河北省石家庄市2019年中考数学总复习第四章三角形第三节全等三角形同步训练

合集下载

河北省石家庄市2019年中考数学总复习 第四章 三角形 第三节 全等三角形同步训练

河北省石家庄市2019年中考数学总复习 第四章 三角形 第三节 全等三角形同步训练

第三节全等三角形姓名:________ 班级:________ 限时:______分钟1.(2018·成都)如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是( )A.∠A=∠D B.∠ACB=∠DBCC.AC=DB D.AB=DC2.(2018·临沂)如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则DE的长是( )A.32B.2 C.2 2 D.103.(2019·原创)如图,△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF的度数是( )A.75° B.70° C.65° D.60°4.(2018·南京)如图,AB⊥CD,且AB=CD,E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF =c,则AD的长为( )A.a+c B.b+c C.a-b+c D.a+b-c5.(2018·济宁)在△ABC中,点E、F分别是边AB、AC的中点,点D在BC边上,连接DE、DF、EF,请你添加一个条件________,使△BED与△FED全等.6.(2018·保定一模)已知:如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点E在BC 边上.(1)求证:△ACD≌△ABE;(2)若∠CDE=60°,求∠AEB的度数.7.(2018·陕西)如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交于点G、H.若AB=CD,求证:AG=DH.8.(2017·恩施州)如图,△ABC、△CDE均为等边三角形,连接BD、AE交于点O,BC与AE交于点P.求证:∠AOB=60°.9.(2018·镇江)如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC.(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC=________°.10.(2019·原创)如图,已知等腰三角形ABC中,AB=AC,点D、E分别在边AB、AC上,且AD=AE,连接BE、CD交于点F.(1)求证:∠ABE=∠ACD;(2)求证:过点A、F的直线垂直平分线段BC.1.(2019·原创)如图,∠ACB=90°,AC=BC,∠DCE=45°,若AD=3,BE=4,则BC的长是( )A.5 B.5 2C.6 2 D.72.(2018·保定二模)如图,菱形ABCD中,∠ABC=60°.将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F.(1)求证:△ABE≌△ACF;(2)判断△AEF是哪一种特殊三角形,并说明理由.3.(2018·石家庄长安区模拟)如图①,在等边△ABC和等边△ADP中,AB=2,点P在△ABC的高CE上(点P与点C不重合),点D在点P的左侧,连接BD,ED.(1)求证:BD=CP;(2)当点P与点E重合时,延长CE交BD于点F,请你在图②中作出图形,并求出BF的长.4.(2018·滨州)已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点.(1)如图①,若点E、F分别为AB、AC上的点,且DE⊥DF,求证:BE=AF;(2)若点E、F分别为AB、CA延长线上的点,且DE⊥DF,那么BE=AF吗?请利用图②说明理由.参考答案【基础训练】1.C 2.B 3.C 4.D5.BD=EF答案不唯一,如BD=CD或DF∥AB或DE∥AC或∠BED=∠EDF等.6.(1)证明:∵∠BAC=∠DAE=90°,∴∠BAC-∠CAE=∠DAE-∠CAE,即∠DAC=∠EAB.⎩⎪AC =AB ∴△ACD≌△ABE(S A S ).(2)解:在Rt △ADE 中,AD =AE ,∠DAE=90°, ∴∠ADE=∠AED=45°.∵△ACD≌△ABE,∴∠ADC=∠AEB,∴∠AEB=∠ADE+∠CDE=45°+60°=105°. 7.证明:∵AB∥CD,∴∠A=∠D. 又∵CE∥BF,∴∠AHB=∠DGC. 在△ABH 和△DCG 中,⎩⎪⎨⎪⎧∠A=∠D ∠AHB=∠DGC AB =CD ,∴△ABH≌△DCG.∴AH=DG. 又∵AH=AG +GH ,DG =DH +GH , ∴AG=HD.8.证明:∵△ABC,△CDE 均为等边三角形, ∴∠ACB=∠ECD=60°, ∴∠ACE=∠BCD.在△ACE 与△BCD 中,⎩⎪⎨⎪⎧AC =BC ∠ACE=∠BCD CE =CD ,∴△ACE≌△BCD(S A S ), ∴∠CAE=∠CBD.∵∠AOB+∠CBD+∠BPO=180°, ∠BCA+∠CAE+∠APC=180°, 且∠BPO=∠APC, ∴∠AOB=∠BCA=60°. 9.(1)证明:∵AB=AC , ∴∠B=∠ACF.⎩⎪BE=CF∴△ABE≌△ACF.(2)75.10.证明:(1)∵AB=AC,∠BAE=∠CAD,AE=AD,∴△ABE≌△ACD(S A S),∴∠ABE=∠ACD.(2)∵AB=AC,∴∠ABC=∠ACB.由(1)可知∠ABE=∠ACD,∴∠FBC=∠FCB,∴FB=FC.又∵AB=AC,∴点A,F均在线段BC的垂直平分线上,即过点A,F的直线垂直平分线段BC.【拔高训练】1.C2.(1)证明:∵四边形ABCD是菱形,∴AB=BC=CD=AD,∵∠B=60°,∴△ABC是等边三角形,∴∠ACB=60°,AC=AB,同理△ACD是等边三角形,∴∠ACD=60°.∵∠BAC=∠EAF=60°,∴∠BAE=∠CAF,∴△BAE≌△CAF.(2)解:△AEF是等边三角形,理由如下:∵△BAE≌△CAF,∴AE=AF,∵∠EAF=60°,∴△AEF是等边三角形.3.(1)证明:∵△ABC是等边三角形,∴AB=AC,∠BAC=60°.∵△ADP 是等边三角形, ∴AD=AP ,∠PAD=60°,∴∠DAB+∠PAB=60°=∠PAC+∠PAB, ∴∠DAB=∠PAC,∴△DAB≌△PAC. ∴BD=CP.(2)解:作图如解图所示. ∵△ADP 是等边三角形,∴当点P 与点E 重合时,有AE =DE ,∠AED=60°. ∵CE⊥AB,∴AE=BE =DE ,∠BCE=12∠ACB=30°.∴∠EBD=30°,∴∠DBC=90°. 在Rt △BCF 中,∵BC=2,tan ∠BCE=BFBC ,吧∴BF=2tan 30°=233.4.(1)证明:连接AD ,如解图①所示. ∵∠BAC=90°,AB =AC ,∴△ABC 为等腰直角三角形, 图① ∠EBD=45°. ∵点D 为BC 的中点, ∴AD=12BC =BD ,∠FAD=45°.∵∠BDE+∠EDA=90°,∠EDA+∠ADF=90°, ∴∠BDE=∠ADF.在△BDE 和△ADF 中,⎩⎪⎨⎪⎧∠EBD=∠FAD BD =AD ∠BDE=∠ADF ,∴△BDE≌△ADF(A S A),∴BE=AF. (2)解:BE =AF ,理由如下: 连接AD ,如解图②所示. ∵∠ABD=∠BAD=45°, ∴∠EBD=∠FAD=135°. 图②∵∠EDB+∠BDF=90°,∠BDF+∠FDA=90°, ∴∠EDB=∠FDA. 在△EDB 和△FDA 中, ⎩⎪⎨⎪⎧∠EBD=∠FAD BD =AD∠EDB=∠FDA, ∴△EDB≌△FDA(A S A), ∴BE=AF.。

