新课标高一上学期期末考试数学试卷含答案
高一数学第一学期期末试卷及答案5套

高一数学第一学期期末试卷及答案5套完卷时间:120分钟 满分:150分第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题意要求的) 1、若角终边经过点,则( )A.B.C. D.2、函数的一条对称轴是( ) A.B.C.D.3、已知集合}1{>=x x A ,11{|()}24xB x =>,则A B ⋂=( ) A .R B .),1(+∞C .)2,(-∞D .)2,1( 4、( ) A.B.C.D.5、已知⎪⎩⎪⎨⎧>+-≤=0,1)1(0,2cos )(x x f x x x f π,则=)2(f ( ) A . 1- B .1 C . 3- D . 36、已知,则()()3sin 2cos 2sin sin 2πθπθπθπθ⎛⎫+++ ⎪⎝⎭⎛⎫--- ⎪⎝⎭等于( )A. 23—B. C. D. 7、若向量,,则在方向上的投影为( ) A. -2 B. 2 C.D.8、若()f x 对于任意实数x 都有12()()21f x f x x-=+,则(2)f =( )A.0B.1C.83D.49、若向量,i 为互相垂直的单位向量,—j 2=j m +=且与的夹角为锐角,则实数m 的取值范围是 ( )A .⎝ ⎛⎭⎪⎫12,+∞B .(-∞,-2)∪⎝ ⎛⎭⎪⎫-2,12C .⎝ ⎛⎭⎪⎫-2,23∪⎝ ⎛⎭⎪⎫23,+∞D .⎝⎛⎭⎪⎫-∞,1210、已知函数2(43)3,0,()log (1)1,0,a x a x a x f x x x ⎧+-+<⎪=⎨++≥⎪⎩在R 上单调递减,则实数a 的取值范围是( )A. 13[,]34B.1334⎛⎤ ⎥⎝⎦,C. 103⎛⎤ ⎥⎝⎦,D.30,4⎛⎫⎪⎝⎭11、已知,函数在(,)上单调递减,则的取值范围是( )A. (0,]B. (0,2]C. [,]D. [,]12、将函数()⎪⎭⎫⎝⎛=x 2cos 4x f π和直线()1x x g —=的所有交点从左到右依次记为,若P 点坐标为()30,=++A P 2....( )A. 0B. 2C. 6D. 10二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡的相应位置上) 13、已知角θ的终边经过点(39,2)a a -+,且θsin >0,θcos <0则a 的取值范围是 14、已知函数3()2,(0,1)x f x a a a -=+>≠且,那么其图象经过的定点坐标是15、已知2cos ,63πα⎛⎫-=⎪⎝⎭则2sin 3πα⎛⎫-= ⎪⎝⎭________. 16、已知关于的方程0a cos 3sin =+θθ—在区间()π,0上有两个不相等的实数根,则=+2cosβα__________.三、解答题:(本大题共6小题,共70分.解答写出文字说明,写明过程或演算步骤) 17、(本题满分10 分)已知四点A (-3,1),B (-1,-2),C (2,0),D ()(1)求证:;(2) ,求实数m 的值.18、(本题满分12 分) 已知是的三个内角,向量,,且.(1) 求角; (2)若,求.19、(本题满分12 分)已知函数()log (2)log (3),a a f x x x =++-其中01a <<. (1)求函数()f x 的定义域;(2)若函数()f x 的最小值为4-,求a 的值20、(本题满分12 分)已知函数()sin()f x A x ωϕ=+,其中0,0,0A ωϕπ>><<,函数()f x 图像上相邻的两个对称中心之间的距离为4π,且在3x π=处取到最小值2-. (1)求函数()f x 的解析式;(2)若将函数()f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将向左平移6π个单位,得到函数()g x 图象,求函数()g x 的单调递增区间。
2023-2024学年广东省高一(上)期末数学试卷【答案版】

2023-2024学年广东省高一(上)期末数学试卷一、单选题1.已知集合A ={x |x >﹣1},B ={x |x <3},则A ∩B =( ) A .(﹣1,3)B .(﹣∞,3)C .(﹣1,+∞)D .φ2.函数y =2x ﹣4的零点为( ) A .0B .﹣4C .2D .(2,0)3.函数f(x)=√2x −3+1x−3的定义域为( ) A .[32,+∞)B .(﹣∞,3)∪(3,+∞)C .[32,3)∪(3,+∞)D .(32,3)∪(3,+∞)4.若函数f (x )=x 2﹣x +m (2x +1)在(1,+∞)上是增函数,则实数m 的取值范围是( ) A .[12,+∞)B .(−∞,12]C .[−12,+∞)D .(−∞,−12]5.已知sin(θ−π6)=13,则sin(2θ+π6)的值为( )A .−79B .79C .−89D .136.已知函数f(x)=cos(2x −3π4),先将f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再向左平移π4个单位长度,得到g (x )的图象,则g (x )的解析式为( )A .g (x )=sin xB .g (x )=﹣sin xC .g (x )=﹣cos xD .g(x)=cos(4x +π4)7.函数f (x )=﹣10x 3ln |x |的图象大致为( )A .B .C .D .8.关于x 的方程x 2﹣ax +b ﹣1=0有两个相等的正根,则3a+2b a+b( )A .有最大值115B .有最大值52C .有最小值115D .有最小值52二、多选题9.下列函数中为奇函数的是( ) A .f (x )=|x | B .f(x)=x +1xC .f (x )=x 3+2xD .f (x )=x 2+x +110.2x 2﹣5x ﹣3<0的必要不充分条件可以是( ) A .−12<x <3B .﹣1<x <4C .0<x <2D .﹣2<x <311.已知函数f(x)=Acos(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图像如图所示,将f (x )的图像向左平移π4个单位长度,再向上平移1个单位长度后得到函数g (x )的图像,则( )A .f(x)=2cos(2x −π3)B .g(x)=2cos(2x −π12)+1 C .g (x )的图像关于点(π6,0)对称D .g (x )在[−π12+kπ,5π12+kπ](k ∈Z)上单调递减 12.已知α,β是锐角,cosα=√55,cos(α−β)=3√1010,则cos β=( ) A .√22B .7√210C .√210D .−√22三、填空题13.如果函数f (x )=a⋅3x+4−a4(3x−1)是奇函数,则a = . 14.函数y =(13)1+2x−x 2的值域是 .15.已知sin2θ=a ,cos2θ=b ,0<θ<π4,给出tan (θ+π4)值的五个答案:①b 1−a ;②a 1−b ;③1+b a;④1+a b;⑤a−b+1a+b−1.其中正确的是 .(填序号)16.已知函数f (x )=a sin ωx ﹣cos ωx (a >0,ω>0)的最大值为2,则a = ,若函数f (x )图象的一条对称轴为直线x =πm,m ∈N *,则当ω取最小整数时,函数f (x )在(0,10)之间取得最大值的次数为 . 四、大题17.(10分)求实数m 的取值范围,使关于x 的方程x 2﹣2x +m +1=0有两个正根. 18.(12分)设函数f(x)=sin(ωx −π6)+sin(ωx −π2),其中0<ω<3,已知f(π6)=0.(1)求ω;(2)将函数y =f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数y =g (x )的图象,求g (x )的单调递减区间.19.(12分)已知函数f (x )=4x ﹣2•2x +1+a ,其中x ∈[0,3]. (1)若f (x )的最小值为1,求a 的值;(2)若存在x ∈[0,3],使f (x )≥33成立,求a 的取值范围.20.(12分)已知函数f(x)=sinωx(sinωx +cosωx)−12(ω>0)的图象相邻对称轴之间的距离为2π.(1)当x ∈[﹣π,π]时,求f (x )最大值与最小值及相应的x 的值; (2)是否存在锐角α,β,使a +2β=2π3,f(α+π2)⋅f(2β+3π2)=√38同时成立?若存在,求出角α,β的值;若不存在,请说明理由.21.(12分)已知函数f (x )=√|x +1|+|x −3|−m 的定义域为R . (Ⅰ)求实数m 的取值范围.(Ⅱ)若m 的最大值为n ,当正数a 、b 满足23a+b +1a+2b=n 时,求7a +4b 的最小值.22.(12分)(1)已知关于x 的不等式ax 2+bx +c <0的解集是{x|x <−2或x >13},求cx 2﹣bx +a ≥0的解集;(2)求关于x 的不等式ax 2﹣2x +a <0的解集.2023-2024学年广东省高一(上)期末数学试卷参考答案与试题解析一、单选题1.已知集合A ={x |x >﹣1},B ={x |x <3},则A ∩B =( ) A .(﹣1,3)B .(﹣∞,3)C .(﹣1,+∞)D .φ解:∵集合A ={x |x >﹣1},B ={x |x <3},∴A ∩B ={x |﹣1<x <3}=(﹣1,3). 故选:A .2.函数y =2x ﹣4的零点为( ) A .0B .﹣4C .2D .(2,0)解:令y =2x ﹣4=0,解得x =2. 故选:C .3.函数f(x)=√2x −3+1x−3的定义域为( ) A .[32,+∞)B .(﹣∞,3)∪(3,+∞)C .[32,3)∪(3,+∞)D .(32,3)∪(3,+∞)解:由题意得:{2x −3≥0x −3≠0,解得:x ≥32且x ≠3,故函数的定义域是[32,3)∪(3,+∞).