5G高铁隧道覆盖方式分析
隧道信号覆盖解决方案

隧道信号覆盖解决方案方案一:无线直放站+八木天线适用范围:长度不超过600m的笔直隧道,且隧道外可以接收到较强的无线信号。
特点:1、采用无线引入方式,对接收信号强度要求较低;2、具有很好的隔离度,便于站址的选择;3、发射功率大;4、选频灵活,最多可以提供八载频的选频方式。
典型案例:下图为浙江某地的铁路单轨隧道,长度为410m,在隧道西边隧道顶上可以接收到基站信号,隧道内信号基本为盲区,在采用直放站+八木天线的覆盖方式后,火车内信号场强大于-90dB,话音质量良好。
方案二:隧道两端均采用无线直放站+八木天线适用范围:长度不超过1000m的笔直隧道,且隧道口两端均可以接收到较强的无线信号。
特点:1、采用无线引入方式,对接收信号强度要求较低;2、具有很好的隔离度,便于站址的选择;3、安装方便,灵活;4、发射功率大;5、选频灵活,最多可以提供八载频的选频方式。
典型案例:下图为浙江某铁路单轨隧道,长度为950m,隧道两端顶上均可以接收到同一基站信号。
在下图中,分别将无线直放站放置于离隧道口各50m的隧道避难洞内,八木天线固定于隧道壁上,采用7/8英寸电缆作为传输馈线。
注:如果在隧道口两端接收到的分别为两路不同信号,则在设计时,必须充分考虑信号的重叠覆盖区,否则会因重叠覆盖区长度不够而导致切换掉话。
(关于重叠覆盖区长度的选取,详见第6章中的切换分析)方案三:无线直放站+泄路电缆+干放+八木天线适用范围:隧道长度在600~1100m的笔直隧道,且仅有隧道一端可以接收到基站信号。
特点:1、采用无线引入方式,对接收信号强度要求较低;2、具有很好的隔离度,便于站址的选择;3、安装方便,简单;4、采用泄缆覆盖的区域信号分布均匀;5、发射功率大;6、选频灵活,最多可以提供八载频的选频方式。
典型案例:下图为河南某铁路单轨隧道,长度为1080m,隧道西顶上可以接收到基站信号。
在下图中,将无线直放站放置于离隧道西口50m的隧道避难洞内,泄漏电缆固定于离地2m高的隧道壁上,将干放放置于离隧道西口650m的隧道避难洞内,采用八木天线作为重发天线覆盖离隧道西口650~1080m的隧道。
高速铁路隧道场景下的5G通信覆盖方案分析

高速铁路隧道场景下的5G通信覆盖方案分析
蒲玲玲;杨柳;刘恒;李帅
【期刊名称】《四川建筑》
【年(卷),期】2022(42)3
【摘要】随着5G的快速发展,人们不满足于仅能在特定的场合使用5G网络,还在交通出行的过程中对5G网络的质量也有所要求。
高速铁路是现在人们最方便的出行方式之一,高铁隧道占高铁总路程的很大一部分比例,目前也属于5G覆盖困难的范围之一。
文章对高速铁路隧道场景下的5G通信覆盖方案进行分析探讨,对高速铁路隧道情况进行简述,对使用泄漏电缆和特性天线等方式进行高速铁路隧道的5G 覆盖方案进行简单分析,并对每种方案进行对比,使得可以在不同的情景下选择不同的5G覆盖方案。
【总页数】5页(P126-130)
【作者】蒲玲玲;杨柳;刘恒;李帅
【作者单位】西南交通大学信息科学与技术学院;西南交通大学唐山研究生院;轨道交通工程信息化国家重点实验室(中铁一院);西南交通大学综合交通大数据应用技术国家工程实验室
【正文语种】中文
【中图分类】TN926
【相关文献】
1.高速铁路隧道公众移动通信网络覆盖方案研究
2.高速铁路场景下的TD-SCDMA 网络覆盖解决方案
3.多种天线在FDD-LTE高速铁路场景下覆盖方案的分析与探讨
4.在高速铁路场景下的TD-SCDMA覆盖方案
5.高铁隧道场景的5G覆盖方案研究
