(最新)步步高理科数学常考题型强化练——数列
《步步高》2021届高考数学大一轮复习课件(人教A版)常考题型强化练——数列

5
6
7
8
9
解析
A组 专项基础训练
1
2
3
4
5
6
7
8
9
解析
A组 专项基础训练
1
2
3
4
5
6
7
8
9
解析
A组 专项基础训练
1
2
3
4
5
6
7
8
9
解析
A组 专项基础训练
1
2
3
4
5
6
7
8
9
解析
A组 专项基础训练
1
2
3
4
5
6
7
8
9
解析
A组 专项基础训练
1
2
3
4
5
6
7
8
9
解析
A组 专项基础训练
1
2
3
4
5
6
7
C 解析
A组 专项基础训练
1
2
3
4
5
6
7
8
9
解析
A组 专项基础训练
1
2
3
4
5
6
7
8
9
A
解析
A组 专项基础训练
1
2
3
4
5
6
7
8
9
解析
A组 专项基础训练
1
2
3
4
5
6
7
8
9
B 解析
A组 专项基础训练
1
2
3
4
5
6
7
高考数学步步高2022理科人教版A 第六章 高考专题突破三 高考中的数列问题

高考专题突破三 高考中的数列问题 考试要求 1.熟练掌握等差、等比数列的前n 项和公式.2.掌握非等差数列、非等比数列求和的几种常见方法.3.了解数列是一种特殊的函数.4.能在具体问题情境中,发现等差、等比关系,并解决相应的问题.数列求和的几种常用方法1.公式法直接利用等差数列、等比数列的前n 项和公式求和.(1)等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d . (2)等比数列的前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q=a 1(1-q n )1-q ,q ≠1. 2.分组求和法与并项求和法(1)若一个数列是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后相加减.(2)形如a n =(-1)n ·f (n )类型,常采用两项合并求解.3.裂项相消法(1)把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(2)常见的裂项技巧①1n (n +1)=1n -1n +1. ②1n (n +2)=12⎝⎛⎭⎫1n -1n +2. ③1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1. ④1n +n +1=n +1-n .⑤1n (n +1)(n +2)=12⎣⎡⎦⎤1n (n +1)-1(n +1)(n +2). ⑥log a ⎝⎛⎭⎫1+1n =log a (n +1)-log a n (n >0). 4.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和公式就是用此法推导的.题型一 数列与数学文化1.我国古代数学名著《算法统宗》中说:“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次第,孝和休惹外人传.”意为:“996斤棉花,分别赠送给8个子女做旅费,从第1个孩子开始,以后每人依次多17斤,直到第8个孩子为止.分配时一定要按照次序分,要顺从父母,兄弟间和气,不要引得外人说闲话.”在这个问题中,第8个孩子分到的棉花为( )A .184斤B .176斤C .65斤D .60斤答案 A解析 依题意得,八个子女所得棉花斤数依次构成等差数列,设该等差数列为{a n },公差为d ,前n 项和为S n ,第一个孩子所得棉花斤数为a 1,则由题意得,d =17,S 8=8a 1+8×72×17=996,解得a 1=65,∴a 8=a 1+(8-1)d =184. 2.《张丘建算经》中女子织布问题为:某女子善于织布,一天比一天织得快,且从第2天开始,每天比前一天多织相同量的布,已知第一天织5尺布,一月(按30天计)共织390尺布,则从第2天起每天比前一天多织多少尺布?( )A.1631B.1629C.12D.815答案 B解析 由题意可知每天织布的多少构成等差数列,其中第一天为首项a 1=5,一月按30天计可得S 30=390,从第2天起每天比前一天多织的布即为公差d .又S 30=30×5+30×292×d =390,解得d =1629.故选B. 3.我国古代数学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问何日相逢?”上述问题中,两鼠在第几天相逢?( )A .2B .3C .4D .6答案 C解析 不妨设大老鼠和小老鼠每天穿墙的厚度为数列{a n }和{b n },则由题意可知,数列{a n }是首项为1,公比为2的等比数列,数列{b n }是首项为1,公比为12的等比数列, 设前n 天两鼠总共穿墙的厚度之和为S n ,则S n =1-2n1-2+1-⎝⎛⎭⎫12n 1-12=2n -⎝⎛⎭⎫12n -1+1, 当n =3时,S 3=354<10, 当n =4时,S 4=1358>10, 故两个老鼠在第4天相逢.4.(2020·潍坊模拟)《周髀算经》是中国古代重要的数学著作,其记载的“日月历法”曰:“阴阳之数,日月之法,十九岁为一章,四章为一部,部七十六岁,二十部为一遂,遂千百五二十岁,…,生数皆终,万物复苏,天以更元作纪历”.某老年公寓住有20位老人,他们的年龄(都为正整数)之和恰好为一遂,其中年长者已是奔百之龄(年龄介于90~100岁),其余19人的年龄依次相差一岁,则年长者的年龄为( )A .94岁B .95岁C .96岁D .98岁答案 B解析 设年长者的年龄为t ,由已知,其余19位老人的年龄从小到大依次排列构成公差d =1的等差数列,设最小者的年龄为a 1,由“遂千百五二十岁”知,一遂就是1 520岁(一遂有20部,一部有4章,一章有19岁,且20×4×19=1 520).所以这20位老人的年龄之和为19a 1+19×182d +t =1 520,整理得a 1+9+t 19=80.因为t ∈N *,a 1∈N *,所以t 19∈N *.又因为t ∈(90,100),所以t =19×5=95.故选B.思维升华 数列与数学文化解题3步骤 读懂题意会脱去数学文化的背景,读懂题意 构建模型由题意,构建等差数列或等比数列或递推关系式的模型 求解模型利用所学知识求解数列的相关信息,如求指定项、通项公式或前n 项和的公式题型二 等差数列、等比数列交汇例1 (2020·南昌质检)设S n 为等差数列{a n }的前n 项和,S 7=49,a 2+a 8=18.(1)求数列{a n }的通项公式;(2)若S 3,a 17,S m 成等比数列,求S 3m .解 (1)设等差数列{a n }的公差为d ,∵S n 为等差数列{a n }的前n 项和,S 7=49,a 2+a 8=18,∴⎩⎪⎨⎪⎧ S 7=7a 4=49,a 2+a 8=2a 5=18⇒⎩⎪⎨⎪⎧a 4=7,a 5=9,解得d =2, ∴a n =a 4+(n -4)×d =2n -1.(2)由(1)知,S n =n (1+2n -1)2=n 2, ∵S 3,a 17,S m 成等比数列,∴S 3S m =a 217,即9m 2=332,解得m =11.故S 3m =S 33=332=1 089.思维升华 等差与等比数列的基本量间的关系,利用方程思想和通项公式,前n 项和公式求解.求解时注意对性质的灵活运用.跟踪训练1 (2020·中山期末)设S n 为数列{a n }的前n 项和,已知a 2=3,a n +1=2a n +1.(1)证明:{a n +1}为等比数列;(2)判断n ,a n ,S n 是否成等差数列?并说明理由.(1)证明 ∵a 2=3,a 2=2a 1+1,∴a 1=1,由题意得a n +1≠0,a n +1+1a n +1=2a n +2a n +1=2, ∴{a n +1}是首项为2,公比为2的等比数列.(2)解 由(1)知a n +1=2n ,∴a n =2n -1.∴S n =2-2n +11-2-n =2n +1-n -2, ∴n +S n -2a n =n +2n +1-n -2-2(2n -1)=0,∴n +S n =2a n ,即n ,a n ,S n 成等差数列.题型三 数列的求和命题点1 分组求和与并项求和例2 已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4.(1)求{a n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和.解 (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q ,因为b 2=3,b 3=9,可得q =b 3b 2=3, 所以b n =b 2q n -2=3·3n -2=3n -1,又由a 1=b 1=1,a 14=b 4=27,所以d =a 14-a 114-1=2,所以数列{a n }的通项公式为a n =a 1+(n -1)×d =1+2(n -1)=2n -1.(2)由题意知c n =a n +b n =(2n -1)+3n -1,则数列{c n }的前n 项和为[1+3+…+(2n -1)]+(1+3+9+…+3n -1) =n (1+2n -1)2+1-3n1-3=n 2+3n -12. 思维升华 一般地,如果{a n }是等差数列,{b n }是等比数列,求数列{a n ±b n }或c n =⎩⎪⎨⎪⎧a n ,n 为奇数,b n ,n 为偶数的前n 项和S n 时,可采用分组求和法求和.如果c n =(-1)n ·a n ,求c n 的前n 项和时,可采用并项求和法求解.命题点2 错位相减法求和例3 (12分)(2020·全国Ⅰ)设{a n }是公比不为1的等比数列,a 1为a 2,a 3的等差中项.(1)求{a n }的公比;(2)若a 1=1,求数列{na n }的前n 项和.规范解答解 (1)设{a n }的公比为q ,∵a 1为a 2,a 3的等差中项,∴2a 1=a 2+a 3=a 1q +a 1q 2,a 1≠0,∴q 2+q -2=0,[2分]∵q ≠1,∴q =-2.[4分](2)设{na n }的前n 项和为S n ,a 1=1,a n =(-2)n -1,[6分]S n =1×1+2×(-2)+3×(-2)2+…+n (-2)n -1,①[7分]-2S n =1×(-2)+2×(-2)2+3×(-2)3+…+(n -1)·(-2)n -1+n (-2)n ,②[8分]①-②得,3S n =1+(-2)+(-2)2+…+(-2)n -1-n (-2)n [10分]=1-(-2)n 1-(-2)-n (-2)n =1-(1+3n )(-2)n3,[11分] ∴S n =1-(1+3n )(-2)n9,n ∈N *.[12分]第一步:根据定义法、等差(等比)中项法、通项公式法等判定数列为等差(等比)数列; 第二步:由等差(等比)数列基本知识求通项,或者由递推公式求通项;第三步:根据和的表达式或通项的特征,选择合适的方法(分组转化法、错位相减法、裂项相消法)求和;第四步:反思解题过程,检验易错点、规范解题步骤.命题点3 裂项相消法求和例4 (2020·潍坊模拟)已知数列{a n }为等比数列,a 1=1;数列{b n }满足b 2=3,a 1b 1+a 2b 2+a 3b 3+…+a n b n =3+(2n -3)·2n .(1)求a n ;(2)求⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n . 解 (1)令n =1,得a 1b 1=3+(2-3)×2=1,所以b 1=1,令n =2,得a 1b 1+a 2b 2=7,所以a 2b 2=6,又b 2=3,所以a 2=2,设数列{a n }的公比为q ,则q =a 2a 1=2, 所以a n =2n -1.(2)当n ≥2时,a 1b 1+a 2b 2+a 3b 3+…+a n -1b n -1=3+(2n -5)2n -1,①又a 1b 1+a 2b 2+a 3b 3+…+a n b n =3+(2n -3)2n ,②②-①得a n b n =3+(2n -3)2n -[3+(2n -5)2n -1]=(2n -1)2n -1,所以b n =2n -1,1b n b n +1=1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1, 所以T n =12⎝⎛⎭⎫1-13+12⎝⎛⎭⎫13-15+…+12⎝⎛⎭⎫12n -1-12n +1 =12⎝⎛⎭⎫1-13+13-15+…+12n -1-12n +1 =12⎝⎛⎭⎫1-12n +1=n 2n +1.思维升华 使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.跟踪训练2 (1)已知各项均为正数的等差数列{a n }中,a 1+a 2+a 3=15,且a 1+2,a 2+5,a 3+13构成等比数列{b n }的前三项.①求数列{a n },{b n }的通项公式;②求数列{a n b n }的前n 项和T n .解 ①设等差数列的公差为d ,则由已知得,a 1+a 2+a 3=3a 2=15,即a 2=5,又(5-d +2)(5+d +13)=100,解得d =2或d =-13(舍去),a 1=a 2-d =3,∴a n =a 1+(n -1)×d =2n +1,又b 1=a 1+2=5,b 2=a 2+5=10,∴q =2,∴b n =5·2n -1.②由①知a n b n =(2n +1)·5·2n -1=5·(2n +1)·2n -1,∵T n =5[3+5×2+7×22+…+(2n +1)×2n -1],2T n =5[3×2+5×22+7×23+…+(2n +1)×2n ],两式相减得-T n =5[3+2×2+2×22+…+2×2n -1-(2n +1)×2n ]=5[(1-2n )2n -1],则T n =5[(2n -1)2n +1].(2)(2020·河北衡水中学模拟)已知数列{a n }满足a 1=4,且当n ≥2时,(n -1)a n =n (a n -1+2n -2).①求证:数列⎩⎨⎧⎭⎬⎫a n n 是等差数列; ②记b n =2n +1a 2n,求数列{b n }的前n 项和S n . ①证明 当n ≥2时,(n -1)a n =n (a n -1+2n -2),将上式两边都除以n (n -1),得a n n =a n -1+2n -2n -1, 即a n n -a n -1n -1=2, 所以数列⎩⎨⎧⎭⎬⎫a n n 是以a 11=4为首项,2为公差的等差数列. ②解 由①得a n n=4+2(n -1)=2n +2, 即a n =2n (n +1),所以b n =2n +1a 2n =14⎣⎡⎦⎤1n 2-1(n +1)2, 所以S n =14⎩⎨⎧ ⎝⎛⎭⎫1-122+⎝⎛⎭⎫122-132+⎭⎬⎫…+⎣⎡⎦⎤1n 2-1(n +1)2 =14⎣⎡⎦⎤1-1(n +1)2=n 2+2n 4(n +1)2.课时精练1.已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n .若a 1=b 1=3,a 4=b 2,S 4-T 2=12.(1)求数列{a n }与{b n }的通项公式;(2)求数列{a n +b n }的前n 项和.解 (1)由a 1=b 1,a 4=b 2,则S 4-T 2=(a 1+a 2+a 3+a 4)-(b 1+b 2)=a 2+a 3=12,设等差数列{a n }的公差为d ,则a 2+a 3=2a 1+3d =6+3d =12,所以d =2.所以a n =3+2(n -1)=2n +1,设等比数列{b n }的公比为q ,由题意知b 2=a 4=9,即b 2=b 1q =3q =9,所以q =3.所以b n =3n .(2)a n +b n =(2n +1)+3n ,所以{a n +b n }的前n 项和为(a 1+a 2+…+a n )+(b 1+b 2+…+b n )=(3+5+…+2n +1)+(3+32+ (3))=(3+2n +1)n 2+3(1-3n )1-3=n (n +2)+3(3n -1)2. 2.已知等比数列{a n }的前n 项和S n 满足4S 5=3S 4+S 6,且a 3=9.(1)求数列{a n }的通项公式a n ;(2)设b n =(2n -1)·a n ,求数列{b n }的前n 项和T n .解 (1)设数列{a n }的公比为q ,由4S 5=3S 4+S 6,得S 6-S 5=3S 5-3S 4,即a 6=3a 5,∴q =3,∴a n =9·3n -3=3n -1.(2)b n =(2n -1)·a n =(2n -1)·3n -1,∴T n =1·30+3·31+5·32+…+(2n -1)·3n -1,∴3T n =1·31+3·32+…+(2n -3)·3n -1+(2n -1)·3n ,∴-2T n =1+2·31+2·32+…+2·3n -1-(2n -1)·3n=-2+(2-2n )·3n ,∴T n =1-(2-2n )·3n 2=(n -1)·3n +1. 3.已知在数列{a n }中,a 1=1,a 2=2,a n +1=3a n -2a n -1(n ≥2,n ∈N *).设b n =a n +1-a n .(1)证明:数列{b n }是等比数列;(2)设c n =b n (4n 2-1)2n ,求数列{c n }的前n 项和S n . (1)证明 因为a n +1=3a n -2a n -1(n ≥2,n ∈N *),b n =a n +1-a n ,所以b n +1b n =a n +2-a n +1a n +1-a n =3a n +1-2a n -a n +1a n +1-a n=2(a n +1-a n )a n +1-a n=2, 又b 1=a 2-a 1=2-1=1,所以数列{b n }是以1为首项,2为公比的等比数列.(2)解 由(1)知b n =1×2n -1=2n -1,因为c n =b n (4n 2-1)2n, 所以c n =12(2n +1)(2n -1)=14⎝⎛⎭⎫12n -1-12n +1, 所以S n =c 1+c 2+…+c n =14⎝⎛⎭⎫1-13+13-15+…+12n -1-12n +1 =14⎝⎛⎭⎫1-12n +1=n 4n +2.4.已知数列{a n }为正项数列,a 1=3,且a n +1a n -a n a n +1=2⎝⎛⎭⎫1a n +1a n +1(n ∈N *). (1)求数列{a n }的通项公式;(2)若b n =2n a+(-1)n ·a n ,求{b n }的前n 项和S n .解 (1)依题意得a n >0,a 2n +1-a 2n =2(a n +1+a n ),则a n +1-a n =2, 所以数列{a n }为a 1=3,d =2的等差数列,则a n =2n +1.(2)由(1)知b n =22n +1+(-1)n ·(2n +1)=2×4n +(-1)n (2n +1).则{b n }的前n 项和 S n =⎩⎨⎧8(4n -1)3+n =22n +33+n -83,n 为偶数,8(4n -1)3-n -2=22n +33-n -143,n 为奇数.5.(2020·新高考全国Ⅰ)已知公比大于1的等比数列{a n }满足a 2+a 4=20,a 3=8.(1)求{a n }的通项公式;(2)记b m 为{a n }在区间(0,m ](m ∈N *)中的项的个数,求数列{b m }的前100项和S 100. 解 (1)由于数列{a n }是公比大于1的等比数列,设首项为a 1,公比为q ,依题意有⎩⎪⎨⎪⎧a 1q +a 1q 3=20,a 1q 2=8, 解得⎩⎪⎨⎪⎧ a 1=32,q =12(舍)或⎩⎪⎨⎪⎧a 1=2,q =2, 所以{a n }的通项公式为a n =2n ,n ∈N *.(2)由于21=2,22=4,23=8,24=16,25=32,26=64,27=128,所以b 1对应的区间为(0,1],则b 1=0;b 2,b 3对应的区间分别为(0,2],(0,3],则b 2=b 3=1,即有2个1;b 4,b 5,b 6,b 7对应的区间分别为(0,4],(0,5],(0,6],(0,7],则b 4=b 5=b 6=b 7=2,即有22个2;b 8,b 9,…,b 15对应的区间分别为(0,8],(0,9],…,(0,15],则b 8=b 9=…=b 15=3, 即有23个3;b 16,b 17,…,b 31对应的区间分别为(0,16],(0,17],…,(0,31],则b 16=b 17=…=b 31=4,即有24个4;b 32,b 33,…,b 63对应的区间分别为(0,32],(0,33],…,(0,63],则b 32=b 33=…=b 63=5,即有25个5;b 64,b 65,…,b 100对应的区间分别为(0,64],(0,65],…,(0,100], 则b 64=b 65=…=b 100=6,即有37个6.所以S 100=1×2+2×22+3×23+4×24+5×25+6×37=480.。
