数值分析第四章数值积分与数值微分习题答案

合集下载

数值分析-第4章 数值积分和数值微分

数值分析-第4章  数值积分和数值微分

A0+A1=2 A0x0+A1x1=0 A0x02+A1x12=2/3 A0x03+A1x13=0
A0 A1 1 解得: 1 x 0 x1 3
求积公式为
1 1 1 f ( x)dx f ( ) f ( ) 3 3
x f(x)
数值分析
1 4
2 4.5
3 6
4 8
5 8.5
1
一、数值积分的基本概念 求积节点 数值积分定义如下:是离散点上的函数值的线性组合
I [ f ] f ( x)dx I n [ f ] Ai f ( xi )
b a i 0 n
称为数值积分公式
称为求积系数,与f (x)无关,与积分区间和求积节点有关
b a
Rn ( x) dx
定理:形如 Ak f ( xk ) 的求积公式至少有 n 次代数精度
A 该公式为插值型(即: k a l k ( x)dx )
数值分析
b
5
例1 试确定参数A0,A1,A2,使求积公式
1 f ( x)dx A0 f (1) A1 f (0) A2 f (1)
证明 因为Simpson公式对不高于三次的多项式精确成立。即

b
a
p 2 ( x)dx
ba ab [ p 2 (a) 4 p 2 ( ) p 2 (b)] 6 2
构造三次多项式H3(x),使满足 H3(a)=(a) ,H3(b)=(b),
H 3 (( a b) / 2) f (( a b) / 2), H 3 (( a b) / 2) f (( a b) / 2), 这时插值误差为
1

《数值分析》第四章答案

《数值分析》第四章答案

习题41. 给定x x f =)(在144,121,100=x 3点处的值,试以这3点建立)(x f 的2次(抛物)插值公式,利用插值公式115求的近似值并估计误差。

再给13169=建立3次插值公式,给出相应的结果。

解:x x f =)( 2121)(-='x x f ,2341)(--=''x x f ,2583)(-='''x x f ,27)4(1615)(--=x x f,72380529.10)115(=f1000=x , 1211=x , 1442=x , 1693=x 100=y , 111=y , 122=y , 133=y))(())(())(())(())(())(()(1202102210120*********x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ----+----+----= )121144)(100144()121115)(100115(12)144121)(100121()144115)(100115(11)144100)(121100()144115)(121115(10)115(2----⨯+----⨯+----⨯=L=2344)6(1512)23(21)29(1511)44)(21()29)(6(10⨯-⨯⨯+-⨯-⨯⨯+----⨯72276.1006719.190683.988312.1=-+=))()((!3)()()(2102x x x x x x f x L x f ---'''=-ξ ,144100<<ξ )44115()121115()100115()(max 61)115()115(1441002-⨯-⨯-⋅'''≤-≤≤x f L f x 296151083615⨯⨯⨯⨯⨯≤-001631.0101631.02=⨯=- 实际误差 22101045.0)115()115(-⨯=-L f))()(())()(())()(())()(()(312101320130201032103x x x x x x x x x x x x y x x x x x x x x x x x x y x L ------+------= ))()(())()(())()(())()((23130321033212023102x x x x x x x x x x x x y x x x x x x x x x x x x y ------+------+ )169100()144100()121100()169115()144115()121115(10)115(3-⨯-⨯--⨯-⨯-⨯=L )169121()144121()100121()169115()144115()100115(11-⨯-⨯--⨯-⨯-⨯+)169144()121144()100144()169115()121115()100115(12-⨯-⨯--⨯-⨯-⨯+)144169()121169()100169()144115()121115()100115(13-⨯-⨯--⨯-⨯-⨯+)48()23(21)54()29(1511)69()44()21()54()29()6(10-⨯-⨯-⨯-⨯⨯+-⨯-⨯--⨯-⨯-⨯= 254869)29()6(1513)25(2344)54()6(1512⨯⨯-⨯-⨯⨯+-⨯⨯-⨯-⨯⨯+ 723571.10409783.0305138.2145186.11473744.1=+-+= ))()()((!4)()()(3210)4(3x x x x x x x x f x L x f ----=-ξ,169100<<ξ)169115)(144115)(121115)(10115(101615241)115()115(73----⨯⨯⨯≤--L f )54()29()6(151016152417-⨯-⨯-⨯⨯⨯⨯=- 0005505.0105505.03=⨯=-实际误差 321023429.0)115()115(-⨯=-L f 2. 设j x 为互异节点),,1,0(n j =求证: (1)k nj j k j x x l x =∑=)(0),,1,0(n k =;(2)0)()(0=-∑=x l x x j knj j ),,1(n k =。