中考数学专题复习 第4章 三角形 第13讲(全等)三角形及其性质

中考数学专题复习 第4章 三角形 第13讲(全等)三角形及其性质

第13讲(全等)三角形及其性质☞【基础知识归纳】☜☞归纳1. 三角形中的三条主要线段⑴三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做角平分线⑵在三角形中,连接一个顶点和它对边的中点的线段叫做中线⑶从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高(简称高)☞归纳2.三角形的中位线三角形的中位线平行于第三边,并且等于第三边的一半.☞归纳3.三角形的三边关系定理及推论三角形三边关系:任意两边之和大于第三边;任意两边之差小于第三边.☞归纳4.三角形的内角和定理及推论⑴三角形内角和:三角形三内角之和等于 180°.⑵三角形外角的性质:①三角形的一个外角大于任何一个和它不相邻的内角;②三角形的一个外角等于与它不相邻的两内角之和.☞归纳5.三角形的分类①按边分:三角形分为不等边三角形和等腰三角形②按角分:三角形分为锐角三角形,直角三角形,钝角三角形 .☞归纳6.全等三角形⑴能够完全重合的两个图形就是全等图形;能够完全重合的两个三角形就是全等三角形⑵全等三角形的对应边相等,对应角相等.⑶全等三角形的对应线段(对应边上的中线、对应边上的高、对应角的平分线)相等⑷全等三角形的周长相等,面积相等☞归纳7.三角形全等的判定定理:①边边边定理:(可简写成 SSS )②边角边定理:(可简写成 SAS )③角边角定理:(可简写成 ASA )④角角边定理:(可简写成 AAS )⑤直角三角形全等的判定:(斜边、直角边定理)(可简写成 HL )☞【常考题型剖析】☜☺题型一、三角形的边和角【例1】(2016岳阳)下列长度的三根小木棒能构成三角形的是()A. 2cm,3cm,5cmB. 7cm,4cm,2cmC. 3cm,4cm,8cmD. 3cm,3cm,4cm【答案】D【分析】选项A,因为2+3=5,所以不能构成三角形,错误;选项B,因为2+4<6,所以不能构成三角形,错误;选项C,因为3+4<8,所以不能构成三角形,错误;选项D,因为3+3>4,所以能构成三角形,正确.【例2】(2015滨州) 在△ABC中,∠A:∠B:∠C=3: 4: 5,则∠C等于()A. 45°B. 60°C. 75°D. 90°【答案】C【分析】三角形的内角和是180°,因为∠A:∠B:∠C=3: 4: 5,所以∠C=180°512= 75°【举一反三】1. ( 2016河池) 下列长度的三条线段不能组成三角形的是()A. 5,5,10B. 4,5,6C. 4,4,4D. 3,4,5 【答案】A【分析】选项A,因为5+5=10,所以不能构成三角形,错误;选项B,因为4+5>6,所以能构成三角形,正确;选项C,因为4+4>4,所以能构成三角形,正确;选项D,因为3+4>5,所以能构成三角形,正确.2. ( 2016邵阳) 如图,点D是△ABC的边AC上一点(不含端点),AD=BD,则下列结论正确的是()A. AC>BCB. AC=BCC. ∠A>∠ABCD. ∠A=∠ABC 【答案】A【分析】∵AD=BD,∴∠A=∠ABD,∴∠ABC>∠A,所以C选项和D选项错误;∴AC>BC,所以A选项正确;B选项错误.3. (2015柳州) 如图,图中∠1的大小等于()A. 40° B . 50° C . 60° D . 70° 【答案】D【分析】三角形的一个外角 等于 与它不相邻的两内角之和.所以∠1=130°-60°=70°4. (2016盐城) 若a 、b 、c 为△ABC 的三边长,且满足40a -=, 则c 的值可以为( )A. 5B. 6C. 7D. 8 【答案】A【分析】∵40a -=,∴a ﹣4=0,a =4;b ﹣2=0,b =2;则4﹣2<c <4+2,2<c <6,只有A 选项5符合条件;5. (2016白银) 三角形的两边长分别是3和4,第三边长是方程213400x x -+=的根, 则该三角形的周长为 . 【答案】12【分析】解方程213400x x -+=的根分别是125,8x x ==,因为三角形的两边长分别是3和4,根据三角形三边关系:任意两边之和 大于 第三边;任意两边之差 小于 第三边.所以三角形的第三边为5,所以三角形的周长=3+4+5=126. (2015盐城) 如图,点D 、E 、F 分别是△ABC 各边的中点,连接DE 、EF 、DF , 若△ABC 的周长为10,则△DEF 的周长为 .【答案】20☺题型二、全等三角形的性质和判定【例3】(2016永州) 如图1,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()图1 图2A. ∠B=∠CB. AD=AEC. BD=CED. BE=CD【答案】D【分析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.【解答】解:∵AB=AC,∠A为公共角,A、如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD;B、如添AD=AE,利用SAS即可证明△ABE≌△ACD;C、如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≌△ACD;D、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件.【例4】(2016成都) 如图2,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=.【答案】120°【分析】根据全等三角形的性质求出∠C的度数,根据三角形内角和定理计算即可.【解答】∵△ABC≌△A′B′C′,∴∠C=∠C′=24°,∴∠B=180°﹣∠A﹣∠B=120°,【举一反三】7. (2016新疆) 如图,在△ABC 和△DEF 中,∠B=∠DEF ,AB=DE ,添加下列一个条件后, 仍然不能证明△ABC ≌△DEF ,这个条件是( )A. ∠A=∠DB. BC=EFC. ∠ACB=∠FD. AC=DF 【答案】D【分析】解:∵∠B=∠DEF ,AB=DEA 、如果添加∠A=∠D ,利用ASA 即可证明△ABC ≌△DEF ;B 、如果添加BC=EF ,利用SAS 即可证明△ABC ≌△DEF ; C 、如果添加∠ACB=∠F ,利用AAS 即可证明△ABC ≌△DEF ;D 、如添AC=DF ,因为SSA ,不能证明△ABC ≌△DEF ,所以此选项不能作为添加的条件.8. (2016昆明) 如图,点D 是AB 上一点,DF 交AC 于点E ,DE=FE ,FC∥AB 求证:AE=CE .【分析】根据平行线的性质得出∠A=∠ECF ,∠ADE=∠CFE ,再根据全等三角形的判定定理AAS, 得出△ADE ≌△CFE ,证明:∵FC ∥AB ,∴∠A=∠ECF ,∠ADE=∠CFE , 在△ADE 和△CFE 中,DAE FCE ADE CFE DE FE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ADE ≌△CFE (AAS ), ∴AE=CE .9. (2016重庆) 如图,在△ABC 和△CED 中,AB∥CD,AB=CE ,AC=CD .求证:∠B=∠E.【分析】根据两直线平行,内错角相等,可得∠BAC=∠ECD ,再利用“边角边”证明△ABC 和△CED 全等.证明:∵AB ∥CD , ∴∠BAC=∠ECD , 在△ABC 和△CED 中,AB CE BAC ECD AC CD =⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△CED (SAS ), ∴∠B=∠E .☞【巩固提升自我】☜1.(2016湘西州)一个等腰三角形一边长为4cm ,另一边长为5cm ,那么这个等腰三角形的周长是( )A. 13cmB. 14cmC. 13cm 或14cmD. 以上都不对 【答案】C2.(2016河南)如图,在△ABC 中,∠ACB=90°,AC=8,AB=10. DE 垂直平分AC 交AB于点E ,则DE 的长为( ) A. 6B. 5C. 4D. 3图2 图3【答案】D3.(2016济宁)如图,△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别为D 、E ,AD 、CE 交于 点H ,请你添加一个适当的条件:____________________,使△AEH ≌△CEB . 【答案】AH=CB 或EH=EB 或AE=CE4.(2015广州)已知2是关于x 的方程2230x mx m -+=的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为()A. 10B. 14C. 10或14D. 8或10【答案】B5.(2015佛山)如图,在△ABC中,点D、E、F分别是三条边上的点,EF∥AC,DF∥AB,∠B=45°,∠C=60°.则∠EFD=()A. 80°B. 75°C. 70°D. 65°【答案】B解:∵EF∥AC,∴∠EFB=∠C=60°,∵DF∥AB,∴∠DFC=∠B=45°,∴∠EFD=180°﹣60°﹣45°=75°6.(2014广东)一个等腰三角形的两边长分别是3和7,则它的周长为()A. 17B. 15C. 13D. 13或17【答案】A解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.7.(2016武汉)如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.证明:因为BE=CF所以BC=EF,又因为AB=DE,AC=DF,所以△ABC≌△DEF(SSS),则∠B=∠DEF,∴AB∥DE。

