粉煤灰-脱硫石膏水泥基材料水化活性及微结构
超细粉煤灰对混凝土水化热及物理力学性能的影响

超细粉煤灰对混凝土水化热及物理力学性能的影响一、引言粉煤灰是煤燃烧后的主要固体废物,其广泛用于混凝土中以改善其性能。
传统的粗放型粉煤灰利用方式已不能满足现代建筑工程的需求,因此,超细粉煤灰的应用逐渐受到关注。
然而,目前关于超细粉煤灰对混凝土水化热及物理力学性能的影响仍存在争议。
本文将对此进行深入探讨,以期为相关领域提供有益参考。
二、超细粉煤灰的特性超细粉煤灰是一种粒径极小的粉煤灰,其具有较高的比表面积和活性指数。
相较于传统粉煤灰,超细粉煤灰具有更高的利用价值,可以显著改善混凝土的性能。
三、超细粉煤灰对混凝土水化热的影响超细粉煤灰具有较高的火山灰活性,可以与水泥水化产物发生二次水化反应,生成水化硅酸钙、水化铝酸钙等物质,这些物质可以填充混凝土内部的孔隙,提高混凝土的密实度。
此外,超细粉煤灰还可以延缓水泥的水化过程,降低混凝土的水化热。
四、超细粉煤灰对混凝土物理力学性能的影响超细粉煤灰可以显著改善混凝土的物理力学性能。
一方面,超细粉煤灰的微粒填充作用可以减少混凝土内部的孔隙,提高其密实度,从而增强其抗渗性能。
另一方面,超细粉煤灰的活性成分可以与水泥水化产物发生二次水化反应,生成更多的凝胶物质,增强混凝土的强度。
此外,超细粉煤灰还可以改善混凝土的抗裂性能和耐久性。
五、结论超细粉煤灰对混凝土水化热及物理力学性能具有显著影响。
通过合理利用超细粉煤灰,可以降低混凝土的水化热,提高其抗渗性、强度和耐久性。
然而,目前关于超细粉煤灰在混凝土中的应用仍需进一步研究和探讨,例如最佳掺量、作用机理等方面的问题。
未来可以通过开展相关实验研究,进一步揭示超细粉煤灰对混凝土性能的影响规律,为建筑工程提供更加科学合理的指导。
六、建议与展望在建筑工程中应用超细粉煤灰时,应充分考虑其特性及对混凝土性能的影响。
为了更好地发挥超细粉煤灰的优势,建议采取以下措施:1.加强实验研究:通过开展系统的实验研究,进一步揭示超细粉煤灰的作用机理及其对混凝土性能的影响规律。
粉煤灰试验报告范文

粉煤灰试验报告范文一、引言粉煤灰是煤炭燃烧产生的废弃物,在建筑材料、环境工程、农业和能源领域有广泛的应用前景。
本试验报告通过对粉煤灰进行一系列的实验,探究其特性和性能,为其应用提供科学依据。
二、实验方法1.粉煤灰样品的制备:将粉煤灰经过筛分和烘干,制备成符合实验要求的粉末状样品。
2.物理性能测试:对粉煤灰的比重、密度、流动性等物理性能进行测定。
3.化学性能测试:对粉煤灰中的主要化学成分进行分析,包括氧化物和硅酸盐的含量。
4.水化性能测试:使用浸泡法和热法测试粉煤灰的水化活性和水化产物。
三、实验结果1.物理性能测试结果:通过比重测试,粉煤灰的比重为2.04 g/cm³,密度为1.2 g/cm³,具有较低的密度和比重,适合作为建筑材料的添加剂。
流动性测试结果表明,粉煤灰具有一定的流动性,适合进行混凝土的搅拌工作。
2.化学性能测试结果:粉煤灰中主要含有二氧化硅、氧化铝、氧化铁等氧化物,其中二氧化硅含量最高,达到60.2%,氧化铝和氧化铁的含量分别为20.5%和5.7%。
硅酸盐的含量为85.4%,具有较高的硅酸盐含量,表明其在硅酸盐材料的应用领域有较大的潜力。
3.水化性能测试结果:通过浸泡法测试,粉煤灰的水化活性较高,可以与水充分反应生成水化产物。
通过热法测试,粉煤灰的水化反应是一个放热反应,并且放热量较大,表明其在混凝土的强度发展中具有良好的水化活性。
四、结论通过本次试验,我们得出以下结论:1.粉煤灰具有较低的密度和比重,适合用作建筑材料的添加剂。
2.粉煤灰主要成分为氧化物和硅酸盐,具有较高的硅酸盐含量,适合在硅酸盐材料的应用领域。
3.粉煤灰具有较高的水化活性,可以与水充分反应生成水化产物,并且具有较大的放热量,适合在混凝土的强度发展中应用。
综上所述,粉煤灰具有广泛的应用前景,在建筑材料、环境工程、农业和能源领域有着良好的应用潜力。
同时,需要进一步研究和开发,挖掘其更多的应用价值。
矿渣-粉煤灰混合胶凝材料的水化及硬化实验

2 结 果 与讨 论
2 1 水 化 作 用 .
混合 胶凝 材料 的水 化产 物 与体 系的水 化作 用 有 关.矿 渣 和 粉煤 灰 具 有潜 在 的水化 活 性 , 碱性 介 质 在
收 稿 日期 :0 8— 2—0 ; 20 0 8 审稿 人 : 洪 富 ; 辑 : 文 礼 范 编 王 作者简介: 代 奎 (9 4 ) 男 , 士 , 教 授 , 要 从 事 油 气 井 优 化 设 计 及 固 井 完井 方 面 的研 究 . 16一 , 硕 副 主
一
L] 1
.
