10kv电动机电容补偿计算公式

合集下载

煤矿10kV供电系统电容电流计算方法

煤矿10kV供电系统电容电流计算方法

第36卷 第2期2016年03月西安科技大学学报JOURNALOFXI’ANUNIVERSITYOFSCIENCEANDTECHNOLOGYVol.36 No 2Mar 2016 DOI:10.13800/j.cnki.xakjdxxb.2016.0221文章编号:1672-9315(2016)02-0282-06 煤矿10kV供电系统电容电流计算方法张红涛1,王 星1,蔡文龙1, 永1,2(1 西安科技大学电气与控制工程学院,陕西西安710054;2 陕煤集团神木红柳林矿业有限公司,陕西榆林719300)摘 要:随着煤矿生产规模以及矿井供电网络不断扩大,使得矿井供电系统对地电容电流越来越大,存在很大的安全隐患,为了减少煤矿安全事故的发生,保障矿井供电系统的安全运行,对矿井供电系统电容电流的准确掌握就十分重要。

而传统的电容电流计算方法考虑的因素比较单一,估算误差较大,已不能满足要求。

文中总结了传统计算方法的特点,并在传统计算方法的基础上引入了电缆材料影响系数、电气设备增值系数以及环境因素影响系数,得到了煤矿10kV供电系统电容电流的修正计算方法。

文中以某煤矿10kV供电系统为例,进行了电容电流实测结果和理论计算结果的对比分析,验证了该修正计算方法的正确性。

综合考虑了多因素影响的煤矿供电系统电容电流修正计算方法较传统计算方法的计算误差更小,精度更高,对于煤矿供电系统电容电流的理论估算以及消弧线圈容量的确定具有一定的实际指导意义。

关键词:煤矿;电容电流;修正公式;计算方法中图分类号:TM751 文献标志码:ACapacitivecurrentcalculationmethodsof10kVpowersystemincoalmineZHANGHong tao1,WANGXing1,CAIWen long1,YUNYong1,2(1 CollegeofElectricalandControlEngineering,Xi’anUniversityofScienceandTechnology,Xi’an710054,China;2 ShaanxiCoalGroupShenmuHongliulinMiningCo.,Ltd.,Yulin719300,China)Abstract:Withthescaleofcoalmineproductionandpowernetworkcontinuestoexpand,thecapacitivecurrenttogroundoftheminepowersystemalsoincreases.Thusthereexistsgreatsecurityrisk.Inordertoreducetheaccidentsandensurethesafetyoftheminepowersystem,itisveryimportanttomasterthecapacitivecurrentintheminepowersystem.Traditionalcapacitivecurrentcalculationmethodconsidersrelativelyfewinfluentialfactors,soitsestimationerrorislarge,whichcannotmeettherequirements.Thispapersummarizesthecharacteristicsofthetraditionalmethod,andgetsthecorrectioncalculationmethodofacoalmine10kVpowersystemonthebasisofthetraditionalmethodbyintroducingthecablematerialinfluentialcoefficient,electricalequipmentaddedcoefficientandenvironmentalfactorsinfluentialcoefficient.Throughexamplesofacoalmine10kVpowersystem,thispapercomparedthecapacitivecurrentmeasuredresultswiththeoreticalcalculationresults,andthecorrectioncalculationmethodhasbeenverified.Thecapacitivecurrentcorrectioncalculationmethodtakesintoaccounttheinfluenceofmultiplefactors,soithassmallercalculationerrorsandhigheraccuracythanthetraditionalcalculationmethod.Thecorrectioncalculationmethodhascertainpracticalsignificancetoestimatetheca收稿日期:2015-10-20 责任编辑:高 佳通讯作者:张红涛(1989-),男,陕西咸阳人,硕士研究生,E mail:623558729@qq.com博看网 . All Rights Reserved.第2期张红涛等:煤矿10kV供电系统电容电流计算方法pacitivecurrentofminepowersystemanddeterminethepetersencoilcapacity.Keywords:coalmine;capacitivecurrent;correctionformula;calculationmethod0 引 言随着煤矿生产规模的不断扩大,电缆线路增长,矿区配网系统对地电容电流越来越大。