高考数学自由复习步步高系列专题03 数列 Word版含解析

.等差、等比数列的通项公式等差数列{}的通项公式为=+(-)=+(-);等比数列{}的通项公式为=-=-..等差、等比数列的前项和()等差数列的前项和为==+.特别地,当≠时,是关于的二次函数,且常数项为,即可设=+(,为常数).()等比数列的前项和=(\\(,=,,(--)=(--),≠,))特别地,若≠,设=,则=-..等差数列、等比数列常用性质()若序号+=+,在等差数列中,则有+=+;特别的,若序号+=,则+=;在等比数列中,则有·=·;特别的,若序号+=,则·=;()在等差数列{}中,,-,-,…成等差数列,其公差为;其中为前项的和,且≠(∈*);在等比数列{}中,当≠-或不为偶数时,-,-,…成等比数列,其中为前项的和(∈*)..数列求和的方法归纳()转化法:将数列的项进行分组重组,使之转化为个等差数列或等比数列,然后应用公式求和;()错位相减法:适用于{·}的前项和,其中{}是等差数列,{}是等比数列;()裂项法:求{}的前项和时,若能将拆分为=-+,则++…+=-+;()倒序相加法:一个数列倒过来与原数列相加时,若有公因式可提,并且剩余的项的和容易求出,那么这样的数列求和可采用此法.其主要用于求组合数列的和.这里易忽视因式为零的情况;()试值猜想法:通过对,,,…的计算进行归纳分析,寻求规律,猜想出,然后用数学归纳法给出证明.易错点:对于不加证明;()并项求和法:先将某些项放在一起先求和,然后再求.例如对于数列{}:=,=,=,+=+-,可证其满足+=,在求和时,依次项求和,再求..数列的应用题()应用问题一般文字叙述较长,反映的事物背景陌生,知识涉及面广,因此要解好应用题,首先应当提高阅读理解能力,将普通语言转化为数学语言或数学符号,实际问题转化为数学问题,然后再用数学运算、数学推理予以解决.()数列应用题一般是等比、等差数列问题,其中,等比数列涉及的范围比较广,如经济上涉及利润、成本、效益的增减,解决该类题的关键是建立一个数列模型{},利用该数列的通项公式、递推公式或前项和公式.热点一:等差数列【典例】设公差为的等差数列的前项和为,若,,则当取最大值时,的值为.【答案】【考点定位】等差数列的性质、等差数列的前项和【题型概述】等差数列是高考的必考内容,可以填空题单独出现,也可在解答题中与函数、不等式结合进行考查,处理时可回归基本量构造方程组,有时也要考虑与一元一次函数和一元二次函数相结合,体现出数列的函数特征.【跟踪练习】在等差数列中,首项,公差,若某学生对其连续项求和,在遗漏一项的情况下,求得余下项的和为,则此连续项的和为.【答案】。
步步高高三复习题库 第4讲 数列求和 精品

第4讲 数列求和一、选择题1.等差数列{a n }的通项公式为a n =2n +1,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项的和为( ) A.120B.70C.75D.100解析 因为S nn =n +2,所以⎩⎨⎧⎭⎬⎫S n n 的前10项和为10×3+10×92=75.答案 C2.(2017·杭州调研)数列{a n }的前n 项和为S n ,已知S n =1-2+3-4+…+(-1)n -1·n ,则S 17=( ) A.9B.8C.17D.16解析 S 17=1-2+3-4+5-6+…+15-16+17=1+(-2+3)+(-4+5)+(-6+7)+…+(-14+15)+(-16+17)=1+1+1+…+1=9. 答案 A3.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( ) A.200B.-200C.400D.-400解析 S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200. 答案 B4.(2017·高安中学模拟)已知数列5,6,1,-5,…,该数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前16项之和S 16等于( ) A.5B.6C.7D.16解析 根据题意这个数列的前7项分别为5,6,1,-5,-6,-1,5,6,发现从第7项起,数字重复出现,所以此数列为周期数列,且周期为6,前6项和为5+6+1+(-5)+(-6)+(-1)=0.又因为16=2×6+4,所以这个数列的前16项之和S 16=2×0+7=7.故选C. 答案 C5.已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N *),则S 2 016=( ) A.22 016-1B.3·21 008-3C.3·21 008-1D.3·21 007-2解析 a 1=1,a 2=2a 1=2,又a n +2·a n +1a n +1·a n =2n +12n =2.∴a n +2a n =2.∴a 1,a 3,a 5,…成等比数列;a 2,a 4,a 6,…成等比数列,∴S 2 016=a 1+a 2+a 3+a 4+a 5+a 6+…+a 2 015+a 2 016 =(a 1+a 3+a 5+…+a 2 015)+(a 2+a 4+a 6+…+a 2 016) =1-21 0081-2+2(1-21 008)1-2=3·21 008-3.故选B.答案 B 二、填空题6.(2017·嘉兴一中检测)有穷数列1,1+2,1+2+4,…,1+2+4+…+2n -1所有项的和为________.解析 由题意知所求数列的通项为1-2n 1-2=2n -1,故由分组求和法及等比数列的求和公式可得和为2(1-2n )1-2-n =2n +1-2-n .答案 2n +1-2-n7.(2016·宝鸡模拟)数列{a n }满足a n +a n +1=12(n ∈N *),且a 1=1,S n 是数列{a n }的前n 项和,则S 21=________.解析 由a n +a n +1=12=a n +1+a n +2,∴a n +2=a n , 则a 1=a 3=a 5=…=a 21,a 2=a 4=a 6=…=a 20, ∴S 21=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 20+a 21) =1+10×12=6. 答案 68.(2017·安阳二模)已知数列{a n }中,a n =-4n +5,等比数列{b n }的公比q 满足q =a n -a n -1(n ≥2)且b 1=a 2,则|b 1|+|b 2|+|b 3|+…+|b n |=________.解析 由已知得b 1=a 2=-3,q =-4,∴b n =(-3)×(-4)n -1,∴|b n |=3×4n -1,即{|b n |}是以3为首项,4为公比的等比数列,∴|b 1|+|b 2|+…+|b n |=3(1-4n )1-4=4n -1.答案 4n -1 三、解答题9.(2016·北京卷)已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4.(1)求{a n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和.解 (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q , 由⎩⎨⎧b 2=b 1q =3,b 3=b 1q 2=9得⎩⎨⎧b 1=1,q =3. ∴b n =b 1q n -1=3n -1,又a 1=b 1=1,a 14=b 4=34-1=27, ∴1+(14-1)d =27,解得d =2.∴a n =a 1+(n -1)d =1+(n -1)×2=2n -1(n =1,2,3,…). (2)由(1)知a n =2n -1,b n =3n -1,因此c n =a n +b n =2n -1+3n -1. 从而数列{c n }的前n 项和S n =1+3+…+(2n -1)+1+3+…+3n -1 =n (1+2n -1)2+1-3n 1-3=n 2+3n -12.10.(2017·贵阳一模)已知数列{a n }的前n 项和是S n ,且S n +12a n =1(n ∈N *). (1)求数列{a n }的通项公式;(2)设b n =log 13(1-S n +1)(n ∈N *),令T n =1b 1b 2+1b 2b 3+…+1b n b n +1,求T n .解 (1)当n =1时,a 1=S 1,由S 1+12a 1=1,得a 1=23, 当n ≥2时,S n =1-12a n ,S n -1=1-12a n -1, 则S n -S n -1=12(a n -1-a n ),即a n =12(a n -1-a n ),所以a n =13a n -1(n ≥2).故数列{a n }是以23为首项,13为公比的等比数列. 故a n =23·⎝ ⎛⎭⎪⎫13n -1=2·⎝ ⎛⎭⎪⎫13n(n ∈N *). (2)因为1-S n =12a n =⎝ ⎛⎭⎪⎫13n.所以b n =log 13(1-S n +1)=log 13⎝ ⎛⎭⎪⎫13n +1=n +1,因为1b n b n +1=1(n +1)(n +2)=1n +1-1n +2,所以T n =1b 1b 2+1b 2b 3+…+1b n b n +1=⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n +1-1n +2=12-1n +2=n 2(2n +2).11.(2016·郑州模拟)已知数列{a n }的通项公式为a n =1(n +1)n +n n +1(n ∈N *),其前n 项和为S n ,则在数列S 1,S 2,…,S 2 016中,有理数项的项数为( ) A.42B.43C.44D.45解析 a n =1(n +1)n +n n +1=(n +1)n -n n +1[(n +1)n +n n +1][(n +1)n -n n +1] =nn -n +1n +1.所以S n =1-22+⎝ ⎛⎭⎪⎫22-33+⎝ ⎛⎭⎪⎫33-44+…+⎝ ⎛⎭⎪⎫n n -n +1n +1=1-n +1n +1,因此S 3,S 8,S 15…为有理项,又下标3,8,15,…的通项公式为n 2-1(n ≥2), 所以n 2-1≤2 016,且n ≥2,所以2≤n ≤44,所以有理项的项数为43. 答案 B12.(2017·济南模拟)在数列{a n }中,a n +1+(-1)n a n =2n -1,则数列{a n }的前12项和等于( ) A.76B.78C.80D.82解析 因为a n +1+(-1)n a n =2n -1,所以a 2-a 1=1,a 3+a 2=3,a 4-a 3=5,a 5+a 4=7,a 6-a 5=9,a 7+a 6=11,…,a 11+a 10=19,a 12-a 11=21,所以a 1+a 3=2,a 4+a 2=8,…,a 12+a 10=40,所以从第一项开始,依次取两个相邻奇数项的和都等于2,从第二项开始,依次取两个相邻偶数项的和构成以8为首项,以16为公差的等差数列,以上式相加可得,S 12=a 1+a 2+a 3+…+a 12=(a 1+a 3)+(a 5+a 7)+(a 9+a 11)+(a 2+a 4)+(a 6+a 8)+(a 10+a 12)=3×2+8+24+40=78. 答案 B13.(2017·台州调研)已知数列{a n }满足:a 1=2,a n +1=1+a n1-a n ,则a 1a 2a 3…a 15=________;设b n =(-1)n a n ,数列{b n }前n 项的和为S n ,则S 2 016=________.解析 ∵a 1=2,a n +1=1+a n 1-a n ,∴a 2=1+21-2=-3,a 3=1-31+3=-12,a 4=1-121+12=13,a 5=1+131-13=2.∴a 4n +1=2,a 4n +2=-3,a 4n +3=-12,a 4n =13. ∴a 4n +1·a 4n +2·a 4n +3·a 4n =2×(-3)×⎝ ⎛⎭⎪⎫-12×13=1.∴a 1a 2a 3…a 15=a 13a 14a 15=a 1a 2a 3=2×(-3)×⎝ ⎛⎭⎪⎫-12=3.∵b n =(-1)n a n ,∴b 4n +1=-2,b 4n +2=-3,b 4n +3=12,b 4n =13. ∴b 4n +1+b 4n +2+b 4n +3+b 4n =-2-3+12+13=-256. ∴S 2 016=-256×2 0164=-2 100. 答案 3 -2 10014.(2015·山东卷)已知数列{a n }是首项为正数的等差数列,数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n ·a n +1的前n 项和为n2n +1. (1)求数列{a n }的通项公式;(2)设b n =(a n +1)·2a n ,求数列{b n }的前n 项和T n . 解 (1)设数列{a n }的公差为d , 令n =1,得1a 1a 2=13,所以a 1a 2=3.①令n =2,得1a 1a 2+1a 2a 3=25,所以a 2a 3=15.② 解①②得a 1=1,d =2, 所以a n =2n -1.(2)由(1)知b n =2n ·22n -1=n ·4n , 所以T n =1×41+2×42+…+n ×4n , 所以4T n =1×42+2×43+…+n ×4n +1, 两式相减,得-3T n =41+42+…+4n -n ·4n +1 =4(1-4n )1-4-n ·4n +1=1-3n 3×4n +1-43.所以T n =3n -19×4n +1+49=4+(3n -1)4n +19.15.(2016·浙江卷)设数列{a n }的前n 项和为S n ,已知S 2=4,a n +1=2S n +1,n ∈N *. (1)求通项公式a n ;(2)求数列{|a n -n -2|}的前n 项和. 解 (1)由题意得⎩⎨⎧a 1+a 2=4,a 2=2a 1+1,则⎩⎨⎧a 1=1,a 2=3.又当n ≥2时,由a n +1-a n =(2S n +1)-(2S n -1+1)=2a n ,得a n +1=3a n . 所以,数列{a n }的通项公式为a n =3n -1,n ∈N *. (2)设b n =|3n -1-n -2|,n ∈N *,b 1=2,b 2=1, 当n ≥3时,由于3n -1>n +2,故b n =3n -1-n -2,n ≥3. 设数列{b n }的前n 项和为T n ,则T 1=2,T 2=3,当n ≥3时,T n =3+9(1-3n -2)1-3-(n +7)(n -2)2=3n -n 2-5n +112,所以T n =⎩⎪⎨⎪⎧2,n =1,3n -n 2-5n +112,n ≥2,n ∈N *.。
【步步高】高考数学考前3个月(上)专题复习专题三第一讲等差数列与等比数列课件

解 设{an}的首项为 a1,公差为 d,
本 讲 栏
则aa11++32dd+aa11+ +65dd==0-,16,
目 开 关
即aa211+=8-da41d+,12d2=-16,
解得ad1==2-8 或ad1==-8,2,
因此 Sn=-8n+n(n-1)=n(n-9) 或 Sn=8n-n(n-1)=-n(n-9).
本 讲 栏 目 开 关
考点与考题
第一讲
第一讲 等差数列与等比数列
本
讲 栏
【考点整合】
目 开
1.等差数列
关 (1)定义式:an+1-an=d(n∈N*,d 为常数).
(2)通项公式:an=a1+(n-1)d. (3)前 n 项和公式:Sn=na12+an=na1+nn-2 1d.
(4)等差中项公式:2an=an-1+an+1(n∈N*,n≥2).
则 a1+a10=
()
本 A.7
B.5
C.-5
D.-7
讲 栏 目 开
解析 方法一 由题意得aa45+ a6=a7= a1qa41×q3+ a1qa51=q6= a21q29,=-8,
关
∴qa31= =- 1 2,
或q3=-12, a1=-8,
∴a1+a10=a1(1+q9)=-7.
