电磁场与电磁波
电磁场与电磁波公式整理

电磁场与电磁波公式整理第一章A:矢量恒等式()()()A B C B C A C A B ×=×=×i i i ()()()A B C B A C C A B ××=−i i ()uv u v v u ∇=∇+∇ ()uA u A A u ∇=∇+∇i()0U ∇×∇=()0A ∇∇×=i 2()U U ∇∇=∇i2()()A A A ∇×∇×=∇∇−∇iVSAdV A dS ∇=∫∫i iVCAdS A dl ∇×=∫∫in V S AdV AdS e ∇×=×∫∫ n V S udV udS e ∇=∫∫n S C udS udl e ×∇=∫∫ 2)V S u v u dV udSnv v ∂+∇∇=∇∂∫∫i22(()VSuu v v dV uv dS n nv u ∂∂−=−∇∇∂∂∫∫ B:三种坐标系的积分元以及梯度、散度、旋度、和拉普拉斯运算⑴直角坐标系位置矢量微分元:x y z dr dx dy dz e e e =++面积元:,,x y z d dydz d dxdz d dxdy s s s === 体积元:dv dxdydz = x y z u u uu e e e x y z ∂∂∂∇=++∂∂∂ y x z A A A A x y z∇=∂∂∂++∂∂∂i x yz A x y z A A A x yz e ee∂∂∂∇×=2222222u u u u x y z ∇∂∂∂=++∂∂∂()uA u A u A ∇×=∇×+∇×()A B B A A B∇×=∇×−∇×i i i ()()()A B A B B A A B B A ∇=∇×+∇+×∇×+×∇×i i i ()()()()A B A B B A B A A B ∇××=∇−∇+∇−∇i i i i⑵圆柱坐标系位置矢量微分元:z dr d d dz e e e ρφρρφ=++面积元:,,z d d dz d d dz d d d s s s ρφρφρρρφ=== 体积元:dv d d dz ρρφ=z u u u u z e e e ρφρρφ∂∂∂∇=++∂∂∂ ()()()11A A A z A z ρρρφρρρφ∂∂∂∇=++∂∂∂i1z e e e A z A A Az ρφρρφρρφ∂∂∂∇×=∂∂∂22222211()u u u u z ρρρρρφ∂∂∂∂=++∇∂∂∂∂⑶球坐标系位置矢量微分元:sin r r r dr dr d d e e e θφθθφ=++面积元:2sin ,sin ,r d d d d r drd d rdrd r s s s θφθθφθφθ=== 体积元:2sin dv drd d r θθφ=1sin ru u u u r r r e e e θφθθφ∂∂∂∇=++∂∂∂22111()(sin )sin sin r A r r r r rA r A A φθθθθθφ∂∂∂∇=++∂∂∂i2sin 1sin sin re re r e A r ArrA r A r θφθθφθθθφ∂∂∂∇×=∂∂∂ 22222222111()(sin sin sin u u uu r r r r r r θθθθφθ∇∂∂∂∂∂=++∂∂∂∂∂ C:几个定理散度定理:v s FdV F dS ∇=∫∫i i斯托克斯定理:s c F dS F dl∇×=∫∫i i亥姆霍茨定理:()()()F r u r A r =−∇+∇×格林定理:n V S FdV F dS e ∇=∫∫i i高斯定理和环路定理:第二章表一:电荷和电流的三种密度表二:电场和磁场表四:介质中的电(磁)场感应强度:电磁感应定律S in B dS d d dt dt ϕε=−=−∫i in C in E dl ε=∫i S C S d Bd dt tE dl ∂∂=−∫∫i i 积分形式 1.如果回路静止则有:S C S Bd tE dl ∂∂=−∫∫i BE t∂∇×=−∂ 2.导体以速度v 在磁场中运动 : ()CC v B dl E dl ×=∫∫i i3.导体在时变场中运动:()CS S B d tC v B dl E dl ∂∂−×=+∫∫∫i i i表五:麦克斯韦方程组:。