变压器补偿电容计算口诀

变压器补偿电容计算口诀

变压器补偿电容计算口诀在电力系统中,变压器补偿电容是一种常见的电力补偿装置。

它可以通过补偿电流的相位差来改善系统的功率因数。

变压器补偿电容的计算可以采用一种简单的口诀,以便在实际应用中更加方便快捷。

首先,需要明确一些基本概念和参数。

变压器补偿电容的计算与变压器的额定容量和额定电压有关。

在计算中,我们通常使用kVA(千伏安)作为容量单位,用kV(千伏)作为电压单位。

变压器补偿电容的计算口诀如下:1. 首先,我们需要计算变压器的额定容量(kVA)。

额定容量通常可以从变压器的铭牌上找到。

如果找不到,可以通过铭牌上的额定电流和额定电压来计算。

计算公式如下:额定容量(kVA)= 额定电流(安培) ×额定电压(千伏) ÷1000更具体的计算方法,可以使用实际应用中常用的变压器容量计算公式,如:TrCapacity = (√3 × I) × V × 10^-3其中,TrCapacity为变压器容量(kVA),√3为根号3的意思,I 为变压器的额定电流(安培),V为变压器的额定电压(伏特)。

2. 接下来,我们需要计算补偿电容的容量。

补偿电容的容量取决于变压器的额定容量。

计算公式如下:补偿电容容量(kVAr)= 额定容量(kVA) ×补偿倍率补偿倍率是补偿电容容量和变压器额定容量之间的比率。

一般情况下,补偿倍率可以根据实际需要进行选择,通常在0.8至1之间。

3. 最后,我们需要计算补偿电容的数量。

补偿电容的数量取决于系统的功率因数改善目标和补偿电容的单个单位容量。

计算公式如下:补偿电容数量 = 补偿电容容量 ÷单个电容单位容量单个电容单位容量可以根据实际情况进行选择,一般为10至30千乏(kVAr)。

通过上述口诀,可以快速而准确地计算变压器补偿电容的容量和数量。

在实际应用中,可以根据具体情况进行适当的调整。

需要注意的是,变压器补偿电容的计算仅仅是一种初步估算方法,具体的补偿方案和参数还需要根据实际情况和要求进行综合考虑和设计。

6-10kV无功补偿装置保护值整定计算

6-10kV无功补偿装置保护值整定计算

2、保护功能实现方式(1)装置母线过压、和欠压保护有滤波补偿控制器实现。

控制器取样为B相电流和AC电压(05.D6P.07.002),二次电压为100V.过压保护:100.00-120.00,级差0.01V欠压保护:80.00-100.00,级差0.01V过压回差:0-20V, 级差0.01V欠压回差:0-20V,级差0.01V(2)滤波支路两段过流和不平衡保护用电容器微机保护,每个支路均有配置。

本方案为四个滤波支路装置使用一台微机保护装置。

每路微机保护采集每个支路的AC 相差电流,和ABC相放电线圈的二次开口三角形电压实现两段过流和不平衡保护,保护动作逻辑如下:1)、过流一段保护动作条件: Iac≥Id1过流一段保护投切开关:投入其中:Id1为过流一段保护电流定值,Ia为A相电流有效值,Ic为C相电流有效值。

2)、过流二段保护动作条件: Iac≥Id2延迟时间t=Td过流二段保护投切开关:投入其中:Ia为A相电流有效值,Ic为C相电流有效值。

Id2为过流二段保护电流定值,Td为过流保护动作时限定值。

3)、零序电压保护动作条件: Uo≥Ud0延迟时间t=Td0零序电压保护投切开关:投入其中:Uo为零序电压有效值,Ud0为零序电压保护定值,Td0为零序电压保护动作时限定值。

