数值分析中的数值微分与数值积分

合集下载

数值分析-第4章 数值积分和数值微分

数值分析-第4章  数值积分和数值微分

A0+A1=2 A0x0+A1x1=0 A0x02+A1x12=2/3 A0x03+A1x13=0
A0 A1 1 解得: 1 x 0 x1 3
求积公式为
1 1 1 f ( x)dx f ( ) f ( ) 3 3
x f(x)
数值分析
1 4
2 4.5
3 6
4 8
5 8.5
1
一、数值积分的基本概念 求积节点 数值积分定义如下:是离散点上的函数值的线性组合
I [ f ] f ( x)dx I n [ f ] Ai f ( xi )
b a i 0 n
称为数值积分公式
称为求积系数,与f (x)无关,与积分区间和求积节点有关
b a
Rn ( x) dx
定理:形如 Ak f ( xk ) 的求积公式至少有 n 次代数精度
A 该公式为插值型(即: k a l k ( x)dx )
数值分析
b
5
例1 试确定参数A0,A1,A2,使求积公式
1 f ( x)dx A0 f (1) A1 f (0) A2 f (1)
证明 因为Simpson公式对不高于三次的多项式精确成立。即

b
a
p 2 ( x)dx
ba ab [ p 2 (a) 4 p 2 ( ) p 2 (b)] 6 2
构造三次多项式H3(x),使满足 H3(a)=(a) ,H3(b)=(b),
H 3 (( a b) / 2) f (( a b) / 2), H 3 (( a b) / 2) f (( a b) / 2), 这时插值误差为
1

数值分析中的名词解释

数值分析中的名词解释

数值分析中的名词解释数值分析是一门研究如何利用计算机进行数值计算和模拟的学科,它在科学计算、工程领域以及许多其他领域中都有广泛的应用。

本文将通过解释数值分析中的一些重要名词,来介绍这个领域的基本概念和方法。

一、误差与精度在数值分析中,误差是指数值计算和实际结果之间的差异。

由于计算过程中存在舍入误差、截断误差等,数值计算很难得到完全准确的结果。

为了度量误差的大小,我们需要引入精度的概念。

精度表示了计算结果的准确程度,通常使用绝对误差或相对误差来衡量。

绝对误差是计算结果与实际结果的差值,而相对误差则是绝对误差与实际结果的比值。

二、插值与外推插值是指根据已知数据点的数值,通过某种方法去估算出未知点的数值。

常用的插值方法有拉格朗日插值、牛顿插值等。

而外推则是利用已知数据点的数值,通过推算来估计未知点的数值。

插值和外推在数值分析中常常用于构建函数的近似表达式或预测未来数据的趋势。

三、数值积分与数值微分数值积分是指通过数值方法来近似求解定积分。

由于很多函数的原函数无法用解析算式表示,或者求解困难,因此数值积分成为了一种常用的求解方法。

常见的数值积分方法有梯形法则、辛普森法则等。

而数值微分则是通过数值方法来近似求解微分。

数值微分的目的是通过逼近导数的定义来估算导数值,通常使用数值差商或有限差分来实现。

四、线性方程组的解法在科学计算中,线性方程组的求解是一个核心问题。

数值分析中有各种不同的算法和方法可以用来解决线性方程组,如高斯消元法、追赶法、迭代法等。

这些方法的基本思想是通过对系数矩阵进行操作或迭代运算来求解未知数的值。

线性方程组的求解在很多科学和工程问题中都非常重要,比如力学模拟、电路分析等。

五、常微分方程的数值解法常微分方程是描述自然界中许多现象的数学模型。

然而,绝大部分的常微分方程都无法用解析算式求解,因此需要使用数值方法来近似求解。

数值分析中有许多不同的方法可以用于求解常微分方程,如欧拉法、龙格-库塔法、四阶龙格-库塔法等。

1_数值分析4-数值积分与微分

1_数值分析4-数值积分与微分

回忆定积分的定义
b
I f (x)dx lim In,
a
n
n
In
f
(k
)
b
n
a
k 1
n充分大时In就是I的数值积分
各种数值积分方法研究的是
k 如何取值,区间 (a,b)如何划分, 使得既能保证一定精度,计算量又小。
(计算功效:算得准,算得快)
5
数值积分
y
1.梯形公式
h
Tn