因版权原因,仅展示原文概要,查看原文内容请购买。
5G 在高铁场景的覆盖分析

5G 在高铁场景的覆盖分析摘要:5G网络是通信技术的颠覆式变革。
它将开启万物感知、万物互联、万物智能的新时代;可极大地带动相关产业的快速发展,拓展数字经济发展新领域、新空间。
5G网络的部署与发展对于加速经济社会数字化转型,培育数字经济新产业、新业态,释放信息消费巨大市场空间,助推供给侧结构性改革,具有重要意义。
高铁作为现代社会的重要交通工具,每日都承载了数以亿计旅客的交通出行,成为了信息通信的“新数据爆点”。
为了让广大乘客在高铁出行中享受到5G带来的最便利的信息服务,高铁5G覆盖势在必行。
文中将针对高铁5G(红线内)覆盖进行相关阐述。
关键词:5G;高铁;场景覆盖一、高铁场景 5G 网络规划高铁网络覆盖有两种方式:与公网同频组网和异频的专网组网。
5G 频段有限,中国联通主要使用 3.5GHz~3.6GHz 频段,这个频段范围内高铁的覆盖将采用与公网同频组网的方式。
在 5G 网络规划中,需要考虑网络架构、MassiveMIMO 的选择、高铁站间距和各种场景的天线设备选择。
NSA/SA 网络架构5G 的网络架构主要分为 NSA 和 SA 这两种模式。
NSA 的组网模式是利用现有的 4G 网络作为锚点,5G 网络的控制信令走在 4G 网络上,5G 的业务数据走在 5G 网络。
而 SA 的组网模式是控制和数据都在 5G 网络上承载,不需要借助 4G 网络。
2018 年年底 3GPPR15F40 标准版本冻结,这个版本相对比较成熟,已经有完善的 NSA 和 SA 方案。
但是 SA 组网模式核心网目前只具备初级功能,不支持计费、语音和漫游等功能。
高铁场景的网络,一般要求全国性连续覆盖,网络建设的投资会比较大。
为了避免 NSA 再升级 SA 网络的额外投资,高铁场景下的 5G 网络部署将一步到位,即使用 SA 网络架构。
规划上需要全国统一的网络架构,减少不同区域 NSA 和 SA 模式不同带来的复杂性,需要都统一采用 option2 的 SA 网络架构。
隧道信号覆盖解决方案及分析

隧道信号覆盖解决方案及分析京信山西办梁永红1 概述移动通信网络建设的目标就是实现无缝覆盖,以保证随时随地通信。
保障重要的公路、铁路全线移动通信信号覆盖是塑造运营商网络品牌、提高运营商竞争力的一个重要环节。
目前大多数隧道都是覆盖盲区,因此需要制定专门的隧道信号覆盖解决方案。
隧道信号覆盖根据隧道功用可以分为:公路隧道信号覆盖、铁路隧道信号覆盖、地铁隧道信号覆盖等,根据隧道结构特点可以分为:直隧道、多弯道隧道、短隧道、长隧道、单线隧道、复线隧道等。
各种环境又有其各自特点,针对各种应用环境需要提供不同的解决方案。
隧道信号覆盖常用的解决方案包括:同轴分布式天馈系统隧道信号覆盖解决方案、泄漏电缆系统隧道信号覆盖解决方案、光纤分布式天馈系统解决方案等。
对具体的隧道,需要根据其长度、宽度、结构、功用、入口处信号电平等因素进行综合考虑,提出合理的建设方案。
因此,本人就此问题进行讨论。
2 各种隧道的特点2.1 公路隧道的特点公路隧道一般来说比较宽敞,隧道中的覆盖状况在有车通过和没车通过时差别不大。
隧道弯曲度较小、高度较高。
2.2 铁路隧道的特点铁路隧道一般来说要狭窄一些,特别是当火车通过时,四周所剩余的空间很小,而且火车通过时对信号的传播影响也较大。
此外,铁路隧道的弯曲度小、高度低。
地铁隧道和铁路隧道情况基本接近,仅在隧道长度上有较大差别。
3 隧道内无线电波传播特点室内无线链路衰耗主要由路径衰耗中值与阴影衰落决定。