矿渣 和粉煤 灰是 我 国排 放 量较 大 的工 业 废 料 , 有 的 潜 在水 硬 性 为 其 实现 工 业 利 用 提 供 了基础 . 具
矿 渣和 粉煤 灰在油 气井 固井 中的应用 , 大多是 以油 井水 泥材料 为 主 , 加一 定质 量分 数矿渣 或粉煤 灰 配制 掺 成 矿渣 油井 水泥 和粉煤 灰油 井水 泥 , 其在 工程 应用 中具 有特殊 的施工效 果 .为此 , 以开 发不 含熟 料 的矿 渣
维普资讯
大
庆
石
油
学
院
学
报
第 3 2卷
20 0 8年
激发 作用下 能够发 生水化 作用.水化反 应过程 : 在碱 性 溶 液条 件下 , 玻璃 ( i 。 首 先水 解 产生 大量 水 NaSO ) 的 OH一 离子 , OH一 子破坏矿 渣玻璃 体表 面结 构 , 后 向 内部 扩 散 , 渣玻 璃 体表 面 的 C , 抖 等吸 离 然 矿 a Mg 附碱性溶 液 中的 OH一, 等 , 矿渣玻璃 体分散 、 H 使 溶解 , 玻璃体 表 面结 构被 破坏 , 促使 矿渣 水化 .OH一 离 子与矿渣 玻璃体 中 的活性 SO。 应生成 C O—SO。 i 反 a i 一H。 C—S O( —H) 胶.随着水化 产物 C —H 凝 凝 —S 胶 逐步增加 , 硬化 体 的宏 观强度迅 速增加 , 其溶 解 出的 C , 。 与粉煤 灰玻 璃体 进行 火 山灰反 应 , a Mg 又 提 高后期 强度 , 即碱石灰作 用 于粉 煤 灰 酸性 玻璃 而 发 生碱 侵 蚀 , 玻璃 体 受 到 水解 作 用 , ” , i 一进 入 溶 A1 So:
脱硫石膏应用

脱硫石膏应用1.我国脱硫石膏的现状随着环保意识的增强和《中华人民共和国大气污染防治法》的颁布实施,电厂烟气脱硫已经在全国逐步展开。
电力烟气脱硫的装机容量在2000年底时约500万千瓦,2005年底约5000万千瓦,2006年底约1.6亿千瓦,到2007年上半年将达到约2亿千瓦。
预计到2010年末,全国投运及建成的烟气脱硫机组容量将达2.3亿千瓦。
由于国内的脱硫工程绝大多数采用石灰石-石膏湿法烟气脱硫工艺,照此推算,在这些湿法脱硫装置全部投运后,预计在2010年将年产脱硫石膏约3000万吨。
而我国在2004年天然石膏的开采总量就高达4500万吨。
据估计,2006年底全国已投运的火电厂脱硫装机产出约800万吨烟气脱硫石膏。
其中已开展脱硫石膏利用或正在建设脱硫石膏利用装置的不到lO%,脱硫石膏外卖给石膏建材制品企业的约占5O%,其余约4O%采用暂时抛弃。
脱硫石膏实际上是一种工业副产品,同样具有利用价值。
如果脱硫石膏被充分利用,则相当于解决了全国石膏年需求量的绝大部分。
脱硫石膏的综合利用完全符合国家发展循环经济的国策,既保护了生态环境与矿产资源,也解决了火电厂脱硫的后顾之忧,并将给电厂带来一定的经济效益。
2.脱硫石膏的品质脱硫石膏作为石膏的一种,其主要成分和天然石膏一样,都是二水硫酸钙(CaSO4.2H20)。
脱硫石膏和天然石膏经过煅烧后得到的熟石膏粉和石膏制品在水化动力学、凝结特性、物理性能上无显著的差别。
但作为一种工业副产石膏,它具有再生石膏的一些特性,和天然石膏有一定的差异。
脱硫石膏的外观:含有10%~20%左右游离水的潮湿,松散的细小颗粒,脱硫正常时其产出的脱硫石膏颜色近乎白色微黄,有时脱硫不稳定带进较多的煤灰等杂质时颜色发黑。
脱硫石膏的水化动力学、凝结特征、产出过程与天然石膏相同,只是速度快;脱硫石膏转化后的5种形态、7种变体,物化性能与天然石膏一致,可以替代天然石膏作建材;脱硫石膏无放射性,不污染和危害健康。
脱硫石膏制备γ-CaSO_(4)晶须及Ⅱ-CaSO_(4)晶须

Washing FGD gypsum
Middle layer Settlement stratification Drying
Washed gypsum
Hydrothermal reactiLeabharlann nBoiling water
MgCl2 HCl H2O
II-CaSO4 whisker
600 ℃ Roasting γ-CaSO4 whisker
文献标志码:A
DOI:10.3969/j.issn.1003-9015.2021.03.018
Preparation of γ-CaSO4 and II-CaSO4 whiskers using FGD gypsum
MA Wen-jing1, CHEN Xue-qing1, GAO Li-li1, LI Yun1, GUO Hong-fei1, LI Zhi-shui2, CAO Ji-lin1 (1. Hebei Provincial Key Lab of Green Chemical Technology and High Efficient Energy Saving, School of Chemical
1前 言
脱硫石膏(flue gas desulfurization gypsum,FGD gypsum)是工业烟气湿法脱硫的副产物,主要成分为 二水硫酸钙(CaSO4·2H2O),还含有粉煤灰、铁硅氧化物、碳酸钙、亚硫酸钙、钾镁硫酸盐等杂质。由于
收稿日期:2020-06-04;修订日期:2020-09-21。 基金项目:河北省自然科学基金(B2018202330);河北省高等学校科学技术研究项目(ZD2019042,QN2019012);天津市科技局企业科技特派员项目。 作者简介:马文静(1996-),女,河北保定人,河北工业大学硕士生。通信联系人:李雲,E-mail:liyun@
活性粉末混凝土

活性粉末混凝土是一种具有超高抗压强度、高耐久性及高韧性的新型水泥基复合材料。
它基于密实堆积理论,通过去除粗骨料、优化颗粒级配、热养护来提高材料组分的细度与活性,减小材料的内部缺陷,使混凝土获得高抗压强度和高耐久性.目前,国内外对活性粉末混凝土的组成、配合比、养护条件、强度和耐久性等方面进行了大量的试验研究,取得很多宝贵成果。
一、粉煤灰掺量对活性粉末混凝土强度影响实验原料及配比:水胶比:0.2。
硅灰水泥比:0.3o石英砂用量,砂胶比:1.3,颗粒级配:3886.29:595.054(质量比)。
粉煤灰水泥比分别取0.2、0.3、0.4。
抗压强度实验结果抗弯拉强度实验结果结论一(1)、蒸汽养护条件下的试件抗压强度达到82.8MPa以上,标准养护条件下的试件抗压强度达80.1MPa以上,由此可见,虽然在标准养护条件下活性粉末混凝土的抗压强度有所降低,但是仍高于高强混凝土。
标准养护条件下,粉煤灰掺量越高活性粉末混凝土的抗压强度越低;蒸汽养护条件下,当粉煤灰与水泥掺量比为0.3时,活性粉末混凝土的抗压强度最高,达到101.3MPa以上。
(2)活性粉末混凝土的抗弯拉强度随粉煤灰掺量的增强而增强,而且,蒸汽养护条件下活性粉末混凝土的抗弯拉强度要远高于标准养护条件下的抗弯拉强度。
说明蒸汽养护有利于提高混凝土的抗弯拉强度。
原因:加入粉煤灰可以改善胶凝材料体系的颗粒级配,当达到粉煤灰的最佳掺量范围时,可显著提高浆体填充密实度。
水泥的粒径在3。
Um左右,在水泥生产过程中其粒径分布不够合理,颗粒间空隙较大,无法达到最佳紧密堆积。
粉煤灰的粒度分布在水泥与硅灰之间,粒度分布较为合理,增加填充到水泥大颗粒堆积的三角孔和四角孔中的细颗粒,使孔内的自由水排出,从而使混凝土在低水胶比条件下具备较高的流动性,增加体系的致密度,减小空隙率,提高胶凝体系的致密度,最终使强度增加。
参考文献口]鞠彦忠,曲品,王德弘.粉煤灰掺量对活性粉末混凝土强度影响的研究.2014[2]覃维祖,曹峰.一种超高性能混凝土-活性粉末混凝土.[3]张静,一种新型超高性能混凝土.2002。
硫铝酸盐水泥基材料水化硬化机制的研究

摘要硫铝酸盐水泥具有快硬、早强、抗冻、抗渗、耐蚀、低碱性等优良特性,广泛应用于建筑工程、水泥制品、紧急抢修、防渗工程等方面。
在研究影响水泥性能的方面,水化硬化是两个重要的影响因素,同时粉煤灰和矿渣是水泥基材料中最常用的矿物掺合料。
本文结合颗粒的紧密堆积理论和最小二乘法原理,研究了矿渣和粉煤灰的掺入对水泥浆体力学性能、微观结构的影响。
研究结果表明:掺入矿渣和粉煤灰可以改善水泥基材料的颗粒级配,使水泥基材料具有较好的堆积密度,同时可以改善硬化水泥浆体的孔结构,增加硬化浆体的致密度,提高硬化浆体的强度。