保护跳闸时相应继电器输出接点闭合1秒钟,同时面板上的继电器输出指示灯亮1秒钟。

跳闸后数码管显示相应跳闸的电容器组。

保护跳闸后必须及时查明事故原因,排除故障及隐患后,现场手动复位(关机后再开机),使保护单元继续正常工作。

(4)单台电容器采用安装喷逐式外熔丝进行电容器故障保护。

3、保护定值整定原则(1)装置母线过压、和欠压保护有滤波补偿控制器实现。

过压保护: 120.00欠压保护: 80.00过压回差: 20V欠压回差:20V(2)滤波支路两段过流和不平衡保护保护名称 定值 动作时间过流一段 2~2.5 Iac 0.2S内部固化过流二段 1.35~1.5 Iac 0.5S零序电压 当电容器组内部一个串段内1~2个单元击穿时所产生的不平衡电压0.2S零序电流 当电容器组内部一个串段内1~2个单元击穿时所产生的不平衡电流0.2S定值计算举例说明:例1:设有一套10kV无功补偿装置,容量600kvar,由3台BFM11/√3-200-1W电容器组成,每只电容内部为4串段。

10kv高压电容补偿柜原理

10kv高压电容补偿柜原理

10kv高压电容补偿柜原理10kv高压电容补偿柜原理随着电力系统的不断发展和进步,对电能质量的要求也越来越高。

为了满足这一需求,各种电力设备和技术应运而生。

其中,高压电容补偿柜作为一种重要的电力设备,在提高电能质量、减少能源损耗等方面发挥着关键作用。

本文将详细介绍10kV高压电容补偿柜的原理及其在电力系统中的应用。

一、10kV高压电容补偿柜的基本原理高压电容补偿柜主要由三个部分组成:电容器组、控制器和开关设备。

电容器组是高压电容补偿柜的核心部件,它通过并联连接的方式接入电网,用于补偿电网中的无功功率。

控制器负责控制电容器组的运行状态,实现对电网电压、电流和功率因数等参数的实时监测和调节。

开关设备则用于控制电容器组的投切,以确保其正常工作。

高压电容补偿柜的主要功能是对电网进行无功补偿,提高电网的功率因数。

当电网的功率因数低于设定值时,控制器会启动电容器组进行补偿,使电网的功率因数接近设定值。

这样可以降低电网的输电损耗,提高电网的供电效率。

同时,电容器组还可以平滑电网电压波动,改善电力系统的稳定性。

二、10kV高压电容补偿柜在电力系统中的应用提高电能质量:高压电容补偿柜可以有效地改善电力系统的功率因数,降低线路损耗,提高供电质量。

这对于保障大型工业生产和居民生活用电至关重要。

稳定电网电压:由于电容器可以在短时间内完成充放电操作,因此它们可以有效地响应电力系统的负荷变化。

当负载增加时,电容器会释放储存的能量以维持电网中的电压稳定;而当负载减少时,电容器则会吸收多余的能量以备下一次使用。

这种快速的能量响应能力使得高压电容补偿柜成为一种理想的节能设备。

总之,10kV高压电容补偿柜是一种有效的电能质量改善设备。

并联电容器补偿装置基础知识

并联电容器补偿装置基础知识

并联电容器补偿装置基本知识无功补偿容量计算的基本公式: Q = Ptg φ1——tg φ2=P1cos 11cos 12212---ϕϕ tg φ1、tg φ2——补偿前、后的计算功率因数角的正切值 P ——有功负荷Q ——需要补偿的无功容量 并联电容器组的组成1.组架式并联电容器组:并联电容器、隔离开关接地开关或隔离带接地、放电线圈、串联电抗器、氧化锌避雷器、并联电容器专用熔断器、组架等;2.