考点与考题
第一讲
故 a2=a1+d=1. 答案 1
题型与方法
第一讲
题型一 等差数列的有关问题
本
讲 题型概述 等差数列是一个重要的数列类型,高考命题主要考
栏
目 查等差数列的概念、基本量的运算及由概念推导出的一些重
开
关 要性质,灵活运用这些性质解题,可达到避繁就简的目的.
题型与方法
【2022高考数学一轮复习(步步高)】第1节 数列的概念与简单表示法

第1节数列的概念与简单表示法考试要求 1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式);2.了解数列是自变量为正整数的一类特殊函数.知识梳理1.数列的定义按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.2.数列的分类分类标准类型满足条件项数有穷数列项数有限无穷数列项数无限项与项间的大小关系递增数列a n+1>a n其中n∈N*递减数列a n+1<a n常数列a n+1=a n摆动数列从第二项起,有些项大于它的前一项,有些项小于它的前一项的数列数列有三种表示法,它们分别是列表法、图象法和解析法.4.数列的通项公式(1)通项公式:如果数列{a n}的第n项a n与序号n之间的关系可以用一个式子a n =f(n)来表示,那么这个公式叫做这个数列的通项公式.(2)递推公式:如果已知数列{a n}的第1项(或前几项),且从第二项(或某一项)开始的任一项a n与它的前一项a n-1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.[常用结论与微点提醒]1.数列的最大(小)项,可以用⎩⎨⎧a n ≥a n -1,a n ≥a n +1(n ≥2,n ∈N *)⎝ ⎛⎭⎪⎫⎩⎨⎧a n ≤a n -1,a n ≤a n +1(n ≥2,n ∈N *)求,也可以转化为函数的最值问题或利用数形结合求解.2.数列是按一定“次序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关.3.易混项与项数的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.诊 断 自 测1.判断下列结论正误(在括号内打“√”或“×”)(1)相同的一组数按不同顺序排列时都表示同一个数列.( ) (2)1,1,1,1,…,不能构成一个数列.( ) (3)任何一个数列不是递增数列,就是递减数列.( )(4)如果数列{a n }的前n 项和为S n ,则对任意n ∈N *,都有a n +1=S n +1-S n .( ) 解析 (1)数列:1,2,3和数列:3,2,1是不同的数列. (2)数列中的数是可以重复的,可以构成数列. (3)数列可以是常数列或摆动数列. 答案 (1)× (2)× (3)× (4)√2.(老教材必修5P33T4改编)在数列{a n }中,a 1=1,a n =1+(-1)na n -1(n ≥2),则a 5等于( ) A.32B.53C.85D.23解析 a 2=1+(-1)2a 1=2,a 3=1+(-1)3a 2=12, a 4=1+(-1)4a 3=3,a 5=1+(-1)5a 4=23. 答案 D3.(老教材必修5P33T5改编)根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式a n =________.…解析 由a 1=1=5×1-4,a 2=6=5×2-4,a 3=11=5×3-4,…,归纳a n =5n -4. 答案 5n -44.(2020·北京朝阳区月考)数列0,1,0,-1,0,1,0,-1,…的一个通项公式a n 等于( ) A.(-1)n +12B.cos n π2C.cosn +12πD.cosn +22π解析 令n =1,2,3,…,逐一验证四个选项,易得D 正确. 答案 D5.(2019·济南一模)设数列{a n }的前n 项和为S n ,且S n =a 1(4n -1)3,若a 4=32,则a 1=________.解析 由题意,得a 4=S 4-S 3=32. 即255a 13-63a 13=32,解得a 1=12. 答案 126.(2020·成都诊断)数列{a n }中,a n =-n 2+11n (n ∈N *),则此数列最大项的值是________.解析 a n =-n 2+11n =-⎝ ⎛⎭⎪⎫n -1122+1214,∵n ∈N *,∴当n =5或n =6时,a n 取最大值30. 答案 30考点一 由a n 与S n 的关系求通项【例1】 (1)(2019·广州质检)已知数列{a n }的前n 项和S n =2n 2-3n ,则a n =________.(2)(2020·德州模拟)已知数列{a n }的前n 项和为S n ,且a 1=1,S n =13a n +1-1,则数列{a n }的通项公式为________. 解析 (1)a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合此等式,∴a n =4n -5.(2)由a 1=1,S n =13a n +1-1可得a 1=13a 2-1=1,解得a 2=6,当n ≥2时,S n -1=13a n -1,又S n =13a n +1-1,两式相减可得a n =S n -S n -1=13a n +1-13a n ,即a n +1=4a n (n ≥2),则a n =6·4n -2,又a 1=1不符合上式, 所以a n =⎩⎨⎧1,n =1,6·4n -2,n ≥2.答案 (1)4n -5 (2)a n =⎩⎨⎧1,n =1,6·4n -2,n ≥2规律方法 数列的通项a n 与前n 项和S n 的关系是a n =⎩⎨⎧S 1,n =1,S n -S n -1,n ≥2.①当n =1时,a 1若适合S n -S n -1,则n =1的情况可并入n ≥2时的通项a n ;②当n =1时,a 1若不适合S n -S n -1,则用分段函数的形式表示.【训练1】 (1)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n ,则a n =________. (2)(2018·全国Ⅰ卷)记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6=________. 解析 (1)因为a 1+3a 2+…+(2n -1)a n =2n , 故当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1). 两式相减得(2n -1)a n =2, 所以a n =22n -1(n ≥2).又由题设可得a 1=2,满足上式,从而{a n }的通项公式为a n =22n -1(n ∈N *).(2)由S n =2a n +1,得a 1=2a 1+1,所以a 1=-1. 当n ≥2时,a n =S n -S n -1=2a n +1-(2a n -1+1), 得a n =2a n -1.∴数列{a n }是首项为-1,公比为2的等比数列. ∴S 6=a 1(1-q 6)1-q =-(1-26)1-2=-63.答案 (1)22n -1(n ∈N *) (2)-63 考点二 由数列的递推关系求通项多维探究角度1 累加法——形如a n +1-a n =f (n ),求a n【例2-1】 在数列{a n }中,a 1=2,a n +1=a n +ln ⎝ ⎛⎭⎪⎫1+1n ,则a n 等于( )A.2+ln nB.2+(n -1)ln nC.2+n ln nD.1+n +ln n解析 因为a n +1-a n =ln n +1n =ln(n +1)-ln n , 所以a 2-a 1=ln 2-ln 1, a 3-a 2=ln 3-ln 2, a 4-a 3=ln 4-ln 3, ……a n -a n -1=ln n -ln(n -1)(n ≥2).把以上各式分别相加得a n -a 1=ln n -ln 1, 则a n =2+ln n (n ≥2),且a 1=2也适合, 因此a n =2+ln n (n ∈N *). 答案 A角度2 累乘法——形如a n +1a n=f (n ),求a n【例2-2】 若a 1=1,na n -1=(n +1)a n (n ≥2),则数列{a n }的通项公式a n =________.解析 由na n -1=(n +1)a n (n ≥2),得a n a n -1=nn +1(n ≥2).所以a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 3a 2·a 2a 1·a 1=n n +1·n -1n ·n -2n -1·…·34·23·1=2n +1(n ≥2),又a 1也满足上式,所以a n =2n +1.答案2n +1角度3 构造法——形如a n +1=Aa n +B (A ≠0且A ≠1,B ≠0),求a n【例2-3】 (2020·青岛模拟)已知数列{a n }满足a 1=1,a n +1=3a n +2(n ∈N *),则数列{a n }的通项公式为________.解析 由a n +1=3a n +2,得a n +1+1=3(a n +1), ∴数列{a n +1}是首项为2,公比为3的等比数列, ∴a n +1=2·3n -1,∴a n =2·3n -1-1. 答案 a n =2·3n -1-1角度4 取倒数法——形如a n +1=Aa n Ba n +C(A ,B ,C 为常数),求a n【例2-4】 已知数列{a n }中,a 1=1,a n +1=2a na n +2(n ∈N *),则数列{a n }的通项公式为________.解析 因为a n +1=2a n a n +2,a 1=1,所以a n ≠0,所以1a n +1=1a n +12,即1a n +1-1a n=12.又a 1=1,则1a 1=1,所以⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公差的等差数列.所以1a n =1a 1+(n-1)×12=n 2+12.所以a n =2n +1.答案 a n =2n +1规律方法 由数列的递推关系求通项公式的常用方法 (1)已知a 1,且a n -a n -1=f (n ),可用“累加法”求a n . (2)已知a 1(a 1≠0),且a na n -1=f (n ),可用“累乘法”求a n .(3)已知a 1,且a n +1=qa n +b ,则a n +1+k =q (a n +k )(其中k 可用待定系数法确定),可转化为{a n +k }为等比数列.(4)形如a n +1=Aa n Ba n +C (A ,B ,C 为常数)的数列,将其变形为1a n +1=C A ·1a n +BA ,①若A =C ,则⎩⎨⎧⎭⎬⎫1a n 是等差数列,且公差为BA ,②若A ≠C ,则采用待定系数法构造新数列求解.【训练2】 (1)(角度1)在数列{a n }中,若a 1=3,a n +1=a n +1n (n +1),则通项公式a n =________.(2)(角度2)已知a 1=2,a n +1=2n a n ,则数列{a n }的通项公式a n =________. (3)(角度3)已知数列{a n }中,a 1=3,且点P n (a n ,a n +1)(n ∈N *)在直线4x -y +1=0上,则数列{a n }的通项公式a n =________.(4)(多填题)(角度4)已知数列{a n }满足a 1=1,a n +1=a n a n +2(n ∈N *),且1a n +1+1=A ⎝ ⎛⎭⎪⎫1a n +1,则A =________,数列{a n }的通项公式为________. 解析 (1)原递推公式可化为a n +1=a n +1n -1n +1,则a 2=a 1+1-12,a 3=a 2+12-13,a 4=a 3+13-14,…,a n -1=a n -2+1n -2-1n -1,a n =a n -1+1n -1-1n ,累计相加得,a n =a 1+1-1n ,又n =1时也适合,故a n =4-1n .(2)∵a n +1=2na n ,∴a n +1a n=2n ,当n ≥2时,a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=2n -1·2n -2·…·2·2=2n 2-n +22.又a 1=2也符合上式,∴a n =2n 2-n +22.(3)因为点P n (a n ,a n +1)(n ∈N *)在直线4x -y +1=0上, 所以4a n -a n +1+1=0.所以a n +1+13=4⎝ ⎛⎭⎪⎫a n +13.因为a 1=3,所以a 1+13=103.故数列⎩⎨⎧⎭⎬⎫a n +13是首项为103,公比为4的等比数列.所以a n +13=103×4n -1,故数列{a n }的通项公式为a n =103×4n -1-13.(4)由a n +1=a n a n +2,得1a n +1=1+2a n ,所以1a n +1+1=2⎝ ⎛⎭⎪⎫1+1a n ,故A =2,且⎩⎨⎧⎭⎬⎫1a n +1是首项为1a 1+1=2,公比为2的等比数列,则1a n+1=2n ,则a n =12n -1.答案 (1)4-1n (2)2n 2-n +22(3)103×4n -1-13(4)2 a n =12n -1考点三 数列的性质【例3】 (1)(2019·宜春期末)已知函数f (x )=⎩⎪⎨⎪⎧x +12,x ≤12,2x -1,12<x <1,x -1,x ≥1,若数列{a n}满足a 1=73,a n +1=f (a n )(n ∈N *),则a 2 019=( ) A.73B.43C.56D.13(2)(2020·衡水中学一调)已知数列{a n }的前n 项和S n =⎩⎨⎧2n -1,n ≤4,-n 2+(m -1)n ,n ≥5.若a 5是{a n }中的最大值,则实数m 的取值范围是________.解析 (1)由题意,知a 2=f ⎝ ⎛⎭⎪⎫73=43,a 3=f ⎝ ⎛⎭⎪⎫43=13,a 4=f ⎝ ⎛⎭⎪⎫13=56,a 5=f ⎝ ⎛⎭⎪⎫56=23,a 6=f ⎝ ⎛⎭⎪⎫23=13,a 7=f ⎝ ⎛⎭⎪⎫13=56,……,故数列{a n }从第三项起构成周期数列,且周期为3,故a 2 019=a 3=13.故选D.(2)因为S n =⎩⎨⎧2n -1,n ≤4,-n 2+(m -1)n ,n ≥5, 所以当2≤n ≤4时,a n =S n -S n -1=2n -1; 当n =1时,a 1=S 1=1也满足上式; 当n ≥6时,a n =S n -S n -1=-2n +m , 当n =5时,a 5=S 5-S 4=5m -45,综上,a n =⎩⎨⎧2n -1,n ≤4,5m -45,n =5,-2n +m ,n ≥6,因为a 5是{a n }中的最大值,所以有5m -45≥8且5m -45≥-12+m ,解得m ≥535. 答案 (1)D (2)⎣⎢⎡⎭⎪⎫535,+∞规律方法 1.在数学命题中,以数列为载体,常考查周期性、单调性.2.(1)研究数列的周期性,常由条件求出数列的前几项,确定周期性,进而利用周期性求值.(2)数列的单调性只需判定a n 与a n +1的大小,常用比差或比商法进行判断.【训练3】 (1)已知数列{a n }满足a n +1=11-a n ,若a 1=12,则a 2 021=( )A.-1B.12C.1D.2(2)已知等差数列{a n }的公差d <0,且a 21=a 211,则数列{a n }的前n 项和S n 项取得最大值时,项数n 的值为( ) A.5B.6C.5或6D.6或7解析 (1)由a 1=12,a n +1=11-a n 得a 2=2,a 3=-1,a 4=12,a 5=2,…,可知数列{a n }是以3为周期的数列,因此a 2 021=a 3×673+2=a 2=2.(2)由a 21=a 211,可得(a 1+a 11)(a 1-a 11)=0,因为d <0,所以a 1-a 11≠0,所以a 1+a 11=0, 又2a 6=a 1+a 11,所以a 6=0. 因为d <0,所以{a n }是递减数列,所以a 1>a 2>…>a 5>a 6=0>a 7>a 8>…,显然前5项和或前6项和最大,故选C. 答案 (1)D (2)CA 级 基础巩固一、选择题1.(多选题)已知数列的前4项为2,0,2,0,则依此归纳该数列的通项可能是( ) A.a n =(-1)n -1+1 B.a n =⎩⎨⎧2,n 为奇数,0,n 为偶数C.a n =2sin n π2D.a n =cos(n -1)π+1解析 对n =1,2,3,4进行验证,a n =2sin n π2不合题意,其他都可能. 答案 ABD2.已知数列{a n }满足:任意m ,n ∈N *,都有a n ·a m =a n +m ,且a 1=12,那么a 5=( ) A.132B.116C.14D.12解析 由题意,得a 2=a 1a 1=14,a 3=a 1·a 2=18,则a 5=a 3·a 2=132. 答案 A3.(2020·江西重点中学盟校联考)在数列{a n }中,a 1=-14,a n =1-1a n -1(n ≥2,n ∈N *),则a 2 019的值为( ) A.-14B.5C.45D.54解析 在数列{a n }中,a 1=-14,a n =1-1a n -1(n ≥2,n ∈N *),所以a 2=1-1-14=5,a 3=1-15=45,a 4=1-145=-14,所以{a n }是以3为周期的周期数列,所以a 2019=a 673×3=a 3=45.答案 C4.已知数列{a n }的前n 项和为S n ,且a 1=2,a n +1=S n +1(n ∈N *),则S 5=( ) A.31B.42C.37D.47解析 由题意,得S n +1-S n =S n +1(n ∈N *),∴S n +1+1=2(S n +1)(n ∈N *),故数列{S n +1}为等比数列,其首项为3,公比为2,则S 5+1=3×24,所以S 5=47. 答案 D5.(2020·山东重点高中联考)已知数列{a n }的首项a 1=35,且满足a n -a n -1=2n -1(n ∈N *,n ≥2),则a nn 的最小值为( ) A.234B.595C.353D.12解析 数列{a n }的首项a 1=35,且满足a n -a n -1=2n -1(n ∈N *,n ≥2),可得a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=34+(1+3+5+…+2n -1)=34+ 12n (1+2n -1)=34+n 2(n ≥2),当n =1时,a 1=35符合上式,故a n =34+n 2(n ∈N *),则a n n =n +34n ≥234,等号成立时n =34n ,解得n =34,n 不为正整数,由于n 为正整数,所以n =5时,5+345=595;n =6时,6+346=353<595.则a n n的最小值为353,故选C. 答案 C 二、填空题6.已知S n =3n +2n +1,则a n =________________. 解析 因为当n =1时,a 1=S 1=6; 当n ≥2时,a n =S n -S n -1=(3n +2n +1)-[3n -1+2(n -1)+1]=2·3n -1+2, 由于a 1不适合此式, 所以a n =⎩⎨⎧6,n =1,2·3n -1+2,n ≥2.答案 ⎩⎨⎧6,n =1,2·3n -1+2,n ≥27.(2019·汕头一模)已知数列{a n }的前n 项和为S n ,已知a 1=1,a 2=2,且a n +2=3S n -S n +1+3(n ∈N *),则S 10=________________. 