当在硫铝酸盐水泥中同时掺入3.9%的粉煤灰和2.7% 2500目的矿渣时,硬化浆体结构较为致密,抗折、抗压强度较高。
关键词:硫铝酸盐水泥;粉煤灰;矿渣;紧密堆积理论;最小二乘法原理ABSTRACTsulphoaluminate cement with properties of high early strength, high strength, high impermeability, high frost resistance, anti-corrosion, lower alkalinity and so on, widely used in construction engineering, cement products, emergency repair, seepage control projects,etc. The study of influence of cement performance, hydration and harden are two important influence factors. Fly ash and slag are the most commonly used mineral admixtures in cement. This paper take packing density theory and the least square method into consideration, the influence of fly ash and slag mixed in cement on physical properties and microstructure is studied. The results show that adding slag and fly ash can improve grain composition of cement base material, make cement base material has good packing density, also can improve pore structure, density, and strength of hardening cement paste. The optimum additions of slag powder in mesh of 2500 and fly ash are 3.9% and 2.7%Keywords:Sulphoaluminate cement; Fly ash; Slag; Mechanical properties; Packing density theory;Least square method目录摘要 (I)ABSTRACT (II)1 前言 (1)1.1选题的目的和意义 (1)1.2国内外研究现状 (2)1.2.1 硫铝酸盐水泥的研究现状 (2)1.2.2 矿物掺合料的研究现状 (4)1.3本课题主要研究内容 (8)2 实验原料、设备及试验方法 (9)2.1 实验原料 (9)2.2 原料性能 (10)2.3 试验设备 (10)2.4 实验具体内容 (11)2.5预期实验结果 (11)2.6 试验方法 (11)2.6.1基本性能测试 (11)2.6.2 分析 (13)2.7 本章小结 (13)3 相关系数D值的计算 (14)3.1 粉体颗粒体积百分含量计算 (14)3.2 相对系数D值的计算 (14)3.3 最紧密堆积原理 (15)3.4 相对系数D值的选择 (15)3.5 本章小结 (19)4 矿物掺合料的掺入对硫铝酸盐水泥性能的影响 (20)4.1 粉煤灰和矿渣的掺量 (20)4.2 抗折强度分析 (20)4.3 抗压强度分析 (22)4.4 水化产物XRD分析 (24)4.5水化产物SEM分析 (25)4.6 本章小结 (26)5 结论 (27)参考文献 (28)致谢 ............................................................................................. 错误!未定义书签。
碱激发矿粉-粉煤灰-偏高岭土地聚物水化行为和力学性能

第42卷第6期2023年6月硅㊀酸㊀盐㊀通㊀报BULLETIN OF THE CHINESE CERAMIC SOCIETYVol.42㊀No.6June,2023碱激发矿粉-粉煤灰-偏高岭土地聚物水化行为和力学性能刘㊀刚1,2,丁明巍1,2,刘金军2,万惠文1,薛永杰1,蹇守卫1,2(1.武汉理工大学硅酸盐建筑材料国家重点实验室,武汉㊀430070;2.武汉理工大学材料科学与工程学院,武汉㊀430070)摘要:通过改变矿粉㊁粉煤灰㊁偏高岭土的配合比,用复配后的水玻璃进行碱激发,制备三元地聚物,测试了三元地聚物凝结时间以及抗折㊁抗压强度㊂利用XRD㊁SEM㊁EDS及DTG研究硬化浆体中水化产物的形貌和成分,并对水化过程进行分析㊂结果表明,该三元地聚物是由原材料在碱激发水化作用下生成的以水化硅酸钙(C-S-H)㊁水化硅铝酸钙(C-A-S-H)和水化硅铝酸钠(N-A-S-H)凝胶为主的复合胶凝材料㊂矿粉掺量越高,新拌浆体凝结时间越短,水化产物中钙系凝胶越多,试件强度越高㊂矿粉含量为10%㊁30%㊁50%㊁70%㊁90%(质量分数)的5组试件3d抗压强度分别为2.1㊁14.1㊁24.2㊁29.7㊁37.9MPa㊂养护龄期越长,反应越完全,水化产物越多,试件抗压强度越高㊂当矿粉含量为50%时,三元地聚物1㊁3㊁7㊁28d抗压强度分别为12.3㊁24.2㊁27.3㊁36.8MPa㊂当矿粉含量为90%㊁养护龄期为28d时,试件抗折㊁抗压强度最高,分别为12.0㊁52.0MPa㊂该体系较短的凝结时间使其在道路修补材料及3D打印等领域有着较为广阔的应用前景㊂关键词:矿粉;粉煤灰;地聚物;强度;微观形貌;水化过程中图分类号:TU528㊀㊀文献标志码:A㊀㊀文章编号:1001-1625(2023)06-2106-09 Hydration Behavior and Mechanical Properties ofAlkaline Excited Slag-Fly Ash-Metakaolin GeopolymerLIU Gang1,2,DING Mingwei1,2,LIU Jinjun2,WAN Huiwen1,XUE Yongjie1,JIAN Shouwei1,2(1.State Key Laboratory of Silicate Materials for Architectures,Wuhan University of Technology,Wuhan430070,China;2.School of Materials Science and Engineering,Wuhan University of Technology,Wuhan430070,China) Abstract:By changing the ratio of slag,fly ash and metakaolin,the ternary geopolymer was prepared by alkali excitation with the compound sodium silicate.The setting time,flexural and compressive strength of ternary geopolymer were tested. XRD,SEM,EDS and DTG were used to study the morphology and composition of hydration products in the hardened paste,and the hydration process was analyzed.The results show that the ternary geopolymer is composed of calcium silicate hydrate(C-S-H),calcium aluminate silicate hydrate(C-A-S-H)and sodium aluminate silicate