微电子专用设备之一无掩膜光刻技术教学内容

微电子专用设备之一无掩膜光刻技术教学内容
微电子专用设备之一无掩膜光刻技术教学内容

微电子专用设备之一-无掩膜光刻技术

无掩膜光刻技术

激光无掩膜光刻技术,又称激光直接成像技术(LDI,Laser Direct Imaging),是直接利用图形工作站输出的数据,驱动激光成像装置,在涂覆有光致抗蚀剂的基材上进行图形成像的技术。

LDI可以实现不使用掩膜板,因此不仅可以降低成本,同时可以减少流程,节约制程时间。在传统印制电路板(PCB)生产中大约需要250分钟-300分钟,9个工序的制程,使用LDI支撑可以节约到5分钟,3个工序。但是由于存在生产效率,激光束准确度,准确度验证和检查,与现有成熟工艺兼容,重合误差等问题,在使用范围上仍受到一定限制,目前主要应用在PCB领域,在平板显示,半导体制程中,仍然难以进入量产阶段。

不同的LDI设备差别较大,主要看最小线宽和最大基材面积这两个指标。在图形质量方面,LDI受到激光能量和光线照射角度的影响。在生产率方面,影响LDI速度的主要有多面镜转动速度和计算机数据处理和输出效率。

目前,LDI主要应用在电路板行业,尤其是HDI(高密度互联板)企业,主要用于小批量样品,随着高感光度干膜应用,LDI进入连线试用阶段,进而提高了效率。目前最小线宽可以做到10微米的范围。

主要设备企业有以色列的奥宝,日本的富士,德国的海德堡等,中国国内企业主要有合肥芯碁微,中山新诺和大族激光等。根据大族激光2015年年报披露,2015年大族激光LDI设备营收达到2000万元。合肥芯碁微的Tripod系列可以应用于各类HDI、软板、软硬结合板等,内、外层与防焊生产曝光设备,其最小线宽/间距可达到30/30μm,工作台尺寸为610×800mm。

随着可穿戴设备、智能手机等电子产品销量不断增长,对HDI产品的需求也在不断增长,由于增长态势属于缓慢增长,因此工厂大多采用升级更新,因此影响了LDI设备的快速增长。

微电子工艺论文----光刻胶解读

光刻胶的深入学习与新型光刻胶 张智楠 电科111 信电学院山东工商学院 264000 摘要:首先,本文从光刻中的光刻胶、光刻胶的分类、光刻胶的技术指标(物理特性)这几个方面对光刻工艺中的光刻胶进行了详细的深入学习;其次,介绍了当代几种应用广泛的光刻胶以及新型光刻胶;最后,对光刻胶的发展趋势进行了简单的分析。 关键词:光刻、光刻胶、紫外负型光刻胶、紫外正型光刻胶、远紫外光刻胶。 光刻(photoetching)工艺可以称得上是微电子工艺中最为关键的技术,决定着制造工艺的先进程度。光刻就是,在超净环境中,将掩膜上的几何图形转移到半导体晶体表面的敏光薄材料上的工艺过程。而此处的敏光薄材料就是指光刻胶(photoresist)。光刻胶又称光致抗蚀剂、光阻或光阻剂,由感光树脂、增感剂和溶剂三种主要成分组成的对光敏感的混合液体。感光树脂经光照后,在曝光区能很快地发生光固化反应,使得这种材料的物理性能,特别是溶解性、亲合性等发生明显变化。经适当的溶剂处理,溶去可溶性部分,得到所需图像。 光刻胶的技术复杂,品种较多。对此探讨以下两种分类方法: 1、光刻胶根据在显影过程中曝光区域的去除或保留可分为两种——正性光刻胶(positive photoresist)和负性光刻胶(negative photoresist)。正性光刻胶之曝光部分发生光化学反应会溶于显影液,而未曝光部份不溶于显影液,仍然保留在衬底上,将与掩膜上相同的图形复制到衬底上。负性光刻胶之曝光部分因交联固化而不溶于阻显影液,而未曝光部分溶于显影液,将与掩膜上相反的图形复制到衬底上。正胶的优点是分辨率比较高,缺点是粘附性不好,阻挡性弱。与之相反,负胶的粘附性好,阻挡性强,但是分辨率不高。 2、基于感光树脂的化学结构,光刻胶可以分为三种类型。一是光聚合型,采用烯类单体,在光作用下生成自由基,自由基再进一步引发单体聚合,最后生成聚合物,具有形成正像的特点。二是光分解型,采用含有叠氮醌类化合物的材料,经光照后,会发生光分解反应,由油溶性变为水溶性,可以制成正性胶。三是光交联型,采用聚乙烯醇月桂酸酯等作为光敏材料,在光的作用下,其分子中的双键被打开,并使链与链之间发生交联,形成一种不溶性的网状结构,而起到抗蚀作用,这是一种典型的负性光刻胶。 光刻胶的技术指标或者说物理特性有如下几个方面:一、分辨率(resolution),区别硅片表面相邻图形特征的能力,一般用关键尺寸(CD,Critical Dimension)来衡量分辨率。形成的关键尺寸越小,光刻胶的分辨率越好。二、对比度(Contrast),指光刻胶从曝光区到非曝光区过渡的陡度。对比度越好,形成图形的侧壁越陡峭,分辨率越好。三、敏感度(Sensitivity),光刻胶上产生一个良