河北省2019届中考数学系统复习 第四单元 图形的初步认识与三角形 方法技巧训练(一)与角平分线

河北省2019届中考数学系统复习 第四单元 图形的初步认识与三角形 方法技巧训练(一)与角平分线

方法技巧训练(一) 与角平分线有关的基本模型方法指导1三角形中角平分线的夹角的计算 类型1 两个内角平分线的夹角如图1,在△ABC 中,∠ABC ,∠ACB 的平分线BE ,CF 相交于点G ,则∠BGC =90°+12∠A.图1 图2图3解题通法:三角形两内角的平分线的夹角等于90°与第三个内角的一半的和. 类型2 一个内角平分线和一个外角平分线的夹角如图2,在△ABC 中,BP 平分∠ABC ,CP 平分∠ACB 的外角,BP 与CP 相交于点P ,则∠P =12∠A.解题通法:三角形一内角与另一外角的平分线的夹角等于第三个内角的一半. 类型3 两外角平分线的夹角如图3,在△ABC 中,BO ,CO 是△ABC 的外角平分线,则∠O =90°-12∠A.解题通法:三角形两外角的平分线的夹角等于90°与第三个内角的一半的差.K1.如图,在△ABC 中,∠A =40°,点D 是∠ABC 和∠ACB 的平分线的交点,则∠BDC =110°.【变式1】如图,若点D 是∠ABC 的平分线与∠ACB 外角平分线的交点,则∠D =20°.【变式2】如图,若点D 是∠ABC 外角平分线与∠ACB 外角平分线的交点,则∠D =70°.【变式3】如图,BA 1和CA 1分别是△ABC 的内角平分线和外角平分线,BA 2是∠A 1BD 的平分线,CA 2是∠A 1CD 的平分线,BA 3是∠A 2BD 的平分线,CA 3是∠A 2CD 的平分线.若∠A 1=α,则∠A 2 019=α22 018.方法指导2与角平分线有关的图形与辅助线1.角平分线+平行线→等腰三角形如图4,BD是∠ABC的平分线,点O是BD上一点,OE∥BC交AB于点E,则△BOE是等腰三角形.解题通法:遇到角平分线及平行线,除了可以得到角度的关系,还可以得到一个等腰三角形.图4 图5 图6 图72.与角平分线有关的辅助线①过角平分线上的点作角两边的垂线如图5,BO是∠ABC的平分线,过点O作OE⊥AB于点E,过点O作OF⊥BC于点F,则OE=OF,△BEO≌△BFO.②角平分线的两端过角的顶点取相等的两条线段构造全等三角形如图6,BO是∠ABC的平分线,在BA,BC上取线段BE=BF,则△BEO≌△BFO.解题通法:遇到角平分线时,我们通常过角平分线上的一点向两边作垂线或在角平分线的两端取相等的线段构造全等三角形.③过角平分线上一点作角平分线的垂线,从而得到等腰三角形.如图7,BD是∠ABC的平分线,点E是BD上一点,过点E作BD的垂线,则△BGH是等腰三角形且BD垂直平分GH.2.如图,在△ABC中,AB=10 cm,AC=8 cm,∠ABC和∠ACB的平分线交于点O,过点O作BC的平行线MN交AB于点M,交AC于点N,则△AMN的周长为(D)A.10 cm B.28 cm C.20 cm D.18 cm3.如图,矩形ABCD中,AB=4 cm,BC=8 cm,如果将该矩形沿对角线BD折叠,那么图中阴影部分的面积(B)A.8 cm2B.10 cm2C.15 cm2D.20 cm24.(2018·大庆)如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=(B) A.30°B.35°C.45°D.60°5.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=10,BC=15,MN=3,则AC的长是16.提示:延长BN交AC于点E.因为AN平分∠BAC,BN⊥AN,可证△ABN≌△AEN,则AN是△ABE的中线,即点N 平分BE,所以MN是△BEC的中位线.6.如图,在△ABC中,∠A=60°,BD,CE分别平分∠ABC和∠ACB,BD,CE相交于点O,试说明BE,CD,BC的数量关系,并加以说明.解:BC =BE +CD.理由如下:在BC 上取点G ,使得CG =CD ,连接OG.∵∠BOC =180°-12(∠ABC +∠ACB)=180°-12×(180°-60°)=120°,∴∠BOE =∠COD =60°.∵BD ,CE 分别平分∠ABC 和∠ACB , ∴∠EBO =∠GBO ,∠OCG =∠OCD. 在△COD 和△COG 中,⎩⎪⎨⎪⎧CO =CO ,∠DCO =∠GCO ,CD =CG ,∴△COD ≌△COG(SAS).∴∠COG =∠COD =60°.∴∠BOG =120°-60°=60°=∠BOE. 在△BOE 和△BOG 中,⎩⎪⎨⎪⎧∠BOE =∠BOG ,BO =BO ,∠EBO =∠GBO ,∴△BOE ≌△BOG(ASA).∴BE =BG.∴BE +CD =BG +CG =BC.7.感知:如图1,AD 平分∠BAC.∠B +∠C =180°,∠B =90°,易知:DB =DC.探究:如图2,AD 平分∠BAC ,∠ABD +∠ACD =180°,∠ABD <90°,求证:DB =DC.应用:如图3,在四边形ABCD 中,∠B =45°,∠C =135°,DB =DC =a ,则AB -AC 用含a 的代数式表示).图1 图2图3证明:过点D 作DE ⊥AB 于点E ,DF ⊥AC 交AC 的延长线于点F. ∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,∴DE =DF.∵∠B +∠ACD =180°,∠ACD +∠FCD =180°,∴∠B =∠FCD. 在△DFC 和△DEB 中,⎩⎪⎨⎪⎧∠F =∠DEB ,∠FCD =∠B ,DF =DE ,∴△DFC ≌△DEB(AAS).∴DC =DB.。