hydrate(N-A-S-H)gels. The higher the slag content is,the shorter the setting time of newly mixed slurry is,the more calcium gel in the hydration products is,and the higher the strength of specimen is.The3d compressive strength of5groups of specimens with slag content of10%,30%,50%,70%,90%(mass fraction)is2.1,14.1,24.2,29.7,37.9MPa,respectively.The longer the curing period is,the more complete the reaction is,the more hydration products are,and the higher the strength of specimen is.When the slag content is50%,the compressive strength of ternary geopolymer at1,3,7,28d is12.3, 24.2,27.3,36.8MPa,respectively.When the slag content is90%and the curing age is28d,the flexural and compressive strength of specimen are the highest,which are12.0,52.0MPa,respectively.The short setting time of the system makes it have a broad application prospect in the field of road repair materials and3D printing.Key words:slag;fly ash;geopolymer;strength;microstructure;hydration process收稿日期:2023-02-19;修订日期:2023-03-27基金项目:海南省科技计划三亚崖州湾科技城联合项目(520LH016);湖北省科学技术厅重点研发计划(2021BCA126)作者简介:刘㊀刚(1981 ),男,教授㊂主要从事道路新材料研发㊁固废循环利用方面的研究㊂E-mail:liug@㊀第6期刘㊀刚等:碱激发矿粉-粉煤灰-偏高岭土地聚物水化行为和力学性能2107 0㊀引㊀言随着国家基础建设不断发展,如今水泥混凝土行业需要向绿色环保方向发展,解决由生产成本所带来的自然资源枯竭㊁能源消耗㊁温室气体排放等各种问题,以实现可循环发展目标[1]㊂相对于水泥基复合材料,完全由工业固废组成的复合材料更有望实现可持续发展,而地聚物被认为是替代水泥基复合材料的最佳选择㊂地聚物是一种由硅铝原料(如赤泥㊁粉煤灰㊁偏高岭土㊁炉渣㊁稻壳和玻璃废料)通过碱㊁酸或盐类激发而得的无机聚合物㊂与水泥相比,地聚物生产所需能耗更低,产生二氧化碳更少,并且可以减少自然资源的使用[2]㊂由于地聚物具有材料价格低廉㊁耐久性优异㊁机械性能好㊁耐酸性强㊁耐高温好等优点,近年来对于地聚物的研究越来越多㊂Barbhuiya等[3]发现由70%(质量分数)粉煤灰和30%(质量分数)偏高岭土组成的地聚物比仅由粉煤灰组成的地聚物具有更高的抗压强度,且增加碱激发剂的模数可以使粉煤灰反应更完全,地聚物微观结构孔隙更少㊂Kim等[4]探究了不同Si/Al摩尔比对粉煤灰地聚物强度的影响,发现了一种通过原料中无定形物质含量和碱激发剂掺量推导地聚物抗压强度发展趋势的方法㊂Yuan等[5]探究了3D打印矿粉-粉煤灰地聚物的影响因素,发现提高砂胶比㊁降低粉煤灰/矿粉比或使用低模数的碱激发剂均会降低地聚物的可挤出性和可建造性㊂Wan等[6]通过加入硅粉改变Si/Al摩尔比,探究了不同Si/Al摩尔比偏高岭土地聚物聚合过程中Al和Si的溶解速率,结果显示,溶解速率随着Si/Al摩尔比增加而增加,说明可溶性硅酸盐可以加速铝酸盐单体聚合,在Si/Al摩尔比为2ʒ1时,聚合速率达到最大㊂目前对二元地聚物体系研究较多,多为不同因素对地聚物力学性能影响的研究,以及地聚物其他基本性能的探究,但对多元地聚物体系的水化机理尚未厘清㊂所以本文结合矿粉-粉煤灰地聚物体系与粉煤灰-偏高岭土地聚物体系,以矿粉-粉煤灰-偏高岭土三元地聚物体系作为研究对象,通过矿粉水化提供早期强度,用粉煤灰来改善体系的流动度,利用偏高岭土的无钙特点来中和由矿粉钙含量过高导致的凝结时间过短和后期开裂问题㊂分析不同配合比及养护龄期对三元地聚物性能的影响,探究具有更高性能的地聚物的配合比,并结合微观形貌探究其水化过程,研究结果可为地聚物应用于3D打印或道路修补材料领域提供理论依据㊂1㊀实㊀验1.1㊀原材料原材料:S95级矿粉㊁偏高岭土粉㊁粉煤灰㊁氢氧化钠粉末(分析纯)㊁液体硅酸钠(模数为2.23)㊂矿粉㊁偏高岭土㊁粉煤灰均来自河南恒源新材料有限公司,其化学成分如表1所示㊂选用聚羧酸高效减水剂(SPC)㊁流变剂羟丙基甲基纤维素(HPMC)作为掺合料㊂水玻璃模数为1.5,由模数为2.23的硅酸钠溶液和氢氧化钠粉末配制而成㊂表1㊀原材料的化学成分Table1㊀Chemical composition of raw materialsMaterial Mass fraction/%SiO2Al2O3Fe2O3CaO MgO SO3TiO2Loss Slag32.915.4 37.010.50.1 0.8 Fly ash45.124.2 5.6 2.1 2.8 Metakaolin55.742.50.8 1.01.2㊀配合比设计通过调整矿粉㊁偏高岭土㊁粉煤灰的比例,加入SPC和HPMC,采用碱性激发剂激发并制备不同配合比的地聚物砂浆㊂地聚物砂浆配合比如表2所示㊂按表2所示配合比将各原材料混合均匀,然后将新拌浆体装入40mmˑ40mmˑ160mm的铸铁模具中,放入标准养护箱中养护24h后,取出模具并脱模,将成型的试件放入标准养护箱内继续养护至相应龄期,取1㊁3㊁7㊁28d龄期的试件进行力学性能测试㊂2108㊀资源综合利用硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷表2㊀地聚物砂浆配合比Table 2㊀Mix proportion of geopolymer mortarGroup Slag mass fraction /%Fly ash-metakaolin (1ʒ1)mass fraction /%Alkali dosage (Na 2O mass fraction)/%Water-binder ratio Admixture mass fraction /%HPMC SPC Sand-binder ratio K1109040.336111K2307040.332111K3505040.332111K4703040.316111K5901040.3121111.3㊀测试方法按照‘建筑砂浆基本性能试验方法标准“(JGJ /T 70 2009),采用JJ-5型水泥胶砂搅拌机进行搅拌,然后测试新拌浆体的凝结时间㊂按照‘水泥胶砂强度检验方法(ISO 法)“(GB /T 17671 2021),采用万能压力试验机进行力学性能测试㊂采用X 射线衍射仪对样品进行物相分析,采用扫描电子显微镜观察样品微观形貌,采用能谱仪测定样品的元素及含量,使用热重分析仪进行热重测试㊂2㊀结果与讨论2.1㊀新拌浆体凝结时间图1㊀地聚物砂浆的凝结时间Fig.1㊀Setting time of geopolymer mortar 地聚物砂浆的凝结时间如图1所示,由图1可以清晰地看出,由K1至K5,随着矿粉含量提升,粉煤灰㊁偏高岭土掺量减少,地聚物砂浆的凝结时间呈下降趋势,分别为63㊁44㊁38㊁30㊁24min,这与其他学者[7]的研究结论一致㊂矿粉中的CaO 