隧道内环境封闭,外部信号很难进入,采取内部覆盖时,对外界电磁环境影响也很小。
隧道可以认为是一个管道,信号传播是直射与墙壁反射的结果,直射为主要分量。
ITU-R建议P.1238提出室内适用的传播模型,这个公式为:L path=20lgf+30lgd+Lf(n)-28dB其中:f代表频率(MHz);d代表移动台和发射天线间距离(m);Lf代表楼层穿透损耗因子(dB);n代表移动台与天线间的楼层数。
在隧道信号覆盖情况中,Lf(n)可以不做考虑。
高铁隧道移动网络覆盖方案

高铁隧道移动网络覆盖方案摘要:高铁移动网络覆盖是国内三大运营商的一个重点,而高铁隧道内移动网络覆盖更是运营商的一大难点。
本文根据我国中部某高铁线路覆盖规划实例,采用“设备+PoI+泄漏电缆”模式,即3家运营商信号源设备通过同一多系统接入平台接入,信号输出到泄漏电缆进行隧道覆盖,隧道口场坪站安装宽频切换天线对隧道外进行延伸覆盖,通过链路预算合理布置各运营商主设备信号源,从而实现隧道到室外的无缝覆盖。
最后,根据已有成熟网络覆盖解决方案,对未来5G高铁隧道移动网络覆盖方案进行了探讨。
关键词:多运营商;高铁隧道覆盖;多系统接入平台;泄漏电缆;链路预算;5G截至2018年底,中国高铁营运里程超过世界高铁总里程的2/3,中国高铁动车组累计运输旅客突破90亿人次,中国高铁世界领先。
高铁已经成为百姓日常出行必备的交通工具,伴随着移动通信网络的飞速发展,人们对于网络覆盖质量要求越来越高,高铁公共通信网络覆盖成为各运营商提升品牌效应,提高用户黏合度的重要竞争领域。
由于高铁车厢材质特殊、高速移动、全封闭等特点,导致其移动通信网络覆盖存在穿透损耗大、多普勒频偏大、切换频繁等诸多困难。
随着高铁建设飞速发展,尤其是在我国中西部地区,山区地形中的高速铁路具有大量隧道,网络覆盖难度进一步加大。
以我国中部某一铁路为例,铁路线路全长265km,其中隧道67座,共约132.947km,隧道占比为50.17%。
由于隧道占比较高,且均位于铁路红线内,需要与铁路部门进行协调,建设难度大,因此隧道覆盖成为高铁移动网络覆盖的重点和难点。
1高铁隧道覆盖总体原则1.1隧道覆盖设计原则。
(1)隧道内设计双漏缆方式覆盖,移动为LTEFDD1.8GHz和TD-LTE(F频)系统,电信为CDMA800MHz和LTEFDD800MHz 系统,联通为WCDMA2.1GHz和LTEFDD2.1GHz系统,各需求系统信号源接入两根漏缆。
(2)基站采用BBU+RRU方式,BBU均设于铁路红线外,铁路红线内仅设置RRU设备。
5G高铁隧道覆盖方式分析

5G高铁隧道覆盖方式分析1. 引言1.1 研究背景高铁隧道覆盖是当前5G通信技术在高铁领域的热点问题之一。
随着高铁运输的普及和5G技术的不断发展,高铁隧道通信覆盖成为了亟待解决的技术难题。
传统的通信覆盖方式在高铁隧道中存在覆盖不足、信号质量差等问题,难以满足高速移动列车数据传输的需求。
如何利用5G技术来提升高铁隧道的通信覆盖质量成为了当前的研究热点。
高铁隧道特殊的环境和复杂的地形给通信覆盖带来了挑战,如隧道长度、隧道深度、地形起伏等因素都会影响通信信号的传输。
目前,国内外学者和企业普遍关注如何利用5G技术的高带宽、低时延等优势来解决高铁隧道通信覆盖问题。
通过对5G技术在高铁隧道覆盖中的应用进行研究和探讨,可以为提升高铁隧道通信质量、提高列车运行效率和保障乘客通信体验提供重要参考。
1.2 研究目的研究目的是分析当前高铁隧道覆盖存在的问题和挑战,探讨传统覆盖方式的优缺点,以及分析5G技术在高铁隧道中的应用潜力。