无掩膜光刻图形的数据提取技术

无掩膜光刻图形的数据提取技术 信息技术产业的日益发展需要集成电路的不断进步,作为集成电路制作的主要方法,光刻技术也在不断地寻求突破。近年来,空间光调制器(SLM,Spatial Light Modulator)无掩膜光刻技术在微电子及相关领域的得到了广泛关注。空间光调制器无掩膜光刻作为数字投影光刻技术以SLM为图形发生器,可便捷、灵敏、并行、低成本和高速的产生曝光图形。因其在高分辨集成电路制作上的极大优势,SLM 无掩膜光刻技术已经成为国际光刻系统制造领域的重要研究内容,也有可能成为下一代微纳加工的一个重要技术。本论文以介绍SLM无掩膜光刻的原理为基础,分析了SLM无掩膜光刻系统的组成,重点研究了无掩膜光刻图形的数据提取技术,并设计了系统的数据提取软件。研究内容包括: 1.对光刻技术的发展进行简单的介绍,分析了几种无掩膜光刻技术,着重介绍SLM无掩膜光刻的成像原理和作为数字掩膜的数字微镜(DMD,Digital Micromirror Device)器件,并阐述无掩膜光刻机中数据提取的重要意义以及研究方向。 2.分析掩膜版图的几种常用格式和每种版图格式的具体参数,为数据提取奠定基础。 3.数据提取软件包括两部分,分别是对掩膜图形进行灰度调制和生成曝光所用的数据。掩膜图形的灰度调制分为三个步骤,首先对DXF格式的图形进行数据提取;再根据得到的数据通过软件生成与DXF格式的图形一样的矢量图;最后对再现的矢量图形运用栅格化法,生成灰度图形,实现图形的灰度调制。根据基于数字微镜的无掩膜光刻技术的原理和曝光方式的不同,对曝光图形进行晶圆分布和图形分割,生成曝光所用的图形数据。 关键词:SLM无掩膜光刻数据提取灰度调制

光学光刻掩膜版论文黄武 20114912

IC制备中光刻制版技术及原理 姓名:黄武20114912 班级:电子信息特色实验班指导老师:张玲 1制版概述 信息产业是国民经济的先导产业,微电子技术更是信息产业的核心。由1906年的电子管开始,到1956年硅台面晶体管问世,再到1960年世界第一块硅集成电路制作成功,此后集成电路的发展一发不可收拾,小规模集成电路(SSI)中规模集成电路(MSI),大规模集成电路(LSI),超大规模集成电路(VLSI),甚大,巨大规模集成电路(ULSI,GLSI)。这几十年以来集成电路的发展趋势是尺寸越来越小,速度越来越快,电路规模越来越大,功能越来越强,衬底硅片尺寸越来越大。这些都是大规模与超大规模集成电路的小型化、高速、低成本、高效率生产等特点所带来的结果。集成电路在近年也已广泛应用于家用电器,汽车配件,航天航空,军事武器制导等等。为了达到集成电路的量产以减小成本,IC制版技术就显得十分重要了。 1.1制版的意义 制版就是制作光刻的掩膜版。平面管、集成电路和采用平面工艺的其他半导体器件,都要用光刻技术来进行定域扩扩散与沉积,以获得一定形状的二极管、三极管和一定数值的电感、电容。掩膜版在光刻过程中相当于印刷中的模板,它可以重复不断的协助我们将所需要的集成电路刻制出来。因此掩膜版是光刻制程中的一个基本工具。目前世界上的集成电路工业突飞猛进的发展,硅基CMOS 的特征线宽已达到0.18微米,并向着0.1微米和压0.1微米推进。随着设计线宽

的缩小,光刻技术也必须随之而发展,而光刻技术的发展需要高水平的掩膜版才能得以实现。此外集成电路管芯成品率与掩膜版的好坏有着直接的关系。一个成品合格管芯制备需要一套掩膜版的。若每块掩膜版上图形成品率为0.9 ,那么两块掩膜版就是有0.81,十块掩膜版就是0.35左右,集成电路管芯的成品率比图形成品率还低。可见光刻掩膜版的质量直接影响光刻影像的好坏,从而影响成品率。 1.2 掩膜版制作流程