最新人教版数学中考复习试卷——第四章《三角形》综合测试卷

最新人教版数学中考复习试卷——第四章《三角形》综合测试卷

返回目录
(2)解:∵AD⊥DB,∠A=30°,∴∠DBE=60°. ∵BD平分∠ABC, ∴∠DBC=∠DBE=60°. 在Rt△BCD中,∠DBC=60°,DC= ∴DB=2. ∵DE=BE,且∠DBE=60°,∴△BDE是等边三角形. ∴DE=DB=2. ∵DE∥BC,∴∠EDC=180°-∠BCD=90°. 则在Rt△EDC中,EC=
返回目录
16. 如图S4-12,△ABC是等边三角形,AB=6,AD是BC边上的中 线,点E在边AC上,且∠EDA=30°,则直线ED与AB的位置关系是 __平__行____,ED的长为___3_____.
返回目录
17. 如图S4-13,在△ABC中,BC的垂直平分线EF交∠ABC的平分 线BD于点E,连接CE.如果∠BAC=60°,∠ACE=24°,那么 ∠BCE=___3_2_°___.
活页测试卷
第四章《三角形》综合测试卷
一、选择题(本大题10小题,每小题3分,共30分)
1. 若一个正多边形的一个内角是135°,则这个正多边形的边
数是( C )
A. 10
B. 9
C. 8
D. 6
返回目录
2. 如图S4-1,下列说法不正确的是( B ) A. ∠2与∠C是内错角 B. ∠2与∠B是同位角 C. ∠1与∠B是同位角 D. ∠EAC与∠B是同位角
返回目录
23. 如图S4-19,在四边形ABCD中,∠BCD=90°,AD⊥DB,点E为 AB的中点,DE∥BC. (1)求证:BD平分∠ABC; (2)连接EC,若∠A=30°, DC= 求EC的长.
返回目录
(1)证明:∵AD⊥DB,点E为AB的中点, ∴DE=BE.∴∠DBE=∠BDE. ∵DE∥BC,∴∠BDE=∠DBC. ∴∠DBE=∠DBC. ∴BD平分∠ABC.

2023年中考数学总复习第四章《三角形》综合测试卷及答案

2023年中考数学总复习第四章《三角形》综合测试卷及答案

2023年中考数学总复习第四章《三角形》综合测试卷一、选择题(每小题3分,共36分)1.将一副三角尺按如图所示的方式摆放,则∠α的大小为()A.85°B.75°C.65°D.60°(第1题图)(第2题图)2.如图,平行线AB,CD 被直线EF 所截,过点B 作BG⊥EF 于点G,已知∠1=50°,则∠B=()A.20°B.30°C.40°D.50°3.如图,太阳光线与水平线成70°角,窗子高AB=2米,要在窗子外面上方0.2米的点D 处安装水平遮阳板DC,使光线不能直接射入室内,则遮阳板DC 的长度至少是()A.米B.2sin70°米C.米D. 2.2cos70°米(第3题图)(第5题图)4.在Rt△ABC 中,∠C=90°,若斜边AB 是直角边BC 的3倍,则tanB 的值是()A.B.3C.D.5.如图,每个小方格的边长为1,A,B 两点都在小方格的顶点上,点C 也是图中小方格的顶点,并且△ABC 是等腰三角形,那么点C 的个数为()A.1B.2C.3D.46.已知三角形三边长分别为2,x,13,若x 为正整数,则这样的三角形个数为()A.2B.3C.5D.137.如图,在Rt△ABC 中,∠ACB=90°,CD 为AB 边上的高,CE 为AB 边上的中线,AD=2,CE=5,则CD=()A.2B.3C.4D.(第7题图)(第8题图)8.如图,在Rt△ABC 中,∠BAC=90°,∠ABC 的平分线BD 交AC 于点D,DE 是BC 的垂直平分线,点E 是垂足.已知DC=5,AD=2,则图中长为的线段有()A.4条B.3条C.2条D.1条9.如图,在△ABC 外任取一点O,连接AO,BO,CO,并取它们的中点D,E,F,连接DE,EF,DF,得△DEF,则下列说法错误的是()A.△ABC 与△DEF 是位似图形B.△ABC 与△DEF 是相似图形C.△ABC 与△DEF 的周长比为1∶2D.△ABC 与△DEF 的面积比为4∶1(第9题图)(第10题图)10.如图,在数轴上有A,B,C,D 四个整数点(即各点均表示整数),且2AB=BC=3CD,若A,D 两点表示的数分别为-5和6,且AC 的中点为E,BD 的中点为M,BC 之间距点B 的距离为BC 的点为N,则该数轴的原点为()A.点EB.点FC.点MD.点N 11.如图,将宽为1cm 的纸条沿BC 折叠,使∠CAB=45°,则折叠后重叠部分的面积为()(第11题图)(第12题图)12.如图,在△ABC 中,∠ABC=∠C,将△ABC 绕点B。

中考数学第四章 三角形 重难 微专项3 全等三角形中常用的辅助线技巧

中考数学第四章 三角形 重难 微专项3  全等三角形中常用的辅助线技巧
∵AD平分∠BAC,∴∠1=∠2.
= ,
在△ACD和△AED中,ቐ ∠1 = ∠2,
= ,
∴△ACD≌△AED,
∴∠AED=∠C=90°,CD=ED.
重难·微专项3 全等三角形中常用的辅助线技巧
例题
又AC=BC,∴∠B=45°,∴∠EDB=∠B=45°,
∴DE=BE,∴CD=BE.
∴∠DBE=60°,
1
∴BD= BE,
2
∴TF=2BD,即BF-AB=2BD.
重难·微专项3 全等三角形中常用的辅助线技巧
突破点2 旋转
运用旋转的全等变换,可以把分散的条件集中到一个三角形中.
模型1
绕定点旋转60°,构造全等三角形
如图,△ABC为等边三角形,点P在△ABC内,将△ABP绕点A逆时针旋转
明剩下的线段等于另一条短线段.
补短法:延长短线段,使其延长部分等于另一条短线段,然后证明延长
后的线段等于长线段(或延长短线段,使延长后的线段等于长线段,然
后证明延长部分等于另一条短线段).
重难·微专项3 全等三角形中常用的辅助线技巧
例题
例1
如图,在Rt△ABC中,∠C=90°,BC=AC,AD平分∠BAC交BC于点D.
60°,得到△ACP',则△ABP≌△ACP',且△APP'为等边三角形.
重难·微专项3 全等三角形中常用的辅助线技巧
例题
例2
如图,在四边形ABCD中,AB=BC,∠ABC=60°,∠ADC=30°,则线段
AD,CD和BD之间的数量关系为 AD2+CD2=BD2 .
重难·微专项3 全等三角形中常用的辅助线技巧
∵BA=BT,∠ABT=60°,

2019年中考数学专题复习资料--全等三角形含答案(共11页).docx

全等三角形1已知:AB=4, AC=2, D 是BC 中点,AD 是整数,求AD3 已知:Z1=Z2, CD=DE, EF//AB,求证:EF=AC4 已知:AD 平分ZBAC, AC=AB+BD,求证:ZB=2ZC5 已知:AC 平分ZBAD, CE 丄AB, ZB+ZD=180° ,求证:AE=AD+BEZC=ZD, F 是 CD 中点,求证:Z1=Z22 已知:BC=DE, ZB=ZE,6如图,四边形ABCD中,AB〃DC, BE、CE分别平分ZABC、ZBCD,且点E在AD上。