h
k 1
fk

2 ( f0

fn )

b
f (x)dx
a
b
R( f ,Tn ) I Tn f (x)dx Tn
a
梯形公式在每小段上是用线性插值函数T(x)代替 f(x)
f (x) T(x)
f
(k
2
)
(
x

xk
)(x

xk
1
),
k (xk , xk1)
(
f0

fn)
(3)
k 1
非等距分割梯形公式
Tn

n1 k 0
fk
fk 1 2
(xk 1

xk
)
(4)
8
数值积分 2.辛普森(Simpson)公式
(抛物线公式)
梯形公式相当于用分段线性插值函数代替 f (x)
提高精度
分段二次插值函数
抛物线 公式
y
y=f(x)
每段要用相邻两小区间
数值积分
数值 积分
为什么要作数值积分
• 积分是重要的数学工具,是微分方程、概率 论等的基础;在实际问题中有直接应用。

武汉大学《数值分析》课件-第7章

武汉大学《数值分析》课件-第7章


b
n
a
可知 t [ 0, n] .
由Lagrange插值基函数有
lk
(x)
lk
(a
th)
n i0,ik
x xk
xi xi
n ti i0,ik k i
(1)nk
n
ti
k !(n k )! i0,ik
而 dx hd t b a dt,所以
n
b a
lk
(x)dx
n 0
再用 h/2 代替 h , 使(6)式变为
F*
F2
(h)
1 8
k2h2
3 32
k3h3
(7..).
用4乘(7)式减去(6)式,消去含 h2的项,得
F*
[
F2
(
h 2
)
F2 (h
/
2) 3
F2 (h)]
1 8
(k83)h3
...
同样记
而 I 3( f ) b 6 a (1 4 1) (b a )
有 R ( ,1) 0
I(
f
)
I3(
f
)
R( ,
f
)
b a{ f 6
(a) 4
f
(a
b) 2
f
(b)}
R( ,
f
)
(1)当 f ( x) x时 , I ( f ) b 2 a2 I3( f ) b 6 a ( a 22a 2b b ) b2 2 a2
| R(1, f ) | M n1 hn2 n n (t i)dt
(n 1)!
0 i0
(5)
验证求积公式(3)的代数精确度,不用误差估计的(4)式,

数值分析方法及其应用

数值分析方法及其应用

数值分析方法及其应用数值分析是一种以数值计算为基础的数学方法,通过使用计算机和数值算法来解决数学问题。

它在现代科学和工程领域中有着广泛的应用。

本文将介绍数值分析的基本概念和常见方法,并探讨其在各个领域中的应用。

一、数值分析方法概述数值分析方法是一种通过数值计算逼近真实结果的方法。

它主要包括离散化、数值逼近、数值求解和误差分析等步骤。

其中,离散化是将连续问题转化为离散问题,数值逼近是用有限的计算步骤得到问题的近似解,数值求解是通过迭代计算等方法求解数学问题,误差分析则是评估数值计算结果与真实结果之间的差异。

二、数值分析方法的常见技术1. 插值和外推:插值是通过已知数据点得到某个离散区间内的其他点的方法,而外推则是通过已知数据点得到某个离散区间外的点的方法。

常见的插值和外推方法包括拉格朗日插值、牛顿插值和样条插值等。

2. 数值积分:数值积分是通过数值方法来计算函数积分的过程。

常用的数值积分方法有梯形法则、辛普森法则和高斯积分法等。

3. 数值微分:数值微分是通过数值方法来计算函数导数的过程。

常用的数值微分方法有差分法、微分逼近法和辛普森法则等。

4. 解线性方程组:线性方程组是数值分析中的重要问题,其求解方法包括直接法和迭代法。

直接法包括高斯消元法、LU分解法和高斯-赛德尔迭代法等,而迭代法则主要包括雅可比迭代法和共轭梯度法等。

5. 数值优化:数值优化是一种通过数值方法找到函数的最优解的过程。

常用的数值优化方法有梯度下降法、牛顿法和拟牛顿法等。

三、数值分析方法的应用领域1. 工程领域:数值分析方法在工程领域中有着广泛的应用。

例如,在结构力学中,可以利用有限元法对复杂结构进行分析;在电力系统中,可以利用潮流计算方法优化电力的分配和传输;在流体力学中,可以通过数值模拟方法研究流体的运动和传热。

