12 全等三角形(苏科版)(解析版)
专题1-4 边角边判定三角形全等-重难点题型(举一反三)(苏科版)(解析版)

专题1.4 边角边判定三角形全等-重难点题型【苏科版】【题型1 边角边判定三角形全等的条件】【例1】(2021春•锦江区校级期中)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能用SAS判定△ABC≌△DEC,能添加的一组条件是()A.∠B=∠E,BC=EC B.∠B=∠E,AC=DCC.∠A=∠D,BC=EC D.BC=EC,AC=DC【分析】由AB=DE知,由全等三角形的判定定理SAS知,缺少的添加是:一组对应边相等及其对应夹角相等.【解答】解:A、若AB=DE,∠B=∠E,BC=EC,符合全等三角形的判定定理SAS,能推出△ABC≌△DEC,故符合题意.B、若AB=DE,AC=DC,∠B=∠E,由SSA不能判定△ABC≌△DEC,故不符合题意;C、若AB=DE,BC=EC,∠A=∠D,由SSA不能判定△ABC≌△DEC,故不符合题意;D、若AB=DE,BC=EC,AC=DC,由SSS不能判定△ABC≌△DEC,故不符合题意;故选:A.【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有:ASA,SAS,AAS,SSS,两直角三角形全等,还有HL.【变式1-1】(2020秋•喀什地区期末)如图,已知∠ABC=∠DCB,能直接用SAS证明△ABC≌△DCB的条件是()A.AB=DC B.∠A=∠D C.∠ACB=∠DBC D.AC=DB【分析】根据全等三角形的判定方法即可解决问题.【解答】解:∵AB=DC,∠ABC=∠DCB,BC=CB,∴△ABC≌△DCB(SAS),故选:A.【点评】本题考查全等三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.【变式1-2】(2020秋•通州区期中)根据下列条件能画出唯一△ABC的是()A.AB=1,BC=2,CA=3B.AB=7,BC=5,∠A=30°C.∠A=50°,∠B=60°,∠C=70°D.AC=3.5,BC=4.8,∠C=70°【分析】根据各个选项中的条件,可以判断是否可以画出唯一△ABC,从而可以解答本题.【解答】解:当AB=1,BC=2,CA=3时,1+2=3,则线段AB、BC、CA不能构成三角形,故选项A 不符合题意;当AB=7,BC=5,∠A=30°时,可以得到点B到AC的距离为3.5,可以画出两个三角形,如图1所示,故选项B不符合题意;当∠A=50°,∠B=60°,∠C=70°时,可以画出很多的三角形ABC,如图2所示,故选项C不符合题意;当AC=3.5,BC=4.8,∠C=70°时,可以画出唯一的三角形ABC,故选项D符合题意;故选:D.【点评】本题考查全等三角形的判定,解答本题的关键是明确题意,利用数形结合的思想解答.【变式1-3】(2020•奎文区一模)如图,点D、E分别在线段AB、AC上,且AD=AE,若由SAS判定△ABE≌△ACD,则需要添加的一个条件是.【分析】由题意可得∠A=∠A,AD=AE,则添加AB=AC,由SAS判定△ABE≌△ACD.【解答】解:添加AB=AC,∵AB=AC,∠A=∠A,AD=AE,∴△ABE≌△ACD(SAS)故答案为:AB=AC.【点评】本题考查了全等三角形的判定,灵活运用全等三角形的判定是本题的关键.【题型2 边角边判定三角形全等(求角的度数)】【例2】(2020秋•宽城区期末)如图,AB=AC,点D、E分别是AB、AC上一点,AD=AE,BE、CD相交于点M.若∠BAC=70°,∠C=30°,则∠BMD的大小为()A.50°B.65°C.70°D.80°【分析】根据SAS证明△ADC与△AEB全等,利用全等三角形的性质和三角形内角和解答即可.【解答】解:在△ADC与△AEB中,{AD =AE ∠A =∠A AC =AB,∴△ADC ≌△AEB (SAS ),∴∠B =∠C ,∠AEB =∠ADC ,∵∠BAC =70°,∠C =30°,∴∠AEB =∠ADC =180°﹣∠BAC ﹣∠C =180°﹣70°﹣30°=80°,∴∠BMC =∠DME =360°﹣∠AEB ﹣∠ADC ﹣∠BAC =360°﹣80°﹣80°﹣70°=130°,∴∠BMD =180°﹣130°=50°,故选:A .【点评】此题考查全等三角形的判定和性质,关键是根据全等三角形的判定和性质解答.【变式2-1】(2020秋•乐亭县期末)如图,在△ABC 中,∠B =40°,AB =CB ,AF =CD ,AE =CF ,则∠EFD =( )A .50°B .60°C .70°D .80°【分析】由等腰三角形的性质得出∠A =∠C =70°,证明△AEF ≌△CFD (SAS ),由全等三角形的性质得出∠AFE =∠CDF ,则可得出答案.【解答】解:∵∠B =40°,AB =CB ,∴∠A =∠C =12(180°﹣40°)=70°,在△AEF 和△CFD 中,{AE =CF ∠A =∠C AF =CD,∴△AEF ≌△CFD (SAS ),∴∠AFE =∠CDF ,∵∠AFE +∠EFD +∠CFD =180°,∠C +∠CDF +∠CFD =180°,∴∠EFD =∠C =70°.故选:C .【点评】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS ”、“SAS ”、“ASA ”、“AAS ”;全等三角形的对应边相等.