数值分析课后习题及答案

数值分析课后习题及答案

第一章 绪论(12) 第二章 插值法(40-42)2、当2,1,1-=x 时,4,3,0)(-=x f ,求)(x f 的二次插值多项式。

[解]372365)1(34)23(21)12)(12()1)(1(4)21)(11()2)(1()3()21)(11()2)(1(0))(())(())(())(())(())(()(2221202102210120120102102-+=-++--=+-+-⨯+------⨯-+-+-+⨯=----+----+----=x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L 。

3、给出x x f ln )(=的数值表用线性插值及二次插值计算54.0ln 的近似值。

X 0.4 0.5 0.6 0.7 0.8 x ln -0.916291 -0.693147 -0.510826 -0.357765 -0.223144[解]若取5.00=x ,6.01=x ,则693147.0)5.0()(00-===f x f y ,510826.0)6.0()(11-===f x f y ,则604752.182321.1)5.0(10826.5)6.0(93147.65.06.05.0510826.06.05.06.0693147.0)(010110101-=---=--⨯---⨯-=--+--=x x x x x x x x x y x x x x y x L ,从而6202186.0604752.19845334.0604752.154.082321.1)54.0(1-=-=-⨯=L 。

若取4.00=x ,5.01=x ,6.02=x ,则916291.0)4.0()(00-===f x f y ,693147.0)5.0()(11-===f x f y ,510826.0)6.0()(22-===f x f y ,则 217097.2068475.404115.2)2.09.0(5413.25)24.0(3147.69)3.01.1(81455.45)5.06.0)(4.06.0()5.0)(4.0()510826.0()6.05.0)(4.05.0()6.0)(4.0()693147.0()6.04.0)(5.04.0()6.0)(5.0(916291.0))(())(())(())(())(())(()(22221202102210120120102102-+-=+--+-⨯++-⨯-=----⨯-+----⨯-+----⨯-=----+----+----=x x x x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ,从而61531984.0217097.21969765.259519934.0217097.254.0068475.454.004115.2)54.0(22-=-+-=-⨯+⨯-=L补充题:1、令00=x ,11=x ,写出x e x y -=)(的一次插值多项式)(1x L ,并估计插值余项。

数值分析答案第四章

数值分析答案第四章


f (x) = x ,则
0 = −1 + 2 x1 + 3 x2
令 f ( x ) = x 2 ,则
2 2 = 1 + 2 x12 + 3 x2
从而解得
⎧ x1 = −0.2899 ⎧ x1 = 0.6899 或⎨ ⎨ ⎩ x2 = 0.5266 ⎩ x2 = 0.1266
令 f ( x ) = x 3 ,则

1
−1
f ( x)dx = ∫ x3 dx = 0
−1
1
[ f ( −1) + 2 f ( x1 ) + 3 f ( x2 )] / 3 ≠ 0


1
−1
f ( x)dx = [ f (− 1) + 2 f ( x1 ) + 3 f ( x2 )] / 3不成立。
h
因此,原求积公式具有 2 次代数精度。 (4)若
7 h T8 = [ f ( a) + 2∑ f ( xk ) + f ( b)] = 0.11140 2 k =1
复化辛普森公式为
7 7 h S8 = [ f ( a) + 4∑ f ( x 1 ) + 2∑ f ( xk ) + f ( b)] = 0.11157 k+ 6 k=0 k =1 2 1
令 f ( x ) = x 2 ,则
b 1 3 3 2 f ( x ) dx = ∫a ∫a x dx = 3 (b − a ) b −a 1 3 3 [7 f ( x0 ) + 32 f ( x1 ) + 12 f ( x2 )+ 32 f ( x (b − a ) 3 )+ 7 f ( x 4 )]= 90 3 b

数值分析课程第五版课后习题答案(李庆扬等)