2. 金融领域:数值分析方法在金融领域中也有着重要的应用。

例如,可以通过数值模拟方法对股票价格、利率和汇率等进行预测和风险评估;在期权定价中,可以利用数值方法计算期权的价值。

数值分析-第八章数值微分与数值积分

数值分析-第八章数值微分与数值积分
在每个小区间上用梯形求积公式得到:
ab
f
x dx

n

i1
xxii1
f
x dx

n

i1
xi
xi1 2

f
xi1
f
xi


h 2
n

i1
f
xi1
f
xi


h 2

f
a

n1
2
i1
f
a ih

f
b
Tn
11
复合梯形公式的误差:
RTn

f

n h3 f i1 12
i

h3 nf 12

ba3
12
1 n2
f
二 复合Simpson公式
ab f x dxin1xxii1 f xdx
n

i1
xi
xi1 6
我们的目的是导出一组与函数无关的求导系数和求积系数.
从而得到能够对任意函数都通用的公式.
2
§2 数值微分 一 二点公式 给出两个点及其函数值,做一个一次插值多项式,对这个插 值多项式求导,得到:
fx0fx0,x 1 fx 1fx0,x 1
其几何意义就是用割线的斜率近似代替切线的斜率. 当然也可以用泰勒展开来导出上述公式.
a b公式
7
三 N-C公式的截断误差
Rnfa bfxdxba n Ck nfxk k0 ab f x dx ab Ln x dx

ab
f
n1 n 1!
第八章 数值微分和数值积分

《数值分析-李庆杨》第4章 数值积分与数值微分-文档资料

《数值分析-李庆杨》第4章  数值积分与数值微分-文档资料

(a

b).得到的求积公式就是中矩形公式。再令

f (x) x2, 代入(1.4)式的第三式有

分 析 》
A0 x02
(b
a)( a
b)2 2

b
a 4
(a2
b2)

b x2dx 1 (b3 a3 ),
a
3
说明中矩形公式对f (x) x2不精确成立,故它的代数精确度为1.
当f(x)=x2时(1.4)式的第三个式子不成立,因为
b a (a2 b2 ) b x2dx 1 (b3 a3).
2
a
3
故梯形公式(1.1)的代数精确度为1.
第4章 数值积分与数值微分
在方程组(1.4)中如果节点xi及系数Ai都不确定,那么方 程组(1.4)是关于xi及Ai(i=0,1,…,n)的2n+2个参数的非线性方 程组。此方程组当n>1时求解是很困难的,但当n=0及n=1的 情形还可通过求解方程组(1.4)得到相应的求积公式。
练习 设有求积公式
1
1 f (x)dx A0 f (1) A1 f (0) A2 f (1)
试确定系数A0, A1, A2, 使上述求积公式的代数精度尽量高.
三、插值型求积公式
第4章 数值积分与数值微分
在n 1个互异节点a x0 x1 xn b上已知函数值f0,