可以与拌合水反应放热,使反应环境温度升高,同时水量减少会引起环境碱度升高㊂艾纯志等[8]指出提高体系碱度和温度均会对碱激发胶凝材料的反应起到促进作用㊂王红等[9]指出掺入矿粉会使浆体流动性降低,掺入的粉煤灰含量大于矿粉含量时会使浆体流动性提高㊂而本文中,随着矿粉含量增加,粉煤灰含量降低,浆体流动度下降,凝结时间变短,与上述文献结果一致㊂K1~K4的凝结时间位于30~65min,适合应用于3D 打印或道路修补㊂由于K5的凝结时间较短,低于30min,在工程实际中应用难度较大㊂2.2㊀力学性能地聚物试件抗折㊁抗压强度与养护龄期之间的关系分别如图2㊁图3所示㊂图2㊀地聚物试件抗折强度与养护龄期的关系Fig.2㊀Relationship between flexural strength of geopolymer specimens and curingage 图3㊀地聚物试件抗压强度与养护龄期的关系Fig.3㊀Relationship between compressive strength of geopolymer specimens and curing age第6期刘㊀刚等:碱激发矿粉-粉煤灰-偏高岭土地聚物水化行为和力学性能2109㊀由图2可知,5组不同配合比地聚物试件的抗折强度随养护龄期延长在整体上呈不断增大的趋势,不同配合比试件早期(1㊁3d)抗折强度增长较低,但后期抗折强度增长较高,K1~K5组试件28d 抗折强度相对于7d 分别增长了113.0%㊁75.2%㊁58.4%㊁47.8%㊁31.9%㊂这是由于粉煤灰和偏高岭土水化速度较慢[10],28d 时试件抗折强度达到最大,分别为3.3㊁8.3㊁10.8㊁11.8㊁12.0MPa㊂观察不同配合比试件抗折强度可知,地聚物试件的抗折强度随着矿粉含量的逐渐增加而增大㊂由图3可知,5组不同配合比地聚物试件的抗压强度随养护龄期延长在整体上呈不断增大的趋势,K1~K5组试件养护3d 时抗压强度分别为2.1㊁14.1㊁24.2㊁29.7㊁37.9MPa;28d 时抗压强度达到最大,分别为7.3㊁28.2㊁36.8㊁44.6㊁52.0MPa㊂K3组试件1㊁3㊁7㊁28d 抗压强度分别为12.3㊁24.2㊁27.3㊁36.8MPa㊂与矿粉-粉煤灰二元体系[7]和粉煤灰-偏高岭土二元体系[11]相比,本三元体系7d 抗压强度更高㊂这是由于:与矿粉-粉煤灰二元体系相比,本三元体系中偏高岭土对地聚物早期强度影响不大,但是可以填充孔隙以及延长凝结时间,改善矿粉速凝开裂导致强度锐减的情况;与粉煤灰-偏高岭土二元体系相比,本三元体系中矿粉水化速度更快,早期即可生成大量Ca 系凝胶,使试件强度快速提高[12]㊂在同一养护龄期内,随着矿粉含量逐渐增加,地聚物试件的抗压强度逐渐增大,且总体增长趋势较为平稳㊂K1组试件抗压强度总体都比较低,28d 抗压强度仅为7.3MPa,这是因为K1组试件矿粉掺量较低,而体系主要的Ca 源是由矿粉提供的,所以K1组试件Ca 含量低,生成的水化硅酸钙(C-S-H)㊁水化硅铝酸钙(C-A-S-H)凝胶少,不能提供足够强度㊂K2~K4组试件由于矿粉含量逐渐增加,Ca 含量逐渐增加,生成的C-S-H㊁C-A-S-H 凝胶逐渐增多,试件的抗压强度增大㊂2.3㊀物相组成分析图4为K3组地聚物样品在养护龄期为1㊁3㊁7和28d 时的XRD 谱㊂由图4可以看出,不同养护龄期的地聚物样品XRD 谱大致一样㊂地聚物样品在20ʎ~30ʎ处有一个较明显的弥散 馒头 状宽峰,据资料显示这些无定形 馒头 峰为生成的C-S-H㊁C-A-S-H 和水化硅铝酸钠(N-A-S-H)凝胶的特征峰㊂随着养护龄期延长,衍射峰出现小角度偏移的现象,这表明碱激发地聚物反应程度在不断提高㊂这些无定形凝胶能够明显提高试件的抗折㊁抗压强度,表明地聚物体系中发生了较高程度的聚合反应[10],与抗折㊁抗压强度的测试结果相吻合㊂同时从图4中可以看出,K3组3㊁7d 样品XRD 谱中在55ʎ附近有一个明显的C-S-H 凝胶特征峰,但K3组28d 样品XRD 谱中该特征峰消失㊂这是由于矿粉活性高,水化速度快,在水化前中期大量矿粉与水玻璃发生碱激发反应,生成了大量C-S-H 和C-A-S-H 凝胶,在水化后期粉煤灰和偏高岭土开始水化,为地聚物体系中提供了大量Si 和Al,这些Al 在扩散作用下将水化产物C-S-H 凝胶中部分Si 置换出来,形成了C-A-S-H 凝胶㊂同时水玻璃中的Na 也可以与C-A-S-H 凝胶中的Ca 发生置换反应,生成N-A-S-H 凝胶㊂因此,K3组样品在55ʎ附近的C-S-H 凝胶特征峰随养护龄期延长逐渐降低,至28d 时该特征峰消失㊂图4㊀不同养护龄期K3组地聚物样品的XRD 谱Fig.4㊀XRD patterns of K3geopolymer samples at different curingages 图5㊀不同配合比地聚物样品养护7d 的XRD 谱Fig.5㊀XRD patterns of geopolymer samples with different mix proportion curing for 7d㊀㊀图5为不同配合比地聚物样品在7d 养护龄期下的XRD 谱㊂由图5可以看出,随着矿粉含量增多,粉煤灰和偏高岭土含量减少,样品中的Ca 含量上升,样品在29ʎ处的C-S-H 凝胶特征峰逐渐升高,逐渐增多的2110㊀资源综合利用硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷C-S-H凝胶紧密堆积,填补了试件中的空隙和裂纹,使试件的有害孔体积下降,无害孔增多,试件孔结构情况改善,对地聚物砂浆试件的抗折㊁抗压强度起到正面影响,与强度测试结果相符合㊂同时,在各配合比下均没有新的晶体相生成,水化产物主要为无定形的C-S-H㊁C-A-S-H和N-A-S-H凝胶,说明改变配合比并不影响反应的整体路线㊂2.4㊀微观形貌分析养护龄期为3d时,不同配合比(K1~K5)地聚物样品的SEM照片如图6(a1)~(a5)所示㊂如图6(a1)所示,K1组样品3d的水化产物主要以团簇状的凝胶形式存在,可见未反应的粉煤灰颗粒与矿粉颗粒㊂K1组样品水化程度较低,结构松散,空隙㊁裂纹较多,导致其抗折㊁抗压强度较低㊂如图6(a2)所示,K2组样品3d的水化产物主要以无定形的凝胶形式存在㊂相比于K1组,其结构相对致密,抗折㊁抗压强度得到提升㊂如图6(a3)所示,K3组样品3d的水化产物主要以无定形的凝胶形式存在,将正在反应的粉煤灰颗粒紧密连接并逐渐包裹㊂区域1~3的元素占比如表3所示,区域1是粉煤灰水化形成的N-A-S-H凝胶,区域2是大量C-A-S-H㊁C-S-H凝胶和少量N-A-S-H凝胶相互交织混杂形成的无定形凝胶结构,区域3主要是团簇状N-A-S-H凝胶㊂这些凝胶填充了试样孔隙,将未反应原材料紧密相连,进一步提高了试件的抗折㊁抗压强度㊂如图6(a4)所示,K4组样品3d的水化产物主要以C-A-S-H㊁C-S-H和N-A-S-H交织的致密无定形凝胶以及大量团簇状N-A-S-H凝胶形式存在,N-A-S-H凝胶位于C-A-S-H㊁C-S-H和N-A-S-H交织的致密无定形㊂凝胶上,数量多,分布广㊂试件的抗折㊁抗压强度进一步提高第6期刘㊀刚等:碱激发矿粉-粉煤灰-偏高岭土地聚物水化行为和力学性能2111㊀图6㊀养护3㊁7和28d 时地聚物样品的SEM 照片Fig.6㊀SEM images of geopolymer samples curing for 3,7and 28d ㊀㊀如图6(a 5)所示,K5组样品3d 的水化产物主要以片状以及无定形的凝胶形式存在㊂区域4~5的元素占比如表3所示,区域4的片状凝胶主要是由C-A-S-H 凝胶和少量N-A-S-H 凝胶构成,片状结构充当了骨架结构,使水化产物紧密堆积,形成致密三维结构,试件的抗折㊁抗压强度达到最大㊂区域5的无定形凝胶也是由C-A-S-H 和N-A-S-H 构成,但区域5的Na /Ca 比较区域4更高㊂表3㊀SEM 照片区域1至5中的元素占比Table 3㊀Element proportion in area 1to 5of SEM imagesElementAtom fraction /%Area 1Area 2Area 3Area 4Area 5O 63.0959.3863.3362.1571.45Na3.49 5.09 1.81 1.09 1.42Mg 0.280.670.170.330.58Al 11.297.9719.05 6.73 5.77Si 