数值分析课程第五版课后习题答案(李庆扬等)

数值分析课程第五版课后习题答案(李庆扬等)数值分析课程第五版课后习题答案(李庆扬等)第一章:数值分析导论1. 解答:数值分析是一门研究如何使用计算机来解决数学问题的学科。

它包括了从数学理论到计算实现的一系列技术。

数值分析的目标是通过近似的方式求解数学问题,其结果可能不是完全精确的,但是能够满足工程或科学应用的要求。

2. 解答:数值分析在实际应用中起着重要的作用。

它可以用于求解复杂的数学方程、计算机模拟及建模、数据的统计分析等等。

数值分析是科学计算和工程计算的基础,对许多领域都有着广泛的应用,如物理学、经济学、生物学等。

3. 解答:数值方法指的是使用数值计算的方式来求解数学问题。

与解析方法相比,数值方法一般更加灵活和高效,可以处理一些复杂的数学问题。

数值方法主要包括了数值逼近、插值、数值积分、数值微分、线性方程组的求解、非线性方程的求根等。

4. 解答:计算误差是指数值计算结果与精确解之间的差异。

在数值计算中,由于计算机的有限精度以及数值计算方法本身的近似性等因素,都会导致计算误差的产生。

计算误差可以分为截断误差和舍入误差两种。

第二章:数值误差分析1. 解答:绝对误差是指实际值与精确值之间的差异。

例如,对于一个计算出的数值近似解x和精确解x_0,其绝对误差为| x - x_0 |。

绝对误差可以衡量数值近似解的精确程度,通常被用作评估数值计算方法的好坏。

2. 解答:相对误差是指绝对误差与精确解之间的比值。

对于一个计算出的数值近似解x和精确解x_0,其相对误差为| (x - x_0) / x_0 |。

相对误差可以衡量数值近似解相对于精确解的精确度,常用于评估数值计算方法的收敛速度。

3. 解答:舍入误差是由于计算机的有限精度而引起的误差。

计算机中使用的浮点数系统只能表示有限的小数位数,因此在进行数值计算过程中,舍入误差不可避免地会产生。

舍入误差会导致计算结果与精确结果之间存在差异。

4. 解答:误差限度是指对于给定的数值计算问题,所能容忍的误差范围。

数值分析课后习题与解答

数值分析课后习题与解答

课后习题解答第一章绪论习题一1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。

解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式(已知x*的相对误差满足,而,故即2.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。

解:直接根据定义和式(有5位有效数字,其误差限,相对误差限有2位有效数字,有5位有效数字,3.下列公式如何才比较准确?(1)(2)解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。

(1)(2)4.近似数x*=0.0310,是 3 位有数数字。

5.计算取,利用:式计算误差最小。

四个选项:第二、三章插值与函数逼近习题二、三1. 给定的数值表用线性插值与二次插值计算ln0.54的近似值并估计误差限. 解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计(5.8)。

线性插值时,用0.5及0.6两点,用Newton插值误差限,因,故二次插值时,用0.5,0.6,0.7三点,作二次Newton插值误差限,故2. 在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h 应取多少?解:用误差估计式(5.8),令因得3. 若,求和.解:由均差与导数关系于是4. 若互异,求的值,这里p≤n+1.解:,由均差对称性可知当有而当P=n+1时于是得5. 求证.解:解:只要按差分定义直接展开得6. 已知的函数表求出三次Newton均差插值多项式,计算f(0.23)的近似值并用均差的余项表达式估计误差.解:根据给定函数表构造均差表由式(5.14)当n=3时得Newton均差插值多项式N3(x)=1.0067x+0.08367x(x-0.2)+0.17400x(x-0.2)(x-0.3) 由此可得f(0.23) N3(0.23)=0.23203由余项表达式(5.15)可得由于7. 给定f(x)=cosx的函数表用Newton等距插值公式计算cos 0.048及cos 0.566的近似值并估计误差解:先构造差分表计算,用n=4得Newton前插公式误差估计由公式(5.17)得其中计算时用Newton后插公式(5.18)误差估计由公式(5.19)得这里仍为0.5658.求一个次数不高于四次的多项式p(x),使它满足解:这种题目可以有很多方法去做,但应以简单为宜。