《电磁场与电磁波》习题参考答案

《电磁场与电磁波》知识点及参考答案第1章 矢量分析1、如果矢量场F 的散度处处为0,即0F∇⋅≡,则矢量场是无散场,由旋涡源所产生,通过任何闭合曲面S 的通量等于0。
2、如果矢量场F 的旋度处处为0,即0F ∇⨯≡,则矢量场是无旋场,由散度源所产生,沿任何闭合路径C 的环流等于0。
3、矢量分析中的两个重要定理分别是散度定理(高斯定理)和斯托克斯定理, 它们的表达式分别是:散度(高斯)定理:SVFdV F dS ∇⋅=⋅⎰⎰和斯托克斯定理:sCF dS F dl∇⨯⋅=⋅⎰⎰。
4、在有限空间V 中,矢量场的性质由其散度、旋度和V 边界上所满足的条件唯一的确定。
( √ )5、描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。
( √ )6、标量场的梯度运算和矢量场的旋度运算都是矢量。
( √ )7、梯度的方向是等值面的切线方向。
(× )8、标量场梯度的旋度恒等于0。
( √ ) 9、习题, 。
第2章 电磁场的基本规律(电场部分)1、静止电荷所产生的电场,称之为静电场;电场强度的方向与正电荷在电场中受力的方向相同。
2、在国际单位制中,电场强度的单位是V/m(伏特/米)。
3、静电系统在真空中的基本方程的积分形式是:V V sD dS dV Q ρ⋅==⎰⎰和0lE dl ⋅=⎰。
4、静电系统在真空中的基本方程的微分形式是:V D ρ∇⋅=和0E∇⨯=。
5、电荷之间的相互作用力是通过电场发生的,电流与电流之间的相互作用力是通过磁场发生的。
6、在两种媒质分界面的两侧,电场→E 的切向分量E 1t -E 2t =0;而磁场→B 的法向分量B 1n -B 2n =0。
7、在介电常数为的均匀各向同性介质中,电位函数为 2211522x y z ϕ=+-,则电场强度E=5x y zxe ye e --+。
8、静电平衡状态下,导体内部电场强度、磁场强度等于零,导体表面为等位面;在导体表面只有电场的法向分量。
电磁场和电磁波

电磁场和电磁波电磁场,有内在联系、相互依存的电场和磁场的统一体和总称。
随时间变化的电场产生磁场,随时间变化的磁场产生电场,两者互为因果,形成电磁场。
电磁场可由变速运动的带电粒子引起,也可由强弱变化的电流引起,不论原因如何,电磁场总是以光速向四周传播,形成电磁波。
电磁场是电磁作用的媒递物,具有能量和动量,是物质存在的一种形式。
电磁场的性质、特征及其运动变化规律由麦克斯韦方程组确定。
电磁波是电磁场的一种运动形态。
在高频电磁振荡的情况下,部分能量以辐射方式从空间传播出去所形成的电波与磁波的总称叫做“电磁波”。
在低频的电振荡中,磁电之间的相互变化比较缓慢,其能量几乎全部反回原电路而没有能量辐射出去。
然而,在高频率的电振荡中,磁电互变甚快,能量不可能全部反回原振荡电路,于是电能、磁能随着电场与磁场的周期变化以电磁波的形式向空间传播出去。
电磁场和电磁波是物理中的两个基础概念,电磁场和电磁波有什么区别了?电磁场一般来说电磁场就是指彼此相联系的交变电场和磁场。
电磁场是由带电粒子的运动而产生出的一种物理场,在电磁场里,磁场的任何变化都会产生电场,电场的任何变化也会产生磁场。
这种交变电磁场不仅可以存在于电荷、电流或导体的周围,而且能够在空间传播。
电磁场可以被视为一种电场和磁场的连结。
电场是由电荷产生的,而移动的电荷又会产生出磁场。
电磁波是什么了电磁场的传播就构成了电磁波。
又被称为电磁辐射,比如我们常见的电磁波有无线电波、微波、红外线、可见光、紫外线、X 射线、r射线,这些全都是电磁波,只是这些电磁波的波长不同而已。
其中无线电波的波长是电磁波中最长的,r射线的电磁波的波长最短。
直得一提的是,人眼可以接收到的电磁波的波长一般是在380至780nm之间,也就是我们常说的可见光。
一般来说,只要物体本身的温度大于绝对零度(也就是零下273.15摄氏度),除了暗物质外,都会向外发射电磁波,而世界上并没有温度低于零下273.15摄氏度的物体,所以我们身边的物体可以说者会放出电磁波。
电磁场与电磁波学习心得