求证:BC=AB+DC。

7 已知:AB=CD, ZA=ZD,求证:ZB=ZC&P 是ZBAC 平分线AD 上一点,AC>AB,求证:PC-PB<AC-AB9 已知,E 是AB 中点,AF=BD, BD=5, AC=7,求DC13已知:如BD1AC ,分别为D、E, BD、CE相交于点F。

求证:BE=CD. 图,AB=AC, CEXAB,垂足10.如图,已知AD/7BC, ZPAB的平分线与ZCBA的平分线相交于E, CE的连线交AP于D.求证:AD+BC=AB. 11如图,AABC中,AD是ZCAB的平分线,且AB=AC+CD,求证:ZC=2ZB12 如图:AE、BC 交于点M, F 点在AM 上,BE/7CF, BE=CF。

求证:AM是△ABC的中线。

14 在AABC 中,ZACB = 90°, AC = BC ,直线MV 经过点C ,且AD 丄MZV 于D , BE L MN 于E . (1) 当直线MN绕点C旋转到图1的位置时,求证:① ^ADC竺ACEB;② DE = AD + BE ;(2)当直线MV绕点C旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明; 若不成立,说明理由.15如图所示,已知AE丄AB, AF丄AC, AE=AB, AF=AC。

求证:16.如图,已知AC〃BD, EA、EB分别平分ZCAB和ZE,则AB与AC+BD相等吗?请说明理由DBA, CD过点(1) EC=BF; (2) EC丄BFB C17.如图9所示,AABC是等腰直角三角形,ZACB=90° , AD是BC边上的中线,过C作AD的垂线,交AB于点E,交AD于点F,求证:ZADC=ZBDE.图9全等三角形证明经典(答案)1. 延长AD到E,使DE=AD,则三角形ADC全等于三角形EBD即BE=AC=2 在三角形ABE 中,AB-BE<AE<AB+BE即:10-2<2AD<10+2 4<AD<6又AD是整数,则AD=52证明:连接BF和EF。

中考数学复习之全等三角形的性质与判定,考点过关与基础练习题

21.三角形全等➢知识过关1.全等三角形:能够完全重合的两个三角形叫全等三角形.2.全等三角形的性质:全等三角形的_________相等,________相等.3.全等三角形的判定定理:(1)一般三角形有________,_________,________,_________(2)直角三角形还有___________4.角平分线的性质及判定(1)角平分线上的点到角两边的______相等.(2)角的内部到角两边的________相等的点在角的平分线上.➢考点分类考点1探究三角形的全等条件例1如图,若△ABC≌△ADE,则下列结论中一定成立的是()A.AD=DC B.∠BAD=∠CAE C.AB=AE D.∠ABC=∠AED 考点2全等三角形的性质与判定例2如图,∠1=∠2,AB=AE,添加一个条件,使得△ABC≌△AED.考点3角平分线的性质及判定例3如图所示,已知△ABD≌△CFD,AD⊥BC于D.(1)求证:CE⊥AB;(2)已知BC=7,AD=5,求AF的长.➢真题演练1.如图,若△ABC≌△ADE,则下列结论中一定成立的是()A.AD=DC B.∠BAD=∠CAE C.AB=AE D.∠ABC=∠AED 2.如图,△ABC≌△DEC,点E在线段AB上,∠B=75°,则∠BCE的度数为()A.30°B.35°C.40°D.45°3.如图,N,C,A三点在同一直线上,N,B,M三点在同一直线上,在△ABC中,∠A:∠ABC:∠ACB=3:5:10,又△MNC≌△ABC,则∠BCM的度数等于()A.10°B.20°C.30°D.40°4.如图,在△ABC中,∠BCA=90°,CA=CB,AD为边BC边上的中线,CG⊥AD于G,交AB于F,过点B作BC的垂线交CG于点E.有下列结论:①△ADC≌△CEB;②DF =EF;③F为EG的中点;④∠ADC=∠BDF;⑤G为CF的中点.其中正确的结论有()个.A.4B.3C.2D.15.如图,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,C,D,E三点在同一条直线上,连接BD,则下列结论不正确的是()A.△ABD≌△ACE B.∠ACE+∠DBC=45°C.BD⊥CE D.∠BAE+∠CAD=200°6.如图,△ABC,△CDE是等边三角形,C为线段AE上一点,则以下五个结论正确的个数有()个.①△CEB≌△CDA②AD=BE③∠AOE=120°④CM=CN⑤OC平分∠BCDA.2B.3C.4D.57.如图,已知:AC=BC,DC=EC,∠ACB=∠ECD=90°,现有下列结论:①△BDC≌△AEC;②若∠EBD=38°,则∠AEB=128°;③BD=AE;④AE所在的直线⊥BD.其中正确的有()A.1个B.2个C.3个D.4个8.下列结论中,正确的有①对顶角相等;②两直线平行,同旁内角相等;③面积相等的两个三角形全等;④有两边和一个角分别对应相等的两个三角形全等;⑤钝角三角形三条高所在的直线交于一点,且这点在钝角三角形外部.()A.2个B.3个C.4个D.5个9.△ABC中,AB=AC=12厘米,BC=8厘米,点D为AB的中点.如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q的运动速度为v厘米/秒,则当△BPD与△CQP全等时,v为厘米/秒.10.如图,△ABC为等边三角形,F,E分别是AB,BC上的一动点,且AF=BE,连结CF,AE交于点H,连接BH.给出下列四个结论:△△AHF=60°;△若BH=HC,则AE平分△BAC;△S四边形BEHF>S△AHC;△若BH△CF,则CH=2HA.其中正确的结论有(填写所有正确结论的序号).11.如图,已知△ABF≌△CDE.(1)若∠B=40°,∠DCF=30°,求∠EFC的度数;(2)若BD=10,EF=4,求BF的长.12.如图,线段AD、BE相交于点C,且△ABC≌△DEC,点M、N分别为线段AC、CD的中点.求证:(1)ME=BN;(2)ME∥BN.➢课后作业1.如图:已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE,PF分别交AB,AC于点E,F(点E不与A,B重合),给出以下五个结论中正确的有()①△PF A≌△PEB;②EF=AP;③△PEF是等腰直角三角形;④S四边形AEPF=12S△ABC.A.1个B.2个C.3个D.4个2.如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,点D,E为BC边上的两点,且∠DAE=45°,连接EF,BF,下列结论:①△AED≌△AEF;②BF=CD;③BE+DC>DE;④BE2+DC2=DE2.其中正确的有()A.1个B.2个C.3个D.4个3.如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=30°,如图,连接AC,BD交于点M,AC与OD相交于E,BD与OA相交于F,连接OM.则下列结论中:①AC=BD;②∠AMB=30°;③△OEM≌△OFM;④MO平分∠BMC.正确的个数有()A.1个B.2个C.3个D.4个4.已知:如图,△ABC中,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BDC=∠AED;③AE=AD=EC;④S四边形ABCE=BF×EF.其中正确的个数是()A.1个B.2个C.3个D.4个5.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④AE=EC;⑤若AF=2,则DE=4.其中正确的有()个.A.①②④B.①②④⑤C.①②⑤D.①②③⑤6.如图,在△ABC中,AC=BC,∠ACB=90°,M是AB边上的中点,点D、E分别是AC、BC边上的动点,DE与CM相交于点F且∠DME=90°.则下列5个结论:(1)图中共有两对全等三角形;(2)△DEM是等腰三角形;(3)∠CDM=∠CFE;(4)AD+BE =AC;(5)四边形CDME的面积发生改变.其中正确的结论有()个.A.2B.3C.4D.57.如图,B、C(O),E四点在同一条直线上,∠B=∠E=90°,AB=CE,请添加一个适当的条件,使得△ABC≌△OEF(只需写一个,不添加辅助线)8.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E,AD=11,DE=7,则BE的长为.9.如图,点O是等边△ABC内一点,D是△ABC外的一点,∠AOB=110°,∠BOC=α,△BOC≌△ADC,∠OCD=60°,连接OD.(1)当α=150°时,试判断△AOD的形状,并说明理由;(2)探究:当α为多少度时,△AOD是等腰三角形,请说明理由.10.已知,△ABC是等边三角形,点D、E分别是BC边、AB边上的点,且BE=CD,连接AD、CE交于点F,过A作AH⊥CE于H.(1)如图1,求证:∠BCE=∠CAD;(2)如图2,过点B作BG⊥AD于G.直接写出图中所有的全等三角形.11.如图,在Rt△ABC中,∠ACB=90°,AC=BC,AE⊥CE,BF⊥CE于点F.(1)求证:△AEC≌△CFB;(2)若AE=5,EF=7,求AB的长.12.如图,在等边△ABC的边AC,BC上各取一点D,E,使AD=CE,AE,BD相交于点O.(1)求证:△ABD≌△CAE;(2)求∠BOE的度数.13.如图:AB=AC,AD=AE,∠CAB=∠EAD,F为BD和CE的交点.(1)求证:BD=CE;(2)连接AF,求证:AF平分∠BFE.14.如图,△ABC和△CDE均为等边三角形,且A,D,E在同一条直线上,连接BD,BE.(1)求证:BE=AD;(2)若∠DBE=90°,求证:AD=12 DE.15.如图,△ACD、△BCE都是等边三角形,BD分别与AE、AC相交于点M、N.(1)证明:BD=AE;(2)求∠AMN的度数.➢冲击A+如图1,半径为3的⊙O中任作一个圆内接△ABC,D为劣弧AC上一动点,连接DA,DB,DC且DB,AC相交于点E.(1)求证:△ADE∽△BCE;(2)如图2,当BD过圆心O时,有DE=1,∠AEB=60°,求此时AC的长;(3)如图3,当D运动到某一位置时,过E作直线垂直于BC,垂足为F,与AD边交于点G,恰有AG=EG,若AB+CD=8,且CD<AB,求此时CD的长.。