当今世界10项最有影响新技术

当今世界10项最有影响新技术 当今世界,科技发展日新月异,科学新概念层出不穷,新技术工艺相继闪亮登场。纳米材料、信息技术、生物制药、节能环保科技领域的创新和研发引人注目,鼓舞人心。一项新的科技发明会在不知不觉中改变我们的生活,影响社会发展的历程。 近日,俄罗斯《大众机械》杂志撰文指出,以下科技新技术会使人类生活因此而更加完美无缺。 1,相变随机闪存(PRAM) 手机、手提电脑等移动设备对存储器的要求,与服务器和台式电脑等截然不同。长期以来,人们对这些移动设备存储器的主要性能要求是低成本、低功耗以及非易失性。 但是,由于目前开发的各类存储器都有其自身缺陷,因而没有一款能够完全满足上述所有要求。例如,动态随机存储器成本低且能够随机访问,但遗憾的是存在易失性,即断电后会发生数据丢失;充当缓存的静态随机存储器读写速度快且能够随机访问,但缺点是成本较高;相比之下,闪存成本低且具有非易失性特点,然而苦于速度慢又无法随机访问。除此之外,目前的闪存制造技术也无法生产出存储容量超过16G的产品。 最新兴起的相变随机闪存技术,类似于CD和CD驱动器中所采用的技术。在PRAM中,电流将硫化薄膜加热至晶态或非晶态,因两种状态下的电阻率有很大差别,从而可判读为0或1,只要在上面施加少量的复位电流就能触发这两个状态的切换。 在现有的电子产品中,广泛使用的非易失性闪存有NOR和NAND两种:NOR 闪存适合直接运行软件,但它的速度较慢,而且造价昂贵;NAND闪存容易大规模制造,更适合存储大容量文件,如MP3音乐文件等。PRAM闪存则采用垂直二极管和三维晶体管结构,不需要在储存新数据前擦除旧数据,因而是非易失性的,也就是说,在电子设备关闭时仍能保存数据。 目前,三星公司在PRAM领域的研发处于世界领先水平,2006年已经展示了它的初级产品,这些新产品比现有普通闪存快30倍以上。三星公司表示,PRAM产品有望在2008年上市,它极有可能将成为NOR闪存的最终替代品。 2,汽车智能一体化 近10年来,信息技术的发展为交通运输行业带来了各种机遇,智能交通系统(ITS),便是其中最典型、最活跃、最具潜力而且全面应用了信息技术的一个交通运输发展综合领域。ITS就是信息技术———主要是计算机、通讯和

(英文)无掩膜光刻的模式生成系统

1. INTRODUCTION Recently, the Digital Micromirror Device (DMD) by Texas Instruments Inc. (TI) has brought the innovation on the digital light processing technology[1]. Especially in the field of microdisplays, the DMD which is an array of micromirrors appears to be the most successful Micro Electronic Mechanical System (MEMS) solution [2, 3]. Nowadays, many new DMD application fields are emerged. One of them is the photolithography for Flat Panel Display (FPD) fabrication [4]. The conventional lithography has been carried using pattern masks in order to have patterns on photo resistant coated substrates be exposed to ultraviolet light. Besides the cost and time for manufacturing disposable photomasks or reticles, the contamination of the final products caused by pattern masks has become significant in FPD industry. Moreover, the lithographic accuracy yields the alignment of the mask with the substrate or stage, which is hard to be ensured because of the vibration caused by fabrication environment. In DMD based maskless photolithography system, the micromirror array works as a virtual photomask to write patterns directly onto FPD glass substrates at high speed with low cost. In comparison with other maskless photolithography technologies, DMD based maskless photolithography technology possesses superior features all together such as sufficient throughput for highly customized patterns, higher but precise resolution, fine lithographic quality, efficiency in cost and time, and so on. Moreover, DMD even comes out with its own motion controller. However, the task providing command for DMD controller against millions of individually addressable and adjustable micromirrors in DMD frame for the photolithographic pattern generation is left behind on each system developer unsolved. The development of the entire pattern generating system from loading of photolithographic pattern data till delivering it to DMD controller is essential and crucial for photolithography, even though it is not simple to generate region-based patterns for the micromirror array and is not easy to deliver sequences of patterns for the micromirror controller. On the other hand, the synchronization between generating sequence of patterns and irradiation rate off micromirrors significantly affects the quality of lithography. In this study, we aim to develop an effective pattern generating system that creates photolithographic region for the micromirror array. The region-based pattern generating system for maskless photolithography is proposed. Region-based Pattern Generating System for Maskless Photolithography Younghun Jin*, Kiwon Park*, Jaeman Choi*, Sangjin Kim**, Changgeun An**, and Manseung Seo* * Dept. of Computer-Aided Mechanical Design Eng., Tongmyong Univ. of I.T., Busan, Korea (Tel : +82-51-610-8351; E-mail: sms@tit.ac.kr) **Thinfilm Technology Group, LG PRC, LG Electronics, Gyunggido, Korea (Tel : +82-31-660-7332; E-mail: cgan@https://www.360docs.net/doc/aa16732069.html,) Abstract: In the maskless photolithography based on the Digital Micromirror Device (DMD) by Texas Instruments Inc. (TI), the micromirror array works as a virtual photomask to write patterns directly onto Flat Panel Display (FPD) at high speed with low cost. However, it is neither simple to generate region-based patterns for the micromirror array nor easy to deliver sequences of patterns for the micromirror controller. Moreover, the quality of lithography yields the precise synchronization between generating sequence of patterns and irradiation rate off micromirrors. In this study, the region-based pattern generating system for maskless photolithography is devised. To verify salient features of devised functionalities, the prototype system is implemented and the system is evaluated with actual DMD based photolithography. The results show that proposed pattern generating method is proper and reliable. Moreover, the devised region-based pattern generating system is robust and precise enough to handle any possible user specified mandate and to achieve the quality of photolithography required by FPD manufacturer. Keywords: Photolithography, Maskless, Digital Micromirror Device (DMD), Flat Panel Display (FPD) The devised pattern sequence data generating system consists of four major functionalities; 1) Reading CAD Data written in the Drawing eXchange Format (DXF), 2) Extracting the regional information and constructing the lithographic region, 3) Transforming constructed lithographic region into binary data, 4) Delivering binary data to DMD controller for lithography. To evaluate proposed functionalities, the prototype system is implemented, and actual DMD based photolithography using the system is carried. The results show that proposed pattern generating method is proper and reliable. Moreover, the implemented region-based pattern generating system is precise enough to achieve the quality of photolithography required by FPD manufacturer. 2. DMD BASED MASKLESS PHOTOLITHOGRAPHY EQUIPMENT The DMD based maskless photolithography equipment consists of three major devices. The first one is the radiation device. The second is the irradiation device including DMD controller, DMD, focusing optics, photo resistant coated glass substrate, and base stage assembly and its controller. The last is the dynamic pattern control device being composed with the photolithographic pattern generating system, the radiation control unit, and the stage control unit. Figure 1 shows the schematic diagram of DMD based maskless photolithography equipment. The eXtended Graphic Array (XGA) 1024X768 Array DMD manufactured by TI has 13.68 μm of one Pixel Field Of View (FOV) and it is enlarged to 40 μm in present work. As shown in Fig. 1, micromirrors of DMD are exposed to incoming radiation released from the ultraviolet light source. The reflection off the micromirrors is determined upon the signal from the photolithographic pattern generating system to DMD controller. Then, the light reflected off the micromirrors is projected through focusing optics onto the photo resistant material coated on top of the glass substrate laid on x-y scrolling base stage. Throughout DMD based maskless photolithography in concern, all DMD controller does is only digital control of the light reflection for