数值分析课后习题答案

数值分析课后习题答案

7、计算的近似值,取。

利用以下四种计算格式,试问哪一种算法误差最小。

〔1〕〔2〕〔3〕〔4〕解:计算各项的条件数由计算知,第一种算法误差最小。

解:在计算机上计算该级数的是一个收敛的级数。

因为随着的增大,会出现大数吃小数的现象。

9、通过分析浮点数集合F=〔10,3,-2,2〕在数轴上的分布讨论一般浮点数集的分布情况。

10、试导出计算积分的递推计算公式,用此递推公式计算积分的近似值并分析计算误差,计算取三位有效数字。

解:此算法是数值稳定的。

第二章习题解答1.〔1〕 R n×n中的子集“上三角阵〞和“正交矩阵〞对矩阵乘法是封闭的。

〔2〕R n×n中的子集“正交矩阵〞,“非奇异的对称阵〞和“单位上〔下〕三角阵〞对矩阵求逆是封闭的。

设A是n×n的正交矩阵。

证明A-1也是n×n的正交矩阵。

证明:〔2〕A是n×n的正交矩阵∴A A-1 =A-1A=E 故〔A-1〕-1=A∴A-1〔A-1〕-1=〔A-1〕-1A-1 =E 故A-1也是n×n的正交矩阵。

设A是非奇异的对称阵,证A-1也是非奇异的对称阵。

A非奇异∴A可逆且A-1非奇异又A T=A ∴〔A-1〕T=〔A T〕-1=A-1故A-1也是非奇异的对称阵设A是单位上〔下〕三角阵。

证A-1也是单位上〔下〕三角阵。

证明:A是单位上三角阵,故|A|=1,∴A可逆,即A-1存在,记为〔b ij〕n×n由A A-1 =E,那么〔其中 j>i时,〕故b nn=1, b ni=0 (n≠j)类似可得,b ii=1 (j=1…n) b jk=0 (k>j)即A-1是单位上三角阵综上所述可得。

R n×n中的子集“正交矩阵〞,“非奇异的对称阵〞和“单位上〔下〕三角阵〞对矩阵求逆是封闭的。

2、试求齐次线行方程组Ax=0的根底解系。

A=解:A=~~~故齐次线行方程组Ax=0的根底解系为,3.求以下矩阵的特征值和特征向量。

最新数值分析第四章数值积分与数值微分习题答案

最新数值分析第四章数值积分与数值微分习题答案

第四章 数值积分与数值微分1.确定下列求积公式中的特定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度:10121012112120(1)()()(0)();(2)()()(0)();(3)()[(1)2()3()]/3;(4)()[(0)()]/2[(0)()];hhhh hf x dx A f h A f A f h f x dx A f h A f A f h f x dx f f x f x f x dx h f f h ah f f h -----≈-++≈-++≈-++''≈++-⎰⎰⎰⎰解:求解求积公式的代数精度时,应根据代数精度的定义,即求积公式对于次数不超过m 的多项式均能准确地成立,但对于m+1次多项式就不准确成立,进行验证性求解。

(1)若101(1)()()(0)()hhf x dx A f h A f A f h --≈-++⎰令()1f x =,则1012h A A A -=++令()f x x =,则110A h A h -=-+令2()f x x =,则3221123h h A h A -=+ 从而解得011431313A h A h A h -⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩令3()f x x =,则3()0hhhhf x dx x dx --==⎰⎰101()(0)()0A f h A f A f h --++=令4()f x x =,则4551012()52()(0)()3hhhhf x dx x dx h A f h A f A f h h ---==-++=⎰⎰故此时,101()()(0)()hhf x dx A f h A f A f h --≠-++⎰故101()()(0)()h hf x dx A f h A f A f h --≈-++⎰具有3次代数精度。

