这种最短网络称为最小生成树
斯坦纳树算法路径选择

斯坦纳树算法路径选择斯坦纳树算法,是用于网络优化中的一种算法,通常用于求最小生成树。
斯坦纳树算法主要用于寻找网络中的一些特定节点,这些节点被称为“终端节点”,并通过一些路径连接起来。
斯坦纳树算法的基本思路是通过构建一棵最小生成树,将终端节点连接起来。
在最小生成树的构建过程中,算法会假设所有的节点都是终端节点,并尝试找到一些最小的路径使得这些节点之间连接起来,然后将这些路径添加到最小生成树中。
斯坦纳树算法的步骤如下:1. 确定终端节点。
在开始算法之前,需要确定网络中的一些节点作为终端节点。
通常终端节点是预先指定的,它们可以是网络中的一些特定节点或者是一些已知的关键节点。
2. 构造所有终端节点之间的路径。
使用一些最短路径算法,如 Dijkstra 算法或Floyd 算法,来构造所有终端节点之间的路径,并计算它们之间的距离。
这个过程可以比较耗时,需要使用一些常用的优化技巧来提高效率。
3. 寻找最小生成树。
使用一些最小生成树算法(如 Kruskal 算法)来找到包含所有终端节点的最小生成树。
4. 将路径加入最小生成树中。
将第二步中构造的所有路径加入到最小生成树中,形成一棵新的斯坦纳树。
这个过程通常需要进行一些捆绑(bundling)和压缩(compression)操作,以减少斯坦纳树的复杂度。
5. 循环优化。
从最小生成树的根节点开始,逐级向下遍历,找到每个非终端节点的最短路径,并将这个路径添加到斯坦纳树中。
这个过程需要循环执行,直到所有非终端节点都被连接起来,或者直到满足一些停止条件为止。
总的来说,斯坦纳树算法是一种比较复杂的算法,需要一些高级的数据结构和算法知识。
但是它在一些网络优化问题中具有显著的优势,可以为网络设计提供更优秀的方案。
运筹学-图与网络模型以及最小费用最大流(高级课堂)

v4
v5
高等课堂 7
图与网络的基本概念与模型
环, 多重边, 简单图
e1
如果边e的两个端点相重,称该边为 环。如右图中边e1为环。如果两个点 v2
e2
e4 v1e3
v3
之间多于一条,称为多重边,如右图
e5
中的e4和e5,对无环、无多重边的图
e6
e7
e8
称作简单图。
v4
v5
高等课堂 8
图与网络的基本概念与模型
的长度(单位:公里)。
17
v2
5
6
15
6 v4
V1
(甲地)
43
10
4
4
2
v5
v6
解:这是一个求v3无向图的最短路的问题。可以把无向图的每一边
(vi,vj)都用方向相反的两条弧(vi,vj)和(vj,vi)代替,就化为有向图,
即可用Dijkstra算法来求解。也可直接在无向图中用Dijkstra算法来求解。
最短路问题
最短路问题:对一个赋权的有向图D中的指定的两个点Vs和Vt找 到一条从 Vs 到 Vt 的路,使得这条路上所有弧的权数的总和最小, 这条路被称之为从Vs到Vt的最短路。这条路上所有弧的权数的总 和被称为从Vs到Vt的距离。
• 求最短路有两种算法:
狄克斯屈拉(Dijkstra)(双标号)算法 逐次逼近算法
• 图论中图是由点和边构成,可以反映一些对象之间的关系。 • 一般情况下图中点的相对位置如何、点与点之间联线的长短曲
直,对于反映对象之间的关系并不是重要的。
图的定义(P230)
若用点表示研究的对象,用边表示这些对象之间的联系,则图 G可以定义为点和边的集合,记作:
图的最小生成树