光刻机和光掩膜版

十三章 光刻II 光刻机和光掩膜版 前几章讲述了光刻胶材料的性质和工艺技术。在这一章里,我们介绍如何将图形转移到硅片表面上,包括以下内容:a)将图形投影到硅片表面的装置(即光刻对准仪或光刻翻版机),由此使得所需图形区域的光刻胶曝光。 b)将图形转移到涂有光刻胶的硅片上的工具(即光掩模版和中间掩模版)。在介绍光刻机或掩模版之前,把用以设计和描述操作光刻机的光学原理简要地说明一下。它们是讲明光掩模板和中间掩模版的基础。 在讨论光学原理之前,有必要介绍一下微光刻硬件的关键。那就是把图形投影到硅表面的机器和掩模版的最重要的特征:a)分辨率、b)图形套准精度、c)尺寸控制、d)产出率。 通常,分辨律是指一个光学系统精确区分目标的能力。特别的,我们所说的微图形加工的最小分辨率是指最小线宽尺寸或机器能充分打印出的区域。然而,和光刻机的分辨率一样,最小尺寸也依赖于光刻胶和刻蚀的技术。关于分辨率的问题将在微光刻光学一章中更彻底的讲解,但要重点强调的是高分辨率通常是光刻机最重要的特性。 图形套准精度是衡量被印刷的图形能“匹配”前面印刷图形的一种尺度。由于微光刻应用的特征尺寸非常小,且各层都需正确匹配,所以需要配合紧密。

微光刻尺寸控制的要求是以高准度和高精度在完整硅片表面产生器件特征尺寸。为此,首先要在图形转移工具〔光刻掩模版〕上正确地再造出特征图形,然后再准确地在硅片表面印刷出〔翻印或刻蚀〕。 加工产率是重要但 不是最重要加工特征。例 如,如果一个器件只能在 低生产率但高分辨率的 光刻机制版,这样也许仍 然是经济的。不过,在大 部分生产应用中,加工和 机器的产率是很重要的, 也许是选择机器的重要因素之一。 1.微光刻光学 在大规模集成电路的制造中。光刻系统的分辨率是相当重要的,因为它是微器件尺寸的主要限制。在现代化投影光刻机中光学配件的质量是相当高的,所以图形的特征尺寸因衍射的影响而受限制,而不会是因为镜头的原因(它们被叫做衍射限制系统)。因为分辨率是由衍射限度而决定的,那就必须弄明白围绕衍射限度光学的几个概念,包括一致性、衍射、数值孔径、调频和许多重要调节转换性能。下几节的目的就是要简要和基本地介绍这些内容。参考资料1·2讲得更详细。 衍射·一致性·数值孔径和分辨率 图(1):一束空间连续光线经过直的边缘时的光强 a)依据几何光学b)散射

