电磁感应定律典型计算题

合集下载

高考物理电磁感应基础概念及典型题解析

高考物理电磁感应基础概念及典型题解析

高考物理电磁感应基础概念及典型题解析在高考物理中,电磁感应是一个重要且具有一定难度的知识点。

理解电磁感应的基础概念,并能够熟练解决相关的典型题目,对于在高考中取得优异成绩至关重要。

一、电磁感应基础概念1、磁通量磁通量是指穿过某一面积的磁感线的条数。

其计算公式为Φ =B·S·cosθ,其中 B 是磁感应强度,S 是面积,θ 是 B 与 S 法线方向的夹角。

如果 B 是均匀的,且 S 与 B 垂直,那么磁通量就可以简单地表示为Φ = B·S。

2、电磁感应现象当穿过闭合回路的磁通量发生变化时,回路中就会产生感应电动势,这种现象称为电磁感应现象。

产生的感应电动势如果形成了闭合回路,就会产生感应电流。

3、楞次定律楞次定律指出,感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。

简单来说,就是“来拒去留,增反减同”。

例如,当磁通量增加时,感应电流产生的磁场会阻碍磁通量的增加;当磁通量减少时,感应电流产生的磁场会阻碍磁通量的减少。

4、法拉第电磁感应定律法拉第电磁感应定律表明,感应电动势的大小与穿过回路的磁通量的变化率成正比。

公式为 E =nΔΦ/Δt,其中 n 是线圈的匝数。

二、典型题解析1、动生电动势问题例如:一根长度为 L 的导体棒,在磁感应强度为 B 的匀强磁场中,以速度 v 垂直于磁场方向做匀速直线运动。

求导体棒产生的感应电动势。

解析:根据动生电动势的公式 E = BLv,可直接得出感应电动势为E = BLv。

2、感生电动势问题假设一个面积为 S 的闭合线圈,处于均匀变化的磁场中,磁场的变化率为ΔB/Δt。

求线圈中产生的感应电动势。

解析:由法拉第电磁感应定律 E =nΔΦ/Δt,磁通量Φ = B·S,所以感应电动势 E = n SΔB/Δt 。

3、楞次定律的应用有一个闭合回路,其中的磁场在逐渐增强。

判断回路中感应电流的方向。

解析:由于磁场增强,根据楞次定律,感应电流的磁场要阻碍磁通量的增加,所以感应电流的磁场方向与原磁场方向相反。

专题23 法拉第电磁感应定律——历年高考物理真题精选之黄金30题(解析版)

专题23   法拉第电磁感应定律——历年高考物理真题精选之黄金30题(解析版)

历年高考物理真题精选之黄金30题专题23 法拉第电磁感应定律一、单选题1.(2020·浙江·高考真题)如图所示,固定在水平面上的半径为r 的金属圆环内存在方向竖直向上、磁感应强度大小为B 的匀强磁场。

长为l 的金属棒,一端与圆环接触良好,另一端固定在竖直导电转轴OO '上,随轴以角速度ω匀速转动。

在圆环的A 点和电刷间接有阻值为R 的电阻和电容为C 、板间距为d 的平行板电容器,有一带电微粒在电容器极板间处于静止状态。

已知重力加速度为g ,不计其它电阻和摩擦,下列说法正确的是( )A .棒产生的电动势为212Bl ω B .微粒的电荷量与质量之比为22gdBr ωC .电阻消耗的电功率为242B r RπωD .电容器所带的电荷量为2CBr ω【答案】 B 【解析】A .如图所示,金属棒绕OO '轴切割磁感线转动,棒产生的电动势21=22r E Br Br ωω=⋅A 错误;B .电容器两极板间电压等于电源电动势E ,带电微粒在两极板间处于静止状态,则Eq mg d =即22212q dg dg dg m E Br Br ωω===B 正确;C .电阻消耗的功率22424E B r P R R ω==C 错误;D .电容器所带的电荷量22CBr Q CE ω==D 错误。

故选B 。

2.(2015·全国全国·高考真题)如图,直角三角形金属框abc 放置在匀强磁场中,磁感应强度大小为B ,方向平行于ab 边向上.当金属框绕ab 边以角速度ω逆时针转动时,a 、b 、c 三点的电势分别为U a 、U b 、U c .已知bc 边的长度为l .下列判断正确的是( )A .U a >U c ,金属框中无电流B .U b >U c ,金属框中电流方向沿a ﹣b ﹣c ﹣aC .U bc =﹣12Bl 2ω,金属框中无电流D .U bc =12Bl 2ω,金属框中电流方向沿a ﹣c ﹣b ﹣a【答案】 C 【解析】因为当金属框绕轴转运时,穿过线圈abc 的磁通量始终为0,故线圈中无感应电流产生,选项BD 错误;但对于bc 与ac 边而言,由于bc 边切割磁感线,故bc 边会产生感应电动势,由右手定则可知,c 点的电势要大于b 点的电势,故U bc 是负值,且大小等于Bl×=Bl 2ω,故选项C 正确;对于导体ac 而言,由右手定则可知,c点的电势大于a 点的电势,故选项A 错误,所以选项C 是正确的.3.(2014·江苏·高考真题)如图所示,一正方形线圈的匝数为n ,边长为a ,线圈平面与匀强磁场垂直,且一半处在磁场中,在t ∆时间内,磁感应强度的方向不变,大小由B 均匀的增大到2B .在此过程中,线圈中产生的感应电动势为( )A .22Ba t ∆B .22nBa t ∆ C .2nBa t ∆D .22nBa t ∆【答案】 B 【解析】在此过程中,线圈中的磁通量改变量大小22222B B a Ba t ϕ-∆=⨯=∆,根据法拉第电磁感应定律22ϕ∆∆===∆∆∆B nBa E n n S t t t ,B 正确; B E nn S t t ϕ∆∆==∆∆,知道S 是有效面积,即有磁通量的线圈的面积.4. (2008·全国·高考真题)矩形导线框abcd 固定在匀强磁场中,磁感线的方向与导线框所在平面垂直,规定磁场的正方向垂直纸面向里,磁感应强度B随时间变化的规律如图所示。

