简述输电线路纵联差动保护的原理
13-14-2输电线路纵联保护解析

电力系统继电保护原理主讲教师:刘青电自教研室第六章输电线路的纵联保护6.1 输电线路纵联保护概述一、反应单侧电气量保护的缺陷(电流保护和距离保护)•无法区分本线路末端短路与相邻线路出口短路。
•无法实现全线速动。
二、输电线路纵联保护的概念输电线路纵联保护:就是利用通信通道将线路两端的保护装置纵向联结起来,将各端的电气量(电流、功率方向等)传送到对端,将两端的电气量进行比较,判断故障在区内还是在区外,从而决定是否切断被保护线路。
单端电气量保护:仅利用被保护元件的一侧电气量,无法区分线路末端和相邻线路的出口短路,可以作为后备保护(三段式)。
纵联保护:利用被保护元件的各侧电气量,可以识别:内部和外部的故障,作为主保护。
继电保护装置继电保护装置TA TATVTV 输电线路纵联保护结构框图在设备的“纵向”之间,进行信号交换通信设备通信设备通信通道三、通信通道的类型1.导引线通道----导引线纵联差动保护它只适用于< 15-20公里的短线路。
它在发电机、变压器、母线保护中应用得更广泛。
2. 电力线载波通道----载波(高频)保护利用输电线路本身作为通道在工频电流上叠加载波信号(30~500kHZ)传送两侧电气量的信息。
3. 微波通道(150MHZ~20GHZ)--微波保护频带宽,需采用脉冲编码调制,适合于数字式保护,不经济。
4. 光纤通道----光纤保护采用脉冲编码调制PCM方式,光信号不受干扰。
四、高频通道的构成高频收发信机接入输电线路的方式有:✓“相-相”制:连接在两相导线之间;✓“相-地”制:连接在输电线一相导线和大地之间。
电气量继电保护发信机收信机收信机发信机继电保护电气量通道高频保护由继电保护、高频收发信机和高频通道组成。
GFX GSX GFXGSX 123456782346758“相-地”制高频通道示意图输电线“相-地”制高频通道示意图GFX GSX GFXGSX 123456782346758阻波器并联谐振回路,其谐振频率为载波频率。
电力系统继电保护第二版答案参考之输电线路纵联保护

第四章输电线路纵联保护4-1试述纵联保护的基本工作原理和特点。
纵联保护能否单端运行?答:纵联保护的基本工作原理:纵联保护是用某种通信通道将输电线两端或各端(对于多端线路)的保护装置纵向连接起来,将各端的电气量(电流、功率的方向等)传送到对端,将各端的电气量进行比较,以判断故障在本线路范围内还是在线路范围之外,从而决定是否切断被保护线路。
纵联保护的特点:能实现全线速动,具有绝对的选择性。
纵联电流差动保护、高频闭锁方向纵联保护、高频闭锁距离纵联保护、纵联电流相位差动保护这四种纵联保护均可以单端运行。
4-2目前常用的纵联保护有哪几种?分别简述它们的工作原理。
答:目前常用的纵联保护有3种,分别是纵联电流差动保护、高频闭锁方向纵联保护、高频闭锁距离纵联保护。
其工作原理如下:纵联电流差动保护:流进差动继电器的量为线路双端电流量为测量量之和。
当正常运行时或外部故障时,流进差动继电器的电流为比较小的不平衡电流或者最大的负荷电流(考虑到两端的电流互感器有一个出现断线故障时),均比整定值小不动作,内部故障时流进差动继电器的电流是比较大的短路电流,比整定值大而使得两端断路器动作。
高频闭锁方向纵联保护:两端的保护装置测量的是功率的方向,功率方向为负的一侧发高频闭锁信号。
当外部故障时,两端的功率方向不同,为一正一负。
功率方向为负的一侧发高频闭锁信号且本身自己不动作,使得同线路的另一端收到闭锁信号也不动作。
内部故障时两端功率方向均为正,都不发闭锁信号,因此两端都收不到闭锁信号,保护都跳闸。
高频闭锁距离纵联保护:在距离保护的基础上加上高频闭锁部分。
以距离保护III段的整定值为故障启动发信元件,以距离保护II段的整定值为方向判别和停信元件。
当发生内部故障时,线路两侧的保护装置均不发出高频信号,因此线路两侧的保护均动作,当发生外部故障时,测量阻抗为负的一侧不动作且发出高频闭锁信号闭锁同线路另一侧的保护,使得其无法动作。
当作为后备使用时,则按照距离保护II、III段的整定时限动作。
6输电线路纵联保护