故选:C .4.若函数f (x )=x 2﹣x +m (2x +1)在(1,+∞)上是增函数,则实数m 的取值范围是( ) A .[12,+∞)B .(−∞,12]C .[−12,+∞)D .(−∞,−12]解:函数f(x)=x 2+(2m −1)x +m =(x +2m−12)2+m −(2m−1)24的单调增区间为(−2m−12,+∞),∴−2m−12⩽1,∴m ⩾−12.故实数m 的取值范围为[−12,+∞). 故选:C .5.已知sin(θ−π6)=13,则sin(2θ+π6)的值为( )A .−79B .79C .−89D .13解:由sin(θ−π6)=13,得sin (π6−θ)=−13,∴sin(2θ+π6)=cos (π3−2θ)=cos2(π6−θ)=1−2sin2(π6−θ)=1−2×(−13)2=79.故选:B.6.已知函数f(x)=cos(2x−3π4),先将f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再向左平移π4个单位长度,得到g(x)的图象,则g(x)的解析式为()A.g(x)=sin x B.g(x)=﹣sin xC.g(x)=﹣cos x D.g(x)=cos(4x+π4)解:先将f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),得到y=cos(x−3π4)的图象,再向左平移π4个单位长度,则g(x)=cos(x−3π4+π4)=sinx.故选:A.7.函数f(x)=﹣10x3ln|x|的图象大致为()A.B.C.D.解:因为f(﹣x)=10x3ln|x|=﹣f(x),所以函数为奇函数,故排除A、D;当x→+0时,f(x)→0,故排除B,故选:C.8.关于x的方程x2﹣ax+b﹣1=0有两个相等的正根,则3a+2ba+b()A.有最大值115B.有最大值52C.有最小值115D.有最小值52解:因为关于x 的方程x 2﹣ax +b ﹣1=0有两个相等的正根, 所以{a >0b −1>0Δ=a 2−4(b −1)=0,故b =1+a 24,a >0, 则3a+2b a+b=2+a a+b =2+a 1+a+a24=2+11+1a +a 4≤1+2√a 4⋅1a2=52, 当且仅当a =b =2时取等号,所以3a+2ba+b 有最大值52. 故选:B . 二、多选题9.下列函数中为奇函数的是( ) A .f (x )=|x | B .f(x)=x +1xC .f (x )=x 3+2xD .f (x )=x 2+x +1解:对于A ,f (x )=|x |的定义域为R ,关于原点对称,而f (﹣x )=|﹣x |=f (x ),为偶函数, 对于B ,f(x)=x +1x 的定义域为(﹣∞,0)∪(0,+∞),关于原点对称,且f(−x)=−x −1x=−f(x),为奇函数,对于C ,f (x )=x 3+2x 的定义域为R ,关于原点对称,且f (﹣x )=(﹣x )3+2(﹣x )=﹣f (x ),为奇函数,对于D ,f (x )=x 2+x +1的定义域为R ,关于原点对称,而f (﹣x )=x 2﹣x +1≠﹣f (x ),不是奇函数, 故选:BC .10.2x 2﹣5x ﹣3<0的必要不充分条件可以是( ) A .−12<x <3B .﹣1<x <4C .0<x <2D .﹣2<x <3解:2x 2−5x −3<0⇔(2x +1)(x −3)<0⇔−12<x <3,即2x 2﹣5x ﹣3<0的充要条件是−12<x <3,其必要不充分条件必须满足,其集合的一个真子集是充要条件的集合, 观察选项发现{x|−12<x <3}是{x |﹣2<x <3},{x |﹣1<x <4}的真子集.故选:BD .11.已知函数f(x)=Acos(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图像如图所示,将f (x )的图像向左平移π4个单位长度,再向上平移1个单位长度后得到函数g (x )的图像,则( )A .f(x)=2cos(2x −π3)B .g(x)=2cos(2x −π12)+1 C .g (x )的图像关于点(π6,0)对称D .g (x )在[−π12+kπ,5π12+kπ](k ∈Z)上单调递减 解:由图象可知函数f (x )的最大值为2,最小值为﹣2,所以A =2,T 2=2π3−π6=π2,故T =π;又T =2πω⇒ω=2,又f(π6)=2⇒2cos(2×π6+φ)=2,所以π3+φ=2kπ(k ∈Z),φ=2kπ−π3,(k ∈Z);又|φ|<π2,所以φ=−π3,所以f(x)=2cos(2x −π3),故A 正确,将f (x )的图像向左平移π4个单位长度,再向上平移1个单位长度后得g(x)=2cos(2x +π6)+1,故B项错误. 由2x +π6=π2+kπ(k ∈Z),x =π6+kπ2,(k ∈Z);所以g (x )的图像关于点(π6,1)对称,故C 错误. 由2kπ≤2x +π6≤2kπ+π,(k ∈Z),即−π12+kπ≤x ≤5π12+kπ,(k ∈Z); 故选项D 正确. 故选:AD .12.已知α,β是锐角,cosα=√55,cos(α−β)=3√1010,则cos β=( ) A .√22B .7√210C .√210D .−√22解:由α是锐角,cosα=√55,则sinα=√1−cos 2α=2√55, 又α,β是锐角,则−β∈(−π2,0),得α−β∈(−π2,π2),又cos(α−β)=3√1010,则sin(α−β)=±√1010, 则cos β=cos[α﹣(α﹣β)]=cos αcos (α﹣β)+sin αsin (α﹣β)=√55×3√1010±2√55×√1010=3√2±2√210得cos β=√22或cos β=√210.故选:AC . 三、填空题13.如果函数f (x )=a⋅3x+4−a4(3x−1)是奇函数,则a = 2 . 解:函数f (x )=a⋅3x +4−a4(3x−1)是奇函数,则f (﹣x )+f (x )=0, 即有a⋅3−x +4−a4(3−x −1)+a⋅3x +4−a4(3x −1)=0,则a 2+13−x −1+13x −1=0,化简得到,a2+3x1−3x +13x −1=0,即a 2=1,故a =2.故答案为:214.函数y =(13)1+2x−x 2的值域是 [19,+∞) .解:∵t =1+2x ﹣x 2=﹣(x ﹣1)2+2≤2,且y =(13)t 为定义域内的减函数,∴y =(13)1+2x−x 2≥(13)2=19.即函数y =(13)1+2x−x 2的值域是[19,+∞).故答案为:[19,+∞).15.已知sin2θ=a ,cos2θ=b ,0<θ<π4,给出tan (θ+π4)值的五个答案:①b 1−a ;②a 1−b ;③1+b a ;④1+a b;⑤a−b+1a+b−1.其中正确的是 ①④⑤ .(填序号)解:∵tan (θ+π4)=sinθ+cosθcosθ−sinθ=1+sin2θcos2θ=cos2θ1−sin2θ=b 1−a =1+ab,∴①④是正确的,将sin2θ=a ,cos2θ=b 代入⑤验证知,此代数式也是正确的答案. 故答案为:①④⑤.16.已知函数f (x )=a sin ωx ﹣cos ωx (a >0,ω>0)的最大值为2,则a = √3 ,若函数f (x )图象的一条对称轴为直线x =πm,m ∈N *,则当ω取最小整数时,函数f (x )在(0,10)之间取得最大值的次数为 3 .解:由已知,函数f (x )=a sin ωx ﹣cos ωx =√a 2+1sin (ωx ﹣φ),其中tan φ=1a(a >0,ω>0),由于f (x )的最大值为2,所以√a 2+1=2,得a =√3(a =−√3舍去); tanφ=13,取φ=π6,则f (x )=2sin (ωx −π6),由ωx −π6=kπ+π2(k ∈Z ),得ωm π=kπ+2π3(k ∈Z ),即ω=m(k +23),k ∈Z , 由于m ∈N *,则正数ω的最小整数值为2,从而f(x)=2sin(2x −π6),当2x −π6=π2+2kπ,k ∈Z ,即x =π3+kπ,k ∈Z 时, 函数f (x )取得最大值, 若k =0,则x =π3∈(0,10), 若k =1,则x =4π3∈(0,10), 若k =2,则x =7π3∈(0,10), 若k =3,则x =10π3>10, 从而有3次取得最大值. 故答案为:√3,3. 四、大题17.(10分)求实数m 的取值范围,使关于x 的方程x 2﹣2x +m +1=0有两个正根. 解:设两个实根分别是x 1,x 2,则有两个正根的条件是:{Δ=4−4(m +1)≥0x 1+x 2=2>0x 1x 2=m +1>0解得﹣1<m ≤0.18.(12分)设函数f(x)=sin(ωx −π6)+sin(ωx −π2),其中0<ω<3,已知f(π6)=0.(1)求ω;(2)将函数y =f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数y =g (x )的图象,求g (x )的单调递减区间.解:(1)由f(x)=sin(ωx −π6)+sin(ωx −π2)得:f(x)=√32sinωx −12cosωx −cosωx =√32sinωx −32cosωx =√3(12sinωx −√32cosωx)=√3sin(ωx −π3).由f(π6)=0知(sin π6ω−π3)=0,则ωπ6−π3=kπ,k ∈Z ,故ω=6k +2,k ∈Z , 又0<ω<3,所以ω=2.(2)由(1)知f(x)=√3sin(2x−π3),将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),可得y=√3sin(x−π3)的图象;再将得到的图象向左平移π4个单位,得到函数y=g(x)=√3sin(x−π12)的图象.