电磁感应计算题--基础

电磁感应计算题--基础

电磁感应计算题—计算题一.计算题(共7小题)1.如图所示,宽度为L=0.40m的足够长的平行光滑金属导轨固定在绝缘水平面上,导轨的一端连接阻值为R=2.0Ω的电阻.导轨所在空间存在竖直向下的匀强磁场,磁感应强度大小为B=0.40T.一根质量为m=0.1kg的导体棒MN放在导轨上与导轨接触良好,导轨和导体棒的电阻均可忽略不计.现用一平行于导轨的拉力拉动导体棒沿导轨向右匀速运动,运动速度v=0.50m/s,在运动过程中保持导体棒与导轨垂直.求:(1)导体棒MN中感应电流的方向;(2)闭合回路中产生的感应电流的大小;(3)作用在导体棒上的拉力的大小.2.如图所示,两根足够长的光滑金属导轨竖直放置,相距为L,一理想电流表与两导轨相连,匀强磁场与导轨平面垂直.磁感应强度为B,一质量为m、有效电阻为R的导体棒在距磁场上边界h处静止释放.导体棒进入磁场后,流经电流表的电流逐渐减小,最终稳定.整个运动过程中,导体棒与导轨接触良好,且始终保持水平,不计导轨的电阻.求:(1)稳定时的电流I;(2)电流稳定后,导体棒运动速度的大小v.3.如图所示,将边长为L、质量为m、电阻为R的正方形导线框竖直向上抛出,穿过宽度也为L、磁感应强度为B的匀强磁场,磁场的方向垂直纸面向里,线框向上离开磁场时的速度刚好是进入磁场时速度的一半,线框离开磁场后继续上升一段高度,并再次进入磁场时恰好做匀速运动,整个运动过程中始终存在着大小恒定的空气阻力,且有f=0.25mg,而线框始终保持在竖直平面内不发生转动.求(1)线框最终离开磁场时的速度;(2)线框在上升阶段刚离开磁场时的速度;(3)整个运动过程中线框产生的焦耳热Q.4.如图所示,水平放置的光滑平行金属轨道,电阻不计,导轨间距为L=2m,左右两侧各接一阻值为R=6Ω的电阻.两轨道内存垂直轨道平面向下的有界匀强磁场,一质量为m、电阻为r=2Ω的金属棒MN置于导轨上,与导轨垂直且接触良好,受到F=0.2v+3(N)(v为金属棒速度)的水平外力作用,从磁场的左边界由静止开始运动,用电压表测得电阻两端电压随时间均匀增大.(1)请推导说明金属棒做什么性质的运动.(2)求磁感应强度B的大小.5.如图示,光滑的U型导轨形成一个倾角为30°的斜面,导轨的水平间距为l=10cm,在斜面上有垂直斜面向上的匀强磁场,磁感应强度B=20T,一质量为m=2kg的导体棒在导轨上由静止释放,导体棒的电阻R=2Ω,导轨电阻不计,当小球沿斜面下滑S=6m时,导体棒获得最大速度.求(1)导体棒的最大速度,(2)从静止到小球获得最大速度过程中回路产生的焦耳热.6.如图所示,有两根足够长、不计电阻,相距L的平行光滑金属导轨cd、ef与水平面成θ角固定放置,底端接一阻值为R的电阻,在轨道平面内有磁感应强度为B的匀强磁场,方向垂直轨道平面斜向上.现有一平行于ce、垂直于导轨、质量为m、电阻为r的金属杆ab,在沿轨道平面向上的恒定拉力F作用下,从底端ce由静止沿导轨向上运动.求:(1)ab杆沿导轨上滑过程中所达到的最大速度v;(2)ab杆达到最大速度时电阻R消耗的电功率.7.有一边长为L=0.1m的正方形导线框,质量为m=1kg,由高度H=0.05m高处自由下落,如图所示.当导线框下边ab刚进入宽度也是L=0.1m的匀强磁场区域后,线圈以恒定速率穿越磁场,不计空气阻力.g=10m/s2,求:(1)ab边刚进入磁场时速度大小?(2)导线框在穿越磁场过程中产生的焦耳热Q?电磁感应计算题—基础一.计算题(共7小题)1.如图所示,宽度为L=0.40m的足够长的平行光滑金属导轨固定在绝缘水平面上,导轨的一端连接阻值为R=2.0Ω的电阻.导轨所在空间存在竖直向下的匀强磁场,磁感应强度大小为B=0.40T.一根质量为m=0.1kg的导体棒MN放在导轨上与导轨接触良好,导轨和导体棒的电阻均可忽略不计.现用一平行于导轨的拉力拉动导体棒沿导轨向右匀速运动,运动速度v=0.50m/s,在运动过程中保持导体棒与导轨垂直.求:(1)导体棒MN中感应电流的方向;(2)闭合回路中产生的感应电流的大小;(3)作用在导体棒上的拉力的大小.【解答】解:(1)由右手定则判断知,通过导体棒MN的电流方向N到M.(2)感应电动势为:E=BLv=0.4×0.40×0.5V=0.08V感应电流的大小为:I==A=0.04A;(3)导体棒匀速运动,安培力与拉力平衡,则有:F=F A=BIL=0.4×0.04×0.4N=0.0064N.2.图所示,两根足够长的光滑金属导轨竖直放置,相距为L,一理想电流表与两导轨相连,匀强磁场与导轨平面垂直.磁感应强度为B,一质量为m、有效电阻为R的导体棒在距磁场上边界h处静止释放.导体棒进入磁场后,流经电流表的电流逐渐减小,最终稳定.整个运动过程中,导体棒与导轨接触良好,且始终保持水平,不计导轨的电阻.求:(1)稳定时的电流I;(2)电流稳定后,导体棒运动速度的大小v.【解答】解:(1)当电流稳定时,导体棒做匀速直线运动,有:mg=BIL,解得I=.(2)电流稳定时,I=,又I=,解得v=.3.如图所示,将边长为L、质量为m、电阻为R的正方形导线框竖直向上抛出,穿过宽度也为L、磁感应强度为B的匀强磁场,磁场的方向垂直纸面向里,线框向上离开磁场时的速度刚好是进入磁场时速度的一半,线框离开磁场后继续上升一段高度,并再次进入磁场时恰好做匀速运动,整个运动过程中始终存在着大小恒定的空气阻力,且有f=0.25mg,而线框始终保持在竖直平面内不发生转动.求(1)线框最终离开磁场时的速度;(2)线框在上升阶段刚离开磁场时的速度;(3)整个运动过程中线框产生的焦耳热Q.【解答】解:(1)线框在下落阶段通过磁场过程中,始终做匀速运动,设其速度为v1,则有:mg=f+,解得:v1==(2)设线框在上升阶段离开磁场时的速度为v2,由动能定理,线框从离开磁场至上升到最高点的过程有:0﹣(mg+f)h=0﹣mv22…①线圈从最高点落至进入磁场瞬间,下落过程中有:(mg﹣f)h=mv12…②由①②得:v2=(3)设线框刚进入磁场时速度为v0,在向上穿越磁场过程中,产生焦耳热为Q1,由功能关系,则有:mv02﹣mv22=Q1+(mg+f)2L,而v0=2v2解得:Q1=线框在下落过程中,产生的焦耳热为:Q2=2(mg﹣f)L,解得:Q=Q1+Q2=+2(mg﹣f)L=,4.如图所示,水平放置的光滑平行金属轨道,电阻不计,导轨间距为L=2m,左右两侧各接一阻值为R=6Ω的电阻.两轨道内存垂直轨道平面向下的有界匀强磁场,一质量为m、电阻为r=2Ω的金属棒MN置于导轨上,与导轨垂直且接触良好,受到F=0.2v+3(N)(v为金属棒速度)的水平外力作用,从磁场的左边界由静止开始运动,用电压表测得电阻两端电压随时间均匀增大.(1)请推导说明金属棒做什么性质的运动.(2)求磁感应强度B的大小.(1)设金属棒左右两侧电阻阻值分别为R1、R2,则R1、R2的等效电阻为R==3Ω,【解答】解:设电阻两端电压为U、U随t的变化关系为U=kt,导体棒切割磁感线产生的感应电动势为E,通过导体棒的电流为I,导体棒所受安培力大小为F A,则:U=E﹣IrE=BLvI=解得:U=0.6BLv,结合U=kt可得:0.6BLv=kt,v∝t,故金属棒做初速度为零的匀加速直线运动(2)取金属棒为研究对象,根据牛顿第二定律可得:F﹣F A=maF A=BIL=0.2B2L2v解得:0.2v+3﹣0.2B2L2v=ma因导体棒做匀加速,故a与v无关,即:0.2v=0.2B2L2v解得:B==0.5T5.如图示,光滑的U型导轨形成一个倾角为30°的斜面,导轨的水平间距为l=10cm,在斜面上有垂直斜面向上的匀强磁场,磁感应强度B=20T,一质量为m=2kg的导体棒在导轨上由静止释放,导体棒的电阻R=2Ω,导轨电阻不计,当小球沿斜面下滑S=6m时,导体棒获得最大速度.求(1)导体棒的最大速度,(2)从静止到小球获得最大速度过程中回路产生的焦耳热.【解答】解:(1)当导体棒受力平衡时速度最大,根据平衡条件可得:30°=BIl,根据法拉第电磁感应定律和闭合电路的欧姆定律可得:,联立解得:v=5m/s;(2)由能量守恒得:mgs•sin30°=+Q,解得:Q=25J.6.如图所示,有两根足够长、不计电阻,相距L的平行光滑金属导轨cd、ef与水平面成θ角固定放置,底端接一阻值为R的电阻,在轨道平面内有磁感应强度为B的匀强磁场,方向垂直轨道平面斜向上.现有一平行于ce、垂直于导轨、质量为m、电阻为r的金属杆ab,在沿轨道平面向上的恒定拉力F作用下,从底端ce由静止沿导轨向上运动.求:(1)ab杆沿导轨上滑过程中所达到的最大速度v;(2)ab杆达到最大速度时电阻R消耗的电功率.【解答】解:(1)当ab杆沿导轨上滑达到最大速度v时,其受力如图所示:由平衡条件可知:F﹣F B﹣mgsinθ=0…①又F B=BIL…②而I=…③联立①②③式得:v=…④(2)ab杆达到最大速度时电流最大,故电阻R消耗的功率最大,有:P=I2R…⑤联立③④⑤得:P=;7.有一边长为L=0.1m的正方形导线框,质量为m=1kg,由高度H=0.05m高处自由下落,如图所示.当导线框下边ab刚进入宽度也是L=0.1m的匀强磁场区域后,线圈以恒定速率穿越磁场,不计空气阻力.g=10m/s2,求:(1)ab边刚进入磁场时速度大小?(2)导线框在穿越磁场过程中产生的焦耳热Q?【解答】解:(1)由动能定理可知:mgH=mv2解得v==m/s=1m/s.(2)由能量守恒可知:△E P=Q△E P=2mgL解得Q=2×10×0.1J=2J.。