2019年河北省石家庄市中考数学总复习复习同步训练03第一章第三节

第三节 整式与因式分解姓名:________ 班级:________ 限时:______分钟1.(2018·金华)计算(-a)3÷a 结果正确的是( )A .a 2B .-a 2C .-a 3D .-a 42.(2018·淄博)若单项式a m -1b 2与12a 2b n的和仍是单项式,则n m 的值是( )A .3B .6C .8D .93.(2018·唐山路北区一模)已知a =-2,则代数式a +1的值为( ) A .-3 B .-2 C .-1 D .14.(2018·保定一模)如图,从边长为m 的大正方形中剪掉一个边长为n 的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形,根据图形的变化过程写出的一个正确的等式是( )A .(m -n)2=m 2-2mn +n 2B .m 2-n 2=(m +n)(m -n)C .(m -n)2= m 2-n 2D .m(m -n)= m 2-mn5.(2018·安徽)下列运算正确的是( ) A .(a 2)3=a 5 B .a 4·a 2=a 8 C .a 6÷a 3=a 2 D .(ab)3=a 3b 36.(2018·唐山路南区二模)下列算式中,结果等于x 6的是( ) A .x 2·x 2·x 2 B .x 2+x 2+x 2C .x 2·x 3D .x 4+x 27.(2018·石家庄裕华区一模)若a 2-2a -3=0,则代数式a 2×2-a3的值是( )A .0B .-a 23C .2D .-128.(2018·秦皇岛海港区一模)下列运算中,计算结果正确的是( ) A .-|-3|=3 B.(-4)2=-4 C .0.2a 2b -0.2ba 2=0 D .(a 5)2=a 79.(2017·常德)下列各式由左到右的变形中,属于分解因式的是( ) A .a(m +n)=am +anB .a 2-b 2-c 2=(a -b)(a +b)-c 2C .10x 2-5x =5x(2x -1)D .x 2-16+6x =(x +4)(x -4)+6x10.(2018·保定一模)下列各因式分解正确的是( ) A .(x -1)2=x 2+2x +1 B .x 2+2x -1=(x -1)2 C .x 3-9x =x(x +3)(x -3) D .-x 2+(-2)2=(x -2)(x +2)11.(2018·唐山路北区一模)下列运算正确的是( ) A.3a +b 6=a +b 2 B .2×a +b 3=2a +b3C.a 2=a D .|a|=a(a≥0)12.(2018·重庆)按如图所示的运算程序,能使输出的结果为12的是( )A .x =3,y =3B .x =-4,y =-2C .x =2,y =4D .x =4,y =213.(2018·中考说明)木工师傅要把一根质地均匀的圆柱形木条锯成若干段,按如图的方式锯开,每锯断一次所用的时间相同,若锯成6段需要10分钟,则锯成n(n≥2且n 为整数)段所需要的时间为( )A.53n 分钟 B .2n 分钟 C .(2n -2)分钟 D .(2n +2)分钟14.(2019·原创) 分解因式:xy 2-9x =____________.15.(2018·石家庄裕华区一模)分解因式:2x 2-8x +8=____________. 16.(2018·中考说明)如图,已知正方形的面积为10,正三角形的面积为6,图中两块阴影部分的面积分别为a ,b 则a -b =________.17.(2017·山西)某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为________元.18.(2018·宁波)先化简,再求值:(x -1)2+x(3-x),其中x =-12.19.(2018·石家庄一模)已知:a +b =4. (1)求代数式(a +1)(b +1)-ab 的值;(2)若代数式a 2-2ab +b 2+2a +2b 的值等于17,求a -b 的值.20.(2018·石家庄裕华区一模)如图,将连续的奇数1,3,5,7,…按图①中的方式排成一个数表,用一个十字框框住5个数,这样框出的任意5个数(如图②)分别用a ,b ,c ,d ,x 表示. (1)若x =17,则a +b +c +d =________;(2)移动十字框,用x 表示a +b +c +d =________;(3)设M =a +b +c +d +x ,判断M 的值能否等于2 020,请说明理由.1.(2017·眉山)已知14m 2+14n 2=n -m -2,则1m -1n 的值等于( )A .1B .0C .-1 D. -142.(2018·荆州)如图所示,是一个运算程序示意图,若第一次输入k 的值为125,则第2018次输出的结果是________.3.(2018·淄博)先化简,再求值:a(a +2b)-(a +1)2+2a ,其中a =2+1,b =2-1.参考答案【基础训练】1.B 2.C 3.C 4.B 5.D 6.A 7.D 8.C 9.C 10.C 11.D 12.C 13.C 14.x(y +3)(y -3) 15.2(x -2)2 16.4 17.1.08a 18.解:原式=x +1,当x =-12时,原式=-12+1=12.19.解:(1)原式=5. (2)a -b =3或a -b =-3. 20.解:(1)68;(2)4x ; (3)令M =4x +x =5x =2 020, 则x =404.∵404是偶数不是奇数, ∴与题目中x 是奇数矛盾, ∴M 不能为2 020. 【拔高训练】 1.C 2.5 3.原式=2ab -1.当a =2+1,b =2-1时,原式=1.。