由π2+2kπ≤x−π12≤3π2+2kπ,k∈Z解得7π12+2kπ≤x≤19π12+2kπ,k∈Z,所以g(x)的单调递减区间为[7π12+2kπ,19π12+2kπ](k∈Z).19.(12分)已知函数f(x)=4x﹣2•2x+1+a,其中x∈[0,3].(1)若f(x)的最小值为1,求a的值;(2)若存在x∈[0,3],使f(x)≥33成立,求a的取值范围.解:(1)因为f(x)=4x﹣2•2x+1+a,其中x∈[0,3],令t=2x,则t∈[1,8],原式化为g(t)=t2﹣4t+a=(t﹣2)2+a﹣4,当t=2时,g(t)min=a﹣4=1,解得a=5;(2)若存在x∈[0,3],使f(x)≥33成立,即f(x)max≥33,由(1)可知g(t)=(t﹣2)2+a﹣4,t∈[1,8],即g(t)max≥33,当t=8时,g(t)max=a+32≥33,解得a≥1,即a∈[1,+∞).20.(12分)已知函数f(x)=sinωx(sinωx+cosωx)−12(ω>0)的图象相邻对称轴之间的距离为2π.(1)当x∈[﹣π,π]时,求f(x)最大值与最小值及相应的x的值;(2)是否存在锐角α,β,使a+2β=2π3,f(α+π2)⋅f(2β+3π2)=√38同时成立?若存在,求出角α,β的值;若不存在,请说明理由.解:(1)因为f(x)=sin2ωx+sinωxcosωx−12=1−cos2ωx2+12sin2ωx−12=12sin2ωx−12cos2ωx=√22sin(2ωx−π4),∵f(x)图象相邻对称轴之间的距离为2π,∴T=4π=2π2ω,ω=14,f(x)=√22sin(12x−π4),∵﹣π≤x≤π,∴−3π4≤12x−π4≤π4,∴−1≤sin(12x−π4)≤√22,∴f(x)min=−√22,此时12x−π4=−π2,x=−π2,f(x)max=12,此时12x−π4=π4,x=π;(2)存在,理由如下:∵f(α+π2)=√22sinα2,f(2β+3π2)=√22sin(β+π2)=√22cosβ,∴f(α+π2)⋅f(2β+3π2)=12sinα2cosβ=√38,∴sin α2cosβ=√34,又∵α+2β=2π3,α=2π3−2β,∴sinα2cosβ=sin(π3−β)cosβ=√34,∴(√32cosβ−12sinβ)cosβ=√34,∴√32cos2β−12sinβcosβ=√34,∴√32×1+cos2β2−14sin2β=√34,即√3cos2β−sin2β=0,∴tan2β=√3,又∵β为锐角,0<2β<π,∴2β=π3,β=π6,从而α=2π3−2β=π3.21.(12分)已知函数f(x)=√|x+1|+|x−3|−m的定义域为R.(Ⅰ)求实数m的取值范围.(Ⅱ)若m的最大值为n,当正数a、b满足23a+b +1a+2b=n时,求7a+4b的最小值.解:(1)∵函数定义域为R,∴|x+1|+|x﹣3|﹣m≥0恒成立,设函数g(x)=|x+1|+|x﹣3|,则m不大于函数g(x)的最小值,又|x+1|+|x﹣3|≥|(x+1)﹣(x﹣3)|=4,即g(x)的最小值为4,∴m≤4.(2)由(1)知n=4,∴7a+4b=14(6a+2b+a+2b)(23a+b+1a+2b)=14(5+2(3a+b)a+2b+2(a+2b)3a+b)≥14(5+2×2√3a+ba+2b⋅a+2b3a+b)=94,当且仅当a+2b=3a+b,即b=2a=310时取等号.∴7a+4b的最小值为9 4.22.(12分)(1)已知关于x的不等式ax2+bx+c<0的解集是{x|x<−2或x>13},求cx2﹣bx+a≥0的解集;(2)求关于x的不等式ax2﹣2x+a<0的解集.解:(1)由题意知{−2+13=−ba−2×13=caa<0,则有{b=53ac=−23aa<0,代入不等式cx2﹣bx+a≥0,得−23ax2−53ax+a≥0(a<0),即﹣2x2﹣5x+3≤0,解得x≤﹣3或x≥1 2,所以所求不等式的解集为{x|x≤−3或x≥12 };(2)①当a=0时,不等式为﹣2x<0,解得x>0,则此时解集为(0,+∞),②当a>0时,令ax2﹣2x+a=0,Δ=4﹣4a2,(i)若Δ=4﹣4a2≤0,即a≥1时,此时不等式解集为∅,(ii)若Δ=4﹣4a2>0,即0<a<1时,ax2﹣2x+a<0,解得1−√1−a2a<x<1+√1−a2a,则此时不等式解集为(1−√1−a2a<x<1+√1−a2a),③当a<0时,(i)若Δ=4﹣4a2<0,即a<﹣1时,此时不等式解集为R,(ii)若Δ=4﹣4a2=0,即a=﹣1时,此时不等式为﹣x2﹣2x﹣1<0,解集为(﹣∞,﹣1)∪(﹣1,+∞),(iii)若Δ=4﹣4a2>0,即﹣1<a<0时,则不等式解集为(−∞,1+√1−a2a)∪(1−√1−a2a,+∞).综上所述,当a<﹣1时,不等式解集为R;当﹣1≤a<0时,则不等式解集为(−∞,1+√1−a2a)∪(1−√1−a2a,+∞);当a=0时,则不等式解集为(0,+∞);当0<a<1时,则不等式解集为(1−√1−a2a<x<1+√1−a2a);当a≥1时,此时不等式解集为∅.。
高一上学期期末数学试卷(有答案)(新课标人教版)

浙江省金华十校联考高一(上)期末数学试卷一、选择题:(本大题10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)设全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},则∁U(S∪T)等于()A.∅B.{2,4,7,8}C.{1,3,5,6}D.{2,4,6,8}2.(4分)cos210°=()A.﹣B.﹣ C.D.3.(4分)函数y=f(x)和x=2的交点个数为()A.0个 B.1个 C.2个 D.0个或1个4.(4分)已知扇形的半径为2,面积为4,则这个扇形圆心角的弧度数为()A.B.2 C.2 D.25.(4分)如果lgx=lga+3lgb﹣5lgc,那么()A.x=a+3b﹣c B.C.D.x=a+b3﹣c36.(4分)已知sin=,cos=﹣,则角α终边所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限7.(4分)函数的图象为()A.B.C.D.8.(4分)已知函数f(x)=ax2+2ax+4(0<a<3),若x1<x2,x1+x2=1﹣a,则()A.f(x1)<f(x2)B.f(x1)>f(x2)C.f(x1)=f(x2)D.f(x1)<f(x2)和f(x1)=f(x2)都有可能9.(4分)已知函数f(x)=sin(ωx﹣)(<ω<2),在区间(0,)上()A.既有最大值又有最小值B.有最大值没有最小值C.有最小值没有最大值D.既没有最大值也没有最小值10.(4分)已知f(x)=log a(a﹣x+1)+bx(a>0,a≠1)是偶函数,则()A.b=且f(a)>f()B.b=﹣且f(a)<f()C.b=且f(a+)>f()D.b=﹣且f(a+)<f()二、填空题(共7小题,每小题3分,满分21分)11.(3分)已知角α的终边过点P(﹣8m,﹣6sin30°),且cosα=﹣,则m的值为,sinα=.12.(3分)计算lg4+lg500﹣lg2=,+(log316)•(log2)=.13.(3分)已知sinα=+cosα,且α∈(0,),则sin2α=,cos2α=.14.(3分)如果幂函数f(x)的图象经过点(2,8),则f(3)=.设g(x)=f(x)+x﹣m,若函数g(x)在(2,3)上有零点,则实数m的取值范围是.15.(3分)已知tan(π﹣x)=﹣2,则4sin2x﹣3sinxcosx﹣5cos2x=.16.(3分)已知函数f(x)=﹣2sin(2x+φ)(|φ|<π),若是f(x)的一个单调递增区间,则φ的取值范围为.17.(3分)已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x﹣x2,若存在实数a,b,使f(x)在[a,b]上的值域为[,],则ab=.三、解答题(本大题共5小题,共74分,解答应写出文字说明、证明过程或演算步骤。
2023-2024学年上海中学高一上学期数学期末试卷及答案(2024.01)

1上海中学2023学年第一学期高一年级数学期末2024.01一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分) 1.函数224y x x =−+的图像关于直线________成轴对称. 2.已知函数()21,2,lg ,2,x x f x x x +<= ≥ 则()()()05f f f +=________.3.已知扇形的弧长和半径都是4,则扇形的面积为________.4.已知点()sin ,cos P αα在第二象限,则角α的终边在第________象限.5.化简:4224441sin cos sin cos sin cos θ⋅θ+θ⋅θ=−θ−θ________.6.若函数()1f x x a =−+在区间[)1,+∞上是严格增函数,则实数a 的取值范围为______. 7.函数()21yf x =−的定义域为()0,1,则函数()1yf x =−的定义域为________.8.函数3132xx y −=−的值域是________.9.已知函数()y f x =是定义域为R 的偶函数,且当0x >时,其表达式为()22x f x x =+,则当0x <时,其表达式为()f x =________.10.已知函数()3log ,034,3x x f x x x <<= −≥,若存在0a b c <<<满足()()f a f b ==()f c ,则()()f a f c abc的取值范围为________.11.已知函数()f x ,()g x ,()h x 的定义域均为R .