电磁场与电磁波学习心得电磁场与电磁波是物理学中非常重要的概念,涉及到电磁学的基本原理和应用。
在学习这一部分知识的过程中,我逐渐认识到电磁场与电磁波在日常生活和科学研究中的广泛应用,并且深刻理解了电磁场和电磁波的本质以及它们之间的关系。
首先,对于电磁场的理解,我认为它是由带电粒子所产生的一种力场。
在空间中,带电粒子会产生电场,而电场又会对其他带电粒子施加力。
电磁场的作用距离是无穷远的,这一点与重力场相似,但是力的大小和方向与带电粒子的电荷量和运动状态有关。
通过学习库仑定律,我了解到电荷之间的相互作用力与它们之间的距离的平方成反比,与它们的电荷量之积成正比。
在学习电磁场的基础上,我进一步了解了电磁波的概念和特性。
电磁波是由变化的电场和磁场相互作用而产生的波动现象。
通过法拉第电磁感应定律和安培环路定理的学习,我逐渐认识到电场和磁场是相互关联的,它们相互引发对方变化,从而形成电磁波的传播。
电磁波具有脉动性和传播性,即电场和磁场的振动以一定的频率在空间中传播。
电磁场与电磁波的学习给我带来了许多启发和思考。
首先,我认识到电磁场和电磁波的存在和作用是实现电磁相互作用的基础。
这种相互作用在自然界中无处不在,如电子在原子中围绕原子核的运动、植物通过光合作用获取能量以及无线电、电视和手机的通信等。
电磁场和电磁波的研究为我们解释这些现象提供了理论基础。
其次,电磁波的特性对科学研究和技术应用具有重要意义。
电磁波具有不同的频率和波长,包括可见光、无线电波、微波、X 射线和γ射线等。
通过学习光的电磁波性质,我了解到不同波长的光有着不同的特点和应用。
例如,紫外线和X射线具有较短的波长,能够穿透物体并产生光电效应和透视效应,因此在医学、安全检查和科学研究中广泛应用。
而可见光则是人类视觉的基础,广泛应用于照明、通信和显示技术等领域。
此外,电磁波的传播速度是一个重要的物理常数,即光速。
学习电磁波的传播速度与介质的折射率和折射定律的关系,我了解到电磁波在真空中的传播速度为光速,且在不同介质中传播速度会改变。
电磁场与电磁波揭示电磁场与电磁波的本质与关系

电磁场与电磁波揭示电磁场与电磁波的本质与关系电磁场和电磁波是描述电磁现象的两个重要概念。
电磁场是由电荷所构成的空间区域周围存在的物理场,它的存在和变化可以对其他电荷产生力的作用。
而电磁波则是电磁场在空间中的传播,具有波动性质,可以传递能量和信息。
本文将探讨电磁场与电磁波的本质以及它们之间的密切关系。
一、电磁场的本质电磁场是由电荷所激发产生的一种物理场。
根据库伦定律,电荷间的相互作用是通过电磁场传递的,这种传递是瞬时的,即时的。
电磁场存在于电荷周围的空间中,不仅与电荷的性质相关,也与电荷的运动状态有关。
电磁场的本质是一种信息媒介,它可以将电荷的信息传递给其他电荷,从而实现信息的传递和相互作用。
电磁场的强弱和方向是通过电场和磁场来描述的。
电场是由电荷产生的一种力场,它的本质是描述电荷对其他电荷产生力的作用。
磁场是由电流或者称为移动电荷的磁矩产生的一种力场,它的本质是描述电流对其他电荷产生力的作用。
电场和磁场相互垂直,并且彼此相互依赖、相互影响,共同构成了电磁场。
二、电磁波的本质电磁波是电磁场在空间中的传播。
当电荷发生变化时,电磁场会随之变化,产生扰动。
这种扰动以波的形式传播出去,形成电磁波。
电磁波是一种横波,具有电场和磁场相互垂直的振动分量。
电磁波的传播速度是光速,也是任何物质能传播的最大速度。
电磁波具有电磁场的性质,它们都是由电荷产生和激发的,并且都遵循麦克斯韦方程组来描述。
电磁波有三个基本特征:振幅、波长和频率。
振幅表示电场和磁场的最大值,波长表示波的周期性特征,频率表示波的振动次数。
这些特征决定了电磁波在空间中的传播性质,如波速、传播方向等。
三、电磁场与电磁波的关系电磁场和电磁波之间存在着密切的关系。
首先,电磁波是电磁场的传播形式,它是电磁场的集体运动状态,承载着电磁场的能量和信息。
电磁波的产生需要电场和磁场相互作用,并满足一定条件才能形成稳定的电磁波。
其次,电磁波可以通过电磁场的相互作用和传递来影响其他物体和介质。
电磁场与电磁波知识点