(2)若21012()()(0)()hhf x dx A f h A f A f h --≈-++⎰令()1f x =,则1014h A A A -=++令()f x x =,则110A h A h -=-+令2()f x x =,则32211163h h A h A -=+ 从而解得11438383A h A h A h -⎧=-⎪⎪⎪=⎨⎪⎪=⎪⎩令3()f x x =,则22322()0hhhhf x dx x dx --==⎰⎰101()(0)()0A f h A f A f h --++=令4()f x x =,则22452264()5hhhhf x dx x dx h --==⎰⎰510116()(0)()3A f h A f A f h h --++=故此时,21012()()(0)()hhf x dx A f h A f A f h --≠-++⎰因此,21012()()(0)()h hf x dx A f h A f A f h --≈-++⎰具有3次代数精度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 数值积分与数值微分1.确定下列求积公式中的特定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度:10121012112120(1)()()(0)();(2)()()(0)();(3)()[(1)2()3()]/3;(4)()[(0)()]/2[(0)()];hhhh hf x dx A f h A f A f h f x dx A f h A f A f h f x dx f f x f x f x dx h f f h ah f f h -----≈-++≈-++≈-++''≈++-⎰⎰⎰⎰解:求解求积公式的代数精度时,应根据代数精度的定义,即求积公式对于次数不超过m 的多项式均能准确地成立,但对于m+1次多项式就不准确成立,进行验证性求解。

(1)若101(1)()()(0)()hhf x dx A f h A f A f h --≈-++⎰令()1f x =,则1012h A A A -=++令()f x x =,则110A h A h -=-+令2()f x x =,则3221123h h A h A -=+ 从而解得011431313A h A h A h -⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩令3()f x x =,则3()0hhhhf x dx x dx --==⎰⎰101()(0)()0A f h A f A f h --++=令4()f x x =,则4551012()52()(0)()3hhhhf x dx x dx h A f h A f A f h h ---==-++=⎰⎰故此时,101()()(0)()hhf x dx A f h A f A f h --≠-++⎰故101()()(0)()h hf x dx A f h A f A f h --≈-++⎰具有3次代数精度。

(2)若21012()()(0)()hhf x dx A f h A f A f h --≈-++⎰令()1f x =,则1014h A A A -=++令()f x x =,则110A h A h -=-+令2()f x x =,则32211163h h A h A -=+ 从而解得11438383A h A h A h -⎧=-⎪⎪⎪=⎨⎪⎪=⎪⎩令3()f x x =,则22322()0hhhhf x dx x dx --==⎰⎰101()(0)()0A f h A f A f h --++=令4()f x x =,则22452264()5hhhhf x dx x dx h --==⎰⎰510116()(0)()3A f h A f A f h h --++=故此时,21012()()(0)()hhf x dx A f h A f A f h --≠-++⎰因此,21012()()(0)()h hf x dx A f h A f A f h --≈-++⎰具有3次代数精度。

(3)若1121()[(1)2()3()]/3f x dx f f x f x -≈-++⎰令()1f x =,则1121()2[(1)2()3()]/3f x dx f f x f x -==-++⎰令()f x x =,则120123x x =-++令2()f x x =,则22122123x x =++从而解得120.28990.5266x x =-⎧⎨=⎩或120.68990.1266x x =⎧⎨=⎩ 令3()f x x =,则11311()0f x dx x dx --==⎰⎰12[(1)2()3()]/30f f x f x -++≠故1121()[(1)2()3()]/3f x dx f f x f x -=-++⎰不成立。

因此,原求积公式具有2次代数精度。

(4)若20()[(0)()]/2[(0)()]hf x dx h f f h ah f f h ''≈++-⎰令()1f x =,则(),hf x dx h =⎰2[(0)()]/2[(0)()]h f f h ah f f h h ''++-=令()f x x =,则20221()21[(0)()]/2[(0)()]2hh f x dx xdx h h f f h ah f f h h ==''++-=⎰⎰令2()f x x =,则2302321()31[(0)()]/2[(0)()]22hh f x dx x dx h h f f h ah f f h h ah ==''++-=-⎰⎰故有33211232112h h ah a =-=令3()f x x =,则340024441()41111[(0)()]/2[(0)()]12244hh f x dx x dx h h f f h h f f h h h h==''++-=-=⎰⎰令4()f x x =,则450025551()51111[(0)()]/2[(0)()]12236hh f x dx x dx h h f f h h f f h h h h==''++-=-=⎰⎰故此时,21()[(0)()]/2[(0)()],12hf x dx h f f h h f f h ''≠++-⎰因此,21()[(0)()]/2[(0)()]12hf x dx h f f h h f f h ''≈++-⎰具有3次代数精度。