法拉第电磁感应定律 典例与练习

法拉第电磁感应定律 典例与练习

法拉第电磁感应定律典例与练习【典型例题】类型一、法拉第电磁感应定律的应用例1、(2015 安徽) 如图所示,abcd为水平放置的平行“匚”形光滑金属导轨,间距为l。

导轨间有垂直于导轨平面的匀强磁场,磁感应强度大小为B,导轨电阻不计。

已知金属杆MN倾斜放置,与导轨成θ角,单位长度的电阻为r,保持金属杆以速度v沿平行于cd的方向滑动(金属杆滑动过程中与导轨接触良好)。

则A.电路中感应电动势的大小为sinBlvθB.电路中感应电流的大小为sinBvrθC.金属杆所受安培力的大小为2sinlvrBθD.金属杆的热功率为22sinlrvBθ【答案】B【解析】导体棒切割磁力线产生感应电动势E=Blv,故A错误;感应电流的大小sinsinE BvIl rrθθ==,故B正确;所受的安培力为2sinl B lvF BIrθ==,故C错误;金属杆的热功率222sinsinl B vQ I rrθθ==,故D错误。

【考点】考查电磁感应知识。

举一反三【变式】如图所示,水平放置的平行金属导轨,相距L=0.50 m,左端接一电阻R =0. 20n,磁感应强度B=0.40 T,方向垂直于导轨平面的匀强磁场,导体棒a b垂直放在导轨上,并能无摩擦地沿导轨滑动,导轨和导体棒的电阻均可忽略不计,当a b以v=4.0 m/s的速度水平向右匀速滑动时,求:(1)a b棒中感应电动势的大小,并指出a、b哪端电势高?(2)回路中感应电流的大小;(3)维持a b 棒做匀速运动的水平外力F 的大小。

【答案】(1)0.8V ;a 端电势高;(2)4.0A ;(3)0. 8 N 。

【解析】(1)根据法拉第电磁感应定律,a b 棒中的感应电动势为0.40.5 4.00.8E BLv V V ==⨯⨯= 根据右手定则可判定感应电动势的方向由b a →,所以a 端电势高。

(2)导轨和导体棒的电阻均可忽略不计,感应电流大小为 0.8 4.00.2E I A A R === (3)由于a b 棒受安培力,棒做匀速运动,故外力等于安培力 4.00.50.40.8F BIL N N ==⨯⨯=, 故外力的大小为0. 8 N 。

