靠旋翼产生。

旋翼机的飞行原理和构造特点决定了它的速度慢、升限低、机动性能较差,但它也有着一些优点:(1)安全性较好;(2)振动和噪音小;(3)抗风能力较强。

由于旋翼机的旋翼旋转的动力是由飞行器前进而获得,如果发动机在空中停车,旋翼机仍会靠惯性继续维持前飞,并逐渐减低速度和高度,高度下降的同时,自下而上的相对气流可以为维持旋翼的自转,从而提供升力。

这样,旋翼机便可凭飞行员的操纵安全地滑翔降落。

即使在飞行员不能操纵,旋翼机失去控制的特殊情况下,也可以较慢速度降落,因而是比较安全性的。

当然,直升机也是具备自转下降安全着陆能力的。

但它的旋翼需要从有动力状态过渡到自转状态,这个过渡要损失一定高度。

如果飞行高度不够,那么直升机就可能来不及过渡而触地。

旋翼机本身就是在自转状态下飞行的,不需要进行过渡,所以也就没有这种安全转换所需的高度约束。

由于旋翼机的旋翼是没有动力的,因此它没有由于动力驱动旋翼系统带来的较大的振动和噪音,也就不会因这种振动和噪音而使旋翼、机体等的使用寿命缩短或增加乘员的疲劳。

旋翼机动力驱动螺旋桨对结构和乘员所造成的影响显然比直升机动力驱动旋翼要小得多。

另外,旋翼机还有一个很可贵的特点,就是它的着陆滑跑距离大大短于起飞滑跑距离,甚至可以不需滑跑,就地着陆。

旋翼机的抗风能力较高,而且在起飞时,风有利于旋翼的起动和加速旋转,可以缩短起飞滑跑的距离,当达到足够大的风速时,一般的旋翼机也可以垂直起飞。

一般来说,旋翼机的抗风能力强于同量级的固定翼飞机,而大体与直升机的抗风能力相当,甚至“在湍流和大风中的飞行能力超出直升机的使用极限”。

旋翼机可分为两类,一类是需要滑跑起飞的,这种比较简单,大多数旋翼机属于这一类。

另一类是可垂直起飞的,其起飞方法有三种:一种是带动力驱动它的旋翼;第二种是用预转旋翼并使其达到正常飞行转速的一定倍数,然后突然脱开离合器,同时使旋翼奖叶变距而得到较大的升力跳跃起飞;第三种则是由旋翼翼尖小火箭驱动旋翼旋转而提供升力来实现垂直起飞,这种垂直起飞的过程,一般是由自动程序控制来完成的。

相关文档
最新文档