• 上述的接线只能用于发电机、变压器、母线和大型电动机的保护中,不能用于输电线路,因为线路有一 定的长度,必须有导引线通道。
7
6.1 输电线路纵联差动保护
• 导引线纵联差动保护
• 利用敷设在输电线路两端变电所之间的二次电缆传递被保护线路各侧信息的通 信方式称之为导引线通信,以导引线为通道的纵联保护称为导引线纵联保护( 简称导引线保护)。
3 连接滤波器 • 连接滤波器与耦合电容器共同组成一个 带通滤波器,使所需频带的电流能够顺 利通过。
20
6.2 高频保护
4 高频电缆 • 它用来连接室内继电保护屏、高频收发信 机到室外变电站的连接滤波器。
5 高频收、发信机 • 高频收发信机由高频收信机和高频发信机 两部分组成,用来发送和接收高频信号。 发信机发出的高频信号通过高频通道传送 到对端,被对端和本端的收信机所接受, 两端的收信机既接收来自本侧的高频信号 又接收来自对侧的高频信号,两个信号经 比较判断后,确定继电保护动作跳闸或闭锁。
17
6.1 输电线路纵联差动保护
• 整定计算
• 纵差保护是瞬时保护,应按躲过保护区外短路时最大不平衡电流来整定差动继电器的动
作电流,即
Iop.r K I rel unb.max
• 当正常运行时,为防止电流互感器二次回路一相断线而导致保护误动作, 应大于被保 护线路可能流过最大负荷电流 ,即
Iop.r K I rel L.max nTA
• 纵联差动保护是基于比较被保护线路始端和末端电流 的大小和相位的原理构成的。
• 在线路两端安装了具有相同型号和变比的电流互感器, 将线路两端电流互感器二次侧带 • 号的同极性端子(远 离保护线路两端)连接在一起。把线路两端电流互感器 二次侧不带 • 号的端子连接在一起,差动继电器KD接 在差流回路上。
电力系统继电保护 第四章输电线路的纵联保护

(希望不动)
方向元件 阻抗元件 电流相位
一侧为正 一侧为负
一侧动作 一侧不动作
相位差 180
如何应用这些特征?后面陆续予以介绍。
纵联保护:用某种通信信道将输电线 路两端的保护装置纵向联结起来,将 一端电气量(电流、功率方向等)传 到对端进行比较,判断故障在本线路 范围内还是范围之外,从而决定是否 切除被保护线路。 可以实现本线路全长范围内任意一点 故障的零秒切除的保护。 纵联保护没有后备保护功能
(3) 微波通道 是一种多路通信通道,频带宽,可传送交流电 的波形。是理想的通道,但保护专用微波通道 是不经济的。 (4) 光纤通道 •采用光纤作为通信通道,目前超高压线路在 架线时已同时架设光纤通道,所以,已被越来 越多的超高压线路采用。
B. 按保护动作原理分:
(1) 方向比较式纵联保护
两侧的保护装置将本侧的功率方向、测量阻
继电保护通信通道的选择原则
优先考虑采用光纤通道
其他……
4.3 方向比较式纵联保护
一、概念
以正常无高频电流而在区外故障时发 出闭锁信号的方式构成。此闭锁信号 由短路功率为负的一侧发出,这个信 号被两端的收信机所接收,而把保护 闭锁,故称闭锁式方向纵联保护(高 频闭锁方向保护)。
两侧功率方向的故障特征
纵联保护按通道类型分类
纵联保护信号传输方式: ( 1 )以导引线作为通信通道:纵联差 动保护 ( 2 )电力线载波:高频保护(方向高 频保护,相差高频保护),其中方向高 频保护又包括高频闭锁方向保护,高频 闭锁负序方向保护,高频闭锁距离保护; ( 3 )微波:微波保护,长线路,需要 中继站;
(2) 耦合电容器(滤波、隔工频) 耦合电容器与连接滤波器共同配 合,将载波信号传递至输电线路,同时 使高频收发信机与工频高压线路绝缘。 由于耦合电容器对于工频电流呈现极大 的阻抗,故由它所导致的工频泄漏电流 极小。
电力系统继电保护 第四章输电线路的纵联保护