法拉第电磁感应定律典型例题

法拉第电磁感应定律典型例题

法拉第电磁感觉定律典型例题一、均匀电动势的应用、与刹时电动势的差别(求经过电路的电荷量)1.如右图所示,线圈 M 和线圈 P 绕在同一铁芯上。

设两个线圈中的电流方向与图中所标的电流方向同样时为正。

当M 中通入以下哪一种电流时,在线圈P 中能产生正方向的恒定感觉电流i i i ii IGt t t t0000A B C D2.如图中 (a),圆形线圈 P 静止在水平桌面上,其正上方悬挂一同样的线圈 Q, P 和 Q 共轴, Q 中通有变化电流,电流随时间变化的规律如图4— 4(b)所示, P 所受的重力为G,桌面对P 的支持力为N,则不建立是()A. t1时辰 N> GB. t2时辰 N> G3时辰 N<G D.t 4时辰 N=G3.在匀强磁场中放一电阻不计的平行金属导轨,导轨跟大线圈M 相接,如下图,导轨上放一根导线ab,磁感线垂直导轨所在的平面,欲使M 所包围的小闭合线圈N 产生顺时针方向的感觉电流,则导线的运动可能是()A .匀速向右运动B.加快向右运动C.减速向右运动D.加快向左运动4、如左图所示,一矩形线圈置于匀强磁场中,磁场的磁感觉强度随时间变化的规律如右图所示.则线圈产生的感觉电动势的状况为:()A 、0 时辰电动势最大B、 0 时辰电动势为零C、t1时辰电动势为0 D 、t1~t2时间内电动势增大5.如图 17- 20 所示,边长为 a 的正方形闭合线框ABCD 在匀强磁场中绕AB 边匀速转动,磁感觉强度为 B ,初始时辰线框所在平面与磁感线垂直,经过 t 时辰后转过 120°角,求:(1)线框内感觉电动势在 t 时间内的均匀值(2)转过 120°角时感觉电动势的刹时价(3)设线框电阻为 R,则这一过程中经过线框截面的电量二、等效长度的应用1.如图 17-17 所示中 PQRS 为一正方形线圈,它以恒定的速度向右进入以 MN 为界限的匀强磁场,磁场方向垂直于线圈平面,MN 与线圈边成 45°角, E 、 F 分别为 PS 、 PQ 的中点,对于线圈中感觉电流的大小,下面判断正确的选项是A .当 E 点经过 MN 时,线圈中感觉电流最大B .当 P 点经过 MN 时,线圈中感觉电流最大C .当 F 点经过 MN 时,线圈中感觉电流最大D .当 Q 点经过 MN 时,线圈中感觉电流最大三、旋转切割磁感线1.竖直平面内有一金属环,半径为 a ,总电阻为 R.磁感觉强度为 B 的匀强磁场垂直穿过环平面,与环的最高点 A 铰链连结的长度为2a 、电阻为 R/2 的导体棒 AB 由水平地点紧贴环面摆下(如图) .当摆到竖直地点时,B 点的线速度为v ,则这时AB 两头的电压大小为()D. Bav/3三、图像问题1. 图 6 中 A 是一底边宽为 L 的闭合线框, 其电阻为 R 。

高中物理模块复习典型题分类-电磁感应(含详细答案)

高中物理模块复习典型题分类-电磁感应(含详细答案)

高中物理模块复习典型题分类-电磁感应(含详细答案)一、单选题1.如图所示,足够长平行金属导轨倾斜放置,倾角为37°,宽度为0.5 m,电阻忽略不计,其上端接一小灯泡,电阻为1 Ω.一导体棒MN垂直于导轨放置,质量为0.2 kg,接入电路的电阻为1 Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5.在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8 T.将导体棒MN由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN的运动速度以及小灯泡消耗的电功率分别为(重力加速度g取10 m/s2,sin 37°=0.6)()A.2.5 m/s 1 WB.5 m/s 1 WC.7.5 m/s 9 WD.15 m/s 9 W2.如图所示,水平桌面上放一闭合铝环,在铝环轴线上方有一条形磁铁.当条形磁铁沿轴线竖直向下迅速移动时,下列判断中正确的是()A.铝环有收缩趋势,对桌面压力减小B.铝环有收缩趋势,对桌面压力增大C.铝环有扩张趋势,对桌面压力减小D.铝环有扩张趋势,对桌面压力增大3.如图所示,A为水平放置的胶木圆盘,在其侧面带有负电荷,在A的正上方用丝线悬挂一个金属圆环B,使B的环面在水平面上且与圆盘面平行,其轴线与胶木盘A的轴线重合。

现使胶木盘A由静止开始绕其轴线OO′按箭头所示方向加速转动,则()A.金属环B的面积有扩大的趋势,丝线受到的拉力增大B.金属环B的面积有缩小的趋势,丝线受到的拉力减小C.金属环B的面积有扩大的趋势,丝线受到的拉力减小D.金属环B的面积有缩小的趋势,丝线受到的拉力增大4.如图所示,AB、CD是一个圆的两条直径且AB、CD夹角为60°,该圆处于匀强电场中,电场强度方向平行该圆所在平面.其中φB=φC=φ,U BA=φ,保持该电场的场强大小和方向不变,让电场以B点为轴在其所在平面内逆时针转过60°.则下列判断中不正确的是()A.转动前U BD=φB.转动后U BD=C.转动后D.转动后5.如图所示,MN、PQ是间距为L的平行金属导轨,置于磁感应强度为B、方向垂直导轨所在平面向里的匀强磁场中,M、P间接有一阻值为R的电阻。

高考物理法拉第电磁感应定律-经典压轴题附答案解析

高考物理法拉第电磁感应定律-经典压轴题附答案解析
(1)棒进入磁场时受到的安培力F;
(2)在0~4s时间内通过电阻R的电荷量q;
(3)在0~5s时间内金属棒ab产生的焦耳热Q。
【答案】(1) (2) (3)
【解析】(1)棒进入磁场之前对ab受力分析由牛顿第二定律得
由匀变速直线位移与时间关系
则由匀变速直线运动速度与时间 Nhomakorabea系得金属棒受到的安培力
(2)由上知,棒进人磁场时 ,则金属棒作匀速运动,匀速运动时间
F安=BLI
根据闭合电路欧姆定律有:
I=
联立解得解得F安=4 N
所以克服安培力做功:
而Q=W安,故该过程中产生的焦耳热Q=3.2 J
(3)设线框出磁场区域的速度大小为v1,则根据运动学关系有:
而根据牛顿运动定律可知:
联立整理得:
(M+m)( -v2)=(M-m)g·2L
线框穿过磁场区域过程中,力F和安培力都是变力,根据动能定理有:
【答案】(1)1.2 V(2)3.2 J(3)0.9 J
【解析】
【详解】
(1)线框eb边以v=4.0 m/s的速度进入磁场并匀速运动,产生的感应电动势为:
因为e、b两点间作为等效电源,则e、b两点间的电势差为外电压:
Ueb= E=1.2 V.
(2)线框进入磁场后立即做匀速运动,并匀速穿过磁场区,线框受安培力:
对棒2: 安
解得:
(2)对棒1和2的系统,动量守恒,则最后稳定时:
解得:
(3)对棒2,由动量定理: ,其中
解得:
(4)由 、 、
联立解得:

解得:
则稳定后两棒的距离:
8.如图所示,两根足够长、电阻不计的光滑平行金属导轨相距为L=1m,导轨平面与水平面成 =30角,上端连接 的电阻.质量为m=0.2kg、阻值 的金属棒ab放在两导轨上,与导轨垂直并接触良好,距离导轨最上端d=4m,整个装置处于匀强磁场中,磁场的方向垂直导轨平面向上.

