2019年上海市高三数学一模分类汇编:函数
2019年上海高中数学·第三轮复习讲义 第03讲 基本函数

第03讲 基本函数一、考点剖析:1.九个基本函数必须熟练掌握:强调函数图象和性质.........正比例函数, 反比例函数, 一次函数, 二次函数, 幂、指、对函数, 三角函数,反三角函数。
2.反函数:当且仅当函数是一一对应函数时才具有反函数。
① 求反函数的步骤掌握了吗?ⅰ.解方程,用y 表示x ;ⅱ.交换x 与y ,写成反函数的形式; ⅲ.注明反函数的定义域。
② 你还记得反函数的四个性质吗?ⅰ.互换性;; ⅱ.对称性; ⅲ.单调一致性; ⅳ .还原性。
例1 函数()x f y =过点()1,1,则()x f -4的反函数的图象一定经过点③ 若原函数()y f x =在定义域上单调,则一定存在反函数;但一个函数存在反函数,则此函数不一定单调。
你能写出一个具体的函数吗?例如:分段函数:()⎪⎩⎪⎨⎧<+-≥+⎪⎭⎫ ⎝⎛-=010121x x x x f x或()x x f 1=等。
3.函数的要素:定义域、值域、对应法则① 定义域:ⅰ.给出函数解析式,求函数的定义域(即求使函数解析式有意义的x 的范围)(1) 0)()]([0≠⇒=x f x f y ; (2) 0)()()(≠⇒=x Q y x Q x P ; (3) 0)()(2≥⇒=x P x P y n ; (4)0)(,1)(,0)(log )()(>≠>⇒=x Q x P x P y x Q x P ; (5) Z k k x P x P tg y ∈+≠⇒=,2)()]([ππ; (6)Z k k x P x P ctg y ∈≠⇒=,)()]([π;(7) 1)(1)](arcsin[≤≤-⇒=x P x P y ; (8) 1)(1)](arccos[≤≤-⇒=x P x P y ;ⅱ.使实际问题有意义的自变量的范围。
ⅲ.求复合函数的定义域:若()x f 的定义域为[]b a ,,则()[]x g f 的定义域由不等式()b x g a ≤≤解出;若()[]x g f 的定义域为[]b a ,,则()x f 的定义域相当于[]b a x ,∈时()x g 的值域;例2 函数)3lg()4()(--=x x x x f 的定义域为 例3 若函数()x f y =的定义域为⎥⎦⎤⎢⎣⎡2,21,则函数()x f 2log 的定义域为 例4 若函数()12+x f 的定义域为[)1,2-,则函数()x f 的定义域为② 值域:函数的值域(或最值)有哪几种常用解题方法?ⅰ.二次函数型或可化为二次函数型;ⅱ.单调性;ⅲ.基本不等式; ⅳ.换元法;ⅴ.数形结合;例5 函数1cos 3sin 22--=x x y 的值域为例6 设x ,1a ,2a ,y 成等差数列,x ,1b ,2b ,y成等比数列,则()21221b b a a +的取值范围是例7 函数2cos 4sin )(++=x x x f 的值域为例8 函数)(x f 为一次函数,且14))((-=x x f f ,则=)(x f4、复合函数:(1)求复合函数恒过定点:代入法例9 函数)1(x f y -=恒过定点(-1,2),则)21(x f -恒过点(2)求复合函数的定义域:例10 已知函数)12(-x f 的定义域为]1,1[-,则)1(x f -的定义域为5.常见的抽象函数模型:① 正比例函数模型:()0,≠=k kx x f ┄┄┄()()()y f x f y x f ±=±。
2019年上海市高三数学一模分类汇编:排列组合

5(2019宝山一模). 从某校4个班级的学生中选出7名学生参加进博会志愿者服务,若每一个班级至少有一名代表,则各班的代表数有 种不同的选法(用数字作答)
9(2019黄浦一模). 某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成,若第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案种数为
9(2019青浦一模). 2018首届进博会在上海召开,现要从5男4女共9名志愿者中选派3名志愿者服务轨交2号线徐泾东站的一个出入口,其中至少要求一名男性,则不同的选派方案共有 种
10(2019崇明一模). 2018年上海春季高考有23所高校招生,如果某3位同学恰好被其中2所高校录取,那么不同的录取方法有 种
13(2019静安一模). 电视台在电视剧开播前连续播放6个广告,其中4个不同的商业广告和2个不同的公益广告,要求2个公益广告不能连续播放,则不同的播放方式共有( )
A. 4245P P ⋅
B. 424
5C C ⋅ C. 4267P P ⋅ D. 4267C C ⋅ 15(2019浦东一模). 将4位志愿者分配到进博会的3个不同场馆服务,每个场馆至少1人,不同的分配方案有( )种
A. 72
B. 36
C. 64
D. 81。
上海市13区2019届高三上学期期末(一模)考试数学试题分类汇编:集合与常用逻辑用语

上海市13区2019届高三上期末(一模)考试数学试题分类汇编集合与常用逻辑用语一、集合1、(宝山区2019届高三)集合U R =,集合{|30},{|10A x x B x x =->=+>,则U B C A = .2、(崇明区2019届高三)已知集合{|12}A x x =-<<,{1,0,1,2,3}B =-,则AB = 3、(奉贤区2019届高三)已知{|31}x A x =<,{|lg(1)}B x y x ==+,则A B =4、(虹口区2019届高三)设全集U =R ,若{2,1,0,1,2}A =--,3{|log (1)}B x y x ==-,则()U A B =ð5、(金山区2019届高三)已知集合{1,3,5,6,7}A =,{2,4,5,6,8}B =,则A B =6、(浦东新区2019届高三)已知全集U =R ,集合(,1][2,)A =-∞+∞,则U A =ð7、(青浦区2019届高三)已知集合{1,0,1,2}A =-,(,0)B =-∞,则AB = 8、(松江区2019届高三)设集合{|1}A x x =>,{|0}3x B x x =<-,则A B = 9、(徐汇区2019届高三)已知全集U =R ,集合{}2,,0A y y x x x -==∈≠R ,则U A =ð___________.10、(杨浦区2019届高三)设全集{1,2,3,4,5}U =,若集合{3,4,5}A =,则U A =ð11、(长宁区2019届高三)已知集合{1,2,3,4}A =,{2,4,6}B =,则A B =12、(闵行区2019届高三)已知全集U =R ,集合2{|30}A x x x =-≥,则U A =ð参考答案一、集合1、(]1,3-2、{0,1}3、R4、{1,2}5、{5,6}6、(1,2)7、{}1- 8、(1,3) 9、(],0-∞ 10、{1,2} 11、}6,4,3,2,1{ 12、(0,3)二、常用逻辑用语1、(宝山区2019届高三)“,22x ππ⎡⎤∈-⎢⎥⎣⎦”是“sin(arcsin )x x =”的( )条件. (A )充分非必要. (B )必要非充分. (C )充要. (D )既非充分又非必要.2、(崇明区2019届高三)“2p <”是“关于x 的实系数方程210x px ++=有虚根”的( )条件A. 充分不必要B. 必要不充分C. 充要D. 