21.4616.8814.6727.9519.46Ca0.3910.020.98 1.75 1.31养护龄期为28d 时,不同配合比(K1~K5)地聚物样品的SEM 照片如图6(c 1)~(c 5)所示㊂观察SEM照片可以看出:K5组样品较前几组样品的粉煤灰颗粒数量大幅度下降,且基本被水化生成的凝胶所包裹;生2112㊀资源综合利用硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷成的C-A-S-H㊁C-S-H 和N-A-S-H 凝胶数量更多,但凝胶形貌并非内部结构疏松的团簇状而是结构十分致密的形貌㊂随着矿粉含量增加,大部分原材料已经水化或正在水化中,填补了试件中的裂痕和孔隙,微观结构更致密,试件的抗折㊁抗压强度更高㊂对比3和28d 的SEM 照片发现,随着养护时间增加,原材料水化程度进一步提高,未反应的粉煤灰数量进一步减少,水化产物种类依旧是C-A-S-H㊁C-S-H 和N-A-S-H 凝胶,未出现新物相,但是致密程度均有提高,表面团簇状的无定形凝胶减少,取而代之的是均匀而致密的三维结构,试件总体抗折㊁抗压强度更高㊂分析比较不同龄期(3㊁7㊁28d)K3组样品的SEM 照片,如图6(a 3)㊁(b 1)㊁(c 3)所示,K3组样品7d 的水化产物主要以C-A-S-H㊁C-S-H 和N-A-S-H 交织的致密无定形凝胶以及大量团簇状N-A-S-H 凝胶形式存在㊂随着养护时间由3d 延长到7㊁28d,样品中生成的C-A-S-H㊁C-S-H 和N-A-S-H 凝胶数量逐渐增加,开始在原材料周围生成,随后逐渐反应将原材料包裹㊂粉煤灰等原材料反应程度更完全,样品裂纹更少,凝胶更致密㊂由以上分析可知:本文所用原材料中有大量Ca㊁Al㊁Si 的氧化物,在反应前期,由于水玻璃作为碱激发剂加入,为体系引入大量的OH -,原材料中的Si O 键和Al O 键发生断裂,[SiO 4]4-和[AlO 4]5-被大量溶出,形成了以Si O Si 和Si O Al 为主体的低聚物,[SiO 4]4-与矿粉中的Ca 2+结合生成C-S-H 凝胶㊂与此同时,原材料中Si㊁Al 的氧化物在碱激发剂提供的强碱环境下开始溶解,[SiO 4]4-和[AlO 4]5-四面体发生缩聚反应,生成以 Si O Al O 为骨架的三维网络结构的无机高分子地聚物,成型硬化后形成早期强度[13]㊂随着养护时间的增加,地聚物试件中Ca㊁Al㊁Si 的氧化物被充分溶解,随着解聚-缩聚反应的进行,试件内部生成了大量的C-A-S-H㊁C-S-H 和N-A-S-H 凝胶,这些凝胶相互堆积形成致密的三维网状结构,使试件的抗折㊁抗压强度达到最大㊂2.5㊀TG-DTG分析图7㊀养护3㊁7和28d 时K3组地聚物试件的TG-DTG 曲线Fig.7㊀TG-DTG curves of K3geopolymer specimens curing for 3,7and 28d K3组地聚物试件在养护龄期3㊁7㊁28d 下的热重曲线如图7所示㊂TG 曲线可以直观反映出试件质量随温度变化的过程,将TG 曲线对温度求一阶微分即可得到DTG 曲线㊂由图7可以看出,在0~200ħ和200~600ħ有两个明显的吸热失重特征峰,第一个失重峰对应过程为试件中自由水以及水化产物C-S-H㊁C-A-S-H 和N-A-S-H 凝胶部分吸附水的蒸发[14-16],第二个失重峰的产生是温度升高,C-S-H㊁C-A-S-H 和N-A-S-H 凝胶脱去 羟基水 所导致的[17-18]㊂结合XRD 和EDS 分析,碱激发矿粉-粉煤灰-偏高岭土三元地聚物体系的水化产物主要为C-S-H㊁C-A-S-H 和N-A-S-H 凝胶㊂对比试件3㊁7㊁28d 的DTG 曲线可以发现:试件3d 的DTG 曲线第一个失重峰面积最大,推测是由于水化时间最短,试件中剩余自由水㊁吸附水较多;试件3㊁7d 的DTG 曲线第二个失重峰变化较小,是由于粉煤灰的水化速度较慢,而试件28d 的DTG 曲线第二个失重峰面积最大,说明试件28d 损失质量最多,生成水化凝胶最多,与SEM 结果相吻合㊂结合材料宏观力学强度分析可知,试件强度与水化生成凝胶产物脱水的失重率成正比,试件强度随着失重率的增大而增大,即生成的C-S-H㊁C-A-S-H 和N-A-S-H 凝胶越多,强度越高㊂3㊀碱激发矿粉地聚物水化过程水化初期,原材料在碱性环境中开始溶解,Ca 相中的Ca O 键㊁Si-Al 相中的Si O Si 键和Al O Al 键开始发生断裂,并释放出Ca 2+㊁硅氧四面体单体和铝氧四面体单体,由于Ca O 键㊁Si O Si 键和Al O Al 键具有不同的稳定性,Ca 2+㊁硅氧四面体单体和铝氧四面体单体溶出的先后顺序会有所不同㊂由于Ca O 键的键能最低,Ca O 键会首先断裂,然后是铝氧四面体单体,最后是硅氧四面体单体[19]㊂液相㊀第6期刘㊀刚等:碱激发矿粉-粉煤灰-偏高岭土地聚物水化行为和力学性能2113中一部分Ca2+会与环境中硅氧四面体单体反应生成C-S-H凝胶㊂随着水化时间增加,在碱激发剂作用下,液相中硅氧四面体单体和铝氧四面体单体浓度迅速增加,碱激发剂中的Na+和OH-分别与硅氧四面体单体和铝氧四面体单体形成大量 Si O Na㊁Al(OH)-4㊁Al(OH)2-5和Al(OH)3-6等硅铝酸盐低聚体[20]㊂水化中期,由于生成的低聚体结构稳定性较差,这些硅氧四面体单体和铝氧四面体单体之间会发生聚合反应,生成网状的N-A-S-H和C-A-S-H凝胶,但此时网状结构的聚合度还很低㊂随着反应继续进行,更多硅氧四面体单体和铝氧四面体单体被溶出,聚合度提高,形成N-A-S-H和C-A-S-H凝胶相互交织的三维网络结构㊂由于此时地聚物浆体已经达到初凝点,浆体中各种单体和低聚体的流动性已经很小,体系中各种聚合反应主要由扩散作用主导[19]㊂此时地聚物的水化产物主要为相互交织的C-S-H㊁C-A-S-H与N-A-S-H凝胶㊂由于体系中Ca2+和Al3+含量较高,Ca2+会取代N-A-S-H凝胶中的部分Na+,Al3+会取代C-S-H凝胶中的部分Si4+,生成相互交织的三维(N,C)-(A)-S-H凝胶结构[21]㊂水化后期,体系中的C-S-H㊁C-A-S-H和N-A-S-H凝胶随着养护时间的增加逐渐脱水,固结硬化成地聚物块,填充地聚物空隙,使有害孔减少,无害孔增加,有效改善了地聚物的孔结构,使地聚物整体更加致密,抗折㊁抗压强度提高[22]㊂4㊀结㊀论1)矿粉-粉煤灰-偏高岭土地聚物抗折㊁抗压强度随着矿粉含量增大呈增大的趋势,因为矿粉含量越高,生成的C-S-H㊁C-A-S-H凝胶越多㊂当矿粉含量为90%(质量分数)且养护龄期为28d时地聚物的抗折㊁抗压强度最高,分别为12.0㊁52.0MPa㊂2)矿粉-粉煤灰-偏高岭土地聚物的抗折㊁抗压强度随着养护龄期延长呈增大的趋势,当矿粉掺量为50% (质量分数)时,地聚物1㊁3㊁7㊁28d抗压强度分别为12.3㊁24.2㊁27.3㊁36.8MPa㊂反应初期(3d),虽然体系中OH-含量高,但粉煤灰㊁偏高岭土水化速度慢,生成凝胶较少,地聚物强度较低;待水化到28d后,原材料水化充分,生成的C-S-H㊁C-A-S-H和N-A-S-H凝胶填充了孔隙和裂纹,地聚物整体强度提高㊂3)矿粉-粉煤灰-偏高岭土地聚物的水化机理主要为原材料在碱性激发剂作用下溶出Ca2+㊁[SiO4]4-单体和[AlO4]5-单体,通过解聚-缩聚反应以及离子取代反应生成C-S-H㊁C-A-S-H和N-A-S-H凝胶并填充在孔隙中,使地聚物的强度大幅度提升㊂4)当矿粉掺量为30%㊁50%㊁70%(质量分数)时,矿粉-粉煤灰-偏高岭土地聚物凝结时间分别为44㊁38㊁30min,3d抗压强度分别为14.1㊁24.2㊁29.7MPa,符合3D打印或道路修补对材料最基本的工作性能要求㊂参考文献[1]㊀VAN DEVENTER J S J,PROVIS J L,DUXSON P,et al.Chemical research and climate change as drivers in the commercial adoption of alkaliactivated materials[J].Waste and Biomass Valorization,2010,1(1):145-155.