给出以下3个命题: (1)()f x 一定可以写成一个奇函数和一个偶函数之差;(2)若()f x 是奇函数,且在().0−∞是严格减函数,则()f x 在R 上是严格减函数; (3)若()()f x g x +,()()g x h x +,()()h x f x +在R 上均是严格增函数;则()f x ,()g x ,2()h x 中至少有一介在R 上是严格增函数.其中,假命题的序号为________.12.已知函数()f x 满足:()()()()22114f x f x f x f x +−++−=则下列三个结论: (1)()()()()2220242024186518654f f f f −+−=;(2)()()20232024f f =; (3)()()202418654f f +≤.其中正确的结论是________. 二、选择题(本大题共有4题,满分20分,每题5分) 13.若幂函数()()22235mm f x mm x −−=+−的图像不经过原点,则m 的值为( )A .2B .3−C .3D .3−或214.存在函数()f x 满足:x R ∀∈都有( ) A .()31fx x +=B .211f x x=−C .()211f x x +=+D .()221f x x x +=+15.已知函数()()1,0,2,0,x x f x x x x +< =−≥ 若(1)f x −在区间I 上恒负,且是严格减函数,则区间I 可以是( ).A .()2,1−−B .()1,0−C .()0,1D .()1,216.定义域和值域均为[],a a −(常数0a >)的函数()y f x =和()y g x =的图像如图所示,给出下列四个命题:其中正确的个数是( ). (1)函数()()f g x 有且仅有三个零点; (2)函数()()g f x 有且仅有三个零点; (3)函数()()f f x 有且仅有九个零点; (4)函数()()g g x 有且仅有一个零点,A .1B .2C .3D .43三、解答题(共5道大题,其中17题14分,18题14分,19题14分,20题16分,21题18分,共计76分)17.(本题满分14分.本题共2小题,第(1)小题7分,第(2)小题7分.)已知函数()f x 是R 上的严格增函数,()g x 是R 上的严格减函数,判断函数()()f x g x −的单调性,并利用定义证明.18.(本题满分14分.本题共2小题,第(1)小题8分,第(2)小题6分.) 在下面的坐标系中画出下列函数的图像: (1)2y x −=(2)22x y =−.419.(本题满分14分.本题共2小题,第(1)小题6分,第(2)小题8分.) 解下列关于x 的方程:(1)162log log 163x x +=; (2)()()2416290x x x a a a −+⋅−−⋅=.20.(本题满分16分.本题共有3小题,第(1)小题满分4分,第(2)小题满分6分.第 (3)小题满分6分)某地中学生社会实践小组为研究学校附近某路段交通拥堵情况,经实地调查、数学建模,得该路段上平均行车速度v (单位:km/h )与该路段上的行车数量n (单位:辆)的关系为:2600,9,1033000,10,n n v n n k ≤ += ≥ + 其中常数k R ∈.该路段上每日t 时的行车数量22(125)100n t =−−−+,[)0,24t ∈,t Z ∈.已知某日17时测得的平均行车速度为3km/h .(1)求实数k 的值;(2)定义q nv =,求一天内q 的最大值(结果四舍五入到整数).521.(本题满分18分.本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分,在第(3)小题满分8分)若对任意的1a b ≤<,()f x 在区间(],a b 上不存在最小值,且对任意正整数n ,当(),1x n n ∈+时有()()()()()()11f n f x f x f n f n f n −+−+=−+.(1)比较()f n 与()1f n +,*n N ∈的大小关系; (2)判断()f x 是否为[)1,+∞上的增函数,并说明理由; (3)证明:当1x ≥时,()()2f x f x >.6参考答案一、填空题1.1x =;2.1;3.8;4.四;5.12; 6.(],2−∞; 7.()0,2; 8.()1,1,2−∞∪+∞;9.212x x +; 10.10,3; 11.(3); 12.(1)(3); 二、选择题13.A ; 14.D ; 15.B ; 16.B16.定义域和值域均为[],a a −(常数0a >)的函数()y f x =和()y g x =的图像如图所示,给出下列四个命题:其中正确的个数是( ).(1)函数()()f g x 有且仅有三个零点; (2)函数()()g f x 有且仅有三个零点; (3)函数()()f f x 有且仅有九个零点; (4)函数()()g g x 有且仅有一个零点,A .1B .2C .3D .4B(1)方程()0f g x = 有且仅有三个解;()g x 有三个不同值,由于()y g x =是减函数,所以有三个解,正确;(2)方程()0g f x = 有且仅有三个解;从图中可知,()()0f x ,a ∈可能有1,2,3个解,不正确; (3)方程()0f f x = 有且仅有九个解;类似(2)不正确;(4)方程()0g g x = 有且仅有一个解.结合图象,()y g x =是减函数,故正确.7故选B . 三、解答题 17.严格增,证明略 18. 画图略 19. (1)416x or =(2)①当0a ≤时,()23log 1x a =−;②当01a <<时,()()122233log 1,log 2x a x a =−=;③当1a ≥时,()23log 2x a =20.某地中学生社会实践小组为研究学校附近某路段交通拥堵情况,经实地调查、数学建模,得该路段上平均行车速度v (单位:km/h )与该路段上的行车数量n (单位:辆)的关系为:2600,9,1033000,10,n n v n n k≤ +=≥ + 其中常数k R ∈.该路段上每日t 时的行车数量22(125)100n t =−−−+,[)0,24t ∈,t Z ∈.已知某日17时测得的平均行车速度为3km/h .(1)求实数k 的值;(2)定义q nv =,求一天内q 的最大值(结果四舍五入到整数). (1)1000k = (2)522(1)由17时测得的平均行车速度为3/km h ,得100n =, 代入*2600,9,1033000,10,……n n vn N n n k +∈ +,可得2330003100k =+,解得1000k =. (2)①当9…n 时,60060010101nq nv n n===++为增函数,所以6009300109…q ×<+; ②当10…n 时,330001000q nv n n==+在(0,上单调递增,在,)+∞上单调递减,8且由()31.631.7,知,当31,32n n ==时,较大的q 值为最大值, 分别代入31n =和32n =计算,结果均约为522,故522max q ≈. 综上可知,一天内车流量q 的最大值为522.21.若对任意的1a b ≤<,()f x 在区间(],a b 上不存在最小值,且对任意正整数n ,当(),1x n n ∈+时有()()()()()()11f n f x f x f n f n f n −+−+=−+.(1)比较()f n 与()1f n +,*n N ∈的大小关系; (2)判断()f x 是否为[)1,+∞上的增函数,并说明理由; (3)证明:当1x ≥时,()()2f x f x >.(1)()f n <()1f n + (2)不是 (3)证明见解析(3)①首先证明对于任意*n N ∈,()()1.f n f n <+当()1x n,n ∈+时,由()()()()()()11f n f x f x f n f n f n −+−+=−+∣∣ 可知()f x 介于()f n 和()1f n +之间.若()()1,…f n f n +则()f x 在区间(]1n,n +上存在最小值()1f n +,矛盾. 利用归纳法和上面结论可得:对于任意*,k n N ∈,()(),.n k f n f k <<当时 ②其次证明当1…n 且x n >时,()()f x f n >;当2…n 且x n <时,()()…f x f n . 任取x n >,设正整数k 满足1剟n k x k <+,则()()()()1剟剟f n f k f x f k …+. 若存在01厖k x k n +>使得()()0…f x f n ,则()()()()00剟?f x f n f k f x , 即()()0f k f x =.由于当()1x k ,k ∈+时,()()…f k f x , 所以()f x 在区间(0k ,x 有最小值()0f x ,矛盾.9类似可证,当2…n 且x n <时,()()…f x f n .③最后证明:当1…x 时,()()2f x f x >.当1x =时,()()21f f >成立.当1x >时,由21x x x −=>可知,存在*n N ∈使得2x n x <<,所以()()()2…f x f n f x <.当()1x n,n ∈+时,有:()()()()()()11f n f x f x f n f n f n −+−+=−+∣∣ 若()()1f n f n =+,则()()()1,f x f n f n ==+所以()f x 在(]1n,n +上存在最小值,故不具有性质p ,故不成立.若()()1f n f n ≠+,则()(){}()()(){},11min f n f n f x max f n ,f n +<<+假设()()1f n f n +<,则()f x 在(]1n,n +上存在最小值,故不具有性质p ,故假设不成立. 所以当()1x n,n ∈+时,()()()1f n f x f n <<+对于任意*n N ∈都成立. 又()()1f n f n <+,故当()*m n m n N <∈、所以()()()()11,f m f m f n f n <+<…<−<即()()f m f n <.所以当x n <时,则存在正整数m 使得1剟m x m n −<,则()()()()1剟f m f x f m f n −< 所以当x n <时,()()f x f n <,同理可证得当x n >时,()()f x f n >.所以当1x >时,必然存在正整数n ,使得2x n x <<,所以()()()2f x f n f x <<; 当1x =时,()()21f f >显然成立; 所以综上所述:当1…x 时,()()2f x f x >.。