电磁场与电磁波知识点在我们的日常生活中,电磁场与电磁波虽然看不见摸不着,但却无处不在,发挥着至关重要的作用。
从手机通讯到广播电视,从医疗设备到卫星导航,都离不开电磁场与电磁波的应用。
那么,究竟什么是电磁场与电磁波呢?让我们一起来探索一下相关的知识点。
首先,我们来了解一下电磁场。
电磁场是由电场和磁场组成的统一体。
电场是由电荷产生的,而磁场则是由电流或者变化的电场产生的。
电荷在其周围空间会产生电场,当电荷移动时,也就是形成电流,就会产生磁场。
电场的强度可以用电场强度这个物理量来描述。
它的单位是伏特每米(V/m),用来表示单位电荷在电场中所受到的力。
而磁场的强度则用磁感应强度来衡量,单位是特斯拉(T),描述的是单位电流元在磁场中所受到的力。
电磁波,简单来说,就是电磁场的一种运动形式。
当电场和磁场相互激发时,就会产生电磁波,并以光速在空间中传播。
电磁波具有波动性和粒子性双重性质。
电磁波的波动性可以通过波长、频率和波速这三个重要的参数来描述。
波长是指相邻两个波峰或者波谷之间的距离,单位通常是米(m)。
频率则是指电磁波在单位时间内振动的次数,单位是赫兹(Hz)。
波速是指电磁波在介质中传播的速度,在真空中,电磁波的波速约为3×10⁸米每秒。
它们之间存在着一个简单的关系:波速等于波长乘以频率。
电磁波的频率范围非常广泛,按照频率从低到高的顺序,可以分为无线电波、微波、红外线、可见光、紫外线、X 射线和伽马射线等。
不同频率的电磁波具有不同的特性和应用。
无线电波的频率较低,波长较长,常用于广播、电视和通信等领域。
微波的频率比无线电波高一些,在雷达、卫星通信和微波炉等设备中得到广泛应用。
红外线具有热效应,常用于遥控器、红外测温等。
可见光就是我们能够看到的光,它的频率和波长在一定范围内,使我们能够感知到丰富多彩的世界。
紫外线具有杀菌消毒的作用,但过量的紫外线对人体有害。
X 射线具有很强的穿透力,常用于医学成像和安检。
《电磁场与电磁波》习题参考答案
况下,电场和磁场可以独立进行分析。( √ )
12、静电场和恒定磁场都是矢量场,在本质上也是相同的。( × )
13、静电场是有源无旋场,恒定磁场是有旋无源场。( √ ) 14、位移电流是一种假设,因此它不能象真实电流一样产生磁效应。(
×)
15、法拉第电磁感应定律反映了变化的磁场可以产生变化的电场。( √ ) 16、物质被磁化问题和磁化物质产生的宏观磁效应问题是不
D.有限差分法
6、对于静电场问题,仅满足给定的泊松方程和边界条件,
而形式上不同的两个解是不等价的。( × )
7、研究物质空间内的电场时,仅用电场强度一个场变量不能完全反映物 质内发生的静电现象。( √ )
8、泊松方程和拉普拉斯方程都适用于有源区域。( × )
9、静电场的边值问题,在每一类的边界条件下,泊松方程或拉普拉斯方 程的解都是唯一的。( √ )
是( D )。
A.镜像电荷是否对称
B.电位所满足的方程是否未改变
C.边界条件是否保持不变 D.同时选择B和C
5、静电场边值问题的求解,可归结为在给定边界条件下,对拉普拉斯
方程的求解,若边界形状为圆柱体,则宜适用( B )。
A.直角坐标中的分离变量法
B.圆柱坐标中的分离变量法
C.球坐标中的分离变量法
两个基本方程:
3、写出麦克斯韦方程组,并简述其物理意义。
答:麦克斯韦方程组的积分形式:
麦克斯韦方程组的微分形式:
每个方程的物理意义: (a) 安培环路定理,其物理意义为分布电流和时变电场均为磁
场的源。 (b) 法拉第电磁感应定律,表示时变磁场产生时变电场,即动
磁生电。 (c) 磁场高斯定理,表明磁场的无散性和磁通连续性。 (d)高斯定理,表示电荷为激发电场的源。
电磁场与电磁波复习题(含答案)
电磁场与电磁波复习题(含答案)电磁场与电磁波复习题⼀、填空题1、⽮量的通量物理含义是⽮量穿过曲⾯的⽮量线总数,散度的物理意义⽮量场中任意⼀点处通量对体积的变化率。
散度与通量的关系是⽮量场中任意⼀点处通量对体积的变化率。
2、散度在直⾓坐标系的表达式 z A y A x A z yxA A ??++=??=ρρdiv ;散度在圆柱坐标系下的表达;3、⽮量函数的环量定义⽮量A 沿空间有向闭合曲线C 的线积分,旋度的定义过点P 作⼀微⼩曲⾯S,它的边界曲线记为L,⾯的法线⽅与曲线绕向成右⼿螺旋法则。