[2]㊀CHEN S K,RUAN S Q,ZENG Q,et al.Pore structure of geopolymer materials and its correlations to engineering properties:a review[J].Construction and Building Materials,2022,328:127064.[3]㊀BARBHUIYA S,PANG E.Strength and microstructure of geopolymer based on fly ash and metakaolin[J].Materials(Basel,Switzerland),2022,15(10):3732.[4]㊀LEE B,KIM G,KIM R,et al.Strength development properties of geopolymer paste and mortar with respect to amorphous Si/Al ratio of fly ash[J].Construction and Building Materials,2017,151:512-519.[5]㊀YUAN Q,GAO C,HUANG T J,et al.Factors influencing the properties of extrusion-based3D-printed alkali-activated fly ash-slag mortar[J].Materials,2022,15(5):1969.[6]㊀WAN Q,RAO F,SONG S X,et al.Geopolymerization reaction,microstructure and simulation of metakaolin-based geopolymers at extendedSi/Al ratios[J].Cement and Concrete Composites,2017,79:45-52.[7]㊀刘梦珠,卞立波,王㊀琴,等.碱激发矿渣/粉煤灰胶凝材料力学性能研究[J].粉煤灰综合利用,2019,32(5):49-54.LIU M Z,BIAN L B,WANG Q,et al.Study on mechanical properties of alkali-activated slag/fly ash cementitious material[J].Fly Ash Comprehensive Utilization,2019,32(5):49-54(in Chinese).[8]㊀艾纯志,林㊀军.碱激发粉煤灰混凝土微观性能试验研究[J].混凝土,2022(4):78-80+85.AI C Z,LIN J.Experimental study on microcosmic properties of alkali activation fly ash concrete[J].Concrete,2022(4):78-80+85(in Chinese).2114㊀资源综合利用硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷[9]㊀王㊀红,董双快,郭㊀爽,等.基于响应面法的水泥-粉煤灰-矿粉浆体流变分析[J].建筑结构,2022,52(增刊1):1576-1581.WANG H,DONG S K,GUO S,et al.Rheological analysis of cement-fly ash-ore slurry based on response surface method[J].Building Structure,2022,52(supplement1):1576-1581(in Chinese).[10]㊀孙双月.利用矿渣和粉煤灰制备地聚物胶凝材料的正交试验研究[J].中国矿业,2019,28(11):118-122+127.SUN S Y.Orthogonal experiment research on geopolymer synthesis by utilizing slag and fly ash as raw material[J].China Mining Magazine, 2019,28(11):118-122+127(in Chinese).[11]㊀王顺风,马㊀雪,张祖华,等.粉煤灰-偏高岭土基地质聚合物的孔结构及抗压强度[J].材料导报,2018,32(16):2757-2762.WANG S F,MA X,ZHANG Z H,et al.Pore structure and compressive strength of fly ash-metakaolin based geopolymer[J].Materials Review, 2018,32(16):2757-2762(in Chinese).[12]㊀荆㊀锐,刘㊀宇,张慧杰,等.偏高岭土和粉煤灰对碱-矿渣复合胶凝材料的凝结时间及早期力学性能的影响[J].硅酸盐通报,2020,39(10):3237-3243.JING R,LIU Y,ZHANG H J,et al.Influences of metakaolin and fly ash on setting time and early age mechanical properties of alkali-activated slag composite cementitious materials[J].Bulletin of the Chinese Ceramic Society,2020,39(10):3237-3243(in Chinese). [13]㊀童国庆,张吾渝,季港澳,等.粉煤灰地聚物强度特性及微观机理研究[J].硅酸盐通报,2020,39(6):1835-1841.TONG G Q,ZHANG W Y,JI G A,et al.Study on strength characteristics and microscopic mechanism of fly ash geopolymer[J].Bulletin of the Chinese Ceramic Society,2020,39(6):1835-1841(in Chinese).[14]㊀DUXSON P,LUKEY G C,VAN DEVENTER J S J.Thermal evolution of metakaolin geopolymers:part1-physical evolution[J].Journal of Non-Crystalline Solids,2006,352(52/53/54):5541-5555.[15]㊀王东星,王宏伟,邹维列,等.碱激发粉煤灰固化淤泥微观机制研究[J].岩石力学与工程学报,2019,38(增刊1):3197-3205.WANG D X,WANG H W,ZOU W L,et al.Research on micro-mechanisms of dredged sludge solidified with alkali-activated fly ash[J].Chinese Journal of Rock Mechanics and Engineering,2019,38(supplement1):3197-3205(in Chinese).[16]㊀黄丽萍,马倩敏,郭荣鑫,等.碱矿渣胶凝材料水化产物的试验研究[J].硅酸盐通报,2020,39(4):1194-1200.HUANG L P,MA Q M,GUO R X,et al.Experimental study on hydration products of alkali-activated slag[J].Bulletin of the Chinese Ceramic Society,2020,39(4):1194-1200(in Chinese).[17]㊀ZHANG Y S,SUN W,LI Z J.Hydration process of potassium polysialate(K-PSDS)geopolymer cement[J].Advances in Cement Research,2005,17(1):23-28.[18]㊀刘淑贤,苏㊀严,杨㊀敏,等.