电磁感应定律习题含答案

电磁感应定律习题含答案

法拉第电磁感应定律练习题1.闭合电路的一部分导线ab处于匀强磁场中,图1中各情况下导线都在纸面内运动,那么下列判断中正确的是[ ] A.都会产生感应电流B.都不会产生感应电流C.甲、乙不会产生感应电流,丙、丁会产生感应电流D.甲、丙会产生感应电流,乙、丁不会产生感应电流1.关于感应电动势大小的下列说法中,正确的是[ ]A.线圈中磁通量变化越大,线圈中产生的感应电动势一定越大B.线圈中磁通量越大,产生的感应电动势一定越大C.线圈放在磁感强度越强的地方,产生的感应电动势一定越大D.线圈中磁通量变化越快,产生的感应电动势越大2.与x轴夹角为30°的匀强磁场磁感强度为B(图1),一根长l的金属棒在此磁场中运动时始终与z轴平行,以下哪些情况可在棒中得到方向相同、大小为Blv的电动势[ ]A.以2v速率向+x轴方向运动B.以速率v垂直磁场方向运动4.单匝矩形线圈在匀强磁场中匀速转动,转轴垂直于磁场,若线圈所围面积里磁通量随时间变化的规律如图3所示[ ]A.线圈中O时刻感应电动势最大B.线圈中D时刻感应电动势为零C.线圈中D时刻感应电动势最大D.线圈中O至D时间内平均感电动势为0.4V5.一个N匝圆线圈,放在磁感强度为B的匀强磁场中,线圈平面跟磁感强度方向成30°角,磁感强度随时间均匀变化,线圈导线规格不变,下列方法中可使线圈中感应电流增加一倍的是[ ] A.将线圈匝数增加一倍B.将线圈面积增加一倍C.将线圈半径增加一倍D.适当改变线圈的取向6.如图4所示,圆环a与圆环b半径之比为2∶1,两环用同样粗细的、同种材料的导线连成闭合回路,连接两圆环电阻不计,匀强磁场的磁感强度变化率恒定,则在a环单独置于磁场中与b环单独置于磁场中两种情况下,M、N两点的电势差之比为[ ]A.4∶1B.1∶4C.2∶1D.1∶28.如图5所示,相距为l,在足够长度的两条光滑平行导轨上,平行放置着质量与电阻均相同的两根滑杆ab与cd,导轨的电阻不计,磁感强度为B的匀强磁场的方向垂直于导轨平面竖直向下,开始时,ab与cd都处于静止状态,现ab杆上作用一个水平方向的恒力F,下列说法中正确的是[ ]A.cd向左运动B.cd向右运动C.ab与cd均先做变加速运动,后作匀速运动D.ab与cd均先做交加速运动,后作匀加速运动9.如图6所示,RQRS为一正方形导线框,它以恒定速度向右进入以MN为边界的匀强磁场,磁场方向垂直线框平面,MN线与线框的边成45°角,E、F分别为PS与PQ的中点,关于线框中的感应电流[ ]A.当E点经过边界MN时,感应电流最大B.当P点经过边界MN时,感应电流最大C.当F点经过边界MN时,感应电流最大D.当Q点经过边界MN时,感应电流最大10.如图7所示,平行金属导轨的间距为d,一端跨接一阻值为R的电阻,匀强磁场的磁感应强度为B,方向垂直于平行轨道所在平面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.电磁感应定律典型计算题一、计算题(本大题共41小题,共410.0分)1.如图,不计电阻的U形导轨水平放置,导轨宽l=0.5m,左端连接阻值为0.4Ω的电阻R.在导轨上垂直于导轨放一电阻为0.1Ω的导体棒MN ,并用水平轻绳通过定滑轮吊着质量为m=2.4g的重物,图中L=0.8m.开始重物与水平地面接触并处于静止.整个装置处于竖直向上的匀强磁场中,磁感强度B0=0.5T,并且以的规律在增大.不计摩擦阻力.求至少经过多长时间才能将重物吊起?(g=10m/s2)2.在如图甲所示的电路中,螺线管匝数n=1500匝,横截面积S=20cm2.螺线管导线电阻r=1.0Ω,R1=4.0Ω,R2=5.0Ω,C=30μF.在一段时间内,穿过螺线管的磁场的磁感应强度B按如图乙所示的规律变化.求:(1)求螺线管中产生的感应电动势;(2)闭合S,电路中的电流稳定后,求电阻R1的电功率;(3)S断开后,求流经R2的电量.3.如图甲所示,回路中有一个C=60μF的电容器,已知回路的面积为1.0×10-2m 2,垂直穿过回路的磁场的磁感应强度B随时间t的变化图象如图乙所示,求:(1)t=5s时,回路中的感应电动势;(2)电容器上的电荷量.4.如图甲所示,一个圆形线圈的匝数n=1 000,线圈面积S=300cm2,线圈的电阻r=1Ω,线圈外接一个阻值R=4Ω的电阻,线圈处在有一方向垂直线圈平面向里的圆形磁场中,圆形磁场的面积S0=200cm2,磁感应强度随时间的变化规律如图乙所示.求:(1)第4秒时线圈的磁通量及前4s内磁通量的变化量(2)前4s内的感应电动势和前4s内通过R的电荷量;(3)线圈电阻r消耗的功率.5.如图所示,一个圆形线圈的匝数n=1000,线圈面积S=200cm2,线圈的电阻r=1Ω,线圈外接一个阻值R=4Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间变化规律如图所示;求:(1)前4s内的感应电动势(2)前5s内的感应电动势.6.如图所示,电阻不计的足够长光滑平行金属导轨倾斜放置,两导轨间距为L,导轨平面与水平面之间的夹角为α,下端接有阻值为R的电阻.质量为m、电阻为r的导体棒ab与固定轻质弹簧连接后放在导轨上,整个装置处于磁感应强度大小为B、方向垂直于导轨平面向上的匀强磁场中,开始时导体棒ab处于锁定状态且弹簧处于原长.某时刻将导体棒解锁并给导体棒一个沿导轨平面向下的初速度v0使导体棒ab沿导轨平面运动,整个运动过程中导体棒始终与导轨垂直并保持良好接触,弹簧的劲度系数为k且弹簧的中心轴线与导轨平行,导体棒运动过程中弹簧始终处于弹性限度内,重力加速度为g.(1)若导体棒的速度达到最大时弹簧的劲度系数k与其形变量x、导体棒ab的质量之间的关系为k=,求导体棒ab的速度达到最大时通过电阻R的电流大小;(2)若导体棒ab第一次回到初始位置时的速度大小为v,求此时导体棒ab的加速度大小;(3)若导体最终静止时弹簧的弹性势能为E p,求导体棒从开始运动直到停止的过程中,.