中考数学总复习《全等三角形》专项提升练习题(附答案)

中考数学总复习《全等三角形》专项提升练习题(附答案) 学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列各组中的两个图形属于全等图形的是( )A. B. C. D.2.下列叙述中错误的是( )A.能够重合的图形称为全等图形B.全等图形的形状和大小都相同C.所有正方形都是全等图形D.形状和大小都相同的两个图形是全等图形3.下列四个选项图中,与题图中的图案完全一致的是( )A. B. C. D.4.如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是( )A.AD=AEB.DB=AEC.DF=EFD.DB=EC5.如果两个三角形全等,那么下列结论不正确的是( )A.这两个三角形的对应边相等B.这两个三角形都是锐角三角形C.这两个三角形的面积相等D.这两个三角形的周长相等6.已知图中的两个三角形全等,则∠a度数是( )A.72°B.60°C.58°D.50°7.已知下列条件,不能作出唯一三角形的是( )A.两边及其夹角B.两角及其夹边C.三边D.两边及除夹角外的另一个角8.如图,某同学不小心将一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,最省事的办法是( )A.带①去B.带②去C.带③去D.带①和②去9.如图,在四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,∠ADC+∠ABC=180°,有下列结论:①CD=CB;②AD+AB=2AE;③∠ACD=∠BCE;④AB-AD=2BE.其中正确的是( )A.②B.①②③C.①②④D.①②③④10.如图,在△ABC中,高AD和BE交于点H,且∠1=∠2=22.5°.下列结论:①∠1=∠3;②BD+DH=AB;③2AH=BH;④若DF⊥BE于点F,则AE﹣FH=DF.其中正确的结论是( )A.①②③B.③④C.①②④D.①②③④二、填空题11.如图,四边形ABCD≌四边形A/B/C/D/,则∠A的大小是________.12.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、4,若这两个三角形全等,则x+y=.13.工人师傅常用角尺平分一个任意角.作法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,过角尺顶点C作射线OC.由此作法得△MOC≌△NOC的依据是.14.如图,AC=BC,DC=EC,∠ACB=∠ECD=90°,且∠EBD=38°,则∠AEB= .15.要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD =BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC ≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC最恰当的理由是16.在△ABC中,AB=8,AC=10,则BC边上的中线AD的取值范围是 .三、解答题17.如图,线段AC与线段BD相交于点O,连结AB,BC,CD,∠A=∠D,OA=OD.求证:∠1=∠2.18.如图,在△ABC中,AB=AC.分别以点B,C为圆心,BC长为半径在BC下方画弧,设两弧交于点D,与AB,AC的延长线分别交于点E,F,连结AD,BD,CD.求证:AD平分∠BAC.19.如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.20.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB的延长线上一点,点E在BC 边上,且BE=BD,连结AE,DE,CD.(1)求证:△ABE≌△CBD.(2)若∠CAE=27°,∠ACB=45°,求∠BDC的度数.21.如图,AD∥BC,∠D=90°.(1)如图1,若∠DAB的平分线与∠CBA的平分线交于点P,试问:点P是线段CD的中点吗?为什么?(2)如图2,如果P是DC的中点,BP平分∠ABC,∠CPB=35°,求∠PAD的度数为多少?22.(1)如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,试探究AB,AD,DC之间的等量关系,证明你的结论;(2)如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,证明你的结论.答案1.D.2.C3.A4.B.5.B6.D7.D.8.C9.C10.C.11.答案为:95°.12.答案为:10.13.答案为:SSS.14.答案为:128°.15.答案为:ASA.16.答案为:1<AD <9.17.证明:在△AOB 和△DOC 中∵⎩⎨⎧∠A =∠D ,OA =OD ,∠AOB =∠DOC ,∴△AOB ≌△DOC(ASA)∴AB =DC ,OB =OC.∴OA +OC =OD +OB ,即AC =DB.在△ABC 和△DCB 中∵⎩⎨⎧AC =DB ,AB =DC ,BC =CB ,∴△ABC ≌△DCB(SSS)∴∠1=∠2.18.证明:在△ABD 和△ACD 中∵⎩⎨⎧AB =AC ,BD =CD ,AD =AD ,∴△ABD ≌△ACD(SSS)∴∠BAD =∠CAD即AD 平分∠BAC .19.解:(1)∵AE 和BD 相交于点O∴∠AOD =∠BOE.在△AOD 和△BOE 中∠A =∠B ,∠AOD =∠BOE∴∠BEO =∠2.又∵∠1=∠2∴∠1=∠BEO∴∠AEC =∠BED.在△AEC 和△BED 中⎩⎨⎧∠A =∠B ,AE =BE ,∠AEC =∠BED ,∴△AEC ≌△BED(ASA);(2)∵△AEC ≌△BED∴EC =ED ,∠C =∠BDE.在△EDC 中∵EC =ED ,∠1=42°∴∠C =∠EDC =69°∴∠BDE =∠C =69°.20.证明:(1)∵∠ABC =90°∴∠CBD =90°=∠ABC .在△ABE 和△CBD 中∵⎩⎨⎧AB =CB ,∠ABE =∠CBD ,BE =BD ,∴△ABE ≌△CBD(SAS).(2)∵△ABE ≌△CBD∴∠AEB =∠CDB .∵∠AEB 为△AEC 的一个外角∴∠AEB =∠CAE +∠ACB =27°+45°=72° ∴∠BDC =72°.21.解:点P 是线段CD 的中点. 证明如下:过点P 作PE ⊥AB 于E∵AD ∥BC ,PD ⊥CD 于D∴PC ⊥BC∵∠DAB 的平分线与∠CBA 的平分线交于点P ∴PD =PE ,PC =PE∴PC =PD∴点P 是线段CD 的中点.(2)35°22.解:(1)证明:延长AE 交DC 的延长线于点F∵E 是BC 的中点∴CE =BE∵AB ∥DC∴∠BAE =∠F在△AEB 和△FEC 中∴△AEB≌△FEC∴AB=FC∵AE是∠BAD的平分线∴∠BAE=∠EAD∵AB∥CD∴∠BAE=∠F∴∠EAD=∠F∴AD=DF∴AD=DF=DC+CF=DC+AB(2)如图②,延长AE交DF的延长线于点G∵E是BC的中点∴CE=BE∵AB∥DC∴∠BAE=∠G在△AEB和△GEC中∴△AEB≌△GEC∴AB=GC∵AE是∠BAF的平分线∴∠BAG=∠FAG∵AB∥CD∴∠BAG=∠G∴∠FAG=∠G∴FA=FG∴AB=CG=AF+CF第11 页共11 页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三节全等三角形