解析 因为a n +2=3S n -S n +1+3, 所以S n +2-S n +1=3S n -S n +1+3,整理得S n +2=3S n +3,即S n +2+32=3⎝ ⎛⎭⎪⎫S n +32,又S 2=a 1+a 2=3,所以S 10+32=S 10+32S 8+32·S 8+32S 6+32·S 6+32S 4+32·S 4+32S 2+32·⎝ ⎛⎭⎪⎫S 2+32,即S 10=S 10+32S 8+32·S 8+32S 6+32·S 6+32S 4+32·S 4+32S 2+32·⎝ ⎛⎭⎪⎫S 2+32-32=363.答案 3638.(2020·河北省级示范性高中联考)数列{a n }满足a 1=3,且对于任意的n ∈N *都有a n +1-a n =n +2,则a 39=________. 解析 因为a n +1-a n =n +2,所以a 2-a 1=3,a 3-a 2=4,a 4-a 3=5,……, a n -a n -1=n +1(n ≥2),上面(n -1)个式子左右两边分别相加 得a n -a 1=(n +4)(n -1)2(n ≥2),即a n =(n +1)(n +2)2(n ≥2),当n =1时,a 1=3适合上式,所以a n =(n +1)(n +2)2,n ∈N *,所以a 39=820.答案 820 三、解答题9.已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0. (1)求a 2,a 3; (2)求{a n }的通项公式.解 (1)由题意得a 2=12,a 3=14. (2)由a 2n -(2a n +1-1)a n -2a n +1=0得 2a n +1(a n +1)=a n (a n +1).因为{a n }的各项都为正数,所以a n +1a n=12.故{a n }是首项为1,公比为12的等比数列,因此a n =12n -1.10.设数列{a n }的前n 项和为S n .已知a 1=a (a ≠3),a n +1=S n +3n ,n ∈N *,设b n =S n -3n .(1)求数列{b n }的通项公式;(2)若a n +1≥a n ,n ∈N *,求a 的取值范围. 解 (1)依题意,S n +1-S n =a n +1=S n +3n , 即S n +1=2S n +3n ,由此得S n +1-3n +1=2(S n -3n ), 即b n +1=2b n ,又b 1=S 1-3=a -3,所以数列{b n }的通项公式为b n =(a -3)2n -1,n ∈N *. (2)由(1)知S n =3n +(a -3)2n -1,n ∈N *, 于是,当n ≥2时,a n =S n -S n -1=3n +(a -3)2n -1-3n -1-(a -3)2n -2 =2×3n -1+(a -3)2n -2, a n +1-a n =4×3n -1+(a -3)2n -2=2n -2⎣⎢⎡⎦⎥⎤12⎝ ⎛⎭⎪⎫32n -2+a -3, 当n ≥2时,a n +1≥a n ⇒12⎝ ⎛⎭⎪⎫32n -2+a -3≥0⇒a ≥-9.又a 2=a 1+3>a 1.综上,a 的取值范围是[-9,3)∪(3,+∞).B 级 能力提升11.(2019·晋中高考适应性调研)“中国剩余定理”又称“孙子定理”.1852年,英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得到的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1至2 020这2 020个数中,能被3除余1且被7除余1的数按从小到大的顺序排成一列,构成数列{a n },则此数列共有( ) A.98项B.97项C.96项D.95项解析 能被3除余1且被7除余1的数就只能是被21除余1的数,故a n =21n -20,由1≤a n ≤2 020得1≤n ≤97321,又n ∈N *,故此数列共有97项. 答案 B12.(2020·邵阳月考)已知数列{a n }的通项为a n =2n +3(n ∈N *),数列{b n }的前n 项和为S n =3n 2+7n2(n ∈N *),若这两个数列的公共项顺次构成一个新数列{c n },则满足c n <2 020的n 的最大整数值为( ) A.338B.337C.336D.335解析 对于{b n },当n =1时,b 1=S 1=5,当n ≥2时,b n =S n -S n -1=3n 2+7n2-3(n -1)2+7(n -1)2=3n +2,它和数列{a n }的公共项构成的新数列{c n }是首项为5,公差为6的等差数列,则c n =6n -1,令c n <2 020,可得n <33656,因为n ∈N *,所以n 的最大值为336. 答案 C13.(2020·青岛调研)已知数列{a n },a 1=2,S n 为数列{a n }的前n 项和,且对任意n ≥2,都有2a na n S n -S 2n=1,则{a n }的通项公式为________________.解析 n ≥2时,由2a n a n S n -S 2n =1⇒2(S n -S n -1)(S n -S n -1)S n -S 2n=2(S n -S n -1)-S n -1S n =1⇒1S n -1S n -1=12.又1S 1=1a 1=12,∴⎩⎨⎧⎭⎬⎫1S n 是以12为首项,12为公差的等差数列. ∴1S n=n 2,∴S n =2n ,当n ≥2时,a n =S n -S n -1=2n -2n -1=-2n (n -1),当n =1时,a 1=2,所以a n =⎩⎪⎨⎪⎧2,n =1,-2n (n -1),n ≥2. 答案 a n =⎩⎪⎨⎪⎧2,n =1,-2n (n -1),n ≥2 14.已知数列{a n }中,a n =1+1a +2(n -1)(n ∈N *,a ∈R 且a ≠0).(1)若a =-7,求数列{a n }中的最大项和最小项的值; (2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围. 解 (1)∵a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0),又a =-7,∴a n =1+12n -9(n ∈N *).结合函数f (x )=1+12x -9的单调性,可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n ∈N *).∴数列{a n }中的最大项为a 5=2,最小项为a 4=0. (2)a n =1+1a +2(n -1)=1+12n -2-a2,已知对任意的n ∈N *,都有a n ≤a 6成立, 结合函数f (x )=1+12x -2-a 2的单调性,可知5<2-a2<6,即-10<a <-8. 即a 的取值范围是(-10,-8).C 级 创新猜想15.(多选题)已知数列{a n }的通项为a n =⎝ ⎛⎭⎪⎫23n -1·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫23n -1-1,则下列表述正确的是( )A.最大项为0B.最大项不存在C.最小项为-14D.最小项为-2081 解析 由题意得a 1=⎝ ⎛⎭⎪⎫231-1×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫231-1-1=1×(1-1)=0,当n >1时,0<⎝ ⎛⎭⎪⎫23n -1<1,⎝ ⎛⎭⎪⎫23n -1-1<0,∴a n =⎝ ⎛⎭⎪⎫23n -1·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫23n -1-1<0,∴{a n }的最大项为a 1=0.a 2=⎝ ⎛⎭⎪⎫232-1×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫232-1-1=23×⎝ ⎛⎭⎪⎫23-1=-29,a 3=⎝ ⎛⎭⎪⎫233-1×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫233-1-1=49×⎝ ⎛⎭⎪⎫49-1=-2081,a 4=⎝ ⎛⎭⎪⎫234-1×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫234-1-1=827×⎝⎛⎭⎪⎫827-1=-152729,a n +1-a n =⎝ ⎛⎭⎪⎫23n +1-1×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫23n +1-1-1-⎝ ⎛⎭⎪⎫23n -1×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫23n -1-1=⎝ ⎛⎭⎪⎫23n -1×3n -1-56×2n3n=⎝ ⎛⎭⎪⎫23n -1⎣⎢⎡⎦⎥⎤13-56⎝ ⎛⎭⎪⎫23n,∴当n ≥3时,a n +1-a n >0;当n <3时,a n +1-a n <0.∴{a n }的最小项为a 3=-2081,故选AD. 答案 AD16.(新背景题)(2019·福州二模)一元线性同余方程组问题最早可见于中国南北朝时期(公元5世纪)的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”问题,原文如下:有物不知数,三三数之剩二,五五数之剩三,问物几何?即一个整数除以三余二,除以五余三,求这个整数.设这个整数为a ,当a ∈[2,2 019]时,符合条件的a 共有________个.解析 法一 由题设a =3m +2=5n +3,m ,n ∈N , 则3m =5n +1,m ,n ∈N ,当m =5k 时,n 不存在;当m =5k +1时,n 不存在; 当m =5k +2时,n =3k +1,满足题意; 当m =5k +3时,n 不存在; 当m =5k +4时,n 不存在.其中k ∈N .故2≤a =15k +8≤2 019,解得-615≤k ≤2 01115, 则k =0,1,2,…,134,共135个. 即符合条件的a 共有135个,故答案为135.法二一个整数除以三余二,这个整数可以为2,5,8,11,14,17,20,23,26,29,32,35,38,…,一个整数除以五余三,这个整数可以为3,8,13,18,23,28,33,38,…,则同时除以三余二、除以五余三的整数为8,23,38,…,构成首项为8,公差为15的等差数列,通项公式为a n=8+15(n-1)=15n-7,由15n-7≤2 019得15n≤2 026,n≤135 1 15,因为n∈N*,所以n=1,2,3,…,135,共有135个. 答案135。
【步步高】高考数学 考前三个月抢分训练9 数列.doc
训练9 数 列1.(·重庆改编)在等差数列{a n }中,a 2=2,a 3=4,则a 10=________.2.(·江西改编)设{a n }为等差数列,公差d =-2,S n 为其前n 项和,若S 10=S 11,则a 1=________.3.首项为-24的等差数列{a n }从第10项开始为正数,则公差d 的取值范围是________.4.(·全国Ⅱ改编)如果等差数列{}a n 中,a 3+a 4+a 5=12,那么a 1+a 2+…+a 7=________.5.已知等差数列{a n }的公差d =-2,a 1+a 4+a 7+…+a 97=50,那么a 3+a 6+a 9+…+a 99的值是________.6.已知等比数列{a n }满足a n >0,n =1,2,…,且a 5·a 2n -5=22n (n ≥3),则当n ≥1时,log 2a 1+log 2a 3+…+log 2a 2n -1=________.7.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,以S n 表示数列{a n }的前n 项和,则使得S n 取得最大值的n 是________.8.已知数列{a n }满足a 1=1,a n a n +1=2n (n ∈N *),则a 9+a 10的值为________.9.(·浙江改编)设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2=________.10.数列{a n }的通项公式a n =1n +n +1,若{a n }的前n 项和为24,则n 为________. 11.已知数列{a n }的前n 项和S n 满足log 2(S n +1)=n +1,则数列{a n }的通项公式是________.12.已知数列{a n }中,a 1=0,a n +1=a n +2n ,则a 2 010=________.(可以用式子表示)13.已知数列{a n }的首项a 1=1,且a n =2a n -1+1(n ≥2),则a n =________.14.数列{a n }中,a 1=1,且a 1,a 2-a 1,a 3-a 2,…,a n -a n -1,…是公比为13的等比数列,那么a n =________.答案1.18 2. 3.83<d ≤3 4.28 5.-82 6.n 2 7.8.48 9.-11 10.624 11.a n =⎩⎪⎨⎪⎧ 3, n =12n , n ≥2 12.2 010×2 00913.2n -1 14.32⎝⎛⎭⎪⎫1-13n。
2020步步高高考数学复习资料5数列
第1课时 数列的概念与简单表示法1.数列的有关概念 (1)数列的定义按照一定顺序排列的一列数称为数列.数列中的每一个数叫做这个数列的项.数列有三种表示法,它们分别是列表法、图象法和解析式法. 2.数列的通项公式 (1)数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表达,那么这个公式叫做这个数列的通项公式.(2)已知数列{a n }的前n 项和S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.3.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)a n 与{a n }是不同的概念.(√)(2)所有的数列都有通项公式,且通项公式在形式上一定是唯一的.(×) (3)数列是一种特殊的函数.(√)(4)根据数列的前几项归纳出的数列的通项公式可能不止一个.(√)(5)如果数列{a n }的前n 项和为S n ,则对∀n ∈N *,都有a n +1=S n +1-S n .(√)(6)若已知数列{a n }的递推公式为a n +1=12a n -1,且a 2=1,则可以写出数列{a n }的任何一项.(√)(7)数列:1,0,1,0,1,0,…,通项公式只能是a n =1+(-1)n +12.(×)(8)数列的前n 项和S n =3n 2-2n +1,则a n =6n -5.(×) (9)正奇数的数列的通项公式为a n =2n +1.(×)(10)数列⎩⎨⎧⎭⎬⎫n n -99,只有最大项,无最小项.(×)[例1] 根据数列的前几项,写出下列各数列的一个通项公式. (1)-1,7,-13,19,…; (2)0.8,0.88,0.888,…; (3)12,14,-58,1316,-2932,6164,…; (4)32,1,710,917,…; (5)0,1,0,1,…;(6)9,99,999,999 9,….解:(1)符号问题可通过(-1)n 或(-1)n +1表示,其各项的绝对值的排列规律为:后面的数的绝对值总比前面数的绝对值大6,故通项公式为a n =(-1)n (6n -5).(2)将数列变形为89(1-0.1),89(1-0.01),89(1-0.001),…,∴a n =89⎝⎛⎭⎫1-110n . (3)各项的分母分别为21,22,23,24,…,易看出第2,3,4项的分子分别比分母少3.因此把第1项变为-2-32,原数列可化为-21-321,22-322,-23-323,24-324,…,∴a n =(-1)n ·2n-32n .(4)将数列统一为32,55,710,917,…,对于分子3,5,7,9,…,是序号的2倍加1,可得分子的通项公式为b n =2n +1,对于分母2,5,10,17,…,联想到数列1,4,9,16,…,即数列{}n 2,可得分母的通项公式为c n =n 2+1,因此可得它的一个通项公式为a n =2n +1n 2+1.(5)a n =⎩⎪⎨⎪⎧0 (n 为奇数),1 (n 为偶数).或a n =1+(-1)n 2或a n =1+cos n π2.(6)这个数列的前4项可以写成10-1,100-1,1 000-1,10 000-1,所以它的一个通项公式a n=10n-1.[方法引航] 1.据所给数列的前几项求其通项公式时,需仔细观察分析,抓住以下几方面的特征:(1)分式中分子、分母的特征; (2)相邻项的变化特征; (3)拆项后的特征; (4)各项符号特征.2.观察、分析要有目的,观察出项与项数之间的关系、规律,利用我们熟知的一些基本数列(如自然数列、奇偶数列等)转换而使问题得到解决. 3.判断通项公式是否适合数列,利用代值检验.写出下面各数列的一个通项公式: (1)3,5,7,9,…; (2)12,34,78,1516,3132,…;(3)-1,32,-13,34,-15,36,…;(4)3,33,333,3 333,….解:(1)各项减去1后为正偶数,所以a n =2n +1.(2)每一项的分子比分母少1,而分母组成数列21,22,23,24,…,所以a n =2n -12n .(3)奇数项为负,偶数项为正,故通项公式中含因子(-1)n;各项绝对值的分母组成数列1,2,3,4,…;而各项绝对值的分子组成的数列中,奇数项为1,偶数项为3,即奇数项为2-1,偶数项为2+1,所以a n =(-1)n ·2+(-1)nn.也可写为a n =⎩⎨⎧-1n,n 为正奇数,3n,n 为正偶数.(4)将数列各项改写为93,993,9993,9 9993,…,分母都是3,而分子分别是10-1,102-1,103-1,104-1,…,所以a n =13(10n -1).考点二 a n 与S n 的关系及应用[例2] (1)已知数列{a n }的前n 项和S n =n 2+1,则a n =________. 解析:当n =1时,a 1=S 1=2,当n ≥2时,a n =S n -S n -1=n 2+1-[(n -1)2+1]=2n -1,故a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2.答案:⎩⎪⎨⎪⎧2,n =12n -1,n ≥2(2)已知数列{a n }的首项a 1=2,其前n 项和为S n .若S n +1=2S n +1,则a n =________.解析:由已知S n +1=2S n +1得S n =2S n -1+1(n ≥2),两式相减得a n +1=2a n ,又S 2=a 1+a 2=2a 1+1,得a 2=3,所以数列{a n }从第二项开始为等比数列,因此其通项公式为a n =⎩⎪⎨⎪⎧2, n =1,3·2n -2,n ≥2. 答案:⎩⎪⎨⎪⎧2, n =13·2n -2,n ≥2(3)已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( )A .2n -1 B.⎝⎛⎭⎫32n -1 C.⎝⎛⎭⎫23n -1 D.12n -1 解析:由已知S n =2a n +1得S n =2(S n +1-S n ),即2S n +1=3S n ,S n +1S n =32,而S 1=a 1=1,所以S n=⎝⎛⎭⎫32n -1,故选B. 答案:B[方法引航] 已知S n 求a n 时应注意的问题 (1)应重视分类讨论思想的应用,分n =1和n ≥2两种情况讨论;特别注意a n =S n -S n -1中需n ≥2.