3 微波通信
频段为300~30000MHz,超短波的无线电波,频带宽,信息传输容量大,传 输距离不超过40~60km;距离较远时,要装设微波中继站,以增强和传递微 波信号。通信速率快,可用于纵联电流差动原理的保护。
4 光纤通信
1.光纤通信的构成
光发射机、光纤、中继器和光接收机。
(2)正常时有高频电流方式(长时发信) 在正常工作条件下发信机始终处于发信状态,沿高 频通道传送高频电流。
优点:高频通道部分经常处于监视的状态,可靠性高;且无 需收、发信机启动元件,简化装置。 缺点:经常处于发信状态,增加了对其他通信设备的干扰时 间;也易受外界高频信号干扰,应具有更高的抗干扰能力。
(希望不动) 一侧为正 一侧为负
内部故障 (希望动作)
两侧均为正
一侧动作 一侧不动作
两侧均动作
电流相位 相位差 180
接近同相
如何应用这些特征?后面陆续予以介绍。
纵联保护:用某种通信信道将输电线 路两端的保护装置纵向联结起来,将 一端电气量(电流、功率方向等)传 到对端进行比较,判断故障在本线路 范围内还是范围之外,从而决定是否 切除被保护线路。
根据通道的构成,输电线路载波通信分为: “相-相”式 连接在两相导线之间 “相-地”式 连接在输电线一相导线和大地之间
1、输电线路载波通信的构成
继电
部分
G R
输电线路
高频阻波器 耦合电容器
连接滤波器 高频电缆
G 高频通道部分 R
接 地 开 关
继电
部分
(1)阻波器:阻波器是由 一电感线圈与可变电容器 并联组成的回路。当并联 谐振时,它所呈现的阻抗 最大(1000Ω以上),利 用这一特性,使其谐振频 率为所用的载波频率。这 样的高频信号就被限制在 被保护输电线路的范围以 内,而不能穿越到相邻线 路上去。但对工频电流而 言,阻波器仅呈现电感线 圈的阻抗,数值很小(约 为0.04Ω左右),并不影 响它的传输。
04 输电线路纵联保护

4.3.3 闭锁式距离纵联保护的构成
¾ 本线路故障: ZIII启动发信; ZII判断为正方向,启动停信;两侧均未收到高频闭锁信号
而跳闸。
4.3.3 闭锁式距离纵联保护的构成
¾ 外部故障: ZIII启动发信; ZII判断为反方向,不停信;两侧均收到高频闭锁信号而不
跳闸。
闭锁式距离纵联保护中的III段定时限距 具有为线路远端母线和相邻元件的远后备 能力。
它是以由短路功率为负的一侧发出高频闭 锁信号,这个信号被两端的收信机所接收,而 把保护闭锁。故称高频闭锁方向保护。
这种按闭锁信号构成的保护只在非故障线 路上才传送高频信号,而在故障线路上并不传 送高频信号。因此,在故障线路上由于短路使 高频通道可能遭到破坏时,并不会影响保护的 正确动作。
高频闭锁信号由非故障线的近故障点侧保 护发出。
4.4 纵联电流差动保护 4.4.1 纵联电流差动保护原理
线路两侧装有相同变比的TA
由于两侧电流互感器励磁特性不同,正常 运行及外部故障时流过的短路电流反映至二 次侧大小会不相同。此电流差称为不平衡电 流。
4.4 纵联电流差动保护
4.4.1 纵联电流差动保护原理
不平衡电流的值可计算为:
Iunb = 0.1Kst Knp Ik max
两侧电流相位差00
两侧电流相位差1800
4.1 输电线路纵联保护概述
4.1.2 输电线路短路时两侧电气量的故障特征分析
两端测量阻抗的特征(距离纵联保护) (以II段距离为启动元件,采用方向阻抗特性)
区内故障:两侧测量阻抗均为短路阻抗 区外故障:两侧测量阻抗均为短路阻抗,但一侧 为反方向 正常运行时:两侧测量阻抗均为负荷阻抗
4. 2 输电线路纵联保护两侧信息量的交换
继电保护11纵差保护