新课标人教版高一数学上学期期末试卷及答案2

上学期期末考试高一英语试题第一节听下面5段对话,每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. What did the woman have for lunch?A. French fries.B. Some soup.C. A cheese sandwich.2. When is the man’s flight leaving?A. At 9:15.B. At 10:15.C. At 10:50.3. Where did the conversation take place?A. At a department store.B. At a dry-cleaning shop.C. At a dress-making shop.4. Why can’t the man give the woman a hand?A. He is too heavy to help her.B. He doesn’t know how to help her.C. He is too busy to help her.5. How does the man feel about his job?A. He enjoys it.B. He doesn’t like it at all.C. He wants to find a new job.第二节听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各个小题将给出5秒钟的作答时间。
每段对话或独白读两遍。
听第6段材料,回答第6至8题。
6. How is the relationship between the woman and her parents?A. Good.B. Bad.C. Hard to say.7. How much pocket money does the woman get a week?A. Three pounds.B. Two pounds.C. Four pounds.8. How old might the woman be?A. 16.B.17.C.18.听第7段材料,回答第9至11题。
新高一数学上期末试卷(带答案)

新高一数学上期末试卷(带答案)一、选择题1.已知()f x 是偶函数,它在[)0,+∞上是增函数.若()()lg 1f x f <-,则x 的取值范围是( ) A .1,110⎛⎫⎪⎝⎭B .10,10,10C .1,1010⎛⎫⎪⎝⎭D .()()0,110,⋃+∞2.已知函数22log ,0()2,0.x x f x x x x ⎧>=⎨--≤⎩,关于x 的方程(),f x m m R =∈,有四个不同的实数解1234,,,x x x x ,则1234x x x x +++的取值范围为( ) A .(0,+)∞B .10,2⎛⎫ ⎪⎝⎭C .31,2⎛⎫ ⎪⎝⎭D .(1,+)∞3.已知函数()()2,211,22x a x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩, 满足对任意的实数x 1≠x 2都有()()1212f x f x x x --<0成立,则实数a 的取值范围为( ) A .(-∞,2)B .13,8⎛⎤-∞ ⎥⎝⎦ C .(-∞,2]D .13,28⎡⎫⎪⎢⎣⎭4.函数y =a |x |(a >1)的图像是( ) A .B .C .D .5.已知函数ln ()xf x x=,若(2)a f =,(3)b f =,(5)c f =,则a ,b ,c 的大小关系是( ) A .b c a << B .b a c <<C .a c b <<D .c a b <<6.若()()234,1,1a x a x f x x x ⎧--<=⎨≥⎩是(),-∞+∞的增函数,则a 的取值范围是( )A .2,35⎡⎫⎪⎢⎣⎭B .2,35⎛⎤ ⎥⎝⎦C .(),3-∞D .2,5⎛⎫+∞⎪⎝⎭7.函数()2sin f x x x =的图象大致为( )A .B .C .D .8.对于函数()f x ,在使()f x m ≤恒成立的式子中,常数m 的最小值称为函数()f x 的“上界值”,则函数33()33x x f x -=+的“上界值”为( )A .2B .-2C .1D .-19.已知函数()0.5log f x x =,则函数()22f x x -的单调减区间为( )A .(],1-∞B .[)1,+∞C .(]0,1D .[)1,210.已知[]x 表示不超过实数x 的最大整数,()[]g x x =为取整函数,0x 是函数()2ln f x x x=-的零点,则()0g x 等于( )A .1B .2C .3D .411.函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数且f (2)=0,则使f (x )<0的x 的取值范围( ) A .(-∞,2)B .(2,+∞)C .(-∞,-2)∪(2,+∞)D .(-2,2)12.下列函数中,在区间(1,1)-上为减函数的是 A .11y x=- B .cos y x =C .ln(1)y x =+D .2x y -=二、填空题13.函数20.5log y x =________14.已知关于x 的方程()224log 3log +-=x x a 的解在区间()3,8内,则a 的取值范围是__________.15.已知常数a R ∈,函数()21x af x x +=+.若()f x 的最大值与最小值之差为2,则a =__________.16.已知常数a R +∈,函数()()22log f x x a =+,()()g x f f x =⎡⎤⎣⎦,若()f x 与()g x 有相同的值域,则a 的取值范围为__________.17.已知偶函数()f x 的图象过点()2,0P ,且在区间[)0,+∞上单调递减,则不等式()0xf x >的解集为______.18.已知函数()f x 满足:()()1f x f x +=-,当11x -<≤时,()x f x e =,则92f ⎛⎫= ⎪⎝⎭________. 19.若存在实数(),m n m n <,使得[],x m n ∈时,函数()()2log xa f x at =+的值域也为[],m n ,其中0a >且1a ≠,则实数t 的取值范围是______.20.已知函数(2),2()11,22xa x x f x x -≥⎧⎪=⎨⎛⎫-< ⎪⎪⎝⎭⎩,满足对任意的实数12x x ≠,都有1212()()0f x f x x x -<-成立,则实数a 的取值范围为__________.三、解答题21.节约资源和保护环境是中国的基本国策.某化工企业,积极响应国家要求,探索改良工艺,使排放的废气中含有的污染物数量逐渐减少.已知改良工艺前所排放的废气中含有的污染物数量为32mg/m ,首次改良后所排放的废气中含有的污染物数量为31.94mg/m .设改良工艺前所排放的废气中含有的污染物数量为0r ,首次改良工艺后所排放的废气中含有的污染物数量为1r ,则第n 次改良后所排放的废气中的污染物数量n r ,可由函数模型()0.5001)*(5n p n r r r r p R n N +-∈⋅=-∈,给出,其中n 是指改良工艺的次数.(1)试求改良后所排放的废气中含有的污染物数量的函数模型;(2)依据国家环保要求,企业所排放的废气中含有的污染物数量不能超过30.08mg/m ,试问至少进行多少次改良工艺后才能使得该企业所排放的废气中含有的污染物数量达标. (参考数据:取lg 20.3=)22.设()()12log 10f x ax =-,a 为常数.若()32f =-.(1)求a 的值;(2)若对于区间[]3,4上的每一个x 的值,不等式()12xf x m ⎛⎫>+ ⎪⎝⎭恒成立,求实数m 的取值范围 .23.设函数()3x f x =,且(2)18f a +=,函数()34()ax x g x x R =-∈. (1)求()g x 的解析式;(2)若方程()g x -b=0在 [-2,2]上有两个不同的解,求实数b 的取值范围. 24.药材人工种植技术具有养殖密度高、经济效益好的特点.研究表明:人工种植药材时,某种药材在一定的条件下,每株药材的年平均生长量(v 单位:千克)是每平方米种植株数x 的函数.当x 不超过4时,v 的值为2;当420x <≤时,v 是x 的一次函数,其中当x 为10时,v 的值为4;当x 为20时,v 的值为0.()1当020x <≤时,求函数v 关于x 的函数表达式;()2当每平方米种植株数x 为何值时,每平方米药材的年生长总量(单位:千克)取得最大值?并求出这个最大值.(年生长总量=年平均生长量⨯种植株数) 25.已知.(1)若函数的定义域为,求实数的取值范围; (2)若函数在区间上是递增的,求实数的取值范围.26.设全集为R ,集合A ={x |3≤x <7},B ={x |2<x <6},求∁R (A ∪B ),∁R (A ∩B ),(∁R A )∩B ,A ∪(∁RB ).