集合式并联电容器组无容量抽头:并联电容器、隔离开关接地开关或隔离带接地、放电线圈、串联电抗器、氧化锌避雷器、组架等; 并联电容器支路内串接串联电抗器的原因:变电所中只装一组电容器时,一般合闸涌流不大,当母线短路容量不大于80倍电容器组容量时,涌流将不会超过10倍电容器组额定电流;可以不装限制涌流的串联电抗器;由于现在系统中母线的短路容量普遍较大,且变电所内同时装设两组以上的并联电容器组的情况较多,并联电容器组投入运行时,所受到的合闸涌流值较大,因而,并联电容器组需串接串联电抗器;串联电抗器的另一个主要作用是当系统中含有高次谐波时,装设并联电容器装置后,电容器回路的容性阻抗会将原有高次谐波含量放大,使其超过允许值,这时应在电容器回路中串接串联电抗器,以改变电容器回路的阻抗参数,限制谐波的过分放大; 串联电抗器电抗率的选择对于纯粹用于限制涌流的目的,串联电抗器的电抗率可选择为0.1~1%即可;对于用于限制高次谐波放大的串联电抗器;其感抗值的选择应使在可能产生的任何谐波下,均使电容器回路的总电抗为感性而不是容性,从而消除了谐振的可能;电抗器的感抗值按下列计算:XL=K错误!式中XL——串联电抗器的感抗,Ω;XC——补偿电容器的工频容抗, Ω;K——可靠系数,一般取1.2~1.5;对于5次谐波而言,则X L =1.2~1.5×错误!=0.048 ~0.06XC一般定为0.045 ~0.06XC = 4.5 %~ 6 % XC对于3次谐波而言,则X L =12%~13% XC电抗器的端电压和容量的选择电抗器的端电压=电容器的相电压×电抗率每相电抗器的容量=每相电容器容量×电抗率电抗器的额定电压为并联电容器组的额定电压电抗器的种类:油浸铁心式:CKS或CKD, 可用于户内、户外;干式空心电抗器CKGKL,可用于户内、户外;干式铁心电抗器CKGSC,干式产品中体积最小,且三相同体,但目前无35kV级产品,只能用于户内;干式半心电抗器:直径比空心产品小,可用于户内、户外;并联电容器额定电压的选择由于串联电抗器的接入,引起电容器上的基波电压升高,其值为——电容器的额定电压相电压,kV;式中 UC——系统额定相电压, kV;UφA——串联电抗率对于并联电容器组接线方式为星形接线或双星形接线,电容器额定电压如下10kV: 6%串联电抗率,电容器额定相电压11/√3 kV12~13%串联电抗率,电容器额定相电压12/√3 kV35kV: 6%串联电抗率,电容器额定相电压38.5/√3 kV12~13%串联电抗率,电容器额定相电压42/√3 kV上述选择是在系统额定电压分别为10kV和35kV的情况下,如系统额定电压有所上升,则并联电容器的额定电压也相应升高;氧化锌避雷器的选择和使用氧化锌避雷器的接线方式Ⅰ型接线Ⅲ型接线特点:1. Ⅰ型接线方式:优点:比较简单,但对避雷器的特性要求高,当发生一相接地时,要求非接地的两只避雷器能通过三相电容器积蓄的能量;缺点:相间过电压保护水平较高,因为是由两只避雷器对地残压之和决定的;2. Ⅲ型接线避雷器直接并接在电容器极间,保护配合直接,不受其他因数的影响,但这种方式要求避雷器的通流容量比较大;选用原则:10kV:通流容量35kV:通流容量隔离开关、接地开关及隔离带接地开关的选择用途:隔离开关做隔离之用10kV:户内:GN19-10/400, 630,1250户外:GW4-10/400, 630,1250 或GW4-10W/630爬电比距≥2.5cm/kV GW1-10/400尽量少采用35 kV:户内:GN2-35/400, 630,1250户外:GW4-35/630,1250或GW4-35W/630爬电比距≥2.5cm/kV隔离开关做接地之用10kV:户内:GN19-10/400, 630,1250户外:GW4-10/400, 630,1250或GW4-10W/630爬电比距≥2.5cm/kVGW1-10/400,63035 kV:户内:GN2-35/400, 630,1250户外:GW4-35/630,1250或GW4-35W/630爬电比距≥2.5cm/kV隔离开关带接地10kV:户内:GN24-10D/400,630,1250户外:GW4-10D/400,630,1250或GW4-10DW/630爬电比距≥2.5cm/kV35 