(2)由S n -S n -1=a n 推得a n ,当n =1时,a 1也适合“a n 式”,则需统一“合写”.(3)由S n -S n -1=a n ,推得a n ,当n =1时,a 1不适合“a n 式”,则数列的通项公式应分段表示(“分写”),1.将本例(1)的条件S n 改为S n =2n 2-3n ,求a n . 解:a 1=S 1=2-3=-1, 当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合此等式,∴a n =4n -5.2.将本例(2)的条件改为S n =2a n +1,求a n . 解:由S n =2a n +1得 S n -1=2a n -1+1.(n ≥2)∴S n -S n -1=2a n -2a n -1,即a n =2a n -2a n -1 ∴a n =2a n -1,(n ≥2)由题意得,a 1=2a 1+1,∴a 1=-1∴{a n }是以a 1=-1,q =2的等比数列.∴a n =-1×2n -1=-2n -1.3.设S n 是正项数列{a n }的前n 项和,且a n 和S n 满足:4S n =(a n +1)2(n =1,2,3,…),则S n =________.解析:由题意可知,S n =⎝⎛⎭⎫a n 2+122,当n =1时,a 1=1.a n =S n -S n -1=⎝⎛⎭⎫a n 2+122-⎝⎛⎭⎫a n -12+122=⎝⎛⎭⎫a n 2+a n -12+1·⎝⎛⎭⎫a n 2-a n -12 =⎝⎛⎭⎫a 2n -a 2n -14+⎝⎛⎭⎫a n 2-a n -12整理得,a n +a n -12=a 2n -a 2n -14⇒a n -a n -1=2.所以a n =2n -1.解得S n =(1+2n -1)n 2=n 2.答案:n 2[例3] (1)已知数列{a n }满足a 1=0,a 2=1,a n +2=3a n +1-2a n ,则a 5=________. 解析:由已知可得,这个数列的前五项依次为: a 1=0,a 2=1,a 3=3,a 4=7,a 5=15. 答案:15(2)已知数列{a n }满足a n +1=a n +3n +2,且a 1=2,则a n =________. 解析:∵a n +1-a n =3n +2, ∴a n -a n -1=3n -1(n ≥2),∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=(3n -1)+(3n -4)+…+5+2=n (3n +1)2(n ≥2).当n =1时,a 1=2也符合上式,∴a n =32n 2+n 2.答案:32n 2+n 2(3)在数列{a n }中,a 1=1,前n 项和S n =n +23a n,则{a n }的通项公式为________.解析:由题设知,a 1=1.当n >1时,a n =S n -S n -1=n +23a n -n +13a n -1.∴a n a n -1=n +1n -1. ∴a n a n -1=n +1n -1,…,a 4a 3=53,a 3a 2=42,a 2a 1=3.以上n -1个式子的等号两端分别相乘,得到 a n a 1=n (n +1)2, 又∵a 1=1,∴a n =n (n +1)2.答案:n (n +1)2(4)数列{a n }中,a 1=1,a n +1=3a n +2,则它的一个通项公式为a n =________. 解析:∵a n +1=3a n +2,∴a n +1+1=3(a n +1),∴a n +1+1a n +1=3,∴数列{a n +1}为等比数列,公比q =3,又a 1+1=2,∴a n +1=2·3n -1,∴a n =2·3n -1-1.答案:2·3n -1-1[方法引航] 已知数列的递推关系,求数列的通项时,通常用累加、累乘、构造法求解. 当出现a n =a n -1+m 时构造等差数列;当出现a n =xa n -1+y 时,构造等比数列;当出现a n=a n -1+f (n )时,用累加法求解;当出现a na n -1=f (n )时,用累乘法求解.1.如果数列{a n }满足a 1=2,a n +1=a n +2n ,则数列{a n }的通项公式a n =________. 解析:∵a n +1=a n +2n ,∴a n +1-a n =2n . ∴a 2-a 1=2×1; a 3-a 2=2×2; …a n -a n -1=2×(n -1)(n ≥2). 以上各式相加,得:a n -a 1=2[1+2+3+…+(n -1)]=n 2-n .∴a n =n 2-n +a 1=n 2-n +2(n ≥2),a 1=2也适合. ∴a n =n 2-n +2. 答案:n 2-n +22.已知数列{a n }满足a 1=1,a n =n -1n a n -1(n ≥2),则a n =________.解析:(1)∵a n =n -1n a n -1(n ≥2),∴a n -1=n -2n -1a n -2,…,a 2=12a 1.以上(n -1)个式子相乘得a n =a 1·12·23·…·n -1n =a 1n =1n .答案:1n3.(2018·河北保定高三调研)在数列{a n }中,已知a 1=1,a n +1=2a n +1,则其通项公式为a n =( )A .2n -1B .2n -1+1 C .2n -1 D .2n -2解析:选A.由题意知a n +1+1=2(a n +1),∴数列{a n +1}是以2为首项,2为公比的等比数列,∴a n +1=2n ,∴a n =2n -1.[易错警示]数列与函数混淆致误[典例] 已知数列{a n }满足a 1=33,a n +1-a n =2n ,则a nn的最小值为________.[正解] ∵a n +1-a n =2n ,∴a n -a n -1=2(n -1), ∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =(2n -2)+(2n -4)+…+2+33=n 2-n +33(n ≥2), 又a 1=33适合上式,∴a n =n 2-n +33, ∴a n n =n +33n-1. 令f (x )=x +33x -1(x >0),则f ′(x )=1-33x2,令f ′(x )=0得x =33.∴当0<x <33时,f ′(x )<0, 当x >33时,f ′(x )>0,即f (x )在区间(0,33)上递减;在区间(33,+∞)上递增. 又5<33<6,且f (5)=5+335-1=535,f (6)=6+336-1=212,∴f (5)>f (6),∴当n =6时,a n n 有最小值212.[答案] 212[易误] a n n =n +33n-1≥233-1为最小值时,即把n 和x 认为等同的,而此时n =33∈N *是不可以的.[警示] a n =f (n )是n 的函数,其定义域为N *,而不是R .[高考真题体验]1.(2019·高考浙江卷)设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=________,S 5=________.解析:法一:∵a n +1=2S n +1,∴a 2=2S 1+1,即S 2-a 1=2a 1+1,又∵S 2=4,∴4-a 1=2a 1+1,解得a 1=1.又a n +1=S n +1-S n ,∴S n +1-S n =2S n +1,即S n +1=3S n +1,由S 2=4,可求出S 3=13,S 4=40,S 5=121.法二:由a n +1=2S n +1,得a 2=2S 1+1,即S 2-a 1=2a 1+1,又S 2=4,∴4-a 1=2a 1+1,解得a 1=1.又a n +1=S n +1-S n ,∴S n +1-S n =2S n +1,即S n +1=3S n +1,则S n +1+12=3⎝⎛⎭⎫S n +12,又S 1+12=32,∴⎩⎨⎧⎭⎬⎫S n +12是首项为32,公比为3的等比数列,∴S n +12=32×3n -1,即S n =3n -12,∴S 5=35-12=121.答案:1 1212.(2018·高考江苏卷)设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________. 解析:由已知得,a 2-a 1=1+1,a 3-a 2=2+1,a 4-a 3=3+1,…,a n -a n -1=n -1+1(n ≥2),则有a n -a 1=1+2+3+…+n -1+(n -1)(n ≥2),因为a 1=1,所以a n =1+2+3+…+n (n ≥2),即a n =n 2+n 2(n ≥2),又当n =1时,a 1=1也适合上式,故a n =n 2+n2(n ∈N *),所以1a n =2n 2+n =2⎝⎛⎭⎫1n -1n +1,从而1a 1+1a 2+1a 3+…+1a 10=2×⎝⎛⎭⎫1-12+2×⎝⎛⎭⎫12-13+2×⎝⎛⎭⎫13-14+…+2×⎝⎛⎭⎫110-111=2×⎝⎛⎭⎫1-111=2011. 答案:20113.(2013·高考课标全国卷Ⅰ)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式是a n =________.解析:由S n =23a n +13得:当n ≥2时,S n -1=23a n -1+13,∴当n ≥2时,a n =-2a n -1,又n =1时,S 1=a 1=23a 1+13,a 1=1,∴a n =(-2)n -1.答案:(-2)n -14.(2018·高考课标卷Ⅱ)设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =________.解析:由已知得a n +1=S n +1-S n =S n S n +1,两边同时除以S n S n +1得1S n -1S n +1=1,即1S n +1-1S n=-1.又1S 1=-1,所以⎩⎨⎧⎭⎬⎫1S n 是首项为-1,公差为-1的等差数列,所以1S n=-1+(n -1)×(-1)=-n ,即S n =-1n .答案:-1n课时规范训练 A 组 基础演练1.数列0,1,0,-1,0,1,0,-1,…的一个通项公式是a n 等于( ) A.(-1)n +12 B .cos n π2C .cos n +12πD .cos n +22π解析:选D.令n =1,2,3,…,逐一验证四个选项,易得D 正确. 2.设数列{a n }的前n 项和S n =n 2,则a 8的值为( ) A .15 B .16 C .49 D .64 解析:选A.由a 8=S 8-S 7=64-49=15,故选A.3.在数列{a n }中,a 1=1,a n =1a n -1+1,则a 4等于( ) A.53 B.43C .1 D.23解析:选A.由a 1=1,a n =1a n -1+1得,a 2=1a 1+1=2,a 3=1a 2+1=12+1=32,a 4=1a 3+1=23+1=53. 4.若数列{a n }的通项公式是a n =(-1)n (3n -2),则a 1+a 2+…+a 10等于( ) A .15 B .12 C .-12 D .-15 解析:选A.由题意知,a 1+a 2+…+a 10 =-1+4-7+10+…+(-1)10×(3×10-2)=(-1+4)+(-7+10)+…+[(-1)9×(3×9-2)+(-1)10×(3×10-2)] =3×5=15.5.设数列{a n }满足:a 1=2,a n +1=1-1a n,记数列{a n }的前n 项之积为T n ,则T 2 019的值为( )A .-12B .-1C.12D .2 解析:选B.由a 1=2,a 2=12,a 3=-1,a 4=2,a 5=12可知,数列{a n }是周期为3的数列,且a 1·a 2·a 3=-1,从而T 2 019=(-1)673=-1.6.若S n 为数列{a n }的前n 项和,且S n =n n +1,则1a 5等于( )A.56B.65C.130D .30 解析:选D.当n ≥2时,a n =S n -S n -1=n n +1-n -1n =1n (n +1),所以1a 5=5×6=30.7.已知数列{a n }的前n 项和S n 满足:S n +S m =S n +m ,且a 1=1,那么a 10等于( ) A .1 B .9 C .10 D .55 解析:选A.∵S n +S m =S n +m ,a 1=1,∴S 1=1. 可令m =1,得S n +1=S n +1,∴S n +1-S n =1. 即当n ≥1时,a n +1=1,∴a 10=1.8.数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ≥1),则a 6等于( ) A .3×44 B .3×44+1 C .45 D .45+1 解析:选A.当n ≥1时,a n +1=3S n ,则a n +2=3S n +1, ∴a n +2-a n +1=3S n +1-3S n =3a n +1,即a n +2=4a n +1, ∴该数列从第二项开始是以4为公比的等比数列.又a 2=3S 1=3a 1=3,∴a n =⎩⎪⎨⎪⎧1(n =1),3×4n -2(n ≥2). ∴当n =6时,a 6=3×46-2=3×44.9.已知a 1=1,a n =n (a n +1-a n )(n ∈N *),则数列{a n }的通项公式是( )A .2n -1 B.⎝⎛⎭⎫n +1n n -1C .n 2D .n解析:选D.法一:由已知整理得(n +1)a n =na n +1,∴a n +1n +1=a n n,∴数列⎩⎨⎧⎭⎬⎫a n n 是常数列,且a nn =a 11=1,∴a n =n . 法二(累乘法):当n ≥2时,a n a n -1=nn -1.a n -1a n -2=n -1n -2,…,a 3a 2=32,a 2a 1=21,两边分别相乘得a na 1=n .又∵a 1=1,∴a n =n .10.已知数列{a n }的前n 项和S n =2a n -1,则满足a nn≤2的正整数n 的集合为( )A .{1,2}B .{1,2,3,4}C .{1,2,3}D .{1,2,4} 解析:选B.因为S n =2a n -1,所以当n ≥2时, S n -1=2a n -1-1,两式相减得a n =2a n -2a n -1, 整理得a n =2a n -1,所以{a n }是公比为2的等比数列, 又因为a 1=2a 1-1,解得a 1=1,故{a n }的通项公式为a n =2n -1. 而a n n≤2,即2n -1≤2n ,故所有满足的正整数n =1,2,3,4. B 组 能力突破1.将石子摆成如图所示的梯形形状.称数列5,9,14,20,…为“梯形数”.根据图形的构成,此数列的第2 018项与5的差,即a 2 018-5=( )A .2 018×1 012B .2 024×2 017C .1 009×2 018D .1 012×2 017 解析:选D.∵a n -a n -1=n +2(n ≥2),a 1=5.∴a 2 018=(a 2 018-a 2 017)+(a 2 017-a 2 016)+…+(a 2-a 1)+a 1=2 020+2 019+…+4+5=(2 020+4)×2 0172+5=1 012×2 017+5.∴a 2 018-5=1 012×2 017.2.设数列{a n }的前n 项和为S n ,且a 1=1,{S n +na n }为常数列,则a n =( )A.13n -1B.2n (n +1)C.6(n +1)(n +2)D.5-2n 3解析:选B.由题意知,S n +na n =2,当n ≥2时,S n -1+(n -1)a n -1=2,∴(n +1)a n =(n -1)a n-1从而a 2a 1·a 3a 2·a 4a 3·…·a n a n -1=13·24·…·n -1n +1,则a n =2n (n +1),当n =1时上式成立,所以a n =2n (n +1),故选B.3.已知数列{n 2n 2+1},则0.98是它的第________项.解析:n 2n 2+1=0.98=4950,∴n =7.答案:74.已知数列{a n }的前n 项和S n =2n -3,则数列{a n }的通项公式为________.解析:当n ≥2时,a n =S n -S n -1=2n -1,当n =1时,a 1=S 1=-1,所以a n =⎩⎪⎨⎪⎧-1,n =1,2n -1,n ≥2.答案:a n =⎩⎪⎨⎪⎧-1,n =1,2n -1,n ≥25.在数列{a n }中,a 1=1,对于所有的n ≥2,n ∈N *,都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5=________.解析:由题意知:a 1·a 2·a 3·…·a n -1=(n -1)2,∴a n =⎝⎛⎭⎫n n -12(n ≥2),∴a 3+a 5=⎝⎛⎭⎫322+⎝⎛⎭⎫542=6116. 答案:61166.已知数列{a 2n }满足a 1=1,a n +1=a 2n -2a n +1(n ∈N *),则a 2 018=________. 解析:∵a 1=1,∴a 2=(a 1-1)2=0, a 3=(a 2-1)2=1,a 4=(a 3-1)2=0,…,可知数列{a n }是以2为周期的周期数列,∴a 2 018=a 2=0. 答案:0第2课时 等差数列及其前n 项和1.等差数列的定义(1)如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示,定义表达式为a n -a n -1=d (常数)(n ∈N *,n ≥2)或a n +1-a n =d (常数)(n ∈N *). (2)等差中项若三个数a ,A ,b 成等差数列,则A 叫做a 与b 的等差中项,且有A =a +b2.2.等差数列的有关公式 (1)等差数列的通项公式如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是a n =a 1+(n -1)d . (2)等差数列的前n 项和公式设等差数列{a n }的公差为d ,其前n 项和S n =na 1+n (n -1)2d 或S n =n (a 1+a n )2.3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }2d . (4)若{a n },{b n }是等差数列,公差为d ,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列 .(6)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列. (7)S 2n -1=(2n -1)a n .(8)若n 为偶数,则S 偶-S 奇=nd2;若n 为奇数,则S 奇-S 偶=a 中(中间项).4.判断下列结论的正误(正确的打“√”,错误的打“×”)(1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列.(×) (2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.(√) (3)等差数列{a n }的单调性是由公差d 决定的.(√)(4)等差数列的前n 项和公式是常数项为0的二次函数.(×)(5)已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列.(√) (6)在等差数列{a n }中,若a m +a n =a p +a q ,则一定有m +n =p +q .