微电子工艺技术 复习要点4-6

第四章晶圆制造 1. CZ法提单晶的工艺流程。说明CZ法和FZ法。比较单晶硅锭CZ、MCZ和FZ三种生长方法的优缺点。 1、溶硅 2、引晶 3、收颈 4、放肩 5、等径生长 6、收晶。 CZ法:使用射频或电阻加热线圈,置于慢速转动的石英坩埚内的高纯度电子级硅在1415度融化。将一个慢速转动的夹具的单晶硅籽晶棒逐渐降低到熔融的硅中,籽晶表面得就浸在熔融的硅中并开始融化,籽晶的温度略低于硅的熔点。当系统稳定后,将籽晶缓慢拉出,同时熔融的硅也被拉出。使其沿着籽晶晶体的方向凝固。 FZ法:即悬浮区融法。将一条长度50-100cm 的多晶硅棒垂直放在高温炉反应室,加热将多晶硅棒的低端熔化,然后把籽晶溶入已经熔化的区域。熔体将通过熔融硅的表面张力悬浮在籽晶和多晶硅棒之间,然后加热线圈缓慢升高温度将熔融硅的上方部分多晶硅棒开始熔化。此时靠近籽晶晶体一端的熔融的硅开始凝固,形成与籽晶相同的晶体结构。当加热线圈扫描整个多晶硅棒后,便将整个多晶硅棒转变成单晶硅棒CZ法优点:单晶直径大,成本低,可以较好控制电阻率径向均匀性。缺点:石英坩埚内壁被熔融的硅侵蚀及石墨保温加热元件的影响,易引入氧、碳杂质,不易生长高电阻率单晶 FZ法优点:1、可重复生长,单晶纯度比CZ法高。2、无需坩埚石墨托,污染少。3、高纯度,高电阻率,低碳,低氧。缺点:直径不如CZ法,熔体与晶体界面复杂,很难得到无位错晶体,需要高纯度多晶硅棒作为原料,成本高。 MCZ:改进直拉法优点:较少温度波动,减轻溶硅与坩埚作用,降低了缺陷密度,氧含量,提高了电阻分布的均匀性 2.晶圆的制造步骤【填空】 1、整形处理:去掉两端,检查电阻确定单晶硅达到合适的掺杂均匀度。 2、切片 3、磨片和倒角 4、刻蚀 5、化学机械抛光 3. 列出单晶硅最常使用的两种晶向。【填空】 111.100. 4. 说明外延工艺的目的。说明外延硅淀积的工艺流程。 在单晶硅的衬底上生长一层薄的单晶层。 5. 氢离子注入键合SOI晶圆的方法 1、对晶圆A清洗并生成一定厚度的SO2层。 2、注入一定的H形成富含H的薄膜。 3、晶圆A翻转并和晶圆B键合,在热反应中晶圆A的H 脱离A和B键合 4、经过CMP和晶圆清洗就形成键合SOI晶圆 6. 列出三种外延硅的原材料,三种外延硅掺杂物【填空】 6名词解释:CZ法提拉工艺、FZ法工艺、SOI、HOT(混合晶向)、应变硅 CZ法:直拉单晶制造法。FZ法:悬浮区融法。SOI:在绝缘层衬底上异质外延硅获得的外延材料。HOT:使用选择性外延技术,可以在晶圆上实现110和100混合晶向材料。应变硅:通过向单晶硅施加应力,硅的晶格原子将会被拉长或者压缩不同与其通常原子的距离。 第五章热处理工艺

光学光刻和EUV光刻中的掩膜与晶圆形貌效应

光学光刻和EUV光刻中的掩膜与晶圆形貌效应 半导体制造中微型化的进展使得光刻掩膜和晶圆上的几何图形不断增加。准确模拟这些图形产生的衍射要求运用精确的电磁场(EMF)模拟方法。这些方法是在给定的几何形状、材料参数和入射场(照明)条件下,用合适的数值方法解麦克斯韦方程组。 时域有限差分法(FDTD)将离散积分格式用于微分形式麦克斯韦方程。此方法非常灵活,易于适应各种不同的几何形状和入射场条件。这一方法的计算结果和精确度主要取决于依据每波长网格点数(GPW) 的空间离散化程度。计算时间和存储要求与模拟体中网格点总数是线性比例关系。很多情况下,为了得到某些现象的直观近场分布图和定性研究,15-25 GPW就足够了。光刻模拟的典型准确度要求多半需要100GPW以上。FDTD已被应用于解决先进光刻中的许多典型问题。 像波导法(WGM)和严格耦合波分析(RCWA)一样,模态法也是用切割模拟体、切片内电磁场和光学材料特性的Fourier展开式,以及它们之间Fourier系数的耦合解麦克斯韦方程。散射场是以产生的代数方程式的解获得的。WGM(及类似方法)的计算结果和准确度主要决定于Fourier展开式的阶数(WG阶)和切片数。计算时间和存储要求随WG阶的三次方增加。一般说来,对于求解具有矩形块结构几何形状(如垂直吸收侧壁)的2D问题(线条和隔离),这些模态法是非常准确而有效的。这些方法缩微化能力差使其难以应用到更大的3D问题(如接触孔的半密矩阵)。已开发了特殊的分解方法解决这一问题。有效执行WGM目前已用于光学和EUV掩膜及晶圆形貌效应的高效模拟。 其它EMF模拟方法基于麦克斯韦方程的积分表达式。最近的论文证明,对于模拟形状复杂的掩膜几何图形的光衍射,有限元方法(FEM)和有限积分技术(FIT)具有极高的准确度。这使得这些方法对于标定其它方法和一些特殊场合的模拟非常有用。详细了解和精确模拟从光刻掩膜和晶圆上的(亚)波长尺寸特征图形产生的光衍射,对于开发和优化先进光刻工艺是不可或缺的。 掩膜形貌的影响 掩膜模型