【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】利用偶函数的性质将不等式()()lg 1f x f <-变形为()()lg 1f x f <,再由函数()y f x =在[)0,+∞上的单调性得出lg 1x <,利用绝对值不等式的解法和对数函数的单调性即可求出结果. 【详解】由于函数()y f x =是偶函数,由()()lg 1f x f <-得()()lg 1f x f <, 又函数()y f x =在[)0,+∞上是增函数,则lg 1x <,即1lg 1x -<<,解得11010x <<. 故选:C. 【点睛】本题考查利用函数的单调性和奇偶性解不等式,同时也涉及了对数函数单调性的应用,考查分析问题和解决问题的能力,属于中等题.2.B解析:B 【解析】 【分析】由题意作函数()y f x =与y m =的图象,从而可得122x x +=-,240log 2x <,341x x =,从而得解【详解】解:因为22log ,0()2,0.x x f x x x x ⎧>=⎨--≤⎩,,可作函数图象如下所示: 依题意关于x 的方程(),f x m m R =∈,有四个不同的实数解1234,,,x x x x ,即函数()y f x =与y m =的图象有四个不同的交点,由图可知令1234110122x x x x <-<<<<<<<, 则122x x +=-,2324log log x x -=,即2324log log 0x x +=,所以341x x =,则341x x =,()41,2x ∈ 所以12344412x x x x x x +++=-++,()41,2x ∈ 因为1y x x =+,在()1,2x ∈上单调递增,所以52,2y ⎛⎫∈ ⎪⎝⎭,即44152,2x x ⎛⎫+∈ ⎪⎝⎭1234441120,2x x x x x x ⎛⎫∴+++=-++∈ ⎪⎝⎭故选:B【点睛】本题考查了数形结合的思想应用及分段函数的应用.属于中档题3.B解析:B【分析】 【详解】试题分析:由题意有,函数()f x 在R 上为减函数,所以有220{1(2)2()12a a -<-⨯≤-,解出138a ≤,选B. 考点:分段函数的单调性. 【易错点晴】本题主要考查分段函数的单调性,属于易错题. 从题目中对任意的实数12x x ≠,都有()()12120f x f x x x -<-成立,得出函数()f x 在R 上为减函数,减函数图象特征:从左向右看,图象逐渐下降,故在分界点2x =处,有21(2)2()12a -⨯≤-,解出138a ≤. 本题容易出错的地方是容易漏掉分界点2x =处的情况.4.B解析:B 【解析】因为||0x ≥,所以1x a ≥,且在(0,)+∞上曲线向下弯曲的单调递增函数,应选答案B .5.D解析:D 【解析】 【分析】可以得出11ln 32,ln 251010a c ==,从而得出c <a ,同样的方法得出a <b ,从而得出a ,b ,c 的大小关系. 【详解】()ln 2ln 322210a f ===, ()1ln 255ln 5510c f ===,根据对数函数的单调性得到a>c, ()ln 333b f ==,又因为()ln 2ln8226a f ===,()ln 3ln 9336b f ===,再由对数函数的单调性得到a<b,∴c <a ,且a <b ;∴c <a <b . 故选D . 【点睛】考查对数的运算性质,对数函数的单调性.比较两数的大小常见方法有:做差和0比较,做商和1比较,或者构造函数利用函数的单调性得到结果.6.A【解析】 【分析】利用函数()y f x =是(),-∞+∞上的增函数,保证每支都是增函数,还要使得两支函数在分界点1x =处的函数值大小,即()23141a a -⨯-≤,然后列不等式可解出实数a 的取值范围. 【详解】由于函数()()234,1,1a x a x f x x x ⎧--<=⎨≥⎩是(),-∞+∞的增函数, 则函数()34y a x a =--在(),1-∞上是增函数,所以,30a ->,即3a <; 且有()23141a a -⨯-≤,即351a -≤,得25a ≥, 因此,实数a 的取值范围是2,35⎡⎫⎪⎢⎣⎭,故选A. 【点睛】本题考查分段函数的单调性与参数,在求解分段函数的单调性时,要注意以下两点: (1)确保每支函数的单调性和原函数的单调性一致; (2)结合图象确保各支函数在分界点处函数值的大小关系.7.C解析:C 【解析】 【分析】根据函数()2sin f x x x =是奇函数,且函数过点[],0π,从而得出结论.【详解】由于函数()2sin f x x x =是奇函数,故它的图象关于原点轴对称,可以排除B 和D ;又函数过点(),0π,可以排除A ,所以只有C 符合. 故选:C . 【点睛】本题主要考查奇函数的图象和性质,正弦函数与x 轴的交点,属于基础题.8.C解析:C 【解析】 【分析】利用换元法求解复合函数的值域即可求得函数的“上界值”. 【详解】 令3,0xt t => 则361133t y t t -==-<++ 故函数()f x 的“上界值”是1; 故选C 【点睛】本题背景比较新颖,但其实质是考查复合函数的值域求解问题,属于基础题,解题的关键是利用复合函数的单调性法则判断其单调性再求值域或 通过换元法求解函数的值域.9.C解析:C 【解析】函数()0.5log f x x =为减函数,且0x >, 令2t 2x x =-,有t 0>,解得02x <<.又2t 2x x =-为开口向下的抛物线,对称轴为1x =,所以2t 2x x =-在(]0,1上单调递增,在[)1,2上单调递减,根据复合函数“同增异减”的原则函数()22f x x -的单调减区间为(]0,1.故选C.点睛:形如()()y f g x =的函数为()y g x =,() y f x =的复合函数,() y g x =为内层函数,()y f x =为外层函数. 当内层函数()y g x =单增,外层函数()y f x =单增时,函数()()y f g x =也单增; 当内层函数()y g x =单增,外层函数()y f x =单减时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单增时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单减时,函数()()y f g x =也单增.简称为“同增异减”.10.B解析:B 【解析】 【分析】根据零点存在定理判断023x <<,从而可得结果. 【详解】 因为()2ln f x x x=-在定义域内递增, 且()2ln 210f =-<,()23ln 303f =->, 由零点存在性定理可得023x <<,根据[]x 表示不超过实数x 的最大整数可知()02g x =, 故选:B. 【点睛】本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续.11.D解析:D 【解析】 【分析】根据偶函数的性质,求出函数()0f x <在(-∞,0]上的解集,再根据对称性即可得出答案. 【详解】由函数()f x 为偶函数,所以()()220f f -==,又因为函数()f x 在(-∞,0]是减函数,所以函数()0f x <在(-∞,0]上的解集为(]2,0-,由偶函数的性质图像关于y 轴对称,可得在(0,+ ∞)上()0f x <的解集为(0,2),综上可得,()0f x <的解集为(-2,2). 故选:D. 【点睛】本题考查了偶函数的性质的应用,借助于偶函数的性质解不等式,属于基础题.12.D解析:D 【解析】 试题分析:11y x=-在区间()1,1-上为增函数;cos y x =在区间()1,1-上先增后减;()ln 1y x =+在区间()1,1-上为增函数;2x y -=在区间()1,1-上为减函数,选D.考点:函数增减性二、填空题13.【解析】【分析】先求得函数的定义域然后利用同增异减来求得复合函数的单调区间【详解】依题意即解得当时为减函数为减函数根据复合函数单调性同增异减可知函数的单调递增区间是【点睛】本小题主要考查复合函数的单 解析:[)1,0-【解析】 【分析】先求得函数的定义域,然后利用“同增异减”来求得复合函数的单调区间. 【详解】依题意220.50log 0x x ⎧>⎨≥⎩,即201x <≤,解得[)(]1,00,1x ∈-.当[)1,0x ∈-时,2x 为减函数,0.5log x 为减函数,根据复合函数单调性“同增异减”可知,函数y =递增区间是[)1,0-. 【点睛】本小题主要考查复合函数的单调区间的求法,考查函数定义域的求法,属于基础题.14.【解析】【分析】根据方程的解在区间内将问题转化为解在区间内即可求解【详解】由题:关于的方程的解在区间内所以可以转化为:所以故答案为:【点睛】此题考查根据方程的根的范围求参数的取值范围关键在于利用对数 解析:()23log 11,1-+【解析】 【分析】根据方程的解在区间()3,8内,将问题转化为23log x a x+=解在区间()3,8内,即可求解. 【详解】由题:关于x 的方程()224log 3log +-=x x a 的解在区间()3,8内, 所以()224log 3log +-=x x a 可以转化为:23log x a x+=, ()3,8x ∈,33111,28x x x +⎛⎫=+∈ ⎪⎝⎭, 所以()23log 11,1a ∈-+ 故答案为:()23log 11,1-+ 【点睛】此题考查根据方程的根的范围求参数的取值范围,关键在于利用对数运算法则等价转化求解值域.15.【解析】【分析】将化简为关于的函数式利用基本不等式求出的最值即可求解【详解】当时当时时当且仅当时等号成立同理时即的最小值和最大值分别为依题意得解得故答案为:【点睛】本题考查函数的最值考查基本不等式的解析:【解析】 【分析】将()f x 化简为关于x a +的函数式,利用基本不等式,求出的最值,即可求解. 