当S 点P 时,存在极限环量密度。
⼆者的关系 ndS dC e A ρρ?=rot ;旋度的物理意义点P 的旋度的⼤⼩是该点环量密度的最⼤值;点P 的旋度的⽅向是该点最⼤环量密度的⽅向。
4.⽮量的旋度在直⾓坐标系下的表达式。
5、梯度的物理意义标量场的梯度是⼀个⽮量,是空间坐标点的函数。
梯度的⼤⼩为该点标量函数?的最⼤变化率,即该点最⼤⽅向导数;梯度的⽅向为该点最⼤⽅向导数的⽅向,即与等值线(⾯)相垂直的⽅向,它指向函数的增加⽅向等值⾯、⽅向导数与梯度的关系是梯度的⼤⼩为该点标量函数的最⼤变化率,即该点最⼤⽅向导数;梯度的⽅向为该点最⼤⽅向导数的⽅向,即与等值线(⾯)相垂直的⽅向,它指向函数的增加⽅向.; 6、⽤⽅向余弦cos ,cos ,cos αβγ写出直⾓坐标系中单位⽮量l e r 的表达式;7、直⾓坐标系下⽅向导数u的数学表达式是,梯度的表达式8、亥姆霍兹定理的表述在有限区域内,⽮量场由它的散度、旋度及边界条件唯⼀地确定,说明的问题是⽮量场的散度应满⾜的关系及旋度应满⾜的关系决定了⽮量场的基本性质。
9、麦克斯韦⽅程组的积分形式分别为 0()s l s s l sD dS Q BE dl dS t B dS D H dl J dS t ?=??=-??=?=+r r r r r r r r g r r r r r g ????其物理描述分别为10、麦克斯韦⽅程组的微分形式分别为 020E /E /t B 0B //t B c J E ρεε??=??=-=??=+??r r r r r r r其物理意义分别为11、时谐场是激励源按照单⼀频率随时间作正弦变化时所激发的也随时间按照正弦变化的场,⼀般采⽤时谐场来分析时变电磁场的⼀般规律,是因为任何时变周期函数都可以⽤正弦函数表⽰的傅⾥叶级数来表⽰;在线性条件下,可以使⽤叠加原理。
电磁场和电磁波
充 电
放电
i
q=0 i=Im
q
++ ++
q=Qm i=0
两类量:
第一类:电容器的电荷q、电压u、电场E、 电场能E电、线圈的自感电动势e自 第二类:线圈的电流i、磁场B、磁场能E磁 两类量的变化规律相反. 即第一类增大时 第二类减小; 第一类达最大时第二类为零.
(3)变化规律的图象描述:
q
o t i o
讨论:
麦克斯韦认为变化的磁场在线圈中产生电场,正是这种电场(涡旋 电场)在线圈中驱使自由电子做定向的移动,引起了感应电流。
1.变化的磁场产生的电场叫感应电场(涡流电场),电场线是 闭合的。
2.静止电荷周围产生的电场叫静电场,电场线由正电荷起到负 电荷终止,不是闭合的。
总结:麦克斯韦认为线圈只不过用来显
一、电磁振荡的产生
+ + + + L
-- - -
C
E
S
一
电磁波的产生与传播
由麦克斯韦的电磁场理论,变化的电场产生变化的磁场, 而变化的磁场又产生变化的电场,这样,变化电场和变化磁场 之间相互依赖,相互激发,交替产生,并以一定速度由近及远 地在空间传播出去。这样就产生了电磁波。
1、电磁波的波源 我们知道,线圈L和电容C组成的电路可以产生电磁振荡, 电磁振荡能够发射电磁波。但由LC组成普通振荡电路,有以下 特点: (1) 电磁场能量几乎分别集中于电容器和自感线圈内,不利于电 磁波的辐射,所以必需设计能让能量辐射的电路。
(2) 电磁波在单位时间内辐射功率与频率的四次方成正比,而
L C电路频率为
1 2π LC
很低,因而要对电路进行改造。
实验表明,LC回路里产生的振荡电流是按正 弦规律变化的。
电磁场与电磁波期末复习知识点归纳
例:电场强度为 V/m的均匀平面波从空气中垂直入射到Z=0处的理想介质(相对介电常数r=9、相对磁导率r=1)平面上,式中的0、Em均为已知。求:
反射波电场和磁场的复数表达式,并说明反射波的极化类型;
求空气中合成电场的表达式,简要说明合成波的特点。
均匀平面波:等相位面也是平面,且在任何一个等相位 面上场矢量的大小、方向处处相同。
x
z
均匀平面波:是指电磁波的场矢量只沿着它的传播方向变化,在与波传播方向垂直的无限大平面内,电场强度E和磁场强度H的方向、振幅和相位都保持不变的波。