既不充分也不必要3、(奉贤区2019届高三)若空间中有四个点,则“这四个点中有三点在同一直线上”是“这四个点在同一平面上”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 非充分非必要条件4、(虹口区2019届高三)已知x ∈R ,则“12||33x -<”是“1x <”的( )条件 A. 充分不必要 B. 必要不充分 C. 充要 D. 既不充分也不必要5、(金山区2019届高三)给定空间中的直线l 及平面α,条件“直线l 与平面α内无数条直线都垂直”是“直线l 与平面α垂直”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件6、(浦东新区2019届高三)“14a <”是“一元二次方程20x x a -+=有实数解”的( ) A. 充分不必要条件 B. 充分必要条件C. 必要不充分条件D. 既不充分也不必要条件7、(青浦区2019届高三)“4n =”是“1()n x x +的二项展开式存在常数项”的( )A. 充分不必要条件B. 必要非充分条件C. 充要条件D. 既不充分也不必要条件8、(松江区2019届高三)若0a >,0b >,则x y a b x y a b +>+⎧⎨⋅>⋅⎩是x a y b >⎧⎨>⎩的( )条件 A. 充分非必要 B. 必要非充分 C. 充要 D. 既非充分又非必要9、(徐汇区2019届高三)设R θ∈,则“=6πθ”是“1sin =2θ”的( ) (A )充分非必要条件 (B )必要非充分条件(C )充要条件 (D )既非充分也非必要条件10、(长宁区2019届高三)已知x ∈R ,则“0x ≥”是“3x >”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件11、(闵行区2019届高三)若a 、b 为实数,则“1a <-”是“11a>-”的( ) A. 充要条件 B. 充分非必要条件 C. 必要非充分条件 D. 既非充分也非必要条件参考答案二、常用逻辑用语1、B2、B3、A4、A5、B6、A7、A8、B9、A10、B 11、B。
(2010-2019)十年高考数学真题分类汇编:函数(含解析)

(2010-2019)十年高考数学真题分类汇编:函数(含解析)1.(2019•天津•理T8)已知a ∈R ,设函数f(x)={x 2-2ax +2a ,x ≤1,x -alnx ,x >1.若关于x 的不等式f(x)≥0在R 上恒成立,则a 的取值范围为( )A.[0,1]B.[0,2]C.[0,e]D.[1,e] 【答案】C【解析】(1)当a ≤1时,二次函数的对称轴为x=a.需a 2-2a 2+2a ≥0.a 2-2a ≤0.∴0≤a ≤2. 而f(x)=x-aln x ,f'(x)=1-a x =x -a x >0此时要使f(x)=x-aln x 在(1,+∞)上单调递增,需1-aln 1>0.显然成立.可知0≤a ≤1.(2)当a>1时,x=a>1,1-2a+2a ≥0,显然成立.此时f'(x)=x -a x ,当x ∈(1,a),f'(x)<0,单调递减,当x ∈(a ,+∞),f'(x)>0,单调递增.需f(a)=a-aln a ≥0,ln a ≤1,a ≤e ,可知1<a ≤e.由(1)(2)可知,a ∈[0,e],故选C.2.(2019•天津•文T8)已知函数f(x)={2√x ,0≤x ≤1,1x ,x >1.若关于x 的方程f(x)=-14x+a(a ∈R)恰有两个互异的实数解,则a 的取值范围为( )A.54,94B.54,94C.54,94∪{1}D.54,94∪{1} 【答案】D【解析】当直线过点A(1,1)时,有1=-14+a ,得a=54.当直线过点B(1,2)时,有2=-14+a ,a=94.故当54≤a≤94时,有两个相异点.当x>1时,f'(x 0)=-1x 02=-14,x 0=2.此时切点为2,12,此时a=1.故选D.3.(2019•浙江•T9)设a ,b ∈R ,函数f(x)={x ,x <0,13x 3-12(a +1)x 2+ax ,x ≥0.若函数y=f(x)-ax-b 恰有3个零点,则( )A.a<-1,b<0B.a<-1,b>0C.a>-1,b<0D.a>-1,b>0【答案】C【解析】当x<0时,由x=ax+b ,得x=b 1-a ,最多一个零点取决于x=b 1-a 与0的大小,所以关键研究当x≥0时,方程13x 3-12(a+1)x 2+ax=ax+b 的解的个数,令b=13x 3-12(a+1)x 2=13x 2x-32(a+1)=g(x).画出三次函数g(x)的图象如图所示,可以发现分类讨论的依据是32(a+1)与0的大小关系.①若32(a+1)<0,即a<-1时,x=0处为偶重零点反弹,x=32(a+1)为奇重零点穿过,显然在x≥0时g(x)单调递增,故与y=b 最多只能有一个交点,不符合题意.②若32(a+1)=0,即a=-1,0处为3次零点穿过,也不符合题意.③若32(a+1)>0,即a>-1时,x=0处为偶重零点反弹,x=32(a+1)为奇重零点穿过,当b<0时g(x)与y=b 可以有两个交点,且此时要求x=b 1-a <0,故-1<a<1,b<0,选C.4.(2019•北京•文T3)下列函数中,在区间(0,+∞)上单调递增的是( )A.y=x 12B.y=2-xC.y=lo g 12xD.y=1x【答案】A【解析】函数y=2-x ,y=lo g 12x ,y=1x 在区间(0,+∞)上单调递减,函数y=x 12在区间(0,+∞)上单调递增,故选A.5.(2019•全国1•理T11)关于函数f(x)=sin|x|+|sin x|有下述四个结论:①f(x)是偶函数 ②f(x)在区间(π2,π)内单调递增③f(x)在[-π,π]有4个零点 ④f(x)的最大值为2其中所有正确结论的编号是( )A.①②④B.②④C.①④D.①③【答案】C【解析】因为函数f(x)的定义域为R ,关于原点对称,且f(-x)=sin|-x|+|sin(-x)|=sin|x|+|sin x|=f(x),所以f(x)为偶函数,故①正确; 当π2<x<π时,f(x)=2sin x ,它在区间(π2,π)内单调递减,故②错误;当0≤x ≤π时,f(x)=2sin x ,它有两个零点0和π;当-π≤x ≤0时,f(x)=sin(-x)-sin x=-2sin x ,它有两个零点-π和0;故f(x)在区间[-π,π]上有3个零点-π,0和π,故③错误;当x ∈[2k π,2k π+π](k ∈N *)时,f(x)=2sin x;当x ∈(2k π+π,2k π+2π](k ∈N *)时,f(x)=sin x-sin x=0.又f(x)为偶函数,所以f(x)的最大值为2,故④正确;综上可知①④正确,故选C.6.(2019•全国3•理T11文T12)设f(x)是定义域为R 的偶函数,且在(0,+∞)单调递减,则( )A.f (log 314)>f(2-32)>f(2-23)B.f (log 314)>f(2-23)>f(2-32)C.f(2-32)>f(2-23)>f (log 314)D.f(2-23)>f(2-32)>f (log 314)【答案】C【解析】∵f(x)是R 上的偶函数,∴f (log 314)=f(-log 34)=f(log 34).又y=2x 在R 上单调递增,∴log 34>1=20>2-23>2-32.又f(x)在区间(0,+∞)内单调递减, ∴f(log 34)<f(2-23)<f(2-32),∴f(2-32)>f(2-23)>f (log 314).