kV:户外:GW4-35D/630,1250或GW4-35DW/630爬电比距≥2.5cm/kV隔离开关额定电流的选择隔离开关的额定电流=电容器额定相电流×1.5,再适当加一些余度如果用户对动、热稳定电流有要求,则应首先满足动热稳定的要求放电线圈的选择放电线圈的放电容量>每相电容器容量放电线圈的额定相电压=电容器的额定相电压放电线圈的种类:油浸式:价格较低,但由于用于绝缘的油同空气通过呼吸器相连,使绝缘油会由于呼吸的原因而受潮,同时产品内的绝缘油会对环境造成污染及存在火灾隐患;全封闭式:绝缘油与空气不直接接触,杜绝了绝缘油受潮的可能,但价格较高,同时产品内的绝缘油仍会对环境造成污染及存在火灾隐患;干式:彻底改变了绝缘种类,不会对环境造成污染,也不存在大的火灾隐患,但价格较高;且目前国内35kV级还没有此类产品;并联电容器单台用熔断器熔断器的额定电流=1.5×并联电容器额定电流并联电容器组接线种类单星形接线零序电压开口三角电压保护差动电压保护双星形接线中性点不平衡电流保护带容量抽头的并联电容器补偿装置近几年来,由于以下的原因,对集合式并联电容器提出了新的要求:用户新建变电所, 主变压器负荷小, 而无功补偿容量按满负荷配置, 全部投入时会发生过补偿的现象;周期性负荷变动,如农村电网当高峰及高峰过后需投入的电容器容量便不相同;带容量抽头的集合式并联电容器装置接线图1/2或1/3,2/3容量抽头接线图电抗器前置 1/2容量抽头接线图电抗器前置1/2或1/3,2/3容量抽头接线图电抗器后置 1/2容量抽头接线图电抗器后置电抗器需要抽头的原因:1.组架式高压并联电容器及无功补偿装置特点:构架组成灵活,但占地面积大;2.集合式并联电容器及成套补偿装置2.1 集合式并联电容器的优点:占地面积小,安装维护方便,可靠性高,运行费用省占地面积小:密集型并联电容器的安装占地面积约为组架式成套占地面积1/3~1/4,并且电容器单台容量越大,则占地面积与容量的比值就越小;安装维护方便:由于密封型电容器的台数少,电容器运到现场后,立即就可就位,比组架式成套安装工作量少,成套安装也较为简单,电容器台数少,电容器单元置于油箱内,巡视工作量小,减轻了运行人员的负担;可靠性高:由于对密集型采取了一些行之有效的措施:①采用元件串内熔丝后再并联的方式, 少数元件击穿后由于内熔丝熔断, 电容量变化不大, 电容器仍可继续运行;②适当降低元件工作场强,在绝缘上留有余度;③采用全膜介质,增强箱内外绝缘;从而提高了并联电容器的运行可靠性;自愈式并联电容器的自愈机理:普通金属化膜在介质疵点被击穿时,两极板间即短路放电产生电弧;在电弧高温作用下,击穿点周围的金属化极板补迅速蒸发,在击穿点周围的金属化极板被同时蒸发,在击穿点周围形成一个绝缘区;当绝缘区的半径达到一定尺寸时,电弧熄灭击穿停止,介质绝缘恢复,自愈过程即完成;自愈式并联电容器的特点:优点:体积小,重量轻,具有自愈性能,损耗小,在低压系统已得到广泛运用;缺点:自愈式电容器的金属化层的自愈性是有限的,电容器长期运行介质老化后,若某一点击穿并企图自愈时,因介电强度不够,不能迅速自愈,电弧产生的热量会引起该点邻近层介质发热,介电强度下降,从而发生击穿并企图自愈而又不能自愈;这样就引发邻近多层介质的企图自愈和击穿;击穿使电流增大,自愈使电流减小,结果电流在较长一段时间不会剧烈增加,若使用串联熔丝进行保护,熔丝不一定会熔断,而连续自愈和击穿产生的大量气体却使电容器外壳鼓肚,直到发生外壳爆裂事故;因此金属化自愈式电容器不能象箔式电容器那样使用串联熔丝作为防爆的安全保护,而要使用压力保护或热保护,此种保护方式的响应时间要比熔丝长,因而金属化并联电容器的保护性能不如箔式电容器液体介质为绝缘油的并联电容器;另外由于电容器本身的自愈作用,电容器的容量会随着时间的推移而有所减小,因而,金属化高压并联电容器在高电压领域的使用和推广还需要进一步努力;。