【详解】当x a =-时,()0f x =,当x a时,()222111[()]1()2 x a x af xax x a ax a ax a++===+++-+++-+,x a >-时,21()22ax a a ax a+++-≥+当且仅当x a=时,等号成立,0()2af x∴<≤=同理x a<-时,()02af x∴≤<,()22a af x∴≤≤,即()f x的最小值和最大值分别为,22a a,2=,解得a=.故答案为:【点睛】本题考查函数的最值,考查基本不等式的应用,属于中档题.16.【解析】【分析】分别求出的值域对分类讨论即可求解【详解】的值域为当函数值域为此时的值域相同;当时当时当所以当时函数的值域不同故的取值范围为故答案为:【点睛】本题考查对数型函数的值域要注意二次函数的值解析:(]0,1【解析】【分析】分别求出(),()f xg x的值域,对a分类讨论,即可求解.【详解】()()222,log loga R f x x a a+∈=+≥,()f x的值域为2[log,)a+∞,()()22log([()])g x f f x f x a==+⎡⎤⎣⎦,当22201,log0,[()]0,()loga a f x g x a<≤<≥≥,函数()g x值域为2[log,)a+∞,此时(),()f xg x的值域相同;当1a>时,2222log0,[()](log)a f x a>≥,222()log[(log)]g x a a≥+,当12a <<时,2222log 1,log (log )a a a a <∴<+ 当22222,log 1,(log )log a a a a ≥≥>,222log (log )a a a <+,所以当1a >时,函数(),()f x g x 的值域不同, 故a 的取值范围为(]0,1. 故答案为:(]0,1. 【点睛】本题考查对数型函数的值域,要注意二次函数的值域,考查分类讨论思想,属于中档题.17.【解析】【分析】根据函数奇偶性和单调性的性质作出的图象利用数形结合进行求解即可【详解】偶函数的图象过点且在区间上单调递减函数的图象过点且在区间上单调递增作出函数的图象大致如图:则不等式等价为或即或即 解析:()(),20,2-∞-⋃【解析】 【分析】根据函数奇偶性和单调性的性质作出()f x 的图象,利用数形结合进行求解即可. 【详解】偶函数()f x 的图象过点()2,0P ,且在区间[)0,+∞上单调递减,∴函数()f x 的图象过点()2,0-,且在区间(),0-∞上单调递增,作出函数()f x 的图象大致如图:则不等式()0xf x >等价为()00x f x >⎧>⎨⎩或()00x f x <⎧<⎨⎩,即02x <<或2x <-,即不等式的解集为()(),20,2-∞-⋃, 故答案为()(),20,2-∞-⋃ 【点睛】本题主要考查不等式的解集的计算,根据函数奇偶性和单调性的性质作出()f x 的图象是解决本题的关键.18.【解析】【分析】由已知条件得出是以2为周期的函数根据函数周期性化简再代入求值即可【详解】因为所以所以是以2为周期的函数因为当时所以故答案为:【点睛】本题主要考查函数的周期性和递推关系这类题目往往是奇【解析】 【分析】由已知条件,得出()f x 是以2为周期的函数,根据函数周期性,化简92f ⎛⎫ ⎪⎝⎭,再代入求值即可. 【详解】 因为()()1f x f x +=-,所以()()()21f x f x f x +=-+=,所以()f x 是以2为周期的函数, 因为当11x -<≤时,()xf x e = ,所以129114222f f f e ⎛⎫⎛⎫⎛⎫=+=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故答案为. 【点睛】本题主要考查函数的周期性和递推关系,这类题目往往是奇偶性和周期性相结合一起运用.19.【解析】【分析】由已知可构造有两不同实数根利用二次方程解出的范围即可【详解】为增函数且时函数的值域也为相当于方程有两不同实数根有两不同实根即有两解整理得:令有两个不同的正数根只需即可解得故答案为:【解析:10,4⎛⎫⎪⎝⎭【解析】 【分析】由已知可构造()2log xa a t x +=有两不同实数根,利用二次方程解出t 的范围即可.【详解】()2()log x a f x a t =+为增函数,且[],x m n ∈时,函数()()2log xa f x at =+的值域也为[],m n ,(),()f m m f n n ∴==,∴相当于方程()f x x =有两不同实数根,()2log x a a t x ∴+=有两不同实根,即2x x a a t =+有两解, 整理得:20x x a a t -+=, 令,0xm a m => ,20m m t ∴-+=有两个不同的正数根,∴只需1400t t ∆=->⎧⎨>⎩即可,解得104t <<, 故答案为:10,4⎛⎫ ⎪⎝⎭【点睛】本题主要考查了对数函数的单调性,对数方程,一元二次方程有两正根,属于中档题.20.【解析】若对任意的实数都有成立则函数在上为减函数∵函数故计算得出:点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间上单调则该函数在此区间的任意子区间上也是单调的;(2)分段解析:13,8⎛⎤-∞ ⎥⎝⎦【解析】若对任意的实数12x x ≠都有1212()()0f x f x x x -<-成立,则函数()f x 在R 上为减函数,∵函数(2),2()11,22xa x x f x x -≥⎧⎪=⎨⎛⎫-< ⎪⎪⎝⎭⎩,故22012(2)12a a -<⎧⎪⎨⎛⎫-≤- ⎪⎪⎝⎭⎩, 计算得出:13,8a ⎛⎤∈-∞ ⎥⎝⎦. 点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间[,]a b 上单调,则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值;(3)复合函数的单调性,不仅要注意内外函数单调性对应关系,而且要注意内外函数对应自变量取值范围.三、解答题21.(1)()0.50.5*20.065n n r n N -=-⨯∈ (2)6次【解析】 【分析】(1)先阅读题意,再解方程求出函数模型对应的解析式即可; (2)结合题意解指数不等式即可. 【详解】解:(1)由题意得02r =,1 1.94r =, 所以当1n =时,()0.510015pr r r r +=--⋅,即0.51.942(2 1.94)5p+=--⋅,解得0.5p =-,所以0.50.520.065*()n n r n -=-⨯∈N , 故改良后所排放的废气中含有的污染物数量的函数模型为()0.50.5*20.065n n r n -=-⨯∈N .(2)由题意可得,0.50.520.0650.08n n r -=-⨯≤, 整理得,0505..1950..206n -≥,即0.50.5532n -≥, 两边同时取常用对数,得lg3205055.lg .n -≥, 整理得5lg 2211lg 2n ≥⨯+-, 将lg 20.3=代入,得5lg 230211 5.31lg 27⨯+=+≈-,又因为*n ∈N ,所以6n ≥.综上,至少进行6次改良工艺后才能使得该企业所排放的废气中含有的污染物数量达标. 【点睛】本题考查了函数的应用,重点考查了阅读能力及解决问题的能力,属中档题. 22.(1)2a =(2)17,8⎛⎫-∞- ⎪⎝⎭【解析】 【分析】(1)依题意代数求值即可;(2)设()()121log 1022xg x x ⎛⎫=-- ⎪⎝⎭,题设条件可转化为()g x m >在[]3,4x ∈上恒成立,因此,求出()g x 的最小值即可得出结论. 【详解】 (1)()32f =-,()12log 1032a ∴-=-,即211032a -⎛⎫-= ⎪⎝⎭,解得2a =; (2)设()()121log 1022xg x x ⎛⎫=-- ⎪⎝⎭,题设不等式可转化为()g x m >在[]3,4x ∈上恒成立,()g x 在[]3,4上为增函数,()31min 2117(3)log (106)28g x g ⎛⎫∴==--=- ⎪⎝⎭,178m ∴<-, m ∴的取值范围为17,8⎛⎫-∞- ⎪⎝⎭.【点睛】本题考查函数性质的综合应用,属于中档题.在解决不等式恒成立问题时,常分离参数,将其转化为最值问题解决.23.(1)()24x xg x =-,(2)31,164b ⎡⎫∈⎪⎢⎣⎭【解析】试题分析:(1);本题求函数解析式只需利用指数的运算性质求出a 的值即可, (2)对于同时含有2,xxa a 的表达式,通常可以令进行换元,但换元的过程中一定要注意新元的取值范围,换元后转化为我们熟悉的一元二次的关系,从而解决问题.试题解析:解:(1)∵()3xf x =,且(2)18f a +=∴⇒∵∴(2)法一:方程为令,则144t ≤≤- 且方程为在有两个不同的解.设2211()24y t t t =-=--+,y b =两函数图象在1,44⎡⎤⎢⎥⎣⎦内有两个交点由图知31,164b ⎡⎫∈⎪⎢⎣⎭时,方程有两不同解. 法二: 方程为,令,则144t ≤≤ ∴方程在1,44⎡⎤⎢⎥⎣⎦上有两个不同的解.设21(),,44f t t t b t ⎡⎤=-+-∈⎢⎥⎣⎦1=1-40413{0416(4)012b b f b f b ∆>⇒<⎛⎫∴≤⇒≥⎪⎝⎭≤⇒≥- 解得31,164b ⎡⎫∈⎪⎢⎣⎭考点:求函数的解析式,求参数的取值范围【方法点睛】求函数解析式的主要方法有待定系数法,换元法及赋值消元法等;已知函数的类型(如一次函数,二次函数,指数函数等),就可用待定系数法;已知复合函数的解析式,可用换元法,此时要注意自变量的取值范围;求分段函数的解析式时,一定要明确自变量的所属范围,以便于选择与之对应的对应关系,避免出错.24.(1)2,0428,4205x v x x <≤⎧⎪=⎨-+<≤⎪⎩;(2) 10株时,最大值40千克【解析】 【分析】当420x <≤时,设v ax b =+,然后代入两组数值,解二元一次方程组可得参数a 、b 的值,即可得到函数v 关于x 的函数表达式;第()2题设药材每平方米的年生长总量为()f x 千克,然后列出()f x 表达式,再分段求出()f x 的最大值,综合两段的最大值可得最终结果.