故选C.7.(2019•全国1•理T3文T3)已知a=log 20.2,b=20.2,c=0.20.3,则( )A.a<b<cB.a<c<bC.c<a<bD.b<c<a【答案】B【解析】因为a=log 20.2<0,b=20.2>20=1,又0<c=0.20.3<0.20<1,所以a<c<b.故选B.8.(2019•天津•理T6)已知a=log 52,b=log 0.50.2,c=0.50.2,则a ,b ,c 的大小关系为()A.a<c<bB.a<b<cC.b<c<aD.c<a<b【答案】A【解析】∵a=log 52<log 5√5=12,b=log 0.50.2>log 0.50.5=1,c=0.50.2=(12)0.2>(12)1,∴b>c>a.故选A.9.(2019•天津•文T5)已知a=log 27,b=log 38,c=0.30.2,则a ,b ,c 的大小关系为( )A.c<b<aB.a<b<cC.b<c<aD.c<a<b命题点比较大小,指、对数函数的单调性. 解题思路利用指、对数函数的单调性比较.【答案】A【解析】a=log 27>log 24=2.b=log 38<log 39<2,且b>1.又c=0.30.2<1,故c<b<a ,故选A.10.(2019•全国1•T5)函数f(x)=sinx+xcosx+x 2在[-π,π]的图像大致为( )。
2019届高三上期末数学分类汇编(5)函数的单调性与最值

(山东省烟台市 2018 届高三下学期高考诊断性测试数学(文)试题)9.定义在 R 上的连续奇函数 f (x )在A.B.C.上是增函数,则使得 f (x )>f (x -2x +2)成立的 x 的取值范围是 D.【答案】A【解析】由题意可行 f(x)在 R 上单调递增,所以要使 f (x )>f (x -2x +2)成立,只需 ,解得 1<x<2,选 A.(广西桂林、贺州、崇左三市 2018 届高三第二次联合调研考试数学(理)试题)4.已知函数是()上的偶函数,且在上单调递减,则的解析式不可能为( )A.B.C.D.【答案】B【解析】由题函数是()上的偶函数,可得解得即有是上的偶函数,且在上单调递减,对于 A ,,为偶函数,且在递减;对于 B ,,可得为偶函数,且在递增,不符题意;对于 C ,,为偶函数,且在递减;对于 D ,故选 B .为偶函数,且在递减.(广西桂林、贺州、崇左三市 2018 届高三第二次联合调研考试数学(理)试题)11.已知函数 A. 3B.【答案】D【解析】C. D. 3 或的最小值为 ,则正实数 ( )函数,表示两点之间的距离的平方.分别令,令 ,解得,可得则点到直线22的距离.由题意的最小值为,即即得或.故选D.(四川省绵阳市2019届高三第二次(1月)诊断性考试数学理试题)15.若f(x)=,则满足不等式f(3x一1)十f(2)>0的x的取值范围是__.【答案】【解析】【分析】先判断奇偶性,再直接利用函数的单调性及奇函数可得3x一1>-2,由此求得x的取值范围.【详解】根据f(x)=e x﹣e﹣x.在R上单调递增,且f(-x)=e﹣x﹣e x=-f(x),得f(x)为奇函数,f(3x一1)>-f(2)=f(-2),故答案为.3x一1>-2,解得,【点睛】本题主要考查函数的单调性和奇偶性的应用,属于中档题.(湖南省长沙市2019届高三上学期统一检测文科数学试题) 3.下列函数中,图象关于原点对称且在定义域内单调递增的是()A. C.B. D.【答案】D【解析】【分析】由题意可知函数为奇函数,由奇函数和单调性对四个选项逐个进行检验即可得到答案. 【详解】由函数图象关于原点对称知函数为奇函数,选项B,函数定义域为,不关于原点对称,不具有奇偶性,故排除;选项C,因为f(x)=f(-x),函数为偶函数,故排除;选项A,函数为奇函数且f’(x)=cosx-1可知函数在定义域上单调递减,故排除;选项D,函数为奇函数,由指数函数单调性可知函数在定义域上单调递增,故选:D.【点睛】本题考查函数奇偶性和单调性的判断方法,属于基础题.(湖南省湘潭市2019届高三上学期第一次模拟检测数学(文)试题)6.已知函数,则()A.在上单调递增B.在上的最大值为C.在上单调递减D.的图象关于点对称【答案】B【解析】【分析】首先求出函数的定义域,设【详解】,根据的单调性与对称性判断,定义域为,令的单调性与对称性.,则,二次函数错误的;当的对称轴为直线,所以时,有最大值,所以在上单调递增,在上单调递减,A错,C也错,D显然是,B正确.【点睛】该题考查的是有关复合函数图像的单调性,涉及到的知识点有对数的运算法则,对数函数的定义域,二次函数的图象与性质,复合函数单调性法则,熟练掌握基础知识是解题的关键.(河北省张家口市2019届高三上学期期末考试数学(文)试题)6.已知为实数,,若,则函数的单调递增区间为()A. B. C. D.【答案】B【解析】【分析】对函数求导,由【详解】求出a,然后解不等式,则即可得到答案.又则,解得a=-2,则函数解得的单调递增区间为,故选:B.【点睛】本题主要考查导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减,是基础题.(广东省肇庆市2019届高三第二次(1月)统一检测数学文试题)3.下列函数中,既是奇函数,又在其定义域上单调递增的是()A. B. C. D.【答案】B【解析】【分析】先利用函数为奇函数对选项进行排除,然后利用定义域上为增函数对选项进行排除,由此得出正确选项.【详解】四个选项中,不符合奇函数的是,排除D选项.A,B,C三个选项中,C选项在定义域上有增有减,A 选项定义域为,单调区间是和不能写成并集,所以A 选项错误.对于B 选项,是奇函数,并且在定义域上为增函数,符合题意.综上所述,本题选B.【点睛】本小题主要考查函数的奇偶性,考查函数的单调性,属于基础题.(广东省揭阳市2018-2019学年高中毕业班学业水平考试文科数学试题)12.已知函数A. B.【答案】D【解析】【分析】,其中是自然对数的底,若C. D.,则实数的取值范围是()首先对函数求导,然后利用基本不等式证得,利用函数奇偶性的定义判断函数为奇函数,在结合奇偶性以及单调性化简,得到关于的一元二次不等式,由此求得的取值范围.【详解】由,知在R上单调递增,且,即函数为奇函数,故,解得.【点睛】本小题主要考查函数导数与单调性,考查利用基本不等式求最小值,考查函数的奇偶性,属于中档题.(广东省揭阳市2018-2019学年高中毕业班学业水平考试理科数学试题)15.已知函数【答案】【解析】【分析】,若,则实数的取值范围是_________;先判断函数是增函数且为奇函数,利用单调性和奇偶性将不等式式求得的取值范围.转化为,解不等【详解】因函数为增函数,且为奇函数,,,解得.【点睛】本小题主要考查函数的单调性,考查函数的奇偶性,考查利用单调性和奇偶性解抽象函数不等式,属于基础题.(福建省厦门市2019届高三第一学期期末质检文科数学试题)16.函数【答案】【解析】【分析】,对于,都有,则实数的取值范围是___.由题意,利用函数的奇偶性和单调性,转化得出,分别作出函数,和,结合图象,即可求解.【详解】由题意,函数且,是定义在上的奇函数,在,即,即为单调递增,①作出与的图象,直线作为曲线切线可求得,当②作出故时,与,;的图象,时,,综上可得.【点睛】本题主要考查了不等式的恒成立问题,以及函数的图象的应用,其中解答中根据函数的奇偶性和函数的单调性,转化为,利用函数转化思想和推理与计算能力,属于中档试题.,和,结合图象求解是解答的关键,着重考查了(辽宁省丹东市2018年高三模拟(二)理科数学试题)8.