姓名:________ 班级:________ 限时:______分钟
1.(2018·成都)如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是( )
A.∠A=∠D B.∠ACB=∠DBC
C.AC=DB D.AB=DC
2.(2018·临沂)如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则DE的长是( )
A.3
2
B.2 C.2 2 D.10
3.(2019·原创)如图,△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF的度数是( )
A.75° B.70° C.65° D.60°
4.(2018·南京)如图,AB⊥CD,且AB=CD,E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF =c,则AD的长为( )
A.a+c B.b+c C.a-b+c D.a+b-c
5.(2018·济宁)在△ABC中,点E、F分别是边AB、AC的中点,点D在BC边上,连接DE、DF、EF,请你添加一个条件________,使△BED与△FED全等.
6.(2018·保定一模)已知:如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点E在BC 边上.
(1)求证:△ACD≌△ABE;
(2)若∠CDE=60°,求∠AEB的度数.
7.(2018·陕西)如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交于点G、H.若AB=CD,求证:AG=DH.
8.(2017·恩施州)如图,△ABC、△CDE均为等边三角形,连接BD、AE交于点O,BC与AE交于点P.
求证:∠AOB=60°.
9.(2018·镇江)如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC.
(1)求证:△ABE≌△ACF;
(2)若∠BAE=30°,则∠ADC=________°.
10.(2019·原创)如图,已知等腰三角形ABC中,AB=AC,点D、E分别在边AB、AC上,且AD=AE,连接BE、CD交于点F.
(1)求证:∠ABE=∠ACD;
(2)求证:过点A、F的直线垂直平分线段BC.
1.(2019·原创)如图,∠ACB=90°,AC=BC,∠DCE=45°,若AD=3,BE=4,则BC的长是( )
A.5 B.5 2
C.6 2 D.7
2.(2018·保定二模)如图,菱形ABCD中,∠ABC=60°.将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F.
(1)求证:△ABE≌△ACF;
(2)判断△AEF是哪一种特殊三角形,并说明理由.
3.(2018·石家庄长安区模拟)如图①,在等边△ABC和等边△ADP中,AB=2,点P在△ABC的高CE上(点P与点C不重合),点D在点P的左侧,连接BD,ED.
(1)求证:BD=CP;
(2)当点P与点E重合时,延长CE交BD于点F,请你在图②中作出图形,并求出BF的长.
4.(2018·滨州)已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点.
(1)如图①,若点E、F分别为AB、AC上的点,且DE⊥DF,求证:BE=AF;
(2)若点E、F分别为AB、CA延长线上的点,且DE⊥DF,那么BE=AF吗?请利用图②说明理由.
参考答案
【基础训练】
1.C 2.B 3.C 4.D
5.BD=EF答案不唯一,如BD=CD或DF∥AB或DE∥AC或∠BED=∠EDF等.
6.(1)证明:∵∠BAC=∠DAE=90°,
∴∠BAC-∠CAE=∠DAE-∠CAE,
即∠DAC=∠EAB.
⎩⎪AC =AB ∴△ACD≌△ABE(S A S ).
(2)解:在Rt △ADE 中,AD =AE ,∠DAE=90°, ∴∠ADE=∠AED=45°.
∵△ACD≌△ABE,∴∠ADC=∠AEB,
∴∠AEB=∠ADE+∠CDE=45°+60°=105°. 7.证明:∵AB∥CD,∴∠A=∠D. 又∵CE∥BF,∴∠AHB=∠DGC. 在△ABH 和△DCG 中,⎩⎪⎨⎪
⎧∠A=∠D ∠AHB=∠DGC AB =CD ,
∴△ABH≌△DCG.∴AH=DG. 又∵AH=AG +GH ,DG =DH +GH , ∴AG=HD.
8.证明:∵△ABC,△CDE 均为等边三角形, ∴∠ACB=∠ECD=60°, ∴∠ACE=∠BCD.
在△ACE 与△BCD 中,⎩⎪⎨⎪
⎧AC =BC ∠ACE=∠BCD CE =CD ,
∴△ACE≌△BCD(S A S ), ∴∠CAE=∠CBD.
∵∠AOB+∠CBD+∠BPO=180°, ∠BCA+∠CAE+∠APC=180°, 且∠BPO=∠APC, ∴∠AOB=∠BCA=60°. 9.(1)证明:∵AB=AC , ∴∠B=∠ACF.
⎩⎪BE=CF
∴△ABE≌△ACF.
(2)75.
10.证明:(1)∵AB=AC,∠BAE=∠CAD,AE=AD,
∴△ABE≌△ACD(S A S),
∴∠ABE=∠ACD.
(2)∵AB=AC,
∴∠ABC=∠ACB.
由(1)可知∠ABE=∠ACD,
∴∠FBC=∠FCB,
∴FB=FC.
又∵AB=AC,∴点A,F均在线段BC的垂直平分线上,即过点A,F的直线垂直平分线段BC.
【拔高训练】
1.C
2.(1)证明:∵四边形ABCD是菱形,
∴AB=BC=CD=AD,
∵∠B=60°,∴△ABC是等边三角形,
∴∠ACB=60°,AC=AB,
同理△ACD是等边三角形,∴∠ACD=60°.
∵∠BAC=∠EAF=60°,
∴∠BAE=∠CAF,
∴△BAE≌△CAF.
(2)解:△AEF是等边三角形,理由如下:
∵△BAE≌△CAF,∴AE=AF,
∵∠EAF=60°,
∴△AEF是等边三角形.
3.(1)证明:∵△ABC是等边三角形,
∴AB=AC,∠BAC=60°.
∵△ADP 是等边三角形, ∴AD=AP ,∠PAD=60°,
∴∠DAB+∠PAB=60°=∠PAC+∠PAB, ∴∠DAB=∠PAC,∴△DAB≌△PAC. ∴BD=CP.
(2)解:作图如解图所示. ∵△ADP 是等边三角形,
∴当点P 与点E 重合时,有AE =DE ,∠AED=60°. ∵CE⊥AB,
∴AE=BE =DE ,∠BCE=1
2∠ACB=30°.
∴∠EBD=30°,∴∠DBC=90°. 在Rt △BCF 中,∵BC=2,tan ∠BCE=BF
BC ,
吧∴BF=2tan 30°=23
3
.
4.(1)证明:连接AD ,如解图①所示. ∵∠BAC=90°,AB =AC ,
∴△ABC 为等腰直角三角形, 图① ∠EBD=45°. ∵点D 为BC 的中点, ∴AD=1
2
BC =BD ,∠FAD=45°.
∵∠BDE+∠EDA=90°,∠EDA+∠ADF=90°, ∴∠BDE=∠ADF.
在△BDE 和△ADF 中,⎩⎪⎨⎪
⎧∠EBD=∠FAD BD =AD ∠BDE=∠ADF ,
∴△BDE≌△ADF(A S A),∴BE=AF. (2)解:BE =AF ,理由如下: 连接AD ,如解图②所示. ∵∠ABD=∠BAD=45°, ∴∠EBD=∠FAD=135°. 图②
∵∠EDB+∠BDF=90°,
∠BDF+∠FDA=90°, ∴∠EDB=∠FDA. 在△EDB 和△FDA 中, ⎩⎪⎨⎪
⎧∠EBD=∠FAD BD =AD
∠EDB=∠FDA
, ∴△EDB≌△FDA(A S A), ∴BE=AF.。

相关文档
最新文档