无界理想介质中的均匀平面波
周期:
坡印廷矢量定义式:
坡印廷矢量的物理意义:
W/m2
S
E
H
时谐电磁场:以一定的角频率随时间作正弦或余弦
麦氏方程的复数形式
变化的电磁场或者正弦电磁场。
瞬时矢量和复矢量的关系为: 瞬时表达式和复数表达式的转换
瞬时坡印廷矢量:
02
平均坡印廷矢量:
01
坡印廷矢量的三种形式
第5章 均匀平面波在无界空间中的传播
电磁波极化的工程应用
圆极化天线只能接收到与其自身旋向相同的圆极化波,而一个线极化波总可以分解为两个旋向相反的圆极化波,其中总有一个可以被某圆极化天线接收。而线极化波总可以分解为两个空间相互正交的线极化波,其中总有一个可以被某线极化天线接收。因此在收发双方有一方运动的情况下(比如导弹与地面控制中心的通信),如果有一方采用圆极化天线,就可以保证信号畅通:若双方都是线极化天线,则可能因为相对位置变化而出现失配的情况。
例6.1.1: 一右旋圆极化波从空气垂直入射到位于z=0的理想导体板上,其电场强度的复数形式为: (1)写出反射波的表达式并说明反射波的极化类型: (2)写出总电场强度的瞬时表达式: (3)求板上的感应面电流密度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁场与电磁波 电磁场与电磁波学习报告 ——电磁场与电磁波部分应用、危害及防护 这学期我们专业开设了《电磁场与电磁波》这门课程,但是并没有深入研究。老师风趣的讲课方式让我对这门课的兴趣增强不少,也使我对电磁波有了更新的认识。接下来我想简单谈谈我了解的电磁场电磁波在科研、生活、医学中的一些应用,以及电磁波的危害和防护。
一、电磁场与电磁波的应用 1、加速器 高能带电粒子束,如质于或氘核,常用于所谓原子碰撞的实验中研究原子的内部结构,电用于加速带电粒子使之获得很高的速度,从而具有很高的能量。这种使带电粒子具有高能量装置叫加速器。 最常见的加速器就是电子枪,常用于阴极射线管中。用单个电子枪需要很高的电压才能使粒速度达到要求。然而用电子枪排成队列井使粒子依次通过,则只需要不高的电压。这时粒子通过一个电子枪就获得一份能量。这种由电子枪阵列组成的装置叫线性加速器。可以想象得到线性加速器是相当长的。 另一方面,回旋加速器只用一个电子枪,但使带电粒子一次又一次地通过它。最简单的回旋加速器由两个D形的铜质腔组成。一个高频振荡器跨接于两个腔。显然,只有两个腔之间的空隙中才存在电场,带电粒于也只有通过空隙时才获得能量。两个腔被密封在真空室中,以减小与空气分子碰撞而引起的能量损失。整个装置被放在均匀磁场中。 当电荷被缝隙的电场加速进入某一个D形腔时,加速过程开始,一旦电荷进入该腔,将沿半圆形路径运动。腔中没有电场,所以带电粒子速度保持不变。如果振荡器的频率与回旋频率相同,那么,带电粒子到达空隙的时候外加电压极性正好改变,缝隙中的电场方向随之改变,使粒子得到加速又进入另一D形腔,这时粒子运动的半径也就大了一些。这样,粒子每次通过空隙都获得一些动能,从而进入更大半径的运动轨道。这一过程一直重复到粒子从D形腔的边界射出。带电位子的动能与D形腔的半径有关。当磁通密度给定时,带电粒子的动能 只能靠腔半径的增大而增大。但增大腔的半径,回旋加速器中电磁铁的体积和成本都要增加。 为了限制成本,可同时调整振荡器的频率和磁通密度使带电粒子轨道半径达到要求,这样我们可以用环形电磁铁。 2、磁悬浮列车 磁悬浮列车的原理并不深奥。它是运用磁铁“同性相斥,异性相吸”的性质,使磁铁具有抗拒地心引力的能力,即“磁性悬浮”。科学家将“磁性悬浮”这种原理运用在铁路运输系统上,使列车完全脱离轨道而悬浮行驶,成为“无轮”列车,时速可达几百公里以上。这就是所谓的“磁悬浮列车”,亦称之为“磁垫车”。 由于磁铁有同性相斥和异性相吸两种形式,故磁悬浮列车也有两种相应的形式:一种是 利用磁铁同性相斥原理而设计的电磁运行系统的磁悬浮列车,它利用车上超导体电磁铁形成的磁场与轨道上线圈形成的磁场之间所产生的相斥力,使车体悬浮于运行的铁路上;另一种则是利用磁铁异性相吸原理而设计的电动力运行系统的磁悬浮列车,它是在车体底部及两侧倒转向上的顶部安装磁铁,在T形导轨的上方和伸臂部分下方分别设反作用板和感应钢板,控制电磁铁的电流,使电磁铁和导轨间保持10─15毫米的间隙,并使导轨钢板的吸引力与车辆的重力平衡,从而使车体悬浮于车道的导轨面上运行。 