若函数A. B.存在最小值,则的取值范围为C. D.【答案】C【解析】分析:由分段函数在两端上的单调性,结合各段的最值,列不等式关系即可.详解:由函数,由题意可知.当时,,函数必须满足,否则函数无最小值.此时.当时,单调递减,满足.所以,解得.故选C.点睛:本题主要考查了分段函数的最值及对数函数的单调性,属于基础题.(湖南师范大学附属中学2019届高三上学期月考(四)数学(理)试题)11.已知函数若存在实数k,使得函数的值域为[-1,1],则实数的取值范围是A.【答案】B【解析】试题分析:由于B. C.在D.上是单调递减函数,当时,,当时,,所以,令,则,解得或,当时,函数取得极小值-1,当选B.时,解得:,,舍,所以,故考点:1.分段函数;2.导数的应用;3.函数图像.【思路点睛】本题考察了分段函数的值域,综合了导数与函数图像的问题,属于综合性较强的难题,分段函数的值域是,那么两段函数的值域是的子集,而且并集是,根据复合函数的单调性可知是减函数,易得,根据导数分析第二段函数的单调性和极值,以及时的值,再结合函数的图像,可得区间需包含2,但不能大于,这样可得的取值范围是.(广东省深圳市2019届高三第一次(2月)调研考试数学理试题)9.已知偶函数的图象经过点,且当时,不等式恒成立,则使得成立的的取值范围是A. B. C. D.【答案】C【解析】【分析】由题意,得到函数在时是减函数,在函数在时是增函数,且,进而可求解不等式的解集,得到答案。
2019年上海市高三数学一模分类汇编:二项式定理

3(2019长嘉一模). 在61()x x +的二项展开式中,常数项为 (结果用数值表示) 3(2019静安一模). 在二项式251()x x -的展开式中,4x 项的系数为 (结果用数值表示)4(2019奉贤一模). 在52()x x-的展开式中,x 的系数为 4(2019崇明一模). 281()x x-的展开式中含7x 项的系数为 (用数字作答)4(2019杨浦一模). 若()n a b +展开式的二项式系数之和为8,则n = 6(2019闵行一模). 5(12)x -的展开式中3x 项的系数为 (用数字作答)7(2019虹口一模). 二项式62)x 的展开式的常数项为7(2019徐汇一模). 已知21(2)n x x -(n ∈*N )的展开式中各项的二项式系数之和为128,则其展开式中含1x项的系数是 (结果用数值表示) 7(2019普陀一模). 设523601236(1)(1=x x a a x a x a x a x -+++++⋅⋅⋅+),则3a = (结果用数值表示)8(2019黄浦一模). 设a ∈R ,若5(2)(1)a x x ++展开式中2x 的系数为10,则a = 8(2019金山一模). 在31021()x x -的二项展开式中,常数项的值是 (结果用数值表示)9(2019浦东一模). 已知二项式n 的展开式中,前三项的二项式系数之和为37,则展开式中的第五项为13(2019青浦一模). “4n =”是“1()n x x+的二项展开式存在常数项”的( )A. 充分不必要条件B. 必要非充分条件C. 充要条件D. 既不充分也不必要条件13(2019宝山一模). 若等式232301231(1)(1)(1)x x x a a x a x a x +++=+-+-+-对一切x ∈R 都成立,其中0a 、1a 、2a 、3a 为实常数,则0123a a a a +++=( )A. 2B. 1-C. 4D. 1。
上海17区2019高三一模数学文科分类汇编-专项八不等式

上海17区2019高三一模数学文科分类汇编-专项八不等式汇编2018年3月〔普陀区2018届高三一模 文科〕1. 不等式1|2|≤-x 的解为 . 1.[1,3] 〔闵行区2018届高三一模 文科〕11、不等式21x a x ->-对任意[0,2]x ∈恒成立,那么实数a 的取值范围是 、〔文〕不等式1x a x ->-对任意[0,2]x ∈恒成立,那么实数a 的取值范围是 、11、理2a <或5a >,文1a <或3a >;〔静安区2018届高三一模 文科〕〔文〕0<a ,关于x 的不等式04)1(22>++-x a ax 的解集是 . 9、〔文〕)2,2(a〔闸北区2018届高三一模 文科〕9、〔理〕设不等式1)11(log >-xa 的解集为D ,假设D ∈-1,那么=D 、〔文〕假设实常数()+∞∈,1a ,那么不等式1)11(log >-xa 的解集为 、9、⎪⎭⎫⎝⎛-0,11a ;〔浦东新区2018届高三一模 文科〕18、定义域为[],a b 的函数()y f x =图象的两个端点为,A B ,向量(1)ON OA OB λλ=+-,(,)M x y 是()f x 图象上任意一点,其中[](1),0,1x a b λλλ=+-∈. 假设不等式MN k≤恒成立,那么称函数()f x 在[],a b 上满足“k 范围线性近似”,其中最小的正实数k 称为该函数的线性近似阀值、 以下定义在[]1,2上函数中,线性近似阀值最小的是 〔 D 〕()A 2y x = ()B 2y x = ()C sin 3y x π= ()D 1y x x=-合1{|()(),1}2x f x g x x <≤≤=∅” 是假命题,那么实数m 的取值范围是、14、(7,0)-、〔普陀区2018届高三一模文科〕14.函数⎪⎩⎪⎨⎧≥-<≤+=1,21210,1)(x x x x f x ,设0a b >≥,假设)()(b f a f =,那么)(a f b ⋅的取值范围是.14.)2,43[〔宝山区2018届期末〕5.不等式37922x -≤的解集是_________________.[1,2]- 〔宝山区2018届期末〕13.我们用记号“|”表示两个正整数间的整除关系,如3|12表示3整除12、试类比课本中不等关系的基本性质,写出整除关系的两个性质、①_____________________;②_______________________、 解答参考:①|,||a b b c a c ⇒;②|,||()a b a c a b c ⇒±; ③|,||a b c d ac bd ⇒;④*|,|n n a b n N a b ∈⇒ 〔松江区2018届高三一模文科〕8、lg lg 1x y +=,那么25x y+的最小值为▲、8、2 〔虹口区2018届高三一模〕8、假设对于任意0>x ,不等式a x x x≤++132恒成立,那么实数a 的取值范围是、8、51≥a ; 〔嘉定区2018届高三一模文科〕9、动点P ),(y x 到点)1,0(F 的距离与它到直线01=+y 的距离相等,那么动点P 的轨迹方程为_______________、 9、y x 42=〔嘉定区2018届高三一模文科〕10、在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且满足5522cos =A ,3=⋅,那么△ABC 的面积为______________、10、2〔嘉定区2018届高三一模文科〕17、设函数)(x f 是偶函数,当0≥x 时,42)(-=x x f ,那么0)2({>-x f x }等于…〔〕A 、2{-<x x 或}2>xB 、2{-<x x 或}4>xC 、0{<x x 或}6>x D 、0{<x x 或}4>x17、D〔静安区2018届高三一模文科〕5、〔文〕设x ,y 满足条件⎩⎨⎧≤+≤-≤-≤,11,31y x y x 那么点),(y x 构成的平面区域面积等于. 