A1

1(b a).于是得 2
数 值
I ( f ) b f ( x)dx b a [ f (a) f (b)]
a
2

析 这就是梯形公式(1.1),它表明利用线性方程组(1.4)推出的求积公式,

数值微分与数值积分

数值微分与数值积分

数值微分与数值积分数值微分和数值积分是数值分析中两个重要的概念和技术。

它们在数学与工程领域中都有着广泛的应用。

本文将介绍数值微分和数值积分的概念、原理和应用。

1. 数值微分数值微分是指通过数值计算方法来逼近函数的导数。

在实际计算中,我们常常需要求解某一函数在特定点的导数值,这时数值微分就能派上用场了。

一种常用的数值微分方法是有限差分法。

它基于函数在离给定点很近的两个点上的函数值来逼近导数。

我们可以通过选取合适的差分间距h来求得函数在该点的导数值。

有限差分法的一般形式可以表示为:f'(x) ≈ (f(x+h) - f(x))/h其中,f'(x)是函数f(x)在点x处的导数值,h是差分间距。

数值微分方法有很多种,比如前向差分、后向差分和中心差分等。

根据实际需求和计算精度的要求,我们可以选择合适的数值微分方法来进行计算。

2. 数值积分数值积分是指通过数值计算方法来近似计算函数的定积分。

在实际问题中,我们经常需要求解函数在某一区间上的积分值,而数值积分可以提供一个快速而准确的近似。

一种常见的数值积分方法是复合梯形法。

它将积分区间分割成若干个小区间,然后在每个小区间上应用梯形面积的计算公式。

最后将所有小区间上的梯形面积相加,即可得到整个积分区间上的积分值。

复合梯形法的一般形式可以表示为:∫[a, b] f(x)dx ≈ h/2 * [f(a) + 2∑(i=1 to n-1)f(x_i) + f(b)]其中,[a, b]是积分区间,h是分割的小区间宽度,n是划分的小区间个数,x_i表示第i个小区间的起始点。

除了复合梯形法,还有其他常用的数值积分方法,比如复合辛普森法、龙贝格积分法等。

根据被积函数的性质和计算精度要求,我们可以选择合适的数值积分方法来进行计算。

3. 数值微分和数值积分的应用数值微分和数值积分在科学研究和工程实践中具有广泛的应用。

以下是一些常见的应用领域:3.1 物理学在物理学中,我们经常需要对物体的位置、速度和加速度进行计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数值分析中的数值微分与数值积分数值微分和数值积分是数值分析领域中两个重要的概念。

它们在计
算机科学、工程学和物理学等领域中有广泛的应用。

本文将介绍数值
微分和数值积分的概念、原理以及一些常用的方法和技巧。

一、数值微分
数值微分是通过数值方法来计算函数的导数。

导数是描述函数变化
率的工具,它在物理学、经济学和生物学等领域中具有重要的作用。

1. 前向差分法(Forward Difference)
前向差分法是一种简单而常用的计算导数的方法。

它利用函数在某
一点上的值与函数在该点附近的一个点上的值之间的差异来估计导数。

具体公式如下:
f'(x) ≈ (f(x+h) - f(x))/h
其中,h为步长,为了提高精度,需要选择足够小的步长。

2. 后向差分法(Backward Difference)
后向差分法与前向差分法类似,不同之处在于它利用函数在某一点
上的值与函数在该点附近的一个点上的值之间的差异来估计导数。


体公式如下:
f'(x) ≈ (f(x) - f(x-h))/h
同样地,步长h需要选择足够小。

3. 中心差分法(Central Difference)
中心差分法是一种更加准确的数值微分方法,它利用函数在某一点
上的前后两个点的值来估计导数。

具体公式如下:
f'(x) ≈ (f(x+h) - f(x-h))/(2h)
中心差分法相对于前向差分法和后向差分法而言,具有更高的精度。

二、数值积分
数值积分是通过数值方法来计算函数的积分。

积分在物理学、经济
学和统计学等领域中起着重要的作用,它可以用来计算面积、体积以
及概率等。

1. 矩形法(Rectangle Method)
矩形法是一种简单的数值积分方法,它利用多个矩形来逼近曲线下
的面积。

具体来说,将积分区间等分为若干子区间,然后在每个子区
间上选择一个点作为高度,从而构造出多个矩形。

最后,将各个矩形
的面积相加,即可得到近似的积分值。

2. 梯形法(Trapezoidal Method)
梯形法是一种更加准确的数值积分方法,它利用多个梯形来逼近曲
线下的面积。

具体来说,将积分区间等分为若干子区间,然后在每个
子区间上计算梯形的面积,最后将各个梯形的面积相加,即可得到近
似的积分值。

3. 辛普森法则(Simpson's Rule)
辛普森法则是一种更加精确的数值积分方法,它利用多个小区间上
的曲线来逼近整个积分区间上的曲线。

具体来说,辛普森法则将整个
积分区间划分为若干个小区间,然后在每个小区间上利用二次多项式
逼近曲线,最后将各个小区间上的积分值相加,即可得到近似的积分值。

总结:
数值微分和数值积分在数值分析中起着重要的作用,它们能够通过
数值方法来计算函数的导数和积分。

对于数值微分而言,前向差分法、后向差分法和中心差分法是常用的方法。

对于数值积分而言,矩形法、梯形法和辛普森法则是常用的方法。

同时,我们需要选择适当的步长
或子区间数量来提高计算的精度。

通过掌握这些数值微分和数值积分
的方法和技巧,我们能够更好地应用数值分析来解决实际问题。

相关文档
最新文档