通过研究基于5G的高铁隧道覆盖方案,进一步提高高铁隧道的通信覆盖质量和网络性能,为高铁乘客提供更快速、稳定的通信体验。
通过性能评估与比较,为未来的高铁通信网络建设提供参考和指导,促进我国高铁行业与5G技术的融合发展。
通过本研究可以有效解决高铁隧道通信覆盖存在的问题,提升用户体验和服务质量,推动高铁通信网络的进一步升级和完善,为高铁行业的现代化建设和智能化发展提供科学依据和技术支撑。
1.3 意义与价值高铁隧道作为高速铁路线路中必不可少的一部分,其覆盖网络对于通信信号的传输具有至关重要的作用。
随着5G技术的大规模商用,高铁隧道覆盖成为了重要的研究课题。
对于高铁隧道覆盖方式的研究,不仅仅可以提升通信信号的传输速度和覆盖范围,更可以改善用户体验和提高通信网络的可靠性和稳定性。
5G技术在高铁隧道覆盖中的应用,不仅仅可以实现高速数据传输,同时还能支持大量连接设备的通信需求,为高铁隧道的通信网络提供更好的支持。
高铁场景5G覆盖的研究探讨

技术Special TechnologyI G I T C W 专题0 引言随着高铁路网密度快速增长,旅客发送量不断增加,高铁成为越来越多人的首选出行方式;据统计,高铁旅客以旅行、出差居多,约占全部乘客数量的近9成。
高铁线路中包括大量长隧道,由于列车速度快、车体穿透损耗大、设备安装空间狭小等,与普通铁路隧道相比,高铁隧道的无线网络覆盖设计和建设实施更加困难,这对高铁线路场景的移动通信网络提出了更高的要求。
如何解决高铁场景的无线网络覆盖,是各大运营商高铁场景无线网络规划和建设面临的挑战。
1 面临挑战高铁场景由于人流量大且集中,加上列车车厢封闭型好,行驶过程中高铁车速较快,高铁车型不同的穿透损耗不一样,高铁经过区域也存在差异,因此,高铁场景是个相对复杂的场景,这使得高铁场景5G 网络覆盖存在较大的挑战。
高铁场景5G 网络覆盖面临的挑战主要有穿透损耗更大、多普勒效应频偏更大、切换更频繁等,具体如下:(1)穿透损耗更大。
由于车体穿透损耗大:高速列车采用封闭式设计,车体普遍采用的高强度不锈钢或合金材料,会对无线信号产生很大的穿透损耗,导致覆盖受限,信号质量差。
如,中国的和谐号CRH5列车车体为中空铝合金,对1.8G 信号垂直入射的穿透损耗可达24dB ,而高铁网络通常沿着铁路线做带状覆盖,信号掠射角较小,车体的穿透损耗更大。
同时,相比较低频的3G/4G 频谱,N78、N41等5G 主流频段的车体屏蔽会更强。
中国的和谐号CRH5列车车体为中空铝合金,对1.8G 信号垂直入射的穿透损耗可达24dB ,而高铁网络通常沿着铁路线做带状覆盖,信号掠射角较小,车体的穿透损耗更大。
同时,相比较低频的3G/4G 频谱,N78、N41等5G 主流频段的车体屏蔽会更强。
另外,各运营商频段损耗相比,目前国内运营商(除广电)5G 网络主要部署在2.6GHz 和3.5GHz 频段,以电信和联通的3.5GHz 频段为例,该频段相比LTE1.8GHz 频段高近一倍。
隧道信号覆盖解决方案及分析

隧道信号覆盖解决方案及分析京信山西办梁永红1 概述移动通信网络建设的目标就是实现无缝覆盖,以保证随时随地通信。
保障重要的公路、铁路全线移动通信信号覆盖是塑造运营商网络品牌、提高运营商竞争力的一个重要环节。
目前大多数隧道都是覆盖盲区,因此需要制定专门的隧道信号覆盖解决方案。
隧道信号覆盖根据隧道功用可以分为:公路隧道信号覆盖、铁路隧道信号覆盖、地铁隧道信号覆盖等,根据隧道结构特点可以分为:直隧道、多弯道隧道、短隧道、长隧道、单线隧道、复线隧道等。
各种环境又有其各自特点,针对各种应用环境需要提供不同的解决方案。