5、文〕2〔浦东新区2018届高三一模文科〕4、,x y R ∈,且41x y +=,那么x y ⋅的最大值为116.〔静安区2018届高三一模文科〕21.〔文〕〔此题总分值14分〕此题共有2个小题,第1小题总分值8分,第2小题总分值6分、某仓库为了保持库内的湿度和温度,四周墙上均装有如下图的自动通风设施、该设施的下部ABCD 是正方形,其中AB =2米;上部CDG 是等边三角形,固定点E 为AB 的中点、△EMN 是由电脑控制其形状变化的三角通风窗〔阴影部分均不通风〕,MN 是可以沿设施边框上下滑动且始终保持和AB 平行的伸缩横杆、〔1〕设MN 与AB 之间的距离为x 米,试将△EMN 的面积S 〔平方米〕表示成关于x 的函数;〔2〕求△EMN 的面积S 〔平方米〕的最大值、 21〔文〕解:〔1〕①如图1所示,当MN 在正方形区域滑动, 即0<x ≤2时,△EMN 的面积S =x⨯⨯221=x ; ······· 2分②如图2所示,当MN 在三角形区域滑动, 即2<x <32+时,如图,连接EG ,交CD 于点F ,交MN 于点H , ∵E 为AB 中点,∴F 为CD 中点,GF ⊥CD ,且FG =3. 又∵MN ∥CD , ∴△MNG ∽△DCG 、 ∴GFGH DC MN=,即3)23(2x MN -+=、 ···· 5分 故△EMN 的面积S =x x ⋅-+⋅3)23(221=x x )3321(332++-; ············ 7分综合可得:E图1ABDC图2⎪⎩⎪⎨⎧+<<++-≤<=322,)3321(3320,2x x x x x S ················· 8分说明:讨论的分段点x=2写在下半段也可、〔2〕①当MN 在正方形区域滑动时,x S =,所以有20≤<S ; ········· 10分 ②当MN 在三角形区域滑动时,S =x x )3321(332++-.因而,当2231<+=x 〔米〕,S 在)32,2(+上递减,无最大值,20<<S 、所以当2=x 时,S 有最大值,最大值为2平方米. ·············· 14分。
2019年上海市高三数学一模分类汇编:立体几何

2(2019杨浦一模). 已知扇形的半径为6,圆心角为3π,则扇形的面积为 5(2019普陀一模). 若一个球的体积是其半径的43倍,则该球的表面积为 5(2019长嘉一模). 若圆锥的侧面面积为2π,底面面积为π,则该圆锥的体积为 5(2019虹口一模). 若一个球的表面积为4π,则它的体积为5(2019青浦一模). 已知直角三角形△ABC 中,90A ∠=︒,3AB =,4AC =,则△ABC 绕直线AC 旋转一周所得几何体的体积为6(2019杨浦一模). 若圆锥的母线长5()l cm =,高4()h cm =,则这个圆锥的体积等于 3()cm8(2019浦东一模). ,母线与底面所成角为3π,则该圆锥的表面积为8(2019崇明一模). 设一个圆锥的侧面展开图是半径为2的半圆,则此圆锥的体积等于 9(2019普陀一模). 如图,正四棱柱1111ABCD A B C D -的底面边长为4,记1111AC B D F =I ,11BC B C E =I ,若AE BF ⊥,则此棱柱的体积为9(2019闵行一模). 如图,在过正方体1111ABCD A B C D -的任意两个顶点的所有直线中,与直线1AC 异面的直线的条数为10(2019金山一模). 在120︒的二面角内放置一个半径为6的小球,它与二面角的两个半平面相切于A 、B 两点,则这两个点在球面上的距离是10(2019静安一模). 已知球的半径为24cm ,一个圆锥的高等于这个球的直径,而且球的表面积等于圆锥的表面积,则这个圆锥的体积是 3cm (结果保留圆周率π)10(2019宝山一模). 将函数y =y 轴旋转一周所得的几何容器的容积是14(2019徐汇一模). 魏晋时期数学家刘徽在他的著作《九章算术注》中,称一个正方体内两个互相垂直的内切圆柱所围成的几何体为“牟合方盖”,刘徽通过计算得知正方体的内切球的体积与“牟合方盖”的体积之比应为:4π,若正方体的棱长为2,则“牟合方盖”的体积为( )A. 16B. 163C. 163D. 128314(2019金山一模). 给定空间中的直线l 及平面α,条件“直线l 与平面α内无数条直线都垂直”是“直线l 与平面α垂直”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件14(2019虹口一模). 关于三个不同平面α、β、γ与直线l ,下来命题中的假命题是( ) A. 若αβ⊥,则α内一定存在直线平行于βB. 若α与β不垂直,则α内一定不存在直线垂直于βC. 若αγ⊥,βγ⊥,l αβ=I ,则l γ⊥D. 若αβ⊥,则α内所有直线垂直于β14(2019奉贤一模). 若空间中有四个点,则“这四个点中有三点在同一直线上”是“这四个点在同一平面上”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 非充分非必要条件14(2019闵行一模). 已知a 、b 为两条不同的直线,α、β为两个不同的平面,a αβ=I ,a ∥b ,则下列结论不可能成立的是( )A. b β,且b ∥αB. b α,且b ∥βC. b ∥α,且b ∥βD. b 与α、β都相交14(2019浦东一模). 下列命题正确的是( )A. 如果两条直线垂直于同一条直线,那么这两条直线平行B. 如果两条直线垂直于同一条直线,那么这两条直线平行C. 如果两条直线垂直于同一条直线,那么这两条直线平行D. 如果两条直线垂直于同一条直线,那么这两条直线平行15(2019黄浦一模). 如图,在正方体1111ABCD A B C D -的八个顶点中任取两个点作直线,与直线1A B 异面且夹角成60︒的直线的条数为( )A. 3B. 4C. 5D. 615(2019青浦一模). 对于两条不同的直线m 、n 和两个不同的平面α、β,以下结论正确的是( )A. 若m α,n ∥β,m 、n 是异面直线,则α、β相交B. 若m α⊥,m β⊥,n ∥α,则n ∥βC. mα,n ∥α,m 、n 共面于β,则m ∥n D. 若m α⊥,n β⊥,α、β不平行,则m 、n 为异面直线15(2019普陀一模). 若a 、b 、c 表示直线,α、β表示平面,则“a ∥b ”成立的一个充分非必要条件是( )A. a b ⊥,b c ⊥B. a ∥α,b ∥αC. a β⊥,b β⊥D. a ∥c ,b c ⊥17(2019浦东一模). 已知直三棱柱111A B C ABC -中,11AB AC AA ===,90BAC ︒∠=.(1)求异面直线1A B 与11B C 所成角;(2)求点1B 到平面1A BC 的距离.17(2019金山一模). 如图,三棱锥P ABC -中,PA ⊥底面ABC ,M 是 BC 的中点,若底面ABC 是边长为2的正三角形,且PB 与底面ABC 所成的角为3π. 求: (1)三棱锥P ABC -的体积;(2)异面直线PM 与AC 所成角的大小.(结果用反三角函数值表示)17(2019黄浦一模). 如图,一个圆锥形量杯的高为12厘米,其母线与轴的夹角为30︒.