浅谈我对微电子的认识

[键入公司名称] 浅谈我对微电子的认识 [键入文档副标题] X [选取日期] [在此处键入文档摘要。摘要通常为文档内容的简短概括。在此处键入文档摘要。摘要通常为文档内容的简短概括。]

我是电子信息科学与技术专业的学生,考虑到微电子对我们专业知识学习的重要性,我怀着极大的热情报了《微电子入门》这门选修课。希望通过这门课的学习,使我对微电子有更深入的认识,以便为以后的专业课学习打下基础。 微电子是一门新兴产业,它的发展关系着国计民生。它不仅应用于科学领域,也被广泛应用于国防、航天、民生等领域。它的广泛应用,使人们的生活更见方便。现代人的生活越来越离不开电子。因此,对电子的了解显得十分重要。微电子作为电子科学的一个分支,也发挥着日益重要的作用。通过几周的学习,我对微电子有了初步的认识。 首先,我了解了微电子的发展史,1947年晶体管的发明,后来又结合印刷电路组装使电子电路在小型化的方面前进了一大步。到1958年前后已研究成功以这种组件为基础的混合组件。集成电路的主要工艺技术,是在50年代后半期硅平面晶体管技术和更早的金属真空涂膜学技术基础上发展起来的。1964年出现了磁双极型集成电路产品。 1962年生产出晶体管——晶体管理逻辑电路和发射极藉合逻辑电路。MOS集成电路出现。由于MOS电路在高度集成方面的优点和集成电路对电子技术的影响,集成电路发展越来越快。 70年代,微电子技术进入了以大规模集成电路为中心的新阶段。随着集成密度日益提高,集成电路正向集成系统发展,电路的设计也日益复杂、费时和昂贵。实际上如果没有计算机的辅助,较复杂的大规模集成电路的设计是不可能的。70年代以来,集成电路利用计算机的设计有很大的进展。制版的计算机辅助设计、器件模拟、电路模拟、逻辑模拟、布局布线的计算辅助设计等程序,都先后研究成功,并发展成为包括校核、优化等算法在内的混合计算机辅助设计,乃至整套设备的计算机辅助设计系统。 微电子技术是随着集成电路,尤其是超大型规模集成电路而发展起来的一门新的技术。微电子技术包括系统电路设计、器件物理、工艺技术、材料制备、自动测试以及封装、组装等一系列专门的技术,微电子技术是微电子学中的各项工艺

微电子工艺扫盲课程.pdf

)))))))) Warning and explanation:文中所引用图片均来自于互联网和中科院半导体所官方网站。本人只是用于讲解知识所用,并未用于商业获利行为。产生任何法律纠纷均与我无关。请勿盗链文中的 图片,后果自负! 介货就是硅 微电子制造工艺在微电子整体产业中处于中游阶段(上游是电路设计,下游是封装测试)。一个芯片的制造能否达到设计要求,与制造工艺有很大的关系,因此有必要对工艺线的流程为大家说 明讲清楚。我们手中使用的mobilephone,camera,ipad内部电路板上焊接的形状各异外形诡 异的小芯片都是如何造出来?想必大家都是有兴趣知道的。即使没有电子工程的基础,通过我的讲解也是可以,你对这个最精密自动化程度最高的行业有一个清晰的轮廓。 IC(integrate circuit)的制造分为前工序和后工序。 前工序:IC制造工程中,晶圆光刻的工艺(即所谓流片),被称为前工序,这是IC制造的最要害技术。 后工序:晶圆流片后,其切割、封装等工序被称为后工序。 我们所要了解的就是前工序的内容,打蛇打七寸,直入要害。 首先,光刻过程的操作流程为: 衬底氧化—涂胶—光刻机曝光—显影烘干—刻蚀—清洗干燥—离子注入(等离子刻蚀、金属淀积)—去胶。 其中最费钱的一步大家知道是什么吗? 光刻机曝光。流片光刻的费用约占到总体花费的40%左右。很多研究机构或者高校做芯片设计 只是通过软件模拟一下,由此就以这些数据写论文,很少有经费可以去流片测试。况且一个可以投产的芯片并不是一次流片就能成功的,通常情况下需要四次甚至更多次数。以西电微电子学院的军用RFID为例,流片次数已过4次,电路尺寸逐步达到设计标准。军用研发经费充足,不计 成本,不过半导体产业高投入的现状可见一斑。 现在通过图片讲解对各部工序逐一讲解: ))))))))). ))))))))