隧道信号覆盖常用的解决方案包括:同轴分布式天馈系统隧道信号覆盖解决方案、泄漏电缆系统隧道信号覆盖解决方案、光纤分布式天馈系统解决方案等。
对具体的隧道,需要根据其长度、宽度、结构、功用、入口处信号电平等因素进行综合考虑,提出合理的建设方案。
因此,本人就此问题进行讨论。
2 各种隧道的特点2.1 公路隧道的特点公路隧道一般来说比较宽敞,隧道中的覆盖状况在有车通过和没车通过时差别不大。
隧道弯曲度较小、高度较高。
2.2 铁路隧道的特点铁路隧道一般来说要狭窄一些,特别是当火车通过时,四周所剩余的空间很小,而且火车通过时对信号的传播影响也较大。
此外,铁路隧道的弯曲度小、高度低。
地铁隧道和铁路隧道情况基本接近,仅在隧道长度上有较大差别。
3 隧道内无线电波传播特点室内无线链路衰耗主要由路径衰耗中值与阴影衰落决定。
隧道内环境封闭,外部信号很难进入,采取内部覆盖时,对外界电磁环境影响也很小。
隧道可以认为是一个管道,信号传播是直射与墙壁反射的结果,直射为主要分量。
ITU-R建议P.1238提出室内适用的传播模型,这个公式为:L path=20lgf+30lgd+Lf(n)-28dB其中:f代表频率(MHz);d代表移动台和发射天线间距离(m);Lf代表楼层穿透损耗因子(dB);n代表移动台与天线间的楼层数。
在隧道信号覆盖情况中,Lf(n)可以不做考虑。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5G高铁隧道覆盖方式分析
随着高铁技术的不断发展和普及,人们对高铁舒适性的要求也越来越高。
而5G技术的应用将可以为高铁提供更快速、更稳定的网络连接,为乘客提供更丰富的使用体验。
由于
高铁隧道的特殊环境,对5G覆盖形式有着一定的挑战。
本文将从多个方面分析5G高铁隧
道的覆盖方式。
5G高铁隧道覆盖方式可以采用微基站技术。
微基站是一种小型化的无线通信设备,可以被安装在高铁隧道内部,为隧道内的乘客提供5G网络覆盖。
由于小型化的特点,微基站可以更容易地安装在高铁隧道内的天花板或壁面上,实现较好的覆盖效果。
微基站还可以
采用集群部署的方式,通过多个微基站之间的协同工作,提高网络覆盖和传输速度。
5G高铁隧道覆盖方式还可以利用波分复用技术。
波分复用技术是一种将不同波长的光信号通过同一光纤传输的技术,可以极大地提高光纤传输的容量和效率。
在高铁隧道中,
可以通过设置多个光纤接入点,将5G信号通过波分复用技术进行传输,实现对隧道内乘客的覆盖。
这种方式具有传输速度快、传输距离长等优势,对于高铁隧道这种需要覆盖大面
积的场景十分适用。
5G高铁隧道覆盖方式还可以采用重叠覆盖技术。
重叠覆盖技术是指在同一覆盖区域内,设置多个覆盖基站,使不同基站的覆盖区域有一定的重叠,从而实现对覆盖区域内乘客的
无缝切换和更好的覆盖效果。
在高铁隧道中,可以通过设置多个重叠覆盖的基站,提高5G 网络的覆盖范围和质量,保证乘客在高铁隧道内的网络体验。
5G高铁隧道覆盖方式还可以采用智能天线技术。
智能天线是一种能够自动调整天线方向和波束的技术,可以根据网络信号的强度和需求,动态地调整天线的方向和波束,达到
最佳的覆盖效果。
在高铁隧道中,可以通过安装智能天线,实现对隧道内移动信号的追踪
和补偿,提高覆盖效果和稳定性。
5G高铁隧道覆盖方式可以采用微基站技术、波分复用技术、重叠覆盖技术和智能天线技术等多种方式。
这些技术能够充分利用高铁隧道空间,并结合5G技术特点,实现对高铁隧道内乘客的全面覆盖和更好的网络体验。
随着5G技术的不断发展和完善,相信5G高铁
隧道的覆盖方式将会越来越多样化和先进化。