【详解】(1)由题意得,当04x <≤时,2v =; 当420x <≤时,设v ax b =+,由已知得200104a b a b +=⎧⎨+=⎩,解得258a b ⎧=-⎪⎨⎪=⎩,所以285v x =-+,故函数2,0428,4205x v x x <≤⎧⎪=⎨-+<≤⎪⎩.(2)设药材每平方米的年生长总量为()f x 千克,依题意及()1可得()22,0428,4205x x f x x x x <≤⎧⎪=⎨-+<≤⎪⎩,当04x <≤时,()f x 为增函数,故()()4428max f x f ==⨯=; 当420x <≤时,()()222222820(10)40555f x x x x x x =-+=--=--+,此时()()1040max f x f ==.综上所述,可知当每平方米种植10株时,药材的年生长总量取得最大值40千克. 【点睛】本题主要考查应用函数解决实际问题的能力,考查了理解能力,以及实际问题转化为数学问题的能力,本题属中档题. 25.(1)(2)【解析】试题分析:(1)由于函数定义域为全体实数,故恒成立,即有,解得;(2)由于在定义域上是减函数,故根据复合函数单调性有函数在上为减函数,结合函数的定义域有,解得.试题解析:(1)由函数的定义域为可得:不等式的解集为,∴解得,∴所求的取值范围是(2)由函数在区间上是递增的得: 区间上是递减的, 且在区间上恒成立;则,解得26.见解析 【解析】 【分析】根据题意,在数轴上表示出集合,A B ,再根据集合的运算,即可得到求解.【详解】解:如图所示.∴A∪B={x|2<x<7},A∩B={x|3≤x<6}.∴∁R(A∪B)={x|x≤2或x≥7},∁R(A∩B)={x|x≥6或x<3}.又∵∁R A={x|x<3或x≥7},∴(∁R A)∩B={x|2<x<3}.又∵∁R B={x|x≤2或x≥6},∴A∪(∁R B)={x|x≤2或x≥3}.【点睛】本题主要考查了集合的交集、并集与补集的混合运算问题,其中解答中正确在数轴上作出集合,A B,再根据集合的交集、并集和补集的基本运算求解是解答的关键,同时在数轴上画出集合时,要注意集合的端点的虚实,着重考查了数形结合思想的应用,以及推理与运算能力.。
高一数学上学期期末试题及答案

高一数学上学期期末试题及答案一、选择题(每题4分,共40分)1. 若f(x)=x^2-4x+3,则f(1)的值为:A. 0B. -2C. 1D. 22. 函数y=x^3-3x^2+2的导数为:A. 3x^2-6xB. x^2-6x+2C. 3x^2-6x+2D. x^3-6x^2+63. 已知集合A={x|x<0},B={x|x>0},则A∩B的元素个数为:A. 0C. 2D. 无数个4. 以下哪个不是等差数列:A. 2, 4, 6, 8B. 1, 3, 5, 7C. 3, 6, 9, 12D. 1, 4, 7, 105. 已知圆的方程为(x-2)^2+(y-3)^2=25,圆心坐标为:A. (2, 3)B. (-2, 3)C. (2, -3)D. (-2, -3)6. 若a, b, c是等比数列,且a+b+c=14,b^2=ac,则b的值为:A. 2C. 7D. 147. 函数y=2^x的反函数为:A. y=log2(x)B. y=2^(-x)C. y=-2^xD. y=x^(1/2)8. 已知向量a=(3, -1),b=(2, 4),则向量a+b的坐标为:A. (5, 3)B. (1, 3)C. (5, -3)D. (1, -3)9. 函数y=x^2-6x+8的顶点坐标为:A. (3, -1)B. (3, 1)C. (-3, 1)D. (-3, -1)10. 已知双曲线x^2/a^2-y^2/b^2=1的焦点在x轴上,且a=2,b=1,则双曲线的离心率为:A. √2B. √3C. 2D. 3二、填空题(每题4分,共20分)11. 已知函数f(x)=x^3-3x^2+2,求f'(x)=________。
12. 已知等差数列{an}的首项a1=3,公差d=2,则a5=________。
13. 已知向量a=(1, 2),b=(3, -2),则向量a·b=________。
完整版)高一第一学期数学期末考试试卷(含答案)

完整版)高一第一学期数学期末考试试卷(含答案)高一第一学期期末考试试卷考试时间:120分钟注:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U=R,集合A={x|3≤x<7},B={x|x^2-7x+10<0},则(A∩B)的取值为A。
(−∞,3)∪(5,+∞)B。
(−∞,3)∪[5,+∞)C。
(−∞,3]∪[5,+∞)D。
(−∞,3]∪(5,+∞)2.已知a⋅3^a⋅a的分数指数幂表示为A。
a^3B。
a^3/2C。
a^3/4D。
都不对3.下列指数式与对数式互化不正确的一组是A。
e=1与ln1=0B。
8^(1/3)=2与log2^8=3C。
log3^9=2与9=3D。
log7^1=0与7^1=74.下列函数f(x)中,满足“对任意的x1,x2∈(−∞,0),当x1f(x2)”的是A。
x^2B。
x^3C。
e^xD。
1/x5.已知函数y=f(x)是奇函数,当x>0时,f(x)=logx,则f(f(100))的值等于A。
log2B。
−1/lg2C。
lg2D。
−lg26.对于任意的a>0且a≠1,函数f(x)=ax^−1+3的图像必经过点(1,4/5)7.设a=log0.7(0.8),b=log1.1(0.9),c=1.10.9,则a<b<c8.下列函数中哪个是幂函数A。
y=−3x^−2B。
y=3^xC。
y=log_3xD。
y=x^2+1是否有模型能够完全符合公司的要求?原因是公司的要求只需要满足以下条件:当x在[10,1000]范围内时,函数为增函数且函数的最大值不超过5.参考数据为e=2.L,e的8次方约为2981.已知函数f(x)=1-2a-a(a>1),求函数f(x)的值域和当x 在[-2,1]范围内时,函数f(x)的最小值为-7.然后求出a的值和函数的最大值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14.已知 ,且 ,则 ________
【答案】
15.设函数 是偶函数,且是以4为最小正周期的周期函数,若 时, ,则 ________.
【答案】8
16.已知M是函数 在 上的所有零点之和,则M的值为________.
【答案】6
三、解答题
17.已知 =(1,2) =(-3,2),当 何值时.
4.把函数 向右平移 个单位,所得函数的解析式是()
A. B.
C. D.
【答案】C
5.在平行四边形ABCD中,下列结论错误的是()
A. B.
C. D.
【答案】C
6.下列函数中,周期为 ,且在 上为减函数的是()
A. B.
C. D.
【答案】B
7.某林区的森林蓄积量每年比上一年平均增长10.4%,要增长到原来的x倍,需经过y年,则函数y=f(x)的图象大致为()
新课标高一上学期期末数学试卷
一、选择题
1.某简谱运动的函数表达式为 ,则该简谐运动的振幅和初相分别是()
A.2,0B. ,0
C.2, D. ,
【答案】A
2.下列向量下列函数中,既是奇函数,且 是一个对称中心的函数是()
A. B.
C. D.
【答案】A
(1) 与 垂直;
(2) 与 平行.
【答案】(1)19;(2) .
18.请解答下列各题:
(1)已知点O与A,B,C三点满足 ,求证:A,B,C三点共线.
(2)设 和 是两个单位向量,其夹角是 ,求向量 与 的数量积 以及向量 的模 .
【答案】(1)证明见解析;(2) , .
19.已知函数 .
(1)求函数 在区间 上的值域.
【答案】(1)证明见解析;(2)证明见解析
【答案】(1)证明见解析;(2) ,证明见解析
21.如图,已知某摩天轮的半径为50米,点O距地面的高度为60米,摩天轮做匀速转动,每3分钟转一圈,点P的起始位置在摩天轮的最低点处,摩天轮上一点P在t(分钟)时刻距离地面高度设为y(米).
(1)请根据条件建立适当的坐标系,写出y(米)关于t(分钟)的解析式.
(2)在摩天轮转动 一圈内,有多长时间点P距离地面超过85米?
【答案】(1)建系答案见解析, ;(2)1分钟.
22.已知连续不断函数 , , ,
(1)证明:函数 在区间 上有且只有一个零点;
(2)现已知函数 在 上单调递增,且都只有一个零点(不必证明),记三个函数 的零点分别为 .
求证:(i) ;
(ii)判断 与 的大小,并证明你的结论.
A. B. C. D.
【答案】D
8. , 满足 ,且 ,则 与 的夹角为()
A. B. C. D.
【答案】B
9.在△ 中, 为 边上的中线, 为 的中点,则
A. B.
C. D.
【答案】A
10.函数 的部分图象如图所示,则 的值分别可以是
A. B.
C. D.
【答案】D
11.已知角 的终边在直线 上,则 的值是()
(2)借助“五点作图法”画出函数 在 上 简图,并且依图写出函数 在 上的递增区间.
【答案】(1) ;(2)简图见解析,单调增区间是 , .
20.如图,在平面直角坐标系中,以原点为圆心,单位长度为半径的圆上有两点 , .
(1)请分别利用向量 与 的数量积的定义式和坐标式,证明: .
(2)已知(1)中的公式对任意的 , 都成立(不用证),请用该公式计算 的值,并证明: .
A. B. C. D.
【答案】C
12.若函数 图像上存在不同的两点A,B关于y轴对称,则称点对 是函数 的一对“和谐点对”(注:点对 与点对 可看作同一对“和谐点对”.已知函数 ,则此函数的“和谐点对”有()
A.0对B.1对C.2对D.3对
【答案】C
二、填空题
13.借助函数 的图象解不等式 , ,解集是________.