2.分别用梯形公式和辛普森公式计算下列积分:12012101(1),8;4(1)(2),10;(3),4;(4),6;x xdx n x e dx n xn n ϕ-=+-===⎰⎰⎰解:21(1)8,0,1,,()84xn a b h f x x =====+ 复化梯形公式为781[()2()()]0.111402k k hT f a f x f b ==++=∑复化辛普森公式为7781012[()4()2()()]0.111576k k k k hS f a f x f x f b +===+++=∑∑121(1)(2)10,0,1,,()10x e n a b h f x x--===== 复化梯形公式为9101[()2()()] 1.391482k k hT f a f x f b ==++=∑复化辛普森公式为99101012[()4()2()()] 1.454716k k k k hS f a f x f x f b +===+++=∑∑(3)4,1,9,2,()n a b h f x =====复化梯形公式为341[()2()()]17.227742k k hT f a f x f b ==++=∑复化辛普森公式为3341012[()4()2()()]17.322226(4)6,0,,,()636k k k k hS f a f x f x f b n a b h f x ππ+===+++======∑∑复化梯形公式为561[()2()()] 1.035622k k hT f a f x f b ==++=∑复化辛普森公式为5561012[()4()2()()] 1.035776k k k k hS f a f x f x f b +===+++=∑∑3。

直接验证柯特斯教材公式(2。

4)具有5交代数精度。

证明:柯特斯公式为01234()[7()32()12()32()7()]90bab af x dx f x f x f x f x f x -=++++⎰令()1f x =,则01234()90[7()32()12()32()7()]90bab a f x dx b af x f x f x f x f x b a -=-++++=-⎰令()f x x =,则2222012341()()21[7()32()12()32()7()]()902bb a af x dx xdx b a b a f x f x f x f x f x b a ==--++++=-⎰⎰令2()f x x =,则23333012341()()31[7()32()12()32()7()]()903bb a af x dx x dx b a b a f x f x f x f x f x b a ==--++++=-⎰⎰令3()f x x =,则34444012341()()41[7()32()12()32()7()]()904bb a af x dx x dx b a b a f x f x f x f x f x b a ==--++++=-⎰⎰令4()f x x =,则45555012341()()51[7()32()12()32()7()]()905bb a af x dx x dx b a b a f x f x f x f x f x b a ==--++++=-⎰⎰令5()f x x =,则56666012341()()61[7()32()12()32()7()]()906bb a af x dx x dx b a b a f x f x f x f x f x b a ==--++++=-⎰⎰令6()f x x =,则012340()[7()32()12()32()7()]90hb af x dx f x f x f x f x f x -≠++++⎰因此,该柯特斯公式具有5次代数精度。

4。

用辛普森公式求积分1x e dx -⎰并估计误差。

解:辛普森公式为[()4()()]62b a a bS f a f f b -+=++ 此时,0,1,(),x a b f x e -===从而有1121(14)0.632336S e e --=++=误差为4(4)04()()()1802110.00035,(0,1)1802b a b a R f f e ηη--=-≤⨯⨯=∈5。

推导下列三种矩形求积公式:223()()()()();2()()()()();2()()()()();224ba ba baf f x dx b a f a b a f f x dx b a f b b a a b f f x dx b a f b a ηηη'=-+-'=---''+=-+-⎰⎰⎰证明:(1)()()()(),(,)f x f a f x a a b ηη'=+-∈两边同时在[,]a b 上积分,得()()()()()bbaaf x dx b a f a f x a dx η'=-+-⎰⎰即2()()()()()2(2)()()()(),(,)baf f x dx b a f a b a f x f b f b x a b ηηη'=-+-'=--∈⎰两边同时在[,]a b 上积分,得()()()()()bbaaf x dx b a f a f b x dx η'=---⎰⎰即22()()()()()2()(3)()()()()(),(,)22222baf f x dx b a f b b a a b a b a b f a b f x f f x x a b ηηη'=---''++++'=+-+-∈⎰两连边同时在[,]a b 上积分,得2()()()()()()()22222bb b aa a ab a b a b f a b f x dx b a f f x dx x dx η''++++'=-+-+-⎰⎰⎰ 即3()()()()();224b aa b f f x dx b a f b a η''+=-+-⎰6。

相关文档
最新文档