电阻R上产生的热量.7.如图所示,两根足够长固定平行金属导轨位于倾角θ=30°的斜面上,导轨上、下端各接有阻值R=20Ω的电阻,导轨电阻忽略不计,导轨宽度L=2m,在整个导轨平面内都有垂直于导轨平面向上的匀强磁场,磁感应强度B=1T.质量m=0.1kg、连入电路的电阻r=10Ω的金属棒ab在较高处由静止释放,当金属棒ab下滑高度h=3m时,速度恰好达到最大值v=2m/s.金属棒ab在下滑过程中始终与导轨垂直且与导轨良好接触g取10m/s2.求:(1)金属棒ab由静止至下滑高度为3m的运动过程中机械能的减少量.(2)金属棒ab由静止至下滑高度为3m的运动过程中导轨上端电阻R中产生的热量.8.如图所示,有一磁感应强度大小为B的水平匀强磁场,其上下水平边界的间距为H;磁场的正上方有一长方形导线框,其长和宽分别为L、d(d<H),质量为m,电阻为R.现将线框从其下边缘与磁场上边界间的距离为h处由静止释放,测得线框进入磁场的过程所用的时间为t.线框平面始终与磁场方向垂直,线框上下边始终保持水平,重力加速度为g.求:(1)线框下边缘刚进入磁场时线框中感应电流的大小和方向;(2)线框的上边缘刚进磁场时线框的速率v1;(3)线框下边缘刚进入磁场到下边缘刚离开磁场的全过程中产生的总焦耳热Q.9.如图所示,相距L=0.4m、电阻不计的两平行光滑金属导轨水平放置,一端与阻值R=0.15Ω的电阻相连,导轨处于磁感应强度B=0.5T的匀强磁场中,磁场方向垂直于导轨平面.质量m=0.1kg、电阻r=0.05Ω的金属棒置于导轨上,并与导轨垂直.t=0时起棒在水平外力F作用下以初速度v0=2m/s、加速度a=1m/s2沿导轨向右匀加速运动.求:(1)t=2s时回路中的电流;(2)t=2s时外力F大小;(3)第2s内通过棒的电荷量.10.如图所示,面积为0.2m2的100匝线圈处在匀强磁场中,磁场方向垂直于线圈平面,已知磁感应强度随时间变化的规律为B=0.2t T,定值电阻R1=6Ω,线圈电阻R2=4Ω.求:(1)回路的感应电动势;(2)a、b两点间的电压.11.如图甲所示,有一面积S=100cm2,匝数n=100匝的闭合线圈,电阻为R=10Ω,线圈中磁场变化规律如图乙所示,磁场方向垂直纸面向里为正方向,求:(1)t=1s时,穿过每匝线圈的磁通量为多少?(2)t=2s内,线圈产生的感应电动势为多少?12.如图所示,两根光滑的平行金属导轨MN、PQ处于同一水平面内,相距L=0.5m,导轨的左端用R=3Ω的电阻相连,导轨电阻不计,导轨上跨接一电阻r=1Ω的金属杆ab,质量m=0.2kg,整个装置放在竖直向上的匀强磁场中,磁感应强度B=2T,现对杆施加水平向右的拉力F=2N,使它由静止开始运动,求:(1)杆能达到的最大速度多大?(2)若已知杆从静止开始运动至最大速度的过程中,R上总共产生了10.2J的电热,则此过程中金属杆ab的位移多大?(3)接(2)问,此过程中流过电阻R的电量?经历的时间?13.如图甲所示,光滑的平行水平金属导轨MN、PQ相距L,在M点和P点间连接一个阻值为R的电阻,一质量为m、电阻为r、长度也刚好为L的导体棒ab垂直搁在导轨上,在导体棒的右侧导轨间加一有界匀强磁场,磁场方向垂直于导轨平面,宽度为d0,磁感应强度为B,设磁场左边界到导体棒的距离为d.现用一个水平向右的力F拉导体棒,使它由静止开始运动,棒离开磁场前已做匀速直线运动,与导轨始终保持良好接触,导轨电阻不计,水平力F与位移x的关系图象如图乙所示,F0已知.求:.(1)导体棒ab离开磁场右边界时的速度.(2)导体棒ab通过磁场区域的过程中整个回路所消耗的电能.(3)d0满足什么条件时,导体棒ab进入磁场后一直做匀速运动?14.如图所示,在宽为0.5m的平行导轨上垂直导轨放置一个有效电阻为r=0.6Ω的导体棒,在导轨的两端分别连接两个电阻R1=4Ω、R2=6Ω,其他电阻不计.整个装置处在垂直导轨向里的匀强磁场中,如图所示,磁感应强度 B=0.1T.当直导体棒在导轨上以v=6m/s的速度向右运动时,求:直导体棒两端的电压和流过电阻R1和R2的电流大小.15.如图所示,宽为L的光滑导轨与水平面成θ角,匀强磁场垂直导轨平面向上,磁感应强度为B,质量为m、电阻为r的金属杆ab沿导轨下滑,导轨下端的定值电阻为R,导轨的电阻不计,试求:(1)杆ab沿导轨下滑时的稳定速度的大小;(2)杆ab稳定下滑时两端的电势差.16.如图所示,竖直放置的足够长的光滑平行金属导轨,间距为l=0.50m,导轨上端接有电阻R=0.80Ω,导轨电阻忽略不计.空间有一水平方向的有上边界的匀强磁场,磁感应强度大小为B=0.40T,方向垂直于金属导轨平面向外.质量为m=0.02kg、电阻r=0.20Ω的金属杆MN,从静止开始沿着金属导轨下滑,下落一定高度后以v=2.5m/s的速度进入匀强磁场中,在磁场下落过程中金属杆始终与导轨垂直且接触良好.已知重力加速度为g=10m/s2,不计空气阻力,求在磁场中,(1)金属杆刚进入磁场区域时加速度;(2)若金属杆在磁场区域又下落h开始以v0匀速运动,求v 0大小.17.竖直放置的光滑U形导轨宽0.5m,电阻不计,置于很大的磁感应强度是1T的匀强磁场中,磁场垂直于导轨平面,如图所示,质量为10g,电阻为1Ω的金属杆PQ无初速度释放后,紧贴导轨下滑(始终能处于水平位置).问:(1)到通过PQ的电量达到0.2c时,PQ下落了多大高度?(2)若此时PQ正好到达最大速度,此速度多大?(3)以上过程产生了多少热量?18.如图甲所示,平行金属导轨与水平面的夹角为θ=37°,导轨间距为L=1m,底端接有电阻R=6Ω,虚线00'下方有垂直于导轨平面向下的匀强磁场.现将质量m=1kg、电阻r=3Ω的金属杆ab从00'上方某处静止释放,杆下滑4m过程中(没有滑到底端)始终保持与导轨垂直且良好接触,杆的加速度a与下滑距离s的关系如图乙所示.