(1)求该量杯的侧面积S ;(2)若要在该圆锥形量杯的一条母线PA 上,刻上刻度,表示液面到达这个刻度时,量杯里的液体的体积是多少,当液体体积是100立方厘米时,刻度的位置B 与顶点P 之间的距离是多少厘米(精确到0.1厘米)?17(2019奉贤一模). 如图,三棱柱111ABC A B C -中,1AA ⊥底面ABC ,AB AC =,D 是BC 的中点.(1)求证:BC ⊥平面11A AD ;(2)若90BAC ︒∠=,4BC =,三棱柱111ABC A B C -的 体积是83,求异面直线1A D 与1AB 所成角的大小.17(2019青浦一模). 已知正四棱柱1111ABCD A B C D -的底面边长为3,15A D =.(1)求该正四棱柱的侧面积与体积;(2)若E 为线段1A D 的中点,求BE 与平面ABCD 所成角的大小.17(2019闵行一模). 如图,正三棱柱111ABC A B C -的各棱长均为2,D 为棱BC 的中点.(1)求该三棱柱的表面积;(2)求异面直线AB 与1C D 所成角的大小.17(2019宝山一模). 如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,正方形ABCD 的边长为2,4PA =,设E 为侧棱PC 的中点.(1)求正四棱锥E ABCD -的体积V ;(2)求直线BE 与平面PCD 所成角θ的大小.17(2019崇明一模). 如图,设长方体1111ABCD A B C D -中,2AB BC ==,直线1A C 与平面ABCD 所成的角为4π. (1)求三棱锥1A A BD -的体积;(2)求异面直线1A B 与1B C 所成角的大小.17(2019徐汇一模). 如图,已知正方体ABCD A B C D ''''-的棱长为1.(1)正方体ABCD A B C D ''''-中哪些棱所在的直线与直线A B '是异面直线?(2)若M 、N 分别是A B '、BC '的中点,求异面直线MN 与BC 所成角的大小.17(2019虹口一模). 在如图所示的圆锥中,底面直径与母线长均为4,点C 是底面直径AB 所对弧的中点,点D 是母线PA 的中点.(1)求该圆锥的侧面积与体积;(2)求异面直线AB 与CD 所成角的大小.17(2019杨浦一模). 如图,PA ⊥平面ABCD ,四边形ABCD 为矩形,1PA AB ==,2AD =,点F 是PB 的中心,点E 在边BC 上移动.(1)求三棱锥E PAD -的体积;(2)证明:无论点E 在边BC 的何处,都有AF ⊥PE .18(2019静安一模). 如图,在四棱锥P ABCD -中,底面ABCD 是菱形,PA ⊥平面ABCD ,PA AC AB ==,E 、F 分别是CD 、PD 的中点.(1)求证:CD ⊥平面PAE ;(2)求异面直线AF 与PE 所成角的大小.(结果用反三角函数值表示)18(2019长嘉一模). 《九章算术》中,将底面为长方形且有一条侧棱与地面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑,首届中国国际进口博览会的某展馆棚顶一角的钢结构可以抽象为空间图形阳马,如图所示,在阳马P ABCD -中,PD ⊥底面ABCD .(1)已知4AD CD m ==,斜梁PB 与底面ABCD 所成角为15︒,求立柱PD 的长; (精确到0.01m )(2)求证:四面体PDBC 为鳖臑.19(2019普陀一模). 如图所示,某地出土的一种“钉”是由四条线段组成,其结构能使它任意抛至水平面后,总有一端所在的直线竖直向上,并记组成该“钉”的四条线段的公共点为O ,钉尖为i A (1,2,3,4i =).(1)记i OA a =(0a >),当1A 、2A 、3A 在同一水平面内时,求1OA 与平面123A A A 所成角的大小(结果用反三角函数值表示);(2)若该“钉”的三个钉尖所确定的三角形的面积为232cm ,要用某种线型材料复制100枚这种“钉”(耗损忽略不计),共需要该种材料多少米?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1(2019静安一模). 函数22log (4)y x =-的定义域是1(2019普陀一模). 函数2()1f x x x=-的定义域为 3(2019奉贤一模). 设函数()2x y f x c ==+的图像经过点(2,5),则()y f x =的反函数1()f x -=3(2019普陀一模). 设11{,,1,2,3}32α∈--,若()f x x α=为偶函数,则α= 3(2019松江一模). 已知函数()y f x =的图像与函数x y a =(0,1)a a >≠的图像关于直线y x =对称,且点(4,2)P 在函数()y f x =的图像上,则实数a =4(2019闵行一模). 方程110322x =-的解为4(2019宝山一模). 方程ln(931)0x x +-=的根为4(2019虹口一模). 设常数a ∈R ,若函数3()log ()f x x a =+的反函数的图像经过点(2,1),则a =5(2019黄浦一模). 若函数()y f x =是函数x y a =(0a >且1a ≠)的反函数,且(2)1f =,则()f x =5(2019静安一模). 若α、β是一元二次方程2230x x ++=的两个根,则11αβ+=5(2019浦东一模). 若函数()y f x =的图像恒过点(0,1),则函数1()3y f x -=+的图像一定经过定点6(2019长嘉一模). 已知幂函数()a f x x =的图像过点2),则()f x 的定义域为 6(2019金山一模). 已知函数2()1log f x x =+,则1(5)f -=6(2019虹口一模). 函数8()f x x x=+,[2,8)x ∈的值域为 8(2019闵行一模). 已知函数()|1|(1)f x x x =-+,[,]x a b ∈的值域为[0,8],则a b +的取值范围是8(2019杨浦一模). 若函数1()ln 1xf x x+=-的定义域为集合A ,集合(,1)B a a =+,且B A ⊆,则实数a 的取值范围为8(2019宝山一模). 函数()y f x =与ln y x =的图像关于直线y x =-对称,则()f x = 8(2019长嘉一模). 已知函数()log a f x x =和g()(2)x k x =-的图像如图所示,则不等式()0()f xg x ≥的解集是9(2019崇明一模). 若函数2()log 1x af x x -=+的反函数的图像经过点(3,7)-,则a = 9(2019奉贤一模). 函数()g x 对任意的x ∈R ,有2()()g x g x x +-=,设函数2()()2x f x g x =-,且()f x 在区间[0,)+∞上单调递增,若2()(2)0f a f a +-≤,则实数a的取值范围为9(2019徐汇一模). 已知函数()f x 是以2为周期的偶函数,当01x ≤≤时,()lg(1)f x x =+,令函数()()g x f x =([1,2]x ∈),则()g x 的反函数为 9(2019松江一模). 若|lg(1)|0()sin 0x x f x xx ->⎧=⎨≤⎩,则()y f x =图像上关于原点O 对称的点共有 对9(2019杨浦一模). 在行列式274434651xx--中,第3行第2列的元素的代数余子式记作()f x ,则1()y f x =+的零点是10(2019浦东一模). 已知函数()2||1f x x x a =+-有三个不同的零点,则实数a 的取值范围为10(2019奉贤一模). 