(×) (7)数列{a n },{b n }都是等差数列,则数列{a n +b n }也一定是等差数列.(√)(8)等差数列{a n }的首项为a 1,公差为d ,取出数列中的所有奇数项,组成一个新的数列,一定还是等差数列.(√)(9)数列{a n }满足a n +1-a n =n ,则数列{a n }是等差数列.(×)(10)等差数列{a n }中,a n -1-a n 也是常数,也可以作为公差.(×)[例1] (1)等差数列{a n }n 136等于( ) A .8 B .10 C .12 D .14解析:由题意知a 1=2,由S 3=3a 1+3×22×d =12,解得d =2,所以a 6=a 1+5d =2+5×2=12,故选C. 答案:C(2)在等差数列{a n }中,a 1+a 5=8,a 4=7,则a 5=( ) A .11 B .10 C .7 D .3解析:设数列{a n }的公差为d ,则有⎩⎪⎨⎪⎧ 2a 1+4d =8,a 1+3d =7,解得⎩⎪⎨⎪⎧a 1=-2,d =3,所以a 5=-2+4×3=10.答案:B(3)中位数为1 010的一组数构成等差数列,其末项为2 017,则该数列的首项为________.解析:设数列首项为a 1,则a 1+2 0172=1 010,故a 1=3.答案:3(4)已知等差数列{a n }的公差d >0.设{a n }的前n 项和为S n ,a 1=1,S 2·S 3=36. ①求d 及S n ;②求m ,k (m ,k ∈N *)的值,使得a m +a m +1+a m +2+…+a m +k =65. 解:①由题意知(2a 1+d )(3a 1+3d )=36, 将a 1=1代入上式解得d =2或d =-5. 因为d >0,所以d =2.从而a n =2n -1, S n =n 2(n ∈N *).②由①得a m +a m +1+a m +2+…+a m +k=(2m +k -1)(k +1),所以(2m +k -1)(k +1)=65. 由m ,k ∈N *知2m +k -1≥k +1>1, 故⎩⎪⎨⎪⎧ 2m +k -1=13,k +1=5,解得⎩⎪⎨⎪⎧m =5,k =4. 即所求m 的值为5,k 的值为4.[方法引航] (1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知三求二,体现了方程思想.1.(2018·河北石家庄质检)已知等差数列{a n }满足a 2=3,S n -S n -3=51(n >3),S n =100,则n 的值为( )A .8B .9C .10D .11 解析:选C.由S n -S n -3=51得,a n -2+a n -1+a n =51,所以a n -1=17,又a 2=3,S n =n (a 2+a n -1)2=100,解得n =10.2.数列{a n }为等差数列,公差d =-2,S n 为其前n 项和,若S 10=S 11,则a 1=________.解析:由题意知10a 1+10×92d =11a 1+11×102d .又∵d =-2,∴10a 1-90=11a 1-110, ∴a 1=20. 答案:203.已知一等差数列的前四项和为124,后四项和为156,各项和为210,则此等差数列的项数是__________.解析:设数列{}a n 为该等差数列,依题意得a 1+a n =124+1564=70.∵S n =210,S n =n (a 1+a n )2,∴210=70n2,∴n =6.答案:6 4.(2018·江苏无锡一模)已知数列{a n }中,a 1=1,a 2=2,当整数n >1时,S n +1+S n -1=2(S n +S 1)都成立,则S 15=________.解析:由S n +1+S n -1=2(S n +S 1)得(S n +1-S n )-(S n -S n -1)=2S 1=2,即a n +1-a n =2(n ≥2),所以数列{a n }从第二项起构成等差数列,则S 15=1+2+4+6+8+…+28=211. 答案:211[例2] (1)(2018·河南内黄月考)已知函数y =f (x )对任意的实数x 都有1f (x +2)=1f (x +1)+1,且f (1)=1,则f (2 018)=( )A.12 017B.12 018 C .2 016 D .2 017解析:由已知可得1f (x +2)-1f (x +1)=1,所以⎩⎨⎧⎭⎬⎫1f (n )为等差数列,又1f (1)=1,d =1,则1f (x )=x ,即1f (2 018)=2 018,故f (2 018)=12 018.答案:B(2)已知S n 为等差数列{a n }的前n 项和,b n =S nn(n ∈N *).求证:数列{b n }是等差数列.证明:设等差数列{a n }的公差为d ,则S n =na 1+12n (n -1)d ,∴b n =S n n =a 1+12(n -1)d .法一:b n +1-b n =a 1+12nd -a 1-12(n -1)d =d2(常数),∴数列{b n }是等差数列.法二:b n +1=a 1+12nd ,b n +2=a 1+12(n +1)d ,∴b n +2+b n =a 1+12(n +1)d +a 1+12(n -1)d=2a 1+nd =2b n +1.∴数列{b n }是等差数列.[方法引航] 判定数列{a n }是等差数列的常用方法(1)定义法:对任意n ∈N *,a n +1-a n 是同一个常数;(2)等差中项法:对任意n ≥2,n ∈N *,满足2a n =a n +1+a n -1;(3)通项公式法:数列的通项公式a n 是n 的一次函数;(4)前n 项和公式法:数列的前n 项和公式S n 是n 的二次函数,且常数项为0.1.在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项为( )A .a n =1nB . a n =2n +1C .a n =2n +2D .a n =3n解析:选A.由题意可知1a n +1是1a n 与1a n +2的等差中项,∴⎩⎨⎧⎭⎬⎫1a n 是以1为首项,公差d =1a 2-1a 1=2-1=1的等差数列.∴1a n =1+(n -1)×1=n ,∴a n =1n选A. 2.已知数列{a n }的前n 项和为S n ,且满足a 1=12,a n =-2S n S n -1(n ≥2).(1)求证:数列⎩⎨⎧⎭⎬⎫1S n 是等差数列;(2)求S n 和a n .解:(1)证明:当n ≥2时, a n =S n -S n -1=-2S n S n -1,① ∵S 1=a 1≠0,由递推关系知S n ≠0(n ∈N *),由①式得1S n -1S n -1=2(n ≥2).∴⎩⎨⎧⎭⎬⎫1S n 是首项为1S 1=1a 1=2,公差为2的等差数列.(2)由(1)知1S n =2+2(n -1)=2n ,∴S n =12n.当n ≥2时,a n =S n -S n -1=-12n (n -1),当n =1时,a 1=S 1=12不适合上式,∴a n =⎩⎨⎧12,n =1,-12n (n -1),n ≥2.[例3] (1)(2019·n 10=8,则a 100=( )A .100B .99C .98D .97 解析:∵{a n }是等差数列,设其公差为d ,S 9=9(a 1+a 9)2=9a 5=27,∴a 5=3,又∵a 10=8,∴d =a 10-a 55=8-35=1∴a 100=a 5+(n -5)×d =3+(100-5)×1=98. 答案:C(2)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________.解析:利用等差数列的性质可得a 3+a 7=a 4+a 6=2a 5,从而a 3+a 4+a 5+a 6+a 7=5a 5=25,故a 5=5,所以a 2+a 8=2a 5=10. 答案:10(3)在等差数列{a n }中,a 1=29,S 10=S 20,则数列{a n }的前n 项和S n 的最大值为( ) A .S 15 B .S 16 C .S 15或S 16 D .S 17 解析:∵a 1=29,S 10=S 20,∴10a 1+10×92d =20a 1+20×192d ,解得d =-2,∴S n =29n +n (n -1)2×(-2)=-n 2+30n =-(n -15)2+225.∴当n =15时,S n 取得最大值. 答案:A[方法引航] 1.根据题意分析选用等差数列的性质,若涉及通项a n ,则选用通项的有关性质,若涉及前n 项和S n ,则选用S n 的性质 2.求等差数列前n 项和的最值的方法(1)运用配方法转化为二次函数,借助二次函数的单调性以及数形结合的思想,从而使问题得解.(2)通项公式法:求使a n ≥0(a n ≤0)成立时最大的n 值即可.一般地,等差数列{a n }中,若a 1>0,且S p =S q (p ≠q ),则:①若p +q 为偶数,则当n =p +q2时,S n 最大;②若p +q 为奇数,则当n =p +q -12或n =p +q +12时,S n 最大.1.设数列{a n },{b n }都是等差数列.若a 1+b 1=7,a 3+b 3=21,则a 5+b 5=________. 解析:∵(a 1+a 5)+(b 1+b 5)=2(a 3+b 3)=42, ∴a 5+b 5=42-7=35. 答案:352.在本例(3)中,若将已知条件改为a 1>0,S 5=S 12,如何求解S n 的最大值?解:法一:设等差数列{a n }的公差为d ,由S 5=S 12得5a 1+10d =12a 1+66d ,d =-18a 1<0.所以S n =na 1+n (n -1)2d =na 1+n (n -1)2·⎝⎛⎭⎫-18a 1=-116a 1(n 2-17n )=-116a 1⎝⎛⎭⎫n -1722+28964a 1, 因为a 1>0,n ∈N *,所以当n =8或n =9时,S n 有最大值. 法二:设等差数列{a n }的公差为d ,同法一得d =-18a 1<0.设此数列的前n 项和最大,则⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,即⎩⎨⎧a n =a 1+(n -1)·⎝⎛⎭⎫-18a 1≥0,an +1=a 1+n ·⎝⎛⎭⎫-18a 1≤0,解得⎩⎪⎨⎪⎧n ≤9,n ≥8,即8≤n ≤9,又n ∈N *,所以当n =8或n =9时,S n 有最大值.法三:设等差数列{a n }的公差为d ,同法一得d =-18a 1<0,由于S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎫a 1-d2n ,设f (x )=d 2x 2+⎝⎛⎭⎫a 1-d 2x ,则函数y =f (x )的图象为开口向下的抛物线,由S 5=S 12知,抛物线的对称轴为x =5+122=172(如图所示),由图可知,当1≤n ≤8时,S n 单调递增;当n ≥9时,S n 单调递减.又n ∈N *,所以当n =8或n =9时,S n 最大.3.在本例(3)中,若将条件a 1=29,S 10=S 20改为a 3=12,S 12>0,S 13<0,如何求解? 解:因为a 3=a 1+2d =12,所以a 1=12-2d ,所以⎩⎪⎨⎪⎧S 12=12a 1+66d >0,S 13=13a 1+78d <0,即⎩⎪⎨⎪⎧144+42d >0,156+52d <0, 解得-247<d <-3.故公差d 的取值范围为⎝⎛⎭⎫-247,-3. 法一:由d <0可知{a n }为递减数列,因此,在1≤n ≤12中,必存在一个自然数n ,使得a n ≥0,a n +1<0, 此时对应的S n 就是S 1,S 2,…,S 12中的最大值.由于⎩⎪⎨⎪⎧S 12=6(a 6+a 7)>0,S 13=13a 7<0,于是a 7<0,从而a 6>0,因此S 6最大.法二:由d <0可知{a n }是递减数列, 令⎩⎪⎨⎪⎧a n =a 3+(n -3)d ≥0,a n +1=a 3+(n -2)d <0, 可得⎩⎨⎧n ≤3-12d,n >2-12d.由-247<d <-3,可得⎩⎪⎨⎪⎧n ≤3-12d <3+123=7,n >2-12d >2+12247=5.5,所以5.5<n <7,故n =6,即S 6最大.[方法探究]等差数列的设定方法及分段求和[典例] 已知等差数列{a n }前三项的和为-3,前三项的积为8. (1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前n 项和. [解] (1)设等差数列{a n }的公差为d , 则a 2=a 1+d ,a 3=a 1+2d .由题意得⎩⎪⎨⎪⎧3a 1+3d =-3,a 1(a 1+d )(a 1+2d )=8,解得⎩⎪⎨⎪⎧ a 1=2,d =-3或⎩⎪⎨⎪⎧a 1=-4,d =3.所以由等差数列通项公式可得a n =2-3(n -1)=-3n +5或a n =-4+3(n -1)=3n -7. 故a n =-3n +5或a n =3n -7.(2)当a n =-3n +5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列; 当a n =3n -7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件.故|a n |=|3n -7|=⎩⎪⎨⎪⎧-3n +7,n =1,2,3n -7,n ≥3.记数列{|a n |}的前n 项和为S n .当n =1时,S 1=|a 1|=4;当n =2时,S 2=|a 1|+|a 2|=5;当n ≥3时,S n =S 2+|a 3|+|a 4|+…+|a n |=5+(3×3-7)+(3×4-7)+…+(3n -7)=5+(n -2)[2+(3n -7)]2=32n 2-112n +10.当n =2时,满足此式.综上,S n =⎩⎪⎨⎪⎧4, n =1,32n 2-112n +10,n ≥2.[回顾反思] 若三个数成等差数列可设为a ,a +d ,a +2d 或a -d ,a ,a +d ,若四个数成等差数列可设为a ,a +d ,a +2d ,a +3d 或a -3d ,a -d ,a +d ,a +3d .[高考真题体验]1.(2018·高考课标全国卷Ⅱ)设S n 是等差数列{a n }的前n 项和.若a 1+a 3+a 5=3,则S 5=( ) A .5 B .7 C .9 D .11解析:选A.∵a 1+a 5=2a 3,a 1+a 3+a 5=3a 3=3,∴a 3=1,∴S 5=5×(a 1+a 5)2=5a 3=5.2.(2013·高考课标卷Ⅰ)设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =( ) A .3 B .4C .5D .6 解析:选C.∵{a n }是等差数列,S m -1=-2,S m =0, ∴a m =S m -S m -1=2.∵S m +1=3,∴a m +1=S m +1-S m =3, ∴d =a m +1-a m =1.又S m =m (a 1+a m )2=m (a 1+2)2=0,∴a 1=-2,∴a m =-2+(m -1)·1=2,∴m =5. 3.(2014·高考大纲全国卷)数列{}a n 满足a 1=1,a 2=2,a n +2=2a n +1-a n +2. (1)设b n =a n +1-a n ,证明{}b n 是等差数列; (2)求{}a n 的通项公式.解:(1)证明:由a n +2=2a n +1-a n +2得 a n +2-a n +1=a n +1-a n +2,即b n +1=b n +2.又b 1=a 2-a 1=1,所以{}b n 是首项为1,公差为2的等差数列. (2)由(1)得b n =1+2(n -1)=2n -1, 即a n +1-a n =2n -1.于是∑k =1n(a k +1-a k )=∑k =1n(2k -1),所以a n +1-a 1=n 2,即a n +1=n 2+a 1.又a 1=1,所以{}a n 的通项公式为a n =n 2-2n +2. 4.(2019·高考全国甲卷)S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28.记b n =[lg a n ],其中[x ]表示不超过x 的最大整数,如[0.9]=0,[lg 99]=1. (1)求b 1,b 11,b 101;(2)求数列{b n }的前1 000项和. 解:(1)设{a n }的公差为d ,据已知有7+21d =28,解得d =1. 所以{a n }的通项公式为a n =n .b 1=[lg 1]=0,b 11=[lg 11]=1,b 101=[lg 101]=2.(2)因为b n=⎩⎪⎨⎪⎧0, 1≤n <10,1, 10≤n <100,2, 100≤n <1 000,3, n =1 000,所以数列{b n }的前1 000项和为1×90+2×900+3×1=1 893.课时规范训练 A 组 基础演练1.在等差数列{}a n 中,a 2=3,a 3+a 4=9,则a 1a 6的值为( ) A .14 B .18 C .21 D .27解析:选A.依题意得⎩⎪⎨⎪⎧a 1+d =3,2a 1+5d =9,由此解得d =1,a 1=2,a 6=a 1+5d =7,a 1a 6=14.2.已知等差数列{a n }满足a 1+a 2+a 3+…+a 101=0,则有( ) A .a 1+a 101>0 B .a 2+a 100<0 C .a 3+a 99=0 D .a 51=51解析:选C.由题意,得a 1+a 2+a 3+…+a 101=a 1+a 1012×101=0.所以a 1+a 101=a 2+a 100=a 3+a 99=0.3.等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( ) A .1 B .2 C .3 D .4 解析:选B.法一:设等差数列{a n }的公差为d ,由题意得⎩⎪⎨⎪⎧2a 1+4d =10,a 1+3d =7.解得⎩⎪⎨⎪⎧a 1=1,d =2.∴d =2.法二:∵在等差数列{a n }中,a 1+a 5=2a 3=10, ∴a 3=5.又a 4=7,∴公差d =7-5=2.4.记S n 为等差数列{a n }前n 项和,若S 33-S 22=1,则其公差d =( )A.12 B .2 C .3 D .4解析:选B.由S 33-S 22=1,得a 1+a 2+a 33-a 1+a 22=1,即a 1+d -⎝⎛⎭⎫a 1+d2=1,∴d =2. 5.已知等差数列{a n }中,a 2=6,a 5=15,若b n =a 2n ,则数列{b n }的前5项和等于( ) A .30 B .45 C .90 D .186解析:选C.因为⎩⎪⎨⎪⎧a 2=a 1+d =6a 5=a 1+4d =15,所以a 1=3,d =3,b n =a 2n =a 1+(2n -1)d =6n ,S 5=5(b 1+b 5)2=5(6+6×5)2=90,因此选C 项.6.已知等差数列{a n }的前n 项和为S n ,且a 3+a 8=13,S 7=35,则a 7=________.解析:设数列{a n }的公差为d ,则由已知得(a 1+2d )+(a 1+7d )=13 ①,S 7=7(a 1+a 1+6d )2=35 ②.联立①②,解方程组得a 1=2,d =1,∴a 7=a 1+6d =8. 答案:87.若2,a ,b ,c,9成等差数列,则c -a =________.解析:由题意得该等差数列的公差d =9-25-1=74,所以c -a =2d =72.答案:728.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.