钢渣:矿渣复合胶凝材料的制备及胶凝活性激发试验研究[J].金属矿山,2022(11):252-258.LIU S X,SU Y,YANG M,et al.Experimental study on preparation of the steel slag and slag composite cementitious material and its gelling activity inspiration[J].Metal Mine,2022(11):252-258(in Chinese).[19]㊀郭晓潞,施惠生,夏㊀明.不同钙源对地聚合物反应机制的影响研究[J].材料研究学报,2016,30(5):348-354.GUO X L,SHI H S,XIA M.Effect of different calcium resouces on reaction mechanism of geopolymer[J].Chinese Journal of Materials Research,2016,30(5):348-354(in Chinese).[20]㊀ZHOU X X,SHEN J M.Micromorphology and microstructure of coal fly ash and furnace bottom slag based light-weight geopolymer[J].Construction and Building Materials,2020,242:118168.[21]㊀王㊀磊,李金丞,张晓伟,等.地质聚合物激发剂及其激发原理[J].无机盐工业,2022,54(2):16-20.WANG L,LI J C,ZHANG X W,et al.Geopolymer activator and its excitation principle[J].Inorganic Chemicals Industry,2022,54(2):16-20(in Chinese).[22]㊀余春松,张玲玲,郑大伟,等.固废基地质聚合物的研究及其应用进展[J].中国科学:技术科学,2022,52(4):529-546.YU C S,ZHANG L L,ZHENG D W,et al.Research progress of geopolymer materials prepared from solid waste and their applications[J].Scientia Sinica(Technologica),2022,52(4):529-546(in Chinese).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
e d t e m i p a ft e h r e e n a t o t i i g F a d F n o h r c e k o h a d n c me tp s e c n a n n A n GD ss r n e h n t a ft e r f r n e i t o g rt a h t h e e e c o
GAO n -i CHEN u M A Ba — u Yig l , Y , o g o
( . Sc oo of 1 h l Tr fi a Tr n po t ton a fc nd a s r a i En ne rng, Cha gs U ni r iy f gi e i n ha ve st o Sce c T e hno o in e c l gy, Ch ngs a ha 41 14, P.R .Chi 01 na;2 K e bo a o y f Si c e . y La r t r or l at M a e il S i n e nd i t ras c e c a En ne rng f gi e i o M i s r of nit y Edu a i c ton, W u n U ni r iy o c ol y,W u n 43 07 ha ve st fTe hn og ha 0 0,P. . i a) R Ch n
c n a n n l s ( o t i i g fy a h FA ) n l e g s d s l h rz t n g p u ( a d fu a e u p u ia i y s m FGD) r n e tg t d b sn 0 we e i v s i a e y u i g DTA— TG , XRD,S EM , h d a i n h i k g a d o p e sv s r n t e t . An t e h h d a i n k n tc f y r to s rn a e n c m r s i e t e g h t s s d h n t e y r to i e is o
Ab t a t The h r to pr c s sr c : yd a i n o e s, a tv t a m ir t uc ur o c m po ie c m e t b s d m a e i l c i iy nd c os r t e f o st e n—ae t ra s
粉煤灰一 脱硫 石膏 水泥基材 料 水化活性及微结构 M M
高 英 力 , 陈 瑜 马 保 国 ,
( .长 沙理 工 大 学 交 通 运 输 工 程 学院 , 沙 4 0 1 ; 1 长 1 1 4 2 .武 汉 理 工 大 学 硅 酸 盐材 料 工 程 教 育 部 重 点 实验 室 , 汉 4 0 7 ) 武 3 0 0
摘 要 : 用 D 采 TA— G、 D、 E 以及 宏观 水化 收 缩和 强度 试验 等 手段 研 究 了粉 煤灰一 硫 石 膏一 T XR S M 脱 水泥 三元 复合 胶凝 体 系的 水化过 程 、 活性 效应 及微 观 结构等 , 据试 验 结 果 总结 了复 合胶 凝 材料 的 根 水化 动 力学过 程 。结果 表 明 , 煤灰一 硫 石 膏水 泥 石 的 钙矾 石 吸 热 峰 强 于基 准样 ; 各组 分 相 互 粉 脱 在 活性 激发 和 外掺激 发 剂作 用 下 , 煤 灰一 硫 石 膏水 泥 石 中 2次 水化 效应 明显 ; E X 粉 脱 S M、 RD表 明 水
c m p ie c me — a e t ra swa s us e nd s m ma i e o ost e ntb s d ma e i l sdic s d a u rz d.I s s o h tt t rn t AFt DTA ti h wn t a hee t i gie( )
关 键 词 : 煤 灰 ; 硫 石 膏 ; 性 ; 化 ; 观 结 构 粉 脱 活 水 微
中 图分类 号 :2 . 4 5 80 1
文献标 志码 : A
文 章编 号 :6 44 6 (0 1 0 —1 70 1 7 —7 4 2 1 ) 50 3 —6
i r s r c u e a d Hy r to tv t fCe e t b s d c o t u t r n d a i n Ac i iy o m n — a e a e i l nt i i g Fl h De u ph r z t0 p u t r a s Co a n n y As — s l u i a i n Gy s m
第3 3卷 第 5 期
21 0 1年 1 0月
木 建 u l& J u n lo vl 土rh t c筑a 环 境 io 程 tlEn ie rn o r a fCii.A c ie t r 与 En r n e a g n e ig v工 m n
V L3 o 5 o 3N .
0c . 2 l t O1
泥石 早期 有 明显 的钙矾 石 生成 , 同时粉 煤 灰颗 粒 的表 面侵蚀 现 象 明显 , 一步说 明复 合胶 凝 体 系的 进 早期 活性 得 到有 效激发 , 化后 综 合 性 能得 到 有 效保 证 。且宏 观 收 缩及 强度 试验 也 从 侧 面 印证 了 硬
微 观 试验 结果 。粉 煤灰一 脱硫石 膏水 泥基 复 合胶 凝 材 料 体 系的研 发 可 大 量 消耗 燃 煤 电厂 的 工 业废 渣, 具有 显著 的“ 色” 绿 效应 。