13 电力电容器

13 电力电容器

第十三章电力电容器电力电容器包括移相电容器、串联电容器、藕合电容器、均压电容器等多种电容器。

本章指的是移相电容器。

移相电容器的直接作用是并联在线路上提高线路的功率因数。

因此,移相电容器也称为并联补偿电容器。

安装移相电容器能改善电能质量、降低电能损耗,还能提高供电设备的利用率。

运行中电容器的爆炸危险和断电后残留电荷的危险是必须重视的安全问题。

第一节电力电容器补偿原理与计算一、结构和型号电容器由外壳和芯子组成。

外壳用密封钢板焊接而成。

外壳上装有出线绝缘套管、吊攀和接地螺钉。

芯子由一些电容元件串、并联组成。

电容元件用铝箔制作电极、用电容器纸或复合绝缘膜作为绝缘介质。

电容器内以绝缘油作为浸渍介质。

老式的多采用矿物油和十二烷基苯;新式的则采用植物油。

电力电容器的型号表示:电容器的额定电压多为0.4KV和10.5KV,也有0.23KV、0.525KV、6.3KV产品。

二、补偿原理电力系统中,电动机及其他有线圈的设备用得很多。

这类设备除从线路中取得一部分电流作功外,还要从线路上消耗一部分不作功的电感电流。

这就使得线路上的电流要额外地加大一些。

前面讲到的功率因数cosφ就是用来衡量这一部分不作功的电流的。

当电感电流为零时,功率因数等于1;当电感电流所占比例逐渐增大时,功率因数逐渐下降。

显然,功率因数越低,线路额外负担越大,发电机、电力变压器及配电装置的额外负担也较大。

这除了降低线路及电力设备的利用率外,还会增加线路上的功率损耗、增大电压损失、降低供电质量。

为此,应当提高功率因数。

提高功率因数最方便的方法是并联电容器,产生电容电流抵消电感电流,将不作功的所谓无功电流减小到一定的范围以内。

如图13-1所示,补偿前线路上的感性无功电流为I L0、线路上的总电流为I0,并联电容器后,产生一电容电流I C 抵消部分感性电流。

使得线路上的感性无功电流减小为I L、线路上的总电流减小为1。

需要补偿的无功功率为:Q=P(tgφ1-tgφ2)补偿用电力电容器或者安装在高压边,或者安装在低压边;可以集中安装,也可以分散安装。

10kV配电变压器低压侧无功补偿方式分析

10kV配电变压器低压侧无功补偿方式分析

10kV配电变压器低压侧无功补偿方式分析摘要:对于10kV线路主变沿线的下级电力用户,根据无功补偿就地就近平衡的原则,安装在变压器低压侧的电容器组一共要补偿三个无功功率,分别是用电负荷的无功功率、变压器励磁的无功功率、漏磁的无功功率,让配网线路的无功功率最小,降低线路的有功功率损耗。

通过改变无功补偿装置和运行方式,降损节能效果更加明显。

经过一段时间的运行,无功补偿装置安全可靠。

关键词:无功功率补偿; 10kV线路; 功率因数; 有功损耗引言配网线路继主变之后的电力侧用户,大多都安装有无功补偿电容器(SF),从往年的运行效果来看,供电侧仍能将较大的无功功率输送到电力用户手中,导致线路有功损耗增强。