磁悬浮列车与当今的高速列车相比,具有许多无可比拟的优点: 由于磁悬浮列车是轨道上行驶,导轨与机车之间不存在任何实际的接触,成为“无轮”状态,故其几乎没有轮、轨之间的摩察,时速高达几百公里;磁悬浮列车可靠性大、维修简便、成本低,其能源消耗仅是汽车的一半、飞机的四分之一;噪音小,当磁悬浮列车时速达300公里以上时,噪声只有656分贝,仅相当于一个人大声地说话,比汽车驶过的声音还小;由于它以电为动力,在轨道沿线不会排放废气,无污染,是一种绿色交通工具。 3、蓝牙技术 蓝牙技术是一种无线数据与语音通信的开放性全球规范,它以低成本的近距离无线连接为基础,为固定与移动设备通信环境建立一个特别连接。其程序写在一个9 x 9 mm的微芯片中。 现在把蓝牙技术引入到移动电话和膝上型电脑中,去掉了手机与笔记本电脑之间的令人讨厌的连接电缆而而通过无线使其建立通信。打印机、PDA、传真机、键盘、游戏操纵杆以及所有其它的数字设备都可以成为蓝牙系统的一部分。除此之外,蓝牙无线技术还为已存在的数字网络和外设提供通用接口以组建一个远离固定网络的个人特别连接设备群。 蓝牙工作在全球通用的2.4GHz ISM(即工业、科学、医学)频段。蓝牙的数据速率为1Mb/s。时分双工传输方案被用来实现全 双工传输。ISM频带是对所有无线电系统都开放的频带,因此使用其中的某个频段都会遇到不可预测的干扰源。 例如某些家电、无绳电话、汽车房开门器、微波炉等,都可能是干扰。为此,蓝牙特别设计了快速确认和跳频方案以确保链路稳定。跳频技术是把频带分成若干个跳频信道(hop channel),在一次连接中,无线电收发器按一定的码序列 (即一定的规律,技术上叫做"伪随机码",就是"假"的随机码)不断地从一个信道"跳"到另一个信道,只有收发双方是按这个规律进行通信的,而其他的干扰不可能按同样的规律进行干扰;跳频的瞬时带宽是很窄的,但通过扩展频谱技术使这个窄带宽成百倍地扩展成宽频带,使干扰可能的影响变成很小。与其它工作在相同频段的系统相比,蓝牙跳频更快,数据包更短,这使蓝牙比其它系统都更稳定。 4、卫星通信 卫星通信是二战之后发展起来的一种先进的无线通信技术。卫星通信就是地球上来(包括地球、水面和低层大气中)的无线电通信站之间利用人造卫星做中继站而进行的通信。通信地球站可以是地面站、车载站、机载站,各种通信站的天线均指向卫星。 地球站的天线要始终对准卫星才能利用卫星进行通信,所以我们通常使用静止卫星,也即同步卫星。人们发现当卫星处在距地面35600公里左右时,周期T=24小时,即卫星绕地球一圈时间与地球自转一圈的时间一致。那么一天24小时天线都不会偏离卫星,而且天线和卫星之间的距离也不会改变。 卫星通信工作在微波频段,也可以说卫星通信是微波接力通信的一种特殊形式。微波是指波长1米到1毫米之间的无线电波(频率范围300MHZ~300THZ)。由于无线电波穿越大气层的传播特点,卫星通信的工作频段只占微波频段的一小部分。目前商用通信的工作频段主要在C波段的KU、KA波段。波段越高技术上越难实现。 我国第一颗通信卫星是1970年4月24日发射的“东方红一号”卫星。 5、微波炉: 极性分子接受微波辐射的能量后,通过分子偶极的每秒数十亿次的高速旋转产生热效应,这种加热方式称为内加热(相对地,把普通热传导和热对流的加热过程称为外加热)。与外加热方式相比,内加热具有加热速度快、受热体系温度均匀等特点。研究发现,在萃取加工和有机化学反应等方面,微波辐射技术均显示出其无与伦比的优越性。由于微波的频率与分子转动的频率相关连,所以微波能是一种由离子迁移和偶极子转动引起分子运动的非离子化辐射能。当它作用于分子上时,促进了分子的转动运动,分子若此时 具有一定的极性,便在微波电磁场作用下产生瞬时极化,并以24.5亿次/s的速度做极性变换运动,从而产生键的振动、撕裂和粒子之间的相互摩擦、碰撞,促进分子活性部分(极性部分)更好地接触和反应,同时迅速生成大量的热能。 