(sin37°=0.6,cos37°=0.8,g=10m/s2,其余电阻不计)求:(1)金属杆ab与导轨间的动摩擦因数μ(2)磁感应强度B的大小.19.如图,在竖直平面内有金属框ABCD,B=0.1T的匀强磁场垂直线框平面向外,线框电阻不计,框间距离为0.1m.线框上有一个长0.1m的可滑动的金属杆ab,已知金属杆质量为0.2g,金属杆电阻r=0.1Ω,电阻R=0.2Ω,不计其他阻力,求金属杆ab匀速下落时的速度.20.一个面积为0.2m2的100匝线圈处在匀强磁场中,磁场方问垂直于线圈平面,已知磁感应强度随时间变化的规律为B=(2+0.2t)T,定值电阻R=6Ω,线圈电阻r=4Ω,求:(1)线圈中磁通量的变化率和回路的感应电动势;(2)a、b两点间电压U ab..21.一线圈匝数为N、电阻为r,在线圈外接一阻值为2r的电阻R,如图甲所示.线圈内有垂直纸面向里的匀强磁场,磁通量Φ随时间t变化的规律如图乙所示.求0至t0时间内:(1)线圈中产生的感应电动势大小;(2)通过R的感应电流大小和方向;(3)电阻R中感应电流产生的焦耳热.22.金属框架平面与磁感线垂直,金属与框架的电阻忽略,电流计内阻R=20Ω,磁感强度B=1T,导轨宽L=50cm,棒以2m/s的速度作切割磁感线运动,那么(1)电路中产生的感应电动势为多少伏?(2)电流的总功率为多少瓦?(3)为了维持金属棒作匀速运动,外力F的大小为多少牛?23.如图所示,导轨是水平的,其间距l1=0.5m,ab杆与导轨左端的距离l2=0.8m,由导轨与ab杆所构成的回路电阻为0.2Ω,方向垂直导轨平面向下的匀强磁场的磁感应强度B=1T,滑轮下挂一重物质量0.04kg,ah杆与导轨间的摩擦不计,现使磁场以=0.2T/s的变化率均匀地增大,问:当t为多少时,M刚离开地面?(g取10m/s2)24.如图(甲)所示,光滑且足够长的平行金属导轨MN、PQ固定在同一水平面上,两导轨间的距离L=1m,定值电阻R 1=6Ω,R2=3Ω,导轨上放一质量为m=1kg的金属杆,杆的电阻r=2Ω,导轨的电阻不计,整个装置处于磁感应强度为B=0.8T的匀强磁场中,磁场的方向垂直导轨平面向下.现用一拉力F沿水平方向拉杆,使金属杆以一定的初速度开始运动.图(乙)所示为通过R1中电流的平方I12随时间t的变化关系图象,求:(1)5s末金属杆的速度;(2)金属杆在t时刻所受的安培力;(3)5s内拉力F所做的功.25.在光滑绝缘水平面上,电阻为0.1Ω、质量为0.05kg的长方形金属框abcd,以10m/s的初速度向磁感应强度B=0.5T、方向垂直水平面向下、范围足够大的匀强磁场滑去.当金属框进入磁场到达如图所示位置时,已产生1.6J的热量.(1)求出在图示位置时金属框的动能.(2)求图示位置时金属框中感应电流的功率.(已知ab边长L=0.1m)26.如图所示,两平行金属导轨之间的距离为L=0.6m,两导轨所在平面与水平面之间的夹角为θ=37°,电阻R的阻值为1Ω(其余电阻不计),一质量为m=0.1kg的导体棒横放在导轨上,整个装置处于匀强磁场中,磁感应强度为B=0.5T,方向垂直导轨平面斜向上,已知导体棒与金属导轨间的动摩擦因数为μ=0.3,今由静止释放导体棒,当通过导体棒的电荷量为1.8C时,导体棒开始做匀速直线运动.已知:sin37°=0.6,cos37°=0.8,重力加速度g=10m/s2,求:(1)导体棒匀速运动的速度;(2)求导体从静止开始到匀速过程中下滑的距离S.(3)导体棒下滑s的过程中产生的电能.27.如图甲所示,一个圆形线圈的匝数n=1000,线圈面积S=200cm2,线圈的电阻r=1Ω,线圈外接一个阻值R=4Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间的变化规律如图乙所示.求:(1)请说明线圈中的电流方向;(2)前4s内的感应电动势;.(3)前4s内通过R的电荷量.28.如图所示,水平方向的匀强磁场呈带状分布,两区域磁感应强度不同,宽度都是L,间隔是2L.边长为L、质量为m、电阻为R的正方形金属线框,处于竖直平面且与磁场方向垂直,底边平行于磁场边界,离第一磁场的上边界的距离为L.线框从静止开始自由下落,当线框穿过两磁场区域时恰好都能匀速运动.若重力加速度为g,求:(1)第一个磁场区域的磁感应强度B1;(2)线框从开始下落到刚好穿过第二磁场区域的过程中产生的总热量Q.29.如图所示,框架的面积为S,匀强磁场的磁感应强度为B.试求:①框架平面与磁感应强度B垂直时,穿过框架平面的磁通量为多少?②若框架绕OO′转过60°,则穿过框架平面的磁通量为多少?③在此过程中,穿过框架平面的磁通量的变化量大小为多少?30.如图所示,一U形光滑金属框的可动边AC棒长L=1m,电阻为r=1Ω.匀强磁场的磁感强度为B=0.5T,AC以v=8m/s的速度水平向右移动,电阻R=7Ω,(其它电阻均不计).求:(1)电路中产生的感应电动势的大小.(2)通过R的感应电流大小.(3)AC两端的电压大小.31.如图,光滑平行的水平金属导轨MN、PQ相距l,在M点和P点间接一个阻值为R 的电阻,在两导轨间OO1O1′O′矩形区域内有垂直导轨平面竖直向下、宽为d的匀强磁场,磁感强度为B.一质量为m,电阻为r的导体棒ab,垂直搁在导轨上,与磁场左边界相距d0.现用一大小为F、水平向右的恒力拉ab棒,使它由静止开始运动,棒ab在离开磁场前已经做匀速直线运动(棒ab与导轨始终保持良好的接触,导轨电阻不计).求:(1)棒ab在离开磁场右边界时的速度;(2)棒ab通过磁场区的过程中整个回路所消耗的电能.32.如图所示,两足够长平行光滑的金属导轨MN、PQ相距为L,导轨平面与水平面夹角α=30°,导轨电阻不计.磁感应强度为B的匀强磁场垂直导轨平面向上,两根长为L的完全相同的金属棒ab、cd垂直于MN、PQ放置在导轨上,且与导轨接触良好,每根棒的质量均为m、电阻均为R.