天干地支纪年法,源于中国,中国自古便有十天干与十二地支. 十天干:甲、乙、丙、丁、戊、己、庚、辛、壬、癸十二地支:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后, 天干由“甲”起,地支由“子”起,比如第一年为“甲子”,第二年为“乙丑”,第三年为 “丙寅”,…,以此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”,“乙 亥”,之后地支回到“子”重新开始,即“丙子”,…,以此类推,已知2016年为丙申年, 那么到改革开放100年时,即2078年为 年 11(2019徐汇一模). 已知λ∈R ,函数24()43x x f x x x x λλ-≥⎧=⎨-+<⎩,若函数()f x 恰有2个零点,则λ的取值范围是11(2019静安一模). 集合12{|log ,12}A y y x x x ==-≤≤,2{|510}B x x tx =-+≤,若A B A =I ,则实数t 的取值范围是11(2019金山一模). 设函数21()lg(1||)1f x x x =+-+,则使(2)(32)f x f x <-成立的x 取值范围是11(2019青浦一模).已知函数()2f x +=,当(0,1]x ∈时,2()f x x =,若在区间[1,1]-内()()(1)g x f x t x =-+有两个不同的零点,则实数t 的取值范围是 11(2019崇明一模). 设()f x 是定义在R 上的以2为周期的偶函数,在区间[0,1]上单调递减,且满足()1f π=,(2)2f π=,则不等式组121()2x f x ≤≤⎧⎨≤≤⎩的解集为12(2019浦东一模). 已知函数2||2416()1()22x a x x x f x x -⎧≥⎪⎪+=⎨⎪<⎪⎩,若对任意的1[2,)x ∈+∞,都存在唯一的2(,2)x ∈-∞,满足12()()f x f x =,则实数a 的取值范围为12(2019静安一模). 若定义在实数集R 上的奇函数()y f x =的图像关于直线1x =对称,且当01x ≤≤时,13()f x x =,则方程1()3f x =在区间(4,10)-内的所有实根之和为 12(2019松江一模). 已知函数()f x 的定义域为R ,且()()1f x f x ⋅-=和(1)(1)4f x f x +⋅-=对任意的x ∈R 都成立,若当[0,1]x ∈时,()f x 的值域为[1,2],则当[100,100]x ∈-时,函数()f x 的值域为12(2019普陀一模). 记a 为常数,记函数1()log 2a xf x a x=+-(0a >且1a ≠,0x a <<)的反函数为1()f x -,则11111232()()()()21212121af f f f a a a a ----+++⋅⋅⋅+=++++12(2019长嘉一模). 已知1a 、2a 、3a 与1b 、2b 、3b 是6个不同的实数,若关于x 的方程123123||||||||||||x a x a x a x b x b x b -+-+-=-+-+-的解集A 是有限集,则集合A 中最多有 个元素13(2019黄浦一模). 设函数()y f x =,“该函数的图像过点(1,1)”是“该函数为幂函数”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件13(2019杨浦一模). 下列函数中既是奇函数,又在区间[1,1]-上单调递减的是( ) A. ()arcsin f x x = B. ()lg ||f x x = C. ()f x x =- D. ()cos f x x = 15(2019宝山一模). 关于函数23()2f x x =-的下列判断,其中正确的是( ) A. 函数的图像是轴对称图形 B. 函数的图像是中心对称图形C. 函数有最大值D. 当0x >时,()y f x =是减函数 15(2019闵行一模).已知函数y =x a ≥,0a >,0b >)与其反函数有交点,则下列结论正确的是( )A. a b =B. a b <C. a b >D. a 与b 的大小关系不确定15(2019虹口一模). 已知函数2()1f x ax x =-+,1,1(),111,1x g x x x x -≤-⎧⎪=-<<⎨⎪≥⎩,若函数()()y f x g x =-恰有两个零点,则实数a 的取值范围为( )A. (0,)+∞B. (,0)(0,1)-∞UC. 1(,)(1,)2-∞-+∞U D. (,0)(0,2)-∞U 15(2019徐汇一模). 对于函数()y f x =,如果其图像上的任意一点都在平面区域{(,)|()()0}x y y x y x +-≤内,则称函数()f x 为“蝶型函数”,已知函数:①sin y x =;②y =)A. ①、②均不是“蝶型函数”B. ①、②均是“蝶型函数”C. ①是“蝶型函数”,②不是“蝶型函数”D. ①不是“蝶型函数”,②是“蝶型函数”15(2019杨浦一模). 已知sin ()log f x x θ=,(0,)2πθ∈,设sin cos ()2a f θθ+=,b f =,sin 2()sin cos c f θθθ=+,则a 、b 、c 的大小关系是( )A. a c b ≤≤B. b c a ≤≤C. c b a ≤≤D. a b c ≤≤16(2019青浦一模). 记号[]x 表示不超过实数x的最大整数,若2()[]30x f x =+,则(1)(2)(3)(29)(30)f f f f f +++⋅⋅⋅++的值为( )A. 899B. 900C. 901D. 90216(2019金山一模). 已知函数52|log (1)|1()(2)21x x f x x x -<⎧⎪=⎨--+≥⎪⎩,则方程1(2)f x a x +-=(a ∈R )的实数根个数不可能为( )A. 5个B. 6个C. 7个D. 8个 16(2019普陀一模). 设()f x 是定义在R 上的周期为4的函数,且2sin 201()2log 14x x f x x x π≤≤⎧=⎨<<⎩,记()()g x f x a =-,若102a <<,则函数()g x 在区间[4,5]-上零点的个数是( )A. 5B. 6C. 7D. 816(2019杨浦一模). 已知函数2()2x f x m x nx =⋅++,记集合{|()0,}A x f x x ==∈R ,集合{|[()]0,}B x f f x x ==∈R ,若A B =,且都不是空集,则m n +的取值范围是( ) A. [0,4) B. [1,4)- C. [3,5]- D. [0,7)16(2019虹口一模). 已知点E 是抛物线2:2C y px =(0)p >的对称轴与准线的交点,点F 为抛物线的焦点,点P 在抛物线C 上,在△EFP 中,若sin sin EFP FEP μ∠=⋅,则μ的最大值为( )A.B. C.D. 16(2019长嘉一模). 某位喜欢思考的同学在学习函数的性质时提出了如下两个命题:已知函数()y f x =的定义域为D ,12,x x D ∈,① 若当12()()0f x f x +=时,都有120x x +=,则函数()y f x =是D 上的奇函数;② 若当12()()f x f x <时,都有12x x <,则函数()y f x =是D 上的增函数.