6、电磁炉: 电磁炉是采用磁场感应涡流加热原理,利用电流通过线圈产生磁场,当磁场内之磁力线通过金属器皿的底部时即会产生无数小涡流,使器皿本身自行高速发热,然后再加热于器皿内的食物。其神奇之处就在于炉面的陶瓷表面不会发热,而锅具自行发热,并煮食锅内食物。其最高温度高达240度。 电磁炉的热效率极高,煮食时安全、洁净、无火、无烟、无废气、不怕风吹、不会爆炸或引致气体中毒。 当磁场内的磁力线通过非金属物休,不会产生涡流,故不会产生热力。炉面和人都是非金属物体,本身不会发热,因此没有被电磁炉烧伤的危险,安全可靠。 7、电磁高速公路: 在电磁高速公路上,各种车辆的行驶速度达每小时200公里,而车辆之间的距离却比普通的高速公路更短。利用智能管理系统,公路交通畅通无阻,没有交通堵塞和车祸。 电磁高速公路采用了多项高精尖技术: 1.在柏油路面下每隔1.2米埋设专用磁铁,负责行驶车辆与电脑系统之间的信息传递;2.在车辆的前后保险杠上配置磁性传感器,接收地面专用磁铁的信息反馈;3.车辆行驶由电脑和传感器监控,交通信息通过车辆和路面电脑系统交流;4.沿路布设传感器、电脑导航系统及摄像机;5.用专用电脑控制汽车刹车、油门和转向;6.用雷达控制车距,最小距离可达3.95米; 7.在汽车驶进特定路口时,电脑导航系统会显示清晰的道路图,指示驾车者现时的位置,以及前往各方向的最佳路线。 有如此先进、完善的设施与保障,即便驾车技术很差又不认得路,都不会有任何问题。 另外在电磁波在隐形飞机、CDMA(码分多址)、电磁脉冲炸弹(简称为E-BOMB)、 EMF系统俗称“电磁刀”、磁分离器等方面也有广泛应用。
二、电磁波的危害及防护
电磁波的证明 在科学上,称超过人体承受或仪器设备容许的电磁辐射为电磁污染。电磁辐射分二大类,一类是天然电磁辐射,如雷电、火山喷发、地震和太阳黑子活动引起的磁暴等,除对电气设备、飞机、建筑物等可能造成直接破坏外,还会在广大地区产生严重电磁干扰。另一类是人工电磁辐射,主要是微波设备产生的辐射,微波辐射能使人体组织温度升高,严重时造成植物神经功能紊乱。但是对电磁辐射,要正确认识,而且要科学防护。 其实人类一直生活在电磁环境里,地球本身就是一个大磁场(静场),其表面的热辐射和雷电都产生电磁辐射,阳光也是电磁辐射。此外,其他星球也自外层空间源源不断地产生电磁辐射。对这些自然的电磁辐射,人类别无选择,而且受益无穷,比如阳光是生命之源。电磁能的应用已经深入到人类生活的各个方面。因此,电磁辐射在有电灯、广播和电视以来就成为了我们生活的一部分,无线电通信更是目前不可缺少的。 电磁波辐射能量较低,不会使物质发生游离现象,也不会直接破坏环境物质,但在到充满电子通讯产品的现代生活,其电磁干扰性不能掉以轻心,因为它随时会给人体造成危害: 1、 对中枢神经系统的危害 神经系统对电磁辐射的作用很敏感,受其低强度反复作用后,中枢神经系统机能发生改变,出现神经衰弱症候群,主要表现有头痛,头晕,无力,记忆力减退,睡眠障碍,白天打瞌睡、易激动、多汗、心悸、胸闷、脱发等,尤其是入睡困难,无力,多汗和记忆力减退更为突出。还表现有短时间记忆力减退,视觉运动反应时值明显延长;手脑协调动作差,表现对数字划记速度减慢,出现错误较多。 2、对机体免疫功能的危害 使身体抵抗力下降。研究和调查表明,人体的白血球吞噬细菌的百分率和吞噬的细菌数均下降。此外受电磁辐射长期作用的人,其抗体形成受到明显抑制。 3、对心血管系统的影响 受电磁辐射作用的人,常发生血血液动力学失调,血管通透性和张力降低.由于植物神经调节功能受到影响,人们多以心过缓跳过缓出现,少数呈现心跳过速。此外,长期受电磁辐射作用的人,其心血管系统的疾病,会更早更易促使其发生和发展。 4、 对血液系统的影响 在电磁辐射的作用下,周围血像可出现白血球不稳定,主要是下降倾向,白血球減少。红血球的生成受到抑制,出现网络状红血球減少。 5、对生殖系统和遗传的影响 长期接触超短波发生器的人,可出现男性性机能下降;女性出现月经周期紊乱。高强度的电磁辐射可以产生遗传效应。 6、对视觉系统的影响 眼组织含有大量的水份,易吸收电磁辐射功率,而且眼的血流量少,故在电磁辐射作用