解析:根据题意知a 7+a 8+a 9=3a 8>0,即a 8>0. 又a 8+a 9=a 7+a 10<0,∴a 9<0,∴当n =8时, {a n }的前n 项和最大. 答案:89.已知等差数列{a n }中,a 2=8,前10项和S 10=185.求数列{a n }的通项公式a n . 解:设数列{a n }的公差为d , 因为a 2=8,S 10=185,所以⎩⎪⎨⎪⎧a 1+d =810a 1+10×92d =185,解得⎩⎪⎨⎪⎧a 1=5d =3, 所以a n =5+(n -1)×3=3n +2,即a n =3n +2.10.已知数列{a n }的各项均为正数,前n 项和为S n ,且满足2S n =a 2n +n -4(n ∈N *). (1)求证:数列{a n }为等差数列; (2)求数列{a n }的通项公式.解:(1)证明:当n =1时,有2a 1=a 21+1-4, 即a 21-2a 1-3=0,解得a 1=3(a 1=-1舍去). 当n ≥2时,有2S n -1=a 2n -1+n -5,又2S n =a 2n +n -4,两式相减得2a n =a 2n -a 2n -1+1,即a 2n -2a n +1=a 2n -1, 也即(a n -1)2=a 2n -1,因此a n -1=a n -1或a n -1=-a n -1. 若a n -1=-a n -1,则a n +a n -1=1. 而a 1=3,所以a 2=-2,这与数列{a n }的各项均为正数相矛盾, 所以a n -1=a n -1,即a n -a n -1=1,因此数列{a n }为首项为3,公差为1的等差数列. (2)由(1)知a 1=3,d =1, 所以数列{a n }的通项公式为a n =3+(n -1)×1=n +2,即a n =n +2.B 组 能力突破1.在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项和S 18=12,则数列{|a n |}的前18项和T 18的值是( ) A .24 B .48 C .60 D .84 解析:选C.由a 1>0,a 10·a 11<0可知 d <0,a 10>0,a 11<0,∴T 18=a 1+…+a 10-a 11-…-a 18 =S 10-(S 18-S 10)=60,故选C.2.已知数列{a n },若点(n ,a n )(n ∈N *)在直线y -2=k (x -5)上,则数列{a n }的前9项和S 9等于( ) A .18 B .20 C .22 D .24解析:选A.∵点(n ,a n )在直线y -2=k (x -5)上,∴a n -2=k (n -5),∴a n =kn -5k +2,∴a n +1-a n =[k (n +1)-5k +2]-(kn -5k +2)=k ,∴{a n }是等差数列.当n =5时,a 5=2,∴S 9=9(a 1+a 9)2=9×2a 52=18.3.设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S n +2-S n =36,则n =( ) A .5 B .6 C .7 D .8解析:选D.法一:S n =na 1+n (n -1)2d =n +n (n -1)=n 2,则S n +2=(n +2)2,由S n +2-S n =36,得(n +2)2-n 2=4n +4=36,所以n =8.法二:S n +2-S n =a n +1+a n +2=2a 1+(2n +1)d =2+2(2n +1)=36,解得n =8,所以选D.4.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意正整数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________. 解析:因为{a n },{b n }为等差数列,所以a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6.因为S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941,所以a 6b 6=1941.答案:19415.在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列. (1)求d ,a n ;(2)若d <0,求|a 1|+|a 2|+|a 3|+…+|a n |. 解:(1)由题意得,a 1·5a 3=(2a 2+2)2,由a 1=10,{a n }为公差为d 的等差数列得,d 2-3d -4=0,解得d =-1或d =4.所以a n =-n +11(n ∈N *)或a n =4n +6(n ∈N *). (2)设数列{a n }的前n 项和为S n .因为d <0,由(1)得d =-1,a n =-n +11,所以当n ≤11时,|a 1|+|a 2|+|a 3|+…+|a n |=S n =a 1+a 2+…+a n =-12n 2+212n ;当n ≥12时,|a 1|+|a 2|+|a 3|+…+|a n |=a 1+a 2+…+a 11-(a 12+a 13+…+a n )=2(a 1+a 2+…+a 11)-(a 1+a 2+…+a 11+a 12+a 13+…+a n )=-S n +2S 11=12n 2-212n +110.综上所述,|a 1|+|a 2|+|a 3|+…+|a n |=⎩⎨⎧-12n 2+212n ,n ≤11,12n 2-212n +110,n ≥12.第3课时 等比数列及其前n 项和1.等比数列的有关概念 (1)等比数列的有关概念一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一常数.这个数列叫等比数列,这个常数叫公比.用q 表示. (2)等比中项如果三个数a ,G ,b 成等比数列,则G 叫做a 和b 的等比中项,那么G a =bG,即G 2=ab .2.等比数列的有关公式 (1)等比数列的通项公式设等比数列{a n }的首项为a 1,公比为q ,q ≠0,则它的通项公式a n =a 1·q n -1. (2)等比数列的前n 项和公式等比数列{a n }的公比为q (q ≠0),其前n 项和为S n ,当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q1-q.3.等比数列的性质(1)通项公式的推广:a n =a m ·q n -m (n ,m ∈N *).(2)若{a n }+n (k ,l ,m ,n ∈N *),则a k ·a l =a m ·a n .(3)若{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n},⎩⎨⎧⎭⎬⎫a nb n 仍是等比数列.(4)公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n .4.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)常数列一定是等比数列.(×)(2)等比数列中不存在数值为0的项.(√)(3)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.(×) (4)G 为a ,b 的等比中项⇔G 2=ab .(×)(5)若等比数列{a n }的首项为a 1,公比是q ,则其通项公式为a n =a 1q n .(×)(6)数列{a n }的通项公式是a n =a n,则其前n 项和为S n =a (1-a n )1-a.(×)(7)q >1时,等比数列{a n }是递增数列.(×) (8)在等比数列{a n }中,若a m ·a n =a p ·a q ,则m +n =p +q .(×)(9)若一个数列满足a n +1=q 2a n ,则{a n }为等比数列.(×)(10)若数列a ,a (1-a ),a (1-a )2,…是等比数列,则a ≠0且a ≠1 .(√)[例1] (1)已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( ) A .21 B .42 C .63 D .84 解析:设{a n }的公比为q ,由a 1=3,a 1+a 3+a 5=21得 3+3q 2+3q 4=21,即q 2=2,所以a 3+a 5+a 7=(a 1+a 3+a 5)q 2=21×2=42. 答案:B (2)(2019·高考全国乙卷)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.解析:由题意知,a 2+a 4=(a 1+a 3)q ,即5=10q ,解得q =12,将q =12代入a 1+a 3=10,解得a 1=8.∴a 1a 2…a n =a n 1·q n (n -1)2=8n ×⎝⎛⎭⎫12n (n -1)2=2-n 22+7n 2.∵-n 22+7n 2=-12⎝⎛⎭⎫n -722+498≤6,且n ∈N *. 当n =3或4时有最大值.∴a 1a 2…a n =2-n 22+7n2≤26=64,即最大值为64.答案:64 (3)(2018·河南开封模拟)正项等比数列{a n }中,a 2=4,a 4=16,则数列{a n }的前9项和等于________.。
【步步高】2021届高考数学总温习 第六章 6.4数列求和强化训练 理 北师大版(1)
§6.4 数列求和1.求数列的前n 项和的方式 (1)公式法①等差数列的前n 项和公式S n =n a 1+a n2=na 1+n n -12d .②等比数列的前n 项和公式S n =⎩⎪⎨⎪⎧na 1q =1a 11-q n1-q=a 1-a n q1-qq ≠1(2)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3)裂项相消法把数列的通项拆成两项之差求和,正负相消剩下首尾假设干项. (4)倒序相加法把数列别离正着写和倒着写再相加,即等差数列求和公式的推导进程的推行. (5)错位相减法要紧用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导进程的推行.(6)并项求和法一个数列的前n 项和中,可两两结合求解,那么称之为并项求和.形如a n =(-1)n f (n )类型,可采纳两项归并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050. 2.常见的裂项公式 (1)1n n +1=1n -1n +1;(2)12n -12n +1=12⎝⎛⎭⎪⎫12n -1-12n +1;(3)1n +n +1=n +1-n .1.判定下面结论是不是正确(请在括号中打“√”或“×”)(1)若是数列{a n }为等比数列,且公比不等于1,那么其前n 项和S n =a 1-a n +11-q . ( √ )(2)当n ≥2时,1n 2-1=12(1n -1-1n +1).( √ )(3)求S n =a +2a 2+3a 3+…+na n 之和时只要把上式等号两边同时乘以a 即可依照错位相减法求得.( × ) (4)数列{12n +2n -1}的前n 项和为n 2+12n .( × )(5)假设数列a 1,a 2-a 1,…,a n -a n -1是首项为1,公比为3的等比数列,那么数列{a n }的通项公式是a n =3n -12.( √ )(6)推导等差数列求和公式的方式叫作倒序求和法,利用此法可求得sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°=44.5.( √ )2.(2021·大纲全国)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,那么数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为( )A.100101B.99101 C.99100D.101100答案 A解析 利用裂项相消法求和. 设等差数列{a n }的首项为a 1,公差为d . ∵a 5=5,S 5=15,∴⎩⎪⎨⎪⎧a 1+4d =5,5a 1+5×5-12d =15,∴⎩⎪⎨⎪⎧a 1=1,d =1, ∴a n =a 1+(n -1)d =n . ∴1a n a n +1=1n n +1=1n -1n +1,∴数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为1-12+12-13+…+1100-1101=1-1101=100101. 3.假设数列{a n }的通项公式为a n =2n +2n -1,那么数列{a n }的前n 项和S n 为( )A .2n +n 2-1B .2n +1+n 2-1C .2n +1+n 2-2D .2n +n 2-2答案 C解析 S n =(2+22+23+…+2n )+(1+3+5+…+(2n -1)) =21-2n1-2+n 1+2n -12=2n +1-2+n 2.4.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),那么它的前100项之和S 100等于 ( )A .200B .-200C .400D .-400答案 B解析 S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.5.3·2-1+4·2-2+5·2-3+…+(n +2)·2-n =________. 答案 4-n +42n解析 设S =3×12+4×122+5×123+…+(n +2)×12n ,则12S =3×122+4×123+5×124+…+(n +2)×12n +1. 两式相减得12S =3×12+(122+123+…+12n )-n +22n +1.∴S =3+(12+122+…+12n -1)-n +22n=3+12[1-12n -1]1-12-n +22n=4-n +42n.题型一 分组转化求和例1 已知数列{a n }是3+2-1,6+22-1,9+23-1,12+24-1,…,写出数列{a n }的通项公式并求其前n 项和S n .思维启发 先写出通项,然后对通项变形,分组后利用等差数列、等比数列的求和公式求解. 解 由已知得,数列{a n }的通项公式为a n =3n +2n -1=3n -1+2n ,∴S n =a 1+a 2+…+a n=(2+5+…+3n -1)+(2+22+…+2n ) =n 2+3n -12+21-2n 1-2=12n (3n +1)+2n +1-2. 思维升华 某些数列的求和是将数列分解转化为假设干个可求和的新数列的和或差,从而求得原数列的和,这就要通过对数列通项结构特点进行分析研究,将数列的通项合理分解转化.专门注意在含有字母的数列中对字母的讨论.求和S n =1+⎝ ⎛⎭⎪⎫1+12+⎝ ⎛⎭⎪⎫1+12+14+…+⎝ ⎛⎭⎪⎫1+12+14+…+12n -1.解 和式中第k 项为a k =1+12+14+…+12k -1=1-⎝ ⎛⎭⎪⎫12k1-12=2⎝ ⎛⎭⎪⎫1-12k . ∴S n =2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-122+…+⎝ ⎛⎭⎪⎫1-12n=2[(1+1+…+1n 个-(12+122+…+12n )]=2⎝ ⎛⎭⎪⎫n -12⎝ ⎛⎭⎪⎫1-12n 1-12=12n -1+2n -2.题型二 错位相减法求和例2 已知等差数列{a n }的前3项和为6,前8项和为-4. (1)求数列{a n }的通项公式;(2)设b n =(4-a n )q n -1(q ≠0,n ∈N +),求数列{b n }的前n 项和S n . 思维启发 (1)列方程组求{a n }的首项、公差,然后写出通项a n . (2)q =1时,b n 为等差数列,直接求和;q ≠1时,用错位相减法求和. 解 (1)设等差数列{a n }的公差为d .由已知得⎩⎪⎨⎪⎧ 3a 1+3d =68a 1+28d =-4,解得⎩⎪⎨⎪⎧a 1=3d =-1.故a n =3+(n -1)·(-1)=4-n . (2)由(1)得,b n =n ·q n -1,于是S n =1·q 0+2·q 1+3·q 2+…+n ·q n -1.若q ≠1,将上式两边同乘以q 有qS n =1·q 1+2·q 2+…+(n -1)·q n -1+n ·q n .两式相减取得(q -1)S n =nq n -1-q 1-q 2-…-q n -1 =nq n -q n -1q -1=nq n +1-n +1q n +1q -1.于是,S n =nq n +1-n +1q n +1q -12.若q =1,那么S n =1+2+3+…+n =n n +12.因此S n=⎩⎪⎨⎪⎧n n +12,q =1nqn +1-n +1q n +1q -12,q ≠1.思维升华 (1)错位相减法是求解由等差数列{b n }和等比数列{c n }对应项之积组成的数列{a n },即a n =b n ×c n 的前n 项和的方式.这种方式运算量较大,要重视解题进程的训练. (2)注意错位相减法中等比数列求和公式的应用范围.已知等差数列{a n }知足a 2=0,a 6+a 8=-10.(1)求数列{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和.解 (1)设等差数列{a n }的公差为d ,由已知条件可得⎩⎪⎨⎪⎧ a 1+d =0,2a 1+12d =-10,解得⎩⎪⎨⎪⎧a 1=1,d =-1.故数列{a n }的通项公式为a n =2-n .(2)设数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和为S n ,即S n =a 1+a 22+…+a n2n -1,①故S 1=1,S n 2=a 12+a 24+…+a n2n . ②因此,当n >1时,①-②得S n2=a 1+a 2-a 12+…+a n -a n -12n -1-a n2n=1-(12+14+…+12n -1)-2-n 2n=1-(1-12n -1)-2-n 2n =n 2n .因此S n =n2n -1.当n =1时也成立. 综上,数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和S n =n2n -1.题型三 裂项相消法求和例3 在数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 知足S 2n=an ⎝⎛⎭⎪⎫S n -12.(1)求S n 的表达式;(2)设b n =S n2n +1,求{b n }的前n 项和T n .思维启发 第(1)问利用a n =S n -S n -1 (n ≥2)后,再同除S n -1·S n 转化为⎩⎨⎧⎭⎬⎫1S n 的等差数列即可求S n .第(2)问求出{b n }的通项公式,用裂项相消法求和. 解(1)∵S 2n=an ⎝⎛⎭⎪⎫S n -12,a n =S n -S n -1 (n ≥2),∴S 2n=(Sn -S n -1)⎝⎛⎭⎪⎫S n -12,即2S n -1S n =S n -1-S n ,①由题意得S n -1·S n ≠0,①式两边同除以S n -1·S n ,得1S n -1S n -1=2,∴数列⎩⎨⎧⎭⎬⎫1S n 是首项为1S 1=1a 1=1,公差为2的等差数列.∴1S n =1+2(n -1)=2n -1,∴S n =12n -1. (2)∵b n =S n 2n +1=12n -12n +1=12⎝⎛⎭⎪⎫12n -1-12n +1, ∴T n =b 1+b 2+…+b n =12[(1-13)+(13-15)+…+(12n -1-12n +1)]=12⎝⎛⎭⎪⎫1-12n +1=n2n +1. 