7.3 平行双回线路保护
7.3.1 平行双回线路内部故障的特点
假设电流的正方向为由母线指向线路,且平行双回线路阻抗相等。
假设两侧等效电动势: EM EN 正常运行或区外故障时, II III , II' II'I
KD 差动
继电器 (a)区内故障;
TA
TA
KD 差动 继电器
(b)区外故障
当线路上发生区内故障和区外故障时,输电线两端的功率方向也有很大差 别。设功率正方向由母线指向线路,则线路发生区内故障时,两端功率方向都 由母线流向线路,两端功率方向相同,同为正方向;
而发生区外故障时,远故障点端功率由母线流向线路,功率方向为正,近 故障点端功率由线路流向母线,功率方向为负,两端功率方向相反。
7.1.1 纵联差动保护的基本原理 电流互感器采用环流法接线。流入继电器的
1、两侧电流量特征
电流为两个电流互感器二次电流的差。
(a)区内故障;
(b)区外故障
• 当线路发生区外短路故障或正常
运行时,两端电流相量关系为
TA
TA
Ig Im In (IM IN )/nTA 0 (7-1)
• 当线路发生区内故障时,在故障 点有较大短路电流流出:
Ig
II III nTA
m
nTA
IKM
(7- 8)
II
Z1 m Z1 ( Z1 m Z1 ) (1 m )Z1
IKM
1 m
2
IKM
III
Z1 m Z1 ( Z1 m Z1 ) (1 m )Z1
IKM
1 m
纵联保护

在高压输电线路上,要求无延时地切除 被保护线路内部的故障。此时,电流保护和 距离保护都不能满足要求。纵联差动保护可 以实现全线速动。但其需敷设与被保护线路 等长的辅助导线,这在经济上、技术上都有 难以实现。
采用高频保护 解决办法:
高频保护: 是用高频载波代替二次导线,传送线路两侧电信号,所 以高频保护的原理是反应被保护线路首末两端电流的差或功 率方向信号,用高频载波将信号传输到对侧加以比较而决定 保护是否动作。
二、高频闭锁负序方向保护
方向高频保护在系统振荡时可能误动, 如何防止系统振荡的影响?
采用高频闭锁负序方向保护。 解决方法:
双向动作的负序功 率方向继电器
起动发信 机继电器
起动闭锁 继电器
1.区内故障 负序功率方向继电器KPD2触点向下闭合、停信,起动闭 锁继电器KL发出跳闸脉冲。
2.区外故障
2.纵联差动保护的评价
全线速动,不受过负荷及系统振荡的影响, 优点: 灵敏度较高。 缺点: 需敷设与被保护线路等长的辅助导线,且要求 电流互感器的二次负载阻抗满足电流互感器10% 的误差。这在经济上,技术上都难以实现。 需装设辅助导线断线与短路的监视装置,辅助导 线断线应将纵联差动保护闭锁。 在输电线路中,只有用其它保护不能满足要求的 应用: 短线路(一般不超过5~7km 线路)才采用。
第九节
高频闭锁距离保护
高频闭锁距离保护的评价: 优点: 内部故障时可瞬时切除故障,在外部故障时可起到后 备保护的作用。 缺点: 主保护(高频保护)和后备保护(距离保护)的接线互相连 在一起,不便于运行和检修。
第四、七节
相差高频保护
一、相差高频保护的工作原理
比较被保护线路两侧电流的相位,即利用高频信号将电 流的相位传送到对侧去进行比较而决定跳闸与否。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简述输电线路纵联差动保护的原理
输电线路纵联差动保护是一种常用的保护方式,用于检测和定位输电线路的故障。
其原理是通过比较线路两端的电流差值,来判断是否有故障发生,并且能够定位故障发生的位置。
具体而言,纵联差动保护是基于基尔霍夫电流定律和分流器原理设计的。
在一条正常工作的输电线路中,线路两端的电流是相等且方向相反的。
如果发生了线路故障,比如短路或接地故障,会导致电流产生偏差。
纵联差动保护通过监测线路两端的电流差值来判断故障的存在。
纵联差动保护通常由保护继电器和电流互感器组成。
电流互感器用于测量线路两端的电流,并将测得的电流信号传输给保护继电器。
保护继电器会比较线路两端的电流差值,如果差值超过设定的阈值,则判断为故障发生。
纵联差动保护不仅能够检测到线路上的故障,还能够定位故障的位置。
当故障发生时,保护继电器会通过测量电流差值的大小来判断故障的位置。
根据不同的故障类型,可以采用不同的定位方法,如使用方向元件或差动比率定位等。
总的来说,纵联差动保护通过比较线路两端的电流差值来检测和定位输电线路上的故障。
它具有响应速度快、可靠性高等优点,被广泛应用于输电线路的保护系统中。