无掩模光刻降低成本的下一代光刻技术

无掩模光刻:降低成本的下一代光刻技术 据国际市场调研公司VLSI报道,尽管浸入式光刻技术似乎为全球半导体工艺路线图又打开了一扇明亮的窗,但是昂贵的价格,又让人望而生畏。据估计一台浸入式光刻机的价格在0.2~0.3亿美元以上,而一架波音737的飞机价格也仅为0.23亿美元。因此一个显而易见的问题,有多少客户能买得起。除了昂贵的价格之外,如果真要建一个能满足下一代技术45 nm/Φ300 mm芯片厂,估计要投资30-35亿美元。 其实,不仅浸入式光刻具有成本高的缺点,如今,随着器件特征尺寸的继续缩小,器件的开发成本都越来越高,已经到了阻碍新品继续开发的地步。 尤其在进入纳米尺度之后,采用光刻掩模已成为各种光刻技术方法中一项可决定其应用前景的关键技术,但同时,掩模成本在整个光刻成本中可占份额也不断攀升。掩模的价格,也是呈直线上升态势,平均的价格如180nm的掩模,每套为26万美元,130 nm为87万美元,90 nm为150万美元,65nm为300 万美元,45 nm为600万美元。 下表给出光刻尺寸在100 nm 以下各种光刻掩模成本的比较,由于掩模版价格日益高涨,全球掩模版厂商竞争更加激烈,2004年整个掩模行业艰难前行。2004年10月同本凸版印刷(Toppan Printing)同意收购美围杜邦光掩模(Dupont photomasker),收购价近65亿美元。 表:光刻尺寸≤100nm的各种光刻掩模成本

(来源:“无掩模光刻技术的前景”,电子工业专用设备,2005(8)1-3) 因此,开发无掩模的电子束直接在硅片上的光刻技术成为潮流。全球业界已经进行了至少10年以上的努力,但成效甚微。一个主要原因,速度太慢,不能适用于工业化量产。2005年1月国际半导体联盟International Sematech 主办全球无掩模大会(Maskless Meeting),会上光刻专家讨论了无掩模光刻技术的前景,推出了众多的无掩模光刻工具。无掩模光刻工具是基于电子束光刻技术,关键是要解决电子束光刻技术生产效率低下的缺点。 目前业界对无掩模光刻技术的普遍看法是:它是降低光掩模不断飞升的一个潜在解决方案,是一种有前途的光刻候选技术。但是近期它可能只是一个细分的光刻技术,不能替代主流的光刻技术,如浸入式光刻和EUVL(极紫外光刻)。 无掩模光刻技术生产公司和设备情况 IMS nanofabrication 在全球无掩模光刻年会上,奥地利的IMS nanofabrication公司透露了一项用400万电子束可在现场进行可编程掩模的无掩模光刻装置,将来可进行45 nm及以下器件的制造。 在年会上,IMS提交了取名为PLM-2的多电子束无掩模光刻技术的论文,2003年2月IMS及Leica曾首次披露过此项技术。IMS表示,新的设备是由Leica及IMS多年来在多电子束方面的共同研发基础上有了新的突破。 此次新的设备是基于Leica名为SB350DW直接写入电子束曝光装置的平台,与以前单电子束的SB350DW不同的是,新装置采用了在单柱体内可以提供

微电子论文

微电子学与医学的结合造福社会 刘畅自动化专业093班学号:090919 摘要: 微电子技术是现代电子信息技术的直接基础。现代微电子技术就是建立在以集成电路为核心的各种半导体器件基础上的高新电子技术。微电子技术的发展大大方便了人们的生活。它主要应用于生活中的各类电子产品,微电子技术的发展对电子产品的消费市场也产生了深远的影响。微电子技术过去在医学中的主要是应用于各类医疗器械的集成电路,在未来主要是生物芯片。生物芯片技术在医学、生命科学、药业、农业、环境科学等凡与生命活动有关的领域中均具有重大的应用前景。 一、引言:我所了解的微电子技术 1.定义微电子技术,顾名思义就是微型的电子电路。它是随着集成电路,尤其是超大规模集成电路而发展起来的一门新的技术。微电子技术是在电子电路和系统的超小型化和微型化过程中逐渐形成和发展起来的,其核心是集成电路,即通过一定的加工工艺,将晶体管、二极管等有源器件和电阻、电容等无源器件,按照一定的电路互联,采用微细加工工艺,集成在一块半导体单晶片上,并封装在一个外壳内,执行特定电路或系统功能。与传统电子技术相比,其主要特征是器件和电路的微小型化。它把电路系统设计和制造工艺精密结合起来,适合进行大规模的批量生产,因而成本低,可靠性高。它的特点是体积小、重量轻、 可靠性高、工作速度快,微电子技术对信息时代具有巨大的影响。它包括系统电路设计、器件物理、工艺技术、材料制备、自动测试以及封装、组装等一系列专门的技术,是微电子学中的各项工艺技术的总和。 2.发展历史:微电子技术是十九世纪末,二十世纪初开始发展起来的新兴技术,它在二十世纪迅速发展,成为近代科技的一门重要学科。它的发展史其实就是集成电路的发展史。1904 年,英国科学家弗莱明发明了第一个电子管——二极管,不就美国科学家发明了三极管。电子管的发明,使得电子技术高速发展起来。它被广泛应用于各个领域。1947 年贝尔实验室制成了世界上第一个晶体管。体积微小的晶体管使集成电路的出现有了可能。之后,美国得克萨斯仪器公司的基比尔按其思路,于1958 年制成了第一个集成电路的模型,1959 年德州仪器公司宣布发明集成电路。至此集成电路便诞生了。集成电路发明后,其发展非常迅速,其制作工艺不断进步,规模不断扩大。至今集成电路的集成度已提高了500 万倍,特征尺寸缩小200 倍,单个器件成本下降100 万倍。 3.微电子技术的应用:微电子技术广泛应用于民用、军方、航空等多个方面。现在人类生产的电子产品几乎都应用到了微电子技术。可以这么说微电子技术改变了我们的生活方式。微电子技术对电子产品的消费市场也产生了深远的影响。价廉、可靠、 体积小、重量轻的微电子产品,使电子产品面貌一新;微电子技术产品和微处理器不再是专门用于科学仪器世界的贵族,而落户于各式各样的普及型产品之中,进人普通百姓家。例如电子玩具、游戏机、学习机及其他家用电器产品等。就连汽车这种传统的机械产品也渗透进了微电子技术,采用微电子技术的电子引擎监控系统。汽车安全防盗系统、出租车的计价器等已得到广泛应用,现代汽车上有时甚至要有十几个到几十个微处理器。现代的广播电视系统更是使微电子技术大有用武之地的领域,集成电路代替了彩色电视机中大部分分立元件组成的功能电路,使电视机电路简捷清楚,维修方便,价格低廉。由于采用微电子技术的数字调谐技术,使电视机可以对多达100 个频道任选,而且大大提高了声音、图像的保真度。总之,微电子技术已经渗透到诸如现代通信、计算机技术、医疗卫生、