思维升华 利用裂项相消法求和时,应注意抵消后并非必然只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项,再确实是将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原通项公式相等.已知数列{a n }的各项均为正数,前n 项和为S n ,且S n =a n a n +12,n ∈N +.(1)求证:数列{a n }是等差数列;(2)设b n =12S n ,T n =b 1+b 2+…+b n ,求T n . (1)证明 ∵S n =a n a n +12,n ∈N +,∴当n =1时,a 1=S 1=a 1a 1+12(a n >0),∴a 1=1.当n ≥2时,由⎩⎪⎨⎪⎧2S n =a 2n +a n ,2S n -1=a 2n -1+a n -1得2a n =a 2n +a n -a 2n -1-a n -1.即(a n +a n -1)(a n -a n -1-1)=0, ∵a n +a n -1>0,∴a n -a n -1=1(n ≥2).因此数列{a n }是以1为首项,以1为公差的等差数列. (2)解 由(1)可得a n =n ,S n =n n +12,b n =12S n =1n n +1=1n -1n +1.∴T n =b 1+b 2+b 3+…+b n=1-12+12-13+…+1n -1n +1=1-1n +1=nn +1.四审结构定方案典例:(12分)(2021·江西)已知数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N +),且S n 的最大值为8.(1)确信常数k ,并求a n ;(2)求数列⎩⎨⎧⎭⎬⎫9-2a n 2n 的前n 项和T n . 标准解答解 (1)当n =k ∈N +时,S n =-12n 2+kn 取得最大值,即8=S k =-12k 2+k 2=12k 2,故k 2=16,k =4. 当n =1时,a 1=S 1=-12+4=72,[3分]当n ≥2时,a n =S n -S n -1=92-n .[6分]当n =1时,上式也成立,综上,a n =92-n .(2)因为9-2a n 2n =n2n -1,因此T n =1+22+322+…+n -12n -2+n2n -1,①[7分]因此2T n =2+2+32+…+n -12n -3+n2n -2 ②②-①:2T n -T n =2+1+12+…+12n -2-n2n -1=4-12n -2-n 2n -1=4-n +22n -1[11分]故T n =4-n +22n -1. [12分]温馨提示 (1)依照数列前n 项和的结构特点和最值确信k 和S n ,求出a n 后再依照{9-2a n2n}的结构特点确信利用错位相减法求T n .在审题时,要审题目中数式的结构特点判定解题方案;(2)利用S n 求a n 时不要轻忽n =1的情形;错位相减时不要漏项或算错项数. 方式与技术非等差、等比数列的一样数列求和,要紧有两种思想:(1)转化的思想,即将一样数列设法转化为等差或等比数列,这一思想方式往往通过通项分解或错位相消来完成;(2)不能转化为等差或等比的特殊数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和. 失误与防范1.直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母)时,应付其公比是不是为1进行讨论.2.在应用错位相减法时,注意观看未归并项的正负号.3.在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项那么后剩多少项. A 组 专项基础训练 (时刻:40分钟) 一、选择题1.已知数列{a n }:12,13+23,14+24+34,…,110+210+310+…+910,…,假设b n =1a n a n +1,那么数列{b n }的前n项和S n 为 ( )A.nn +1B.4nn +1C.3nn +1D.5nn +1答案 B解析 a n =1+2+3+…+n n +1=n2,∴b n =1a n a n +1=4n n +1=4(1n -1n +1),∴S n =4[(1-12)+(12-13)+…+(1n -1n +1)] =4(1-1n +1)=4n n +1. 2.已知数列{a n }是等差数列,假设a 9+3a 11<0,a 10·a 11<0,且数列{a n }的前n 项和S n 有最大值,那么当S n 取得最小正值时,n 等于( ) A .20B .17C .19D .21答案 C解析 由a 9+3a 11<0,得2a 10+2a 11<0,即a 10+a 11<0,又a 10·a 11<0,那么a 10与a 11异号,因为数列{a n }的前n 项和S n 有最大值,因此数列{a n }是一个递减数列,那么a 10>0,a 11<0,因此S 19=19a 1+a 192=19a 10>0, S 20=20a 1+a 202=10(a 10+a 11)<0. 故使S n 取值最小正值的n 为19. 3.已知函数f (n )=⎩⎪⎨⎪⎧n 2当n 为奇数时,-n 2当n 为偶数时,且a n =f (n )+f (n +1),那么a 1+a 2+a 3+…+a 100等于 ( )A .0B .100C .-100D .10 200 答案 B解析 由题意,得a 1+a 2+a 3+…+a 100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)+…-(99+100)+(101+100)=-(1+2+…+99+100)+(2+3+…+100+101)=-1+101=100.应选B.4.数列a 1+2,…,a k +2k ,…,a 10+20共有十项,且其和为240,那么a 1+…+a k +…+a 10的值为( ) A .31B .120C .130D .185答案 C 解析 a 1+...+a k +...+a 10=240-(2+...+2k + (20)=240-2+20×102=240-110=130. 5.数列a n =1n n +1,其前n 项之和为910,那么在平面直角坐标系中,直线(n +1)x +y +n =0在y 轴上的截距为( ) A .-10B .-9C .10D .9 答案 B 解析 数列的前n 项和为11×2+12×3+…+1n n +1=1-1n +1=n n +1=910, ∴n =9,∴直线方程为10x +y +9=0.令x =0,得y =-9,∴在y 轴上的截距为-9.二、填空题6.数列32,94,258,6516,…的前n 项和S n 为________. 答案 n n +12+1-12n 解析 ∵32=1+12,94=2+14,258=3+18, 6516=4+116,… ∴S n =32+94+258+6516+…+(n +12n ) =(1+2+3+…+n )+(12+122+123+…+12n )=n n +12+12[1-12n ]1-12=n n +12+1-12n . 7.设f (x )=4x 4x +2,假设S =f (12 015)+f (22 015)+…+f (2 0142 015),那么S =________. 答案 1 007解析 ∵f (x )=4x 4x +2,∴f (1-x )=41-x 41-x +2=22+4x, ∴f (x )+f (1-x )=4x 4x +2+22+4x=1. S =f (12 015)+f (22 015)+…+f (2 0142 015), ① S =f (2 0142 015)+f (2 0132 015)+…+f (12 015), ② ①+②得,2S =[f (12 015)+f (2 0142 015)]+[f (22 015)+f (2 0132 015)]+…+[f (2 0142 015)+f (12 015)]=2 014, ∴S =2 0142=1 007. 8.(2021·课标全国)数列{a n }知足a n +1+(-1)n a n =2n -1,那么{a n }的前60项和为________.答案 1 830解析 利用数列的递推式的意义结合等差数列求和公式求解.∵a n +1+(-1)n a n =2n -1,∴a 2=1+a 1,a 3=2-a 1,a 4=7-a 1,a 5=a 1,a 6=9+a 1,a 7=2-a 1,a 8=15-a 1,a 9=a 1,a 10=17+a 1,a 11=2-a 1,a 12=23-a 1,…,a 57=a 1,a 58=113+a 1,a 59=2-a 1,a 60=119-a 1,∴a 1+a 2+…+a 60=(a 1+a 2+a 3+a 4)+(a 5+a 6+a 7+a 8)+…+(a 57+a 58+a 59+a 60)=10+26+42+…+234=15×10+2342=1 830.三、解答题9.已知数列{a n }是首项为a 1=14,公比为q =14的等比数列,设b n +2=3log 41a n (n ∈N +),数列{c n }知足c n =a n ·b n . (1)求数列{b n }的通项公式;(2)求数列{c n }的前n 项和S n .解 (1)由题意,知a n =(14)n (n ∈N +), 又b n =3log 41a n -2,故b n =3n -2(n ∈N +).(2)由(1),知a n =(14)n ,b n =3n -2(n ∈N +), 因此c n =(3n -2)×(14)n (n ∈N +). 因此S n =1×14+4×(14)2+7×(14)3+…+(3n -5)×(14)n -1+(3n -2)×(14)n , 于是14S n =1×(14)2+4×(14)3+7×(14)4+…+(3n -5)×(14)n +(3n -2)×(14)n +1. 两式相减,得34S n =14+3[(14)2+(14)3+…+(14)n ]-(3n -2)×(14)n +1=12-(3n +2)×(14)n +1. 因此S n =23-3n +23×(14)n (n ∈N +). 10.假设S n 是公差不为0的等差数列{a n }的前n 项和,且S 1,S 2,S 4成等比数列.(1)求等比数列S 1,S 2,S 4的公比;(2)假设S 2=4,求数列{a n }的通项公式;(3)在(2)的条件下,设b n =3a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m 20对所有n ∈ N +都成立的最小正整数m .解 (1)因为{a n }为等差数列,设{a n }的公差为d (d ≠0),因此S 1=a 1,S 2=2a 1+d ,S 4=4a 1+6d .因为S 1,S 2,S 4成等比数列且设其公比为q ,因此S 1·S 4=S 22.因此a 1(4a 1+6d )=(2a 1+d )2.因此2a 1d =d 2.因为公差d ≠0.因此d =2a 1.因此q =S 2S 1=4a 1a 1=4.(2)因为S 2=4,因此2a 1+d =4.又d =2a 1,因此a 1=1,d =2.因此a n =2n -1.(3)因为b n =32n -12n +1=32(12n -1-12n +1), 因此T n =32[(1-13)+(13-15)+…+(12n -1-12n +1)]=32(1-12n +1)<32. 要使T n <m 20对所有n ∈N +都成立, 那么有m 20≥32,即m ≥30. 因为m ∈N +,因此m 的最小值为30.B 组 专项能力提升(时刻:30分钟)1.已知数列2 008,2 009,1,-2 008,-2 009,…,那个数列的特点是从第二项起,每一项都等于它的前后两项之和,那么那个数列的前2 014项之和S 2 014等于( )A .2 008B .2 010C .1D .0 答案 B解析 由已知得a n =a n -1+a n +1(n ≥2),∴a n +1=a n -a n -1.故数列的前8项依次为2 008,2 009,1,-2 008,-2 009,-1,2 008,2 009.由此可知数列为周期数列,周期为6,且S 6=0.∵2 014=6×335+4,∴S 2 014=S 4=2 008+2 009+1+(-2 008)=2 010.2.(2021·课标全国Ⅰ)设△A n B n C n 的三边长别离为a n 、b n 、c n ,△A n B n C n 的面积为S n ,n =1,2,3,…,假设b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=c n +a n 2,c n +1=b n +a n 2,那么 ( )A .{S n }为递减数列B .{S n }为递增数列C .{S 2n -1}为递增数列,{S 2n }为递减数列D .{S 2n -1}为递减数列,{S 2n }为递增数列答案 B解析 因为b 1>c 1,不妨设b 1=4a 13,c 1=2a 13; 故S 1= 3a 12·a 12·a 16·5a 16=1512a 21; a 2=a 1,b 2=23a 1+a 12=56a 1,c 2=43a 1+a 12=76a 1, S 2= 3a 12·a 12·2a 13·a 13=66a 21. 显然S 2>S 1;a 3=a 1,b 3=76a 1+a 12=1312a 1, c 3=56a 1+a 12=1112a 1, S 3= 3a 12·a 12·5a 112·7a 112=10524a 21,显然S 3>S 2. 3.(2021·湖南)设S n 为数列{a n }的前n项和,S n =(-1)n a n -12n,n ∈N +,则: (1)a 3=________;(2)S 1+S 2+…+S 100=________. 答案 (1)-116 (2)13⎝ ⎛⎭⎪⎫12100-1 解析 ∵a n =S n -S n -1=(-1)n a n -12n -(-1)n -1a n -1+12n -1,∴a n =(-1)n a n -(-1)n -1a n -1+12n . 当n 为偶数时,a n -1=-12n , 当n 为奇数时,2a n +a n -1=12n , ∴当n =4时,a 3=-124=-116. 依照以上{a n }的关系式及递推式可求. a 1=-122,a 3=-124,a 5=-126,a 7=-128, a 2=122,a 4=124,a 6=126,a 8=128. ∴a 2-a 1=12,a 4-a 3=123,a 6-a 5=125,…, ∴S 1+S 2+…+S 100=(a 2-a 1)+(a 4-a 3)+…+(a 100-a 99)-⎝ ⎛⎭⎪⎫12+122+123+…+12100 =⎝ ⎛⎭⎪⎫12+123+…+1299-⎝ ⎛⎭⎪⎫12+122+…+12100 =13⎝ ⎛⎭⎪⎫12100-1. 4.已知数列{a n }的前n 项和S n ,知足:S n =2a n -2n (n ∈N +).(1)求数列{a n }的通项a n ;(2)假设数列{b n }知足b n =log 2(a n +2),T n 为数列{b n a n +2}的前n 项和,求证:T n ≥12. (1)解 当n ∈N +时,S n =2a n -2n ,那么当n ≥2时,S n -1=2a n -1-2(n -1), 两式相减得a n =2a n -2a n -1-2,即a n =2a n -1+2, ∴a n +2=2(a n -1+2),∴a n +2a n -1+2=2,当n =1时,S 1=2a 1-2,那么a 1=2,∴{a n +2}是以a 1+2=4为首项,2为公比的等比数列, ∴a n +2=4·2n -1,∴a n =2n +1-2;(2)证明 b n =log 2(a n +2)=log 22n +1=n +1, ∴b n a n +2=n +12n +1,那么T n =222+323+…+n +12n +1, 12T n =223+324+…+n 2n +1+n +12n +2, 两式相减得12T n =222+123+124+…+12n +1-n +12n +2 =14+141-12n 1-12-n +12n +2=14+12-12n +1-n +12n +2=34-n +32n +2, ∴T n =32-n +32n +1, 当n ≥2时,T n -T n -1=-n +32n +1+n +22n =n +12n +1>0,∴{T n }为递增数列,∴T n ≥T 1=12. 5.直线l n :y =x -2n 与圆C n :x 2+y 2=2a n +n 交于不同的两点A n ,B n ,n ∈N +.数列{a n }知足:a 1=1,a n+1=14|A n B n |2. (1)求数列{a n }的通项公式; (2)假设b n =⎩⎪⎨⎪⎧ 2n -1n 为奇数,a n n 为偶数,求数列{b n }的前n 项和T n . 解 (1)由题意,知圆C n 的圆心到直线l n 的距离d n =n ,半径r n =2a n +n ,因此a n +1=(12|A n B n |)2=r 2n -d 2n =(2a n +n )-n =2a n . 又a 1=1,因此a n =2n -1.(2)当n 为偶数时,T n =(b 1+b 3+…+b n -1)+(b 2+b 4+…+b n ) =[1+5+…+(2n -3)]+(2+23+…+2n -1) =n n -12+21-2n 1-4=n 2-n 2+23(2n -1). 当n 为奇数时,n +1为偶数, T n +1=n +12-n +12+23(2n +1-1) =n 2+n 2+23(2n +1-1). 而T n +1=T n +b n +1=T n +2n ,因此T n =n 2+n 2+13(2n -2). 因此T n =⎩⎪⎨⎪⎧ n 2-n 2+232n -1n 为偶数,n 2+n 2+132n -2n 为奇数.。
【步步高】高考数学总复习 常考题型强化练数列名师课件 理 新人教B版
B组 专项能力提升
1
2
3
4
5
5.已知数列{an}的前 n 项和 Sn 与通项 an 满足 Sn=12-12an.
(1)求数列{an}的通项公式; (2)设 f(x)=log3x,bn=f(a1)+f(a2)+…+f(an),Tn=b11+b12+…+b1n,
求 T2 012;
(1)设 Sk=2 550,求 a 和 k 的值; (2)设 bn=Snn,求 b3+b7+b11+…+b4n-1 的值. (2)由 Sn=na1+nn- 2 1d,得 Sn=2n+nn- 2 1×2=n2+n. ∴bn=Snn=n+1. ∴{bn}是等差数列.
则 b3+b7+b11+…+b4n-1=(3+1)+(7+1)+(11+1) +…+(4n-1+1)=4+24nn. ∴b3+b7+b11+…+b4n-1=2n2+2n.
A组 专项基础训练
1
2
3
4
5
6
7
8
9 10
8.已知等比数列an中,各项都是正数,且 a1,12a3,2a2 成等差数列, 则aa97++aa180的值为__3_+__2__2_.
解析 设等比数列{an}的公比为 q, ∵a1,12a3,2a2 成等差数列,∴a3=a1+2a2. ∴a1q2=a1+2a1q. ∴q2-2q-1=0.∴q=1± 2.
所以 Tn=b1+b2+…+bn
=21(4+42+…+4n)+2(1+2+…+n) =4n+61-4+n2+n=23×4n+n2+n-23.
A组 专项基础训练
1
2
3
4
5
6
7
8
9 10
10.已知等差数列{an}的前三项为 a-1,4,2a,记前 n 项和为 Sn.