保证不形成回路
(2)TE=TE+(u0,v0), 边(u0,v0)并入TE (3)U=U+{v0},顶点V0 并入U
特点: 以连通为主、选代价最小的邻接边
说明:Prim算法的起始点(可不写,默认为0)
翻译训练1.学生结合课下注释和工具书自行疏通文义,并画出不解之处。【教学提示】节奏划分与明确文意相辅相成,若能以节奏划分引导学生明确文意最好;若学生理解有限,亦可在解读文意后把握节
奏划分。2.以四人小组为单位,组内互助解疑,并尝试用“直译”与“意译”两种方法译读文章。3.教师选择疑难句或值得翻译的句子,请学生用两种翻译方法进行翻译。翻译示例:若夫日出而林霏开,
【练习】请用kruskal算法找出下图最小生成树。
练习
利用克鲁斯卡尔算法构造最小生成树 算出该最小生成树的代价
最
1
10
小
生
成
21 6
树 19
算
法
33
思
想
5
18
二
1
10
6 Prim算法
2
11
5
6
3
14 6
4
2
11
5
6
3
初始条件
点集合={u0}, TE={φ}。
5
18
4
普里姆(Prim)最小生成树算法
1
③
④
3
42
⑤
6
利用Prim演算法找最小生成树
以A点为起始点
L :A D B C E F T : h c d e a
graph

割顶: 连通图中的一个点,如果删去这个点和相关的边, 那么整个图就不再连通了。 (这里只讨论无向图中的桥和割顶) B A F E C D
在左图中,DE之间的边即为这张图中唯 一的一个桥。
而D,E则分别为这张图中的两个割顶。
G
桥和割顶
A B
A
F E C D G C D
B
E F
在dfs树中,我们不难发现,对于一个桥,必 然没有一条返祖边跨越这条边,反之,则必然 存在一条返祖边跨越这条边。
}
例2、phoneline (USACO)
有N(1<=n<=1000)个点,M(1<=m<=10000)条边, 寻找一条从结点1到结点N的路径,使得其中各 边长度的最大值最小。并且给定一个整数 K(0<=k<=300),可以使路径中的K条边长度变为 零。求最小的那个最大值。 乍看和最短路没有关系,因为要求最大值最小。
时间复杂度同最短路径
Sec.3 最小生成树
最小生成树的定义:对于一个连通的带权图,选取一些边,使 得整个图连通,并且所选边的权值和最小。这些边与点所构成 的集合就是最小生成树。
3
4 4
3
湖经数据结构 7-图

计算机科学与技术学院 软件工程系 邓沌华
基于邻接矩阵的图的深度优先遍历算法
typedef struct vertextype
void DFS (MGraph G,int v )
{ int no;
char data; }VertexType; typedef struct mgraph
{ int w;
4
8
5
6
7
是一个递归的过程,类似于树的先序遍历。
遍历结果:
1
2
4
8
5
3
6
7
计算机科学与技术学院 软件工程系 邓沌华
例 1: 1
深度优先遍历
答案一: 1
2 5 4 3 答案二: 6
2
4
8
5
6
3
7
7 8
1
2
5
8
4
7
3
6
答案三:
1 3 6 8 7 4 2 5
计算机科学与技术学院 软件工程系 邓沌华
例 2: 已知图的邻接表如下所示,根据算法,则从顶点0出 发按深度优先遍历的结点序列是 A. 0 1 3 2 C. 0 3 2 1 B. 0 2 3 1 D. 0 1 2 3 √
计算机科学与技术学院 软件工程系 邓沌华
引言 图是比线性表和树更为复杂的非线性的数据结构。 线性表:前后相继、序列;
树:层次、分支;
图:结点之间 的关系可以是任意的,任意两个数 据元素之间都可能相关。 线性表和树都可以看成是简单的图。 图的应用领域:电路网络分析、交通运输、管理 与线路的铺设、印刷电路板与集成电路的布线等; 工作的分配、工程进度的安排、课程表的制订、 关系数据库的设计等。
第二章 生成树