微电子工艺技术 复习要点答案(完整版)

第四章晶圆制造 1.CZ法提单晶的工艺流程。说明CZ法和FZ法。比较单晶硅锭CZ、MCZ和FZ三种生长方法的优缺点。 答:1、溶硅2、引晶3、收颈4、放肩5、等径生长6、收晶。CZ法:使用射频或电阻加热线圈,置于慢速转动的石英坩埚内的高纯度电子级硅在1415度融化(需要注意的是熔硅的时间不宜过长)。将一个慢速转动的夹具的单晶硅籽晶棒逐渐降低到熔融的硅中,籽晶表面得就浸在熔融的硅中并开始融化,籽晶的温度略低于硅的熔点。当系统稳定后,将籽晶缓慢拉出,同时熔融的硅也被拉出。使其沿着籽晶晶体的方向凝固。籽晶晶体的旋转和熔化可以改善整个硅锭掺杂物的均匀性。 FZ法:即悬浮区融法。将一条长度50-100cm 的多晶硅棒垂直放在高温炉反应室。加热将多晶硅棒的低端熔化,然后把籽晶溶入已经熔化的区域。熔体将通过熔融硅的表面张力悬浮在籽晶和多晶硅棒之间,然后加热线圈缓慢升高温度将熔融硅的上方部分多晶硅棒开始熔化。此时靠近籽晶晶体一端的熔融的硅开始凝固,形成与籽晶相同的晶体结构。当加热线圈扫描整个多晶硅棒后,便将整个多晶硅棒转变成单晶硅棒。 CZ法优点:①所生长的单晶的直径较大,成本相对较低;②通过热场调整及晶转,坩埚等工艺参数的优化,可以较好的控制电阻率径向均匀性。缺点:石英坩埚内壁被熔融的硅侵蚀及石墨保温加热元件的影响,易引入氧、碳杂质,不易生长高电阻率单晶。 FZ法优点:①可重复生长,提纯单晶,单晶纯度较CZ法高。②无需坩埚、石墨托,污染少③高纯度、高电阻率、低氧、低碳④悬浮区熔法主要用于制造分离式功率元器件所需要的晶圆。缺点:直径不如CZ法,熔体与晶体界面复杂,很难得到无位错晶体,需要高纯度多晶硅棒作为原料,成本高。 MCZ:改进直拉法优点:较少温度波动,减轻溶硅与坩埚作用,降低了缺陷密度,氧含量,提高了电阻分布的均匀性 2.晶圆的制造步骤【填空】 答:1、整形处理:去掉两端,检查电阻确定单晶硅达到合适的掺杂均匀度。 2、切片 3、磨片和倒角 4、刻蚀 5、化学机械抛光 3. 列出单晶硅最常使用的两种晶向。【填空】 答:111和100. 4. 说明外延工艺的目的。说明外延硅淀积的工艺流程。 答:在单晶硅的衬底上生长一层薄的单晶层。 5. 氢离子注入键合SOI晶圆的方法 答:1、对晶圆A清洗并生成一定厚度的SO2层。2、注入一定的H形成富含H的薄膜。3、晶圆A翻转并和晶圆B键合,在热反应中晶圆A的H脱离A和B键合。4、经过CMP和晶圆清洗就形成键合SOI晶圆 6. 列出三种外延硅的原材料,三种外延硅掺杂物【填空】 7、名词解释:CZ法提拉工艺、FZ法工艺、SOI、HOT(混合晶向)、应变硅 答:CZ法:直拉单晶制造法。FZ法:悬浮区融法。SOI:在绝缘层衬底上异质外延硅获得的外延材料。HOT:使用选择性外延技术,可以在晶圆上实现110和100混合晶向材料。应变硅:通过向单晶硅施加应力,硅的晶格原子将会被拉长或者压缩不同与其通常原子的距离。 第五章热处理工艺 1. 列举IC芯片制造过程中热氧化SiO2的用途?

相关文档
最新文档