现对ab施加平行导轨向上的恒力F,当ab向上做匀速直线运动时,cd保持静止状态.(1)求力F的大小及ab运动速度v的大小.(2)若施加在ab上的力的大小突然变为2mg,方向不变,则当两棒运动的加速度刚好相同时回路中的电流强度I和电功率P分别为多大?33.如图甲所示,abcd是位于竖直平面内的正方形闭合金属线框,金属线框的质量为m,电阻为R,在金属线框的下方有一匀强磁场区域,MN和PQ是匀强磁场区域的水平边界.并与线框的bc边平行,磁场方向垂直于线框平面向里.现使金属线框从MN上方某一高度处由静止开始下落,如图乙是金属线框由开始下落到完全穿过匀强磁场区域瞬间的v-t图象,图中字母均为已知量.重力加速度为g,不计空气阻力.求:(1)金属线框的边长;(2)金属线框在进入磁场的过程中通过线框截面的电量;(3)金属线框在0~t4时间内安培力做的总功.34.如图所示,一对光滑的平行金属导轨固定在同一水平面内,导轨间距为L,左端接有阻值为R的电阻,一质量为m、电阻为r的金属棒MN垂直放置在导轨上,整个装置置于竖直向上的匀强磁场中.当.棒以速度v匀速运动时,加在棒上的水平拉力大小为F1;若改变水平拉力的大小,让棒以初速度v做匀加速直线运动,当棒匀加速运动的位移为x时,速度达到3v.己知导轨足够长且电阻不计,棒在运动过程中始终与导轨垂直且两端与导轨保待良好接触.(1)求磁场的磁感应强度大小;(2)在金属棒的速度由v变为3v的匀加速运动过程中,拉力对金属棒做的功为W F,求这一过程回路产生的电热为多少?(3)通过计算写出金属棒匀加速直线运动时所需外力F随时间t变化的函数关系式.35.相距为L的两光滑平行导轨与水平面成θ角放置.上端连接一阻值为R的电阻,其他电阻不计.整个装置处在方向竖直向上的匀强磁场中,磁感强度为B,质量为m,电阻为r的导体MN,垂直导轨放在导轨上,如图所示.由静止释放导体MN,求:(1)MN可达的最大速度v m;(2)MN速度v=时的加速度a;(3)回路产生的最大电功率P m.36.如图,MN、PQ两条平行的光滑金属轨道与水平面成θ角固定,轨距为d.空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B.P、M间接有阻值为3R的电阻.Q、N间接有阻值为6R的电阻,质量为m的金属杆ab水平放置在轨道上,其有效电阻为R.现从静止释放ab,当它沿轨道下滑距离s时,达到最大速度.若轨道足够长且电阻不计,重力加速度为g.求:(1)金属杆ab运动的最大速度;(2)金属杆ab运动的加速度为gsinθ时,金属杆ab消耗的电功率;(3)金属杆ab从静止到具有最大速度的过程中,通过6R的电量;(4)金属杆ab从静止到具有最大速度的过程中,克服安培力所做的功.37.如图所示,竖直放置的光滑平行金属导轨MN、PQ相距L=1m,在M点和P点间接有一个阻值为R=0.8Ω的电阻,在两导轨间的矩形区域OO1O1′O′内有垂直导轨平面向里、高度h=1.55m的匀强磁场,磁感应强度为B=T,一质量为m=0.5kg的导体棒ab垂直资料地搁在导轨上,与磁场的上边界相距h0=0.45m,现使ab棒由静止开始释放,下落过程中,棒ab与导轨始终保持良好接触且保持水平,在离开磁场前已经做匀速直线运动,已知导体棒在导轨间的有效电阻由0.2Ω,导轨的电阻不计,g取10m/s2.(1)ab棒离开磁场的下边届时的速度大小;(2)ab棒从静止释放到离开磁场下边届的运动过程中,其速度达到2m/s时的加速度大小和方向;(3)ab棒在通过磁场区的过程中产生的焦耳热.38.如图所示PQ、MN为足够长的两平行金属导轨,它们之间连接一个阻值R=8Ω的电阻;导轨间距为L=1m;一质量为m=0.1kg,电阻r=2Ω,长约1m的均匀金属杆水平放置在导轨上,它与导轨的滑动摩擦因数μ=,导轨平面的倾角为θ=30°在垂直导轨平面方向有匀强磁场,磁感应强度为B=0.5T,今让金属杆AB由静止开始下滑,下滑过程中杆AB与导轨一直保持良好接触,杆从静止开始到杆AB恰好匀速运动的过程中经过杆的电量q=l C,求:(1)当AB下滑速度为2m/s时加速度的大小(2)AB 下滑的最大速度(3)从静止开始到AB匀速运动过程R上产生的热量.39.如图所示,“U”形导线框固定在水平面上,右端放有质量为m的金属棒ab,ab与导轨间的动摩擦因数为μ,它们围成的矩形边长分别为L1、L2,回路的总电阻为R.从t=0时刻起,在竖直向上方向加一个随时间均匀增加的磁场B=kt,那么(1)在磁场均匀增加过程,金属棒ab电流方向?(2)时间t为多大时,金属棒开始移动?(最大静摩擦力fm近似为滑动摩擦力f滑)40.如图所示,在光滑绝缘的水平面上有一个用均匀导体围成的正方形线框abcd,其边长为L,总电阻为R.边界MN的右侧有垂直于纸面向里的匀强磁场,磁感应强度为B.线框在大小为F的恒力作用下向右运动,其中ab边保持与MN平行.当线框以速度v0进入磁场区域时,它恰好做匀速运动.在线框进入磁场的过程中,求:高中物理试卷第12页,共13页.(1)线框ab边产生的感应电动势E的大小;(2)线框a、b两点的电势差;(3)线框中产生的焦耳热.41.如图所示,宽度为L=0.2m的足够长的平行光滑金属导轨固定在绝缘水平面上,导轨的一端连接阻值为R=1Ω的电阻.导轨所在空间存在竖直向下的匀强磁场,磁感应强度大小为B=0.5T.一根质量为m=10g的导体棒MN放在导轨上与导轨接触良好,导轨和导体棒的电阻均可忽略不计.现用一平行于导轨的拉力拉动导体棒沿导轨向右匀速运动,运动速度v=10m/s,在运动过程中保持导体棒与导轨垂直.求:(1)在闭合回路中产生的感应电流的大小.(2)作用在导体棒上的拉力的大小.(3)当导体棒移动30cm时撤去拉力,求:从撤去拉力至棒停下来过程中电阻R上产生的热量.资料。

相关文档
最新文档