第二章树教学安排的说明章节题目:§2.1树的特性;§2.2割边与割点,§2.3生成树学时分配:共2课时本章教学目的与要求:会正确表述关于树的一些基本概念(如树、生成树、割边与割点),会用避圈法和破圈法找生成树,会用树的方法描述一些简单的实际问题.课 堂 教 学 方 案课程名称:§2.1树的特性;§2.2割边与割点;§2.3 生成树授课时数:2学时授课类型:理论课教学方法与手段:讲授法教学目的与要求:会正确表述关于树的一些基本概念(如树、生成树、割边与割点),会用避圈法和破圈法找生成树,会用树的方法描述一些简单的实际问题. 教学重点、难点:(1) 理解树的概念以及树的等价命题;(2) 掌握割边与割点的概念;(3) 理解生成树的定义;(4) 掌握找生成树的两种方法——避圈法和破圈法。
教学内容:树是图论中的一个重要概念。
树是一种极为简单而又非常重要的特殊图,它在计算机科学以及其它许多领域都有广泛的应用。
在1847年克希霍夫就用树的理论来研究电网络,1857年凯莱在计算有机化学中222n C H 的同分异构物数目时也用到了树的理论。
各类网络的主干网通常都是树的结构。
本节介绍树的基本知识,其中谈到的图都假定是简单图。
2.1 树的特性定义2.1.1 连通无圈的无向图称为无向树,简称为树(Undirected tree )。
记作T ,树中的悬挂点(或称T 中度数为1的顶点)又称为树叶(leave )(或叶顶点),其它顶点称为树枝(Branch Point 或内点(Inner Point))。
诸连通分支均为树的图称为森林(forest ),树是森林。
例1 图1中(a ),(b )为树,(c )为森林。
图1由于树无环也无重边(否则它有圈),因此树必定是简单图。
树还有等价命题:设T 是一个无向(,)n m 图,则以下关于T 的命题是等价的。
(1) T 是树;(2)T 无圈且1m n =-;(3) T 连通且1m n =-;(4)T 无圈,但增加任一新边,得到且仅得到一个圈。
数据结构练习(二)答案

数据结构练习(二)答案一、填空题:1.若一棵树的括号表示为A(B(E,F),C(G(H,I,J,K),L),D(M(N))),则该树的度为(1)4,树的深度为(2)4 ,树中叶子结点的个数为(3)8。
2.一棵满二叉树中有m个叶子,n个结点,深度为h,请写出m、n、h之间关系的表达式(4)n=2h-1,m=n+1-2h-1 n=2m-1 。
3.一棵二叉树中如果有n个叶子结点,则这棵树上最少有(5)2n-1 个结点。
一棵深度为k的完全二叉树中最少有2k-1(6)个结点,最多有(7)2k-1个结点。
4.具有n个结点的二叉树,当它是一棵(8)完全二叉树时具有最小高度(9) log2n」+1,当它为一棵单支树时具有高度(10) n 。
5.对具有n个结点的完全二叉树按照层次从上到下,每一层从左到右的次序对所有结点进行编号,编号为i的结点的双亲结点的编号为_(11)__[i/2]__,左孩子的编号为___2i____,右孩子的编号为__2i+1______。
6.若具有n个结点的二叉树采用二叉链表存储结构,则该链表中有__2n_个指针域,其中有_n-1_个指针域用于链接孩子结点,__n+1_个指针域空闲存放着NULL 。
7.二叉树的遍历方式通常有__先序__、___中序__、__后序__和___层序___四种。
8.已知二叉树的前序遍历序列为ABDCEFG,中序遍历序列为DBCAFEG,其后序遍历序列为___DCBFGEA__。
9.已知某完全二叉树采用顺序存储结构,结点的存放次序为A,B,C,D,E,F,G,H,I,J,该完全二叉树的后序序列为___HIDJEBFGCA____。
10.若具有n个结点的非空二叉树有n0个叶结点,则该二叉树有__n0-1_个度为2的结点,____n-2n0+1____个度为1的结点。
11.任何非空树中有且仅有一个结点没有前驱结点,该结点就是树的__根____。
度为k的树中第i层最多有___k i-1_______个结点(i>=1),深度为h的k叉树最多有___k0+k1+....+k h-1____个结点。
数学建模 四大模型总结

四类基本模型1 优化模型1.1 数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。
1.2 微分方程组模型阻滞增长模型、SARS 传播模型。
1.3 图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。
1.4 概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。
1.5 组合优化经典问题● 多维背包问题(MKP)背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。
如何将尽可能多的物品装入背包。
多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。
如何选取物品装入背包,是背包中物品的总价值最大。
多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。
该问题属于NP 难问题。
● 二维指派问题(QAP)工作指派问题:n 个工作可以由n 个工人分别完成。
工人i 完成工作j 的时间为ij d 。
如何安排使总工作时间最小。
二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。
二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。
● 旅行商问题(TSP)旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。
● 车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。
TSP 问题是VRP 问题的特例。
● 车间作业调度问题(JSP)车间调度问题:存在j 个工作和m 台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。