一、导致无功功率过高的原因10kV线路主变沿线以下无功补偿电容器一般安装在使用者侧。

从往年的运行效果来看,所述无功补偿电容器依然向供电用户侧输送大功率无功,从而导致线路大功耗,主要有以下几个原因。

1、利用负荷负荷补偿运行方式在电力用户侧安装无功补偿电容器组,通过电网向外部输送额外的无功负荷和变压器自身消耗的无功功率。

2、为了限制无功功率过补偿,将正反向无功功率的绝对值加到高供低计电能表上,作为无功功率吸收系统。

这样一来,功率因数计算在功率因数值计算,数值必然是比较小的。

3、由于配网线路无功负荷分布多变,随着电力使用者搬迁、容量的影响、设施的改造等现象,已大大超过设备设置条件的范围,从而产生实际补偿效果无法满足现阶段运转荷载。

4、室内供电电容器补偿组,多为静态容量补偿,切头不能随着载荷的增减而变化,极端情况下会造成被补偿的无功功率反向送回电源,反而增加有功功率损耗。

5、配网线路上的无功补偿装置主要依靠熔断器来保护。

在实际操作过程中,保险丝发生一相或二相熔断造成补偿能力不平衡,又不能第一时间发现,在电力系统安全运行上给电力系统带来一系列的危害。

6、外加电容器受环境温度的影响特别严重。

尤其是在夏季,室外电容面温高达90度以上,且表面极温达到 90度以下,这就会加速绝缘老化,增加无功损耗,降低设备使用寿命。

TBB高压无功补偿柜说明书

TBB高压无功补偿柜说明书

编号:TBB系列高压电容补偿柜目录1.目录 (2)2.概述 (3)3.可解决的问题 (4)4.性能特点 (5)5.快速选型 (6)6.容量确定 (6)7.技术参数 (9)8.外形图 (10)9.订货规范 (11)10.使用环境 (11)11.现场安装 (12)11.安全操作注意事项 (13)概述TBB系列高压电容补偿柜主要用于6kV~10kV电力系统中,是一种改善功率因数、调整电压、降低网络损耗的容性无功功率补偿装置。

电力系统中的负载大部分是感性的,加上各工矿企业越来越多的使用电力电子设备,使电网功率因数很低。

较低的功率因数降低了设备利用率,增加了供电投资,有损电压质量,降低了设备使用寿命,增加了线损。

为了改善电网功率因数很低带来的这些不利于生产的因素,必须使电网功率因数得到有效提高。

显然这些无功功率如果都要由发电机提供并远距离传送是不合理的,通常也是不可能的。

合理的办法是在需要无功功率的地方产生无功功率。

在实际电力系统中,大部分负载为异步电动机。

其等效电路可看作电阻和电感的串联电路,其电压与电流的相位差较大,功率因数较低。

并联电容器后电压与电流的相位差变小,使功率因数提高。

TBB系列高压电容补偿柜的应用范围极为广泛,适用于冶金、矿山、建材、石化、机械等大功率高压电动机就地补偿和配电系统集中补偿。

可解决的问题当您遇到下述问题时,我公司生产的TBB系列高压电容补偿柜能为您很好地解决,使您获得满意的效果。

1、企业电网中功率因数低,甚至被供电部门罚款,需提高功率因数。

2、企业变电所电压低,需提高电网电压。

3、输电线路线损过大,需减小线损,节约输送电线路成本,降低变压器损耗,节省电能。

4、新投入用电设备,需配套补偿无功功率。

5、功率因数低,设备出力达不到额定功率。

6、原有补偿装置老化,达不到生产要求。

7、负载增加,而原有变压器容量或原有输配电线路因无功消耗过大无法满足要求,需降低供电的视在功率,增加供电能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10kv电动机电容补偿计算公式
随着社会的发展,电力系统被广泛应用于各行各业,电动机也成为了许多行业中必不可少的设备。

然而,在电动机的使用过程中,由于某些原因,可能会出现电压不稳定的情况,这就需要对电动机进行电容补偿。

电容补偿是一种用电容器来补偿电动机电磁感应电动势的方法。

电容补偿可以有效地降低电动机的电流和电能损耗,提高电动机的效率,延长电动机的使用寿命。

10kv电动机电容补偿计算公式是电容补偿的核心内容。

该公式可以根据电动机的额定功率、额定电压、额定电流以及电容器的参数来计算出所需的电容器容量。

具体计算公式如下:
C = (1.44 x P x K)/(V^2 x cosφ)
其中,C为所需电容器的容量(单位为μF),P为电动机的额定功率(单位为kW),K为功率因数改善系数(一般取0.9),V为电动机的额定电压(单位为V),cosφ为电动机的功率因数。

在进行电容补偿计算时,需要注意以下几点:
1.电容器的容量应该与电动机的额定容量相匹配,以充分发挥电容
补偿效果。

2.功率因数改善系数K的取值应根据实际情况进行调整,以获得最佳的功率因数改善效果。

3.在电容器并联时,应注意电容器的容量和电压等参数的匹配,以免发生电容器电压过高的情况。

4.在进行电容补偿时,应该严格按照电路图进行设计和施工,以确保电路的安全可靠。

10kv电动机电容补偿计算公式是电容补偿的重要内容,只有掌握了该公式,才能有效地进行电容补偿的设计和施工。

此外,还需要注意电容器的选择和使用,以充分发挥电容补偿的效果,提高电动机的效率,延长电动机的使用寿命。

相关文档
最新文档