下列判断正确的是( )A. ①和②都是真命题B. ①是真命题,②是假命题C. ①和②都是假命题D. ①是假命题,②是真命题16(2019崇明一模). 函数()f x x =,2()2g x x x =-+,若存在129,,,[0,]2n x x x ⋅⋅⋅∈,使得121121()()()()()()()()n n n n f x f x f x g x g x g x g x f x --++⋅⋅⋅++=++⋅⋅⋅++,则n 的最大值 是( )A. 11B. 13C. 14D. 18 18(2019松江一模). 已知函数2()21xf x a =-+(常数a ∈R ) (1)讨论函数()f x 的奇偶性,并说明理由;(2)当()f x 为奇函数时,若对任意的[2,3]x ∈,都有()2x mf x ≥成立,求m 的最大值.18(2019徐汇一模). 已知函数2()2ax f x x -=+,其中a ∈R . (1)解关于x 的不等式()1f x ≤-;(2)求a 的取值范围,使()f x 在区间(0,)+∞上是单调减函数.18(2019虹口一模). 已知函数16()1x f x a a+=-+(0a >且1)a ≠是定义在R 上的奇函数.(1)求实数a 的值及函数()f x 的值域;(2)若不等式()33x t f x ⋅≥-在[1,2]x ∈上恒成立,求实数t 的取值范围.18(2019青浦一模). 如图,某广场有一块边长为1()hm 的正方形区域ABCD ,在点A 处装有一个可转动的摄像头,其能够捕捉到图像的角PAQ ∠始终为45°(其中点P 、Q 分别在边BC 、CD 上),设PAB θ∠=,记tan t θ=.(1)用t 表示PQ 的长度,并研究△CPQ 的周长l 是否为定值?(2)问摄像头能捕捉到正方形ABCD 内部区域的面积S 至多为多少2hm ?19(2019黄浦一模). 已知函数()21xaf x b =+-,其中a 、b ∈R . (1)当6a =,0b =时,求满足(||)2x f x =的x 的值; (2)若()f x 为奇函数且非偶函数,求a 与b 的关系式.19(2019奉贤一模). 入秋以来,某市多有雾霾天气,空气污染较为严重,市环保研究所对近期每天的空气污染情况进行调查研究后发现,每一天中空气污染指数()f x 与时刻x (时)的函数关系为25()|log (1)|21f x x a a =+-++,[0,24]x ∈,其中a 为空气治理调节参数,且(0,1)a ∈.(1)若12a =,求一天中哪个时刻该市的空气污染指数最低; (2)规定每天中()f x 的最大值最为当天空气污染指数,要使该市每天的空气污染指数不超过3,则调节参数a 应控制在什么范围内?19(2019青浦一模). 对于在某个区间[,)a +∞上有意义的函数()f x ,如果存在一次函数()g x kx b =+使得对于任意的[,)x a ∈+∞,有|()()|1f x g x -≤恒成立,则称函数()g x 是函数()f x 在区间[,)a +∞上的弱渐近函数. (1)若函数()3g x x =是函数()3mf x x x=+在区间[4,)+∞上的弱渐近函数,求实数m 的 取值范围;(2)证明:函数()2g x x =是函数()f x =[2,)+∞上的弱渐近函数.19(2019金山一模). 设函数()21x f x =-的反函数为1()f x -,4()log (31)g x x =+. (1)若1()()f x g x -≤,求x 的取值范围D ; (2)在(1)的条件下,设11()()()2H x g x f x -=-,当x D ∈时,函数()H x 的图像与直线 y a =有公共点,求实数a 的取值范围.19(2019浦东一模). 某游戏厂商对新出品的一款游戏设定了“防沉迷系统”,规则如下: ① 3小时以内(含3小时)为健康时间,玩家在这段时间内获得的累积经验值.....E (单位:exp )与游玩时间t (小时)满足关系式:22016E t t a =++; ② 3到5小时(含5小时)为疲劳时间,玩家在这段时间内获得的经验值为0 (即累积经验值.....不变); ③ 超过5小时为不健康时间,累积经验....值.开始损失,损失的经验值与不健康时间成 正比例关系,比例系数为50.(1)当1a =时,写出累积经验值.....E 与游玩时间t 的函数关系式()E f t =,并求出游玩6小时的累积经验值.....; (2)该游戏厂商把累积经验值.....E 与游玩时间t 的比值称为“玩家愉悦指数”,记作()H t ; 若0a >,且该游戏厂商希望在健康时间内,这款游戏的“玩家愉悦指数”不低于24, 求实数a 的取值范围.19(2019杨浦一模). 上海某工厂以x 千克/小时的速度匀速生产某种产品,每一小时可获得的利润是3(51)x x+-元,其中110x ≤≤.(1)要使生产该产品2小时获得的利润不低于30元,求x 的取值范围;(2)要使生产900千克该产品获得的利润最大,问:该厂应选取何种生产速度?并求最大利润.19(2019宝山一模). 某温室大棚规定:一天中,从中午12点到第二天上午8点为保温时段,其余4小时为工人作业时段,从中午12点连续测量20小时,得出此温室大棚的温度y (单位:度)与时间t (单位:小时,[0,20]t ∈)近似地满足函数关系|13|2b y t t =-++,其中,b 为大棚内一天中保温时段的通风量.(1)若一天中保温时段的通风量保持100个单位不变,求大棚一天中保温时段的最低温度 (精确到0.1C ︒);(2)若要保持大棚一天中保温时段的最低温度不小于17C ︒,求大棚一天中保温时段通风 量的最小值.19(2019崇明一模). 某创业投资公司拟投资开发某种新能源产品,估计能获得25万元~1600万元的投资收益,现准备制定一个对科研课题组的奖励方案:奖金y (单位:万元)随投资收益x (单位:万元)的增加而增加,奖金不超过75万元,同时奖金不超过投资收益的20%.(即:设奖励方案函数模型为()y f x =时,则公司对函数模型的基本要求是:当[25,1600]x ∈时,①()f x 是增函数;②()75f x ≤恒成立;③()5xf x ≤恒成立.) (1)判断函数()1030xf x =+是否符合公司奖励方案函数模型的要求,并说明理由;(2)已知函数()5g x =(1a ≥)符合公司奖励方案函数模型要求,求实数a 的取值 范围.20(2019闵行一模). 对于函数()y f x =,若函数()(1)()F x f x f x =+-是增函数,则称函数()y f x =具有性质A .(1)若2()2x f x x =+,求()F x 的解析式,并判断()f x 是否具有性质A ; (2)判断命题“减函数不具有性质A ”是否真命题,并说明理由;(3)若函数23()f x kx x =+(0)x ≥具有性质A ,求实数k 的取值范围,并讨论此时函数()(sin )sin g x f x x =-在区间[0,]π上零点的个数.21(2019普陀一模). 已知函数()2x f x =(x ∈R ),记()()()g x f x f x =--. (1)解不等式:(2)()6f x f x -≤;(2)设k 为实数,若存在实数0(1,2]x ∈,使得200(2)()1g x k g x =⋅-成立,求k 取值范围;(3)记()(22)()h x f x a f x b =++⋅+(其中a 、b 均为实数),若对于任意[0,1]x ∈,均 有1|()|2h x ≤,求a 、b 的值.。