也考查了等腰三角形的性质,三角形内角和定理.【变式2-2】(2020秋•长垣市月考)如图,在△ABC 中,∠B =∠C ,E 、D 、F 分别是AB 、BC 、AC 上的点,且BE =CD ,BD =CF ,若∠A =104°,则∠EDF 的度数为( )A .24°B .32°C .38°D .52°【分析】由等腰三角形的性质和三角形内角和定理可求∠B =∠C =38°,由“SAS ”可证△BDE ≌△CFD ,可得∠BED =∠CDF ,∠BDE =∠CFD ,由外角的性质可求解.【解答】解:∵AB =AC ,∠A =104°,∴∠B =∠C =38°,在△BDE 和△CFD 中,{BE =CD ∠B =∠C BD =CF,∴△BDE ≌△CFD (SAS ),∴∠BED =∠CDF ,∠BDE =∠CFD ,∴∠BED +∠BDE =∠CDF +∠CFD ,∵∠BED +∠B =∠CDE =∠EDF +∠CDF ,∴∠B =∠EDF =38°,故选:C .【点评】本题考查了全等三角形的判定及性质,等腰三角形的性质的运用,三角形内角和定理的运用,三角形外角的性质的运用,解答时证明三角形全等是关键.【变式2-3】(2021春•沙坪坝区校级月考)如图,△ABC 中,CD ⊥AB ,垂足为D .BE ⊥AC ,垂足为G ,AB =CF ,BE =AC .(1)求证:AE =AF ;(2)求∠EAF 的度数.【分析】(1)利用SAS 证明△AEB ≌△F AC 可证明结论;(2)由全等三角形的性质可得∠E =∠CAF ,由余角的定义可求得∠EAF 的度数.【解答】(1)证明:∵CD ⊥AB ,BE ⊥AC ,∴∠CAD +∠ACD =∠CAD +∠EBA =90°,∴∠ACD =∠EBA ,在△AEB 和△F AC 中,{AB =FC ∠EBA =∠ACF BE =CA,∴△AEB ≌△F AC (SAS ),∴AE =F A ;(2)解:∵△AEB ≌△F AC ,∴∠E =∠CAF ,∵∠E +∠EAG =90°,∴∠CAF +∠EAG =90°,即∠EAF =90°.【点评】本题主要考查全等三角形的判定与性质,证明△AEB ≌△F AC 是解题的关键.【题型3 边角边判定三角形全等(求线段的长度)】【例3】(2020秋•越秀区校级月考)如图,在△ABC 中,AD 平分∠BAC ,∠B =2∠ADB ,AB =5,CD =6,则AC 的长为( )A .3B .9C .11D .15【分析】在AC 上截取AE =AB ,连接DE ,证明△ABD ≌△AED ,得到∠B =∠AED ,再证明ED =EC ,进而代入数值解答即可.【解答】解:在AC 上截取AE =AB ,连接DE ,∵AD 平分∠BAC ,∴∠BAD =∠DAC ,在△ABD 和△AED 中,{AE =AB ∠BAD =∠DAC AD =AD,∴△ABD ≌△AED (SAS ),∴∠B =∠AED ,BD =DE ,∵∠B =2∠ADB ,∴∠AED =2∠ADB ,而∠AED =∠C +∠EDC =2∠ADB ,∴∠CED =∠EDC ,∴CD =CE ,∴AB +CD =AE +CE =AC =5+6=11.故选:C .【点评】本题考查了全等三角形的判定和性质;此题利用了全等三角形中常用辅助线﹣截长补短法构造全等三角形,然后利用全等三角形解题,这是解决线段和差问题最常用的方法,注意掌握.【变式3-1】(2020春•南岗区校级期中)如图,△ABC 中,AB =AC ,D 、E 分别在CA 、BA 的延长线上,连接BD 、CE ,且∠D +∠E =180°,若BD =6,则CE 的长为( )A .6B .5C .3D .4.5【分析】延长BE 使AF =AD ,连接CF ,由“SAS ”可证△ABD ≌△ACF ,可得∠F =∠D ,BD =CF =6,由平角的性质可得∠F =∠FEC =∠D ,即可求解.【解答】解:如图,延长BE 使AF =AD ,连接CF ,在△ABD 和△ACF 中,{AD =AF ∠DAB =∠FAC AB =AC,∴△ABD ≌△ACF (SAS ),∴∠F =∠D ,BD =CF =6,∵∠D +∠BEC =180°,∠BEC +∠FEC =180°,∴∠D =∠FEC ,∴∠F =∠FEC ,∴CF =CE =6,故选:A .【点评】本题考查了全等三角形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键.【变式3-2】(2020秋•洪山区期末)如图,在△ABC 中,AB =6,BC =5,AC =4,AD 平分∠BAC 交BC 于点D ,在AB 上截取AE =AC ,则△BDE 的周长为( )A .8B .7C .6D .5【分析】利用已知条件证明△ADE ≌△ADC (SAS ),得到ED =CD ,从而BC =BD +CD =DE +BD =5,即可求得△BDE 的周长.【解答】解:∵AD 是∠BAC 的平分线,∴∠EAD =∠CAD在△ADE 和△ADC 中,{AE =AC ∠EAD =∠CAD AD =AD,∴△ADE ≌△ADC (SAS ),∴ED =CD ,∴BC =BD +CD =DE +BD =5,∴△BDE 的周长=BE +BD +ED =(6﹣4)+5=7.故选:B .【点评】本题考查了全等三角形的性质与判定,解决本题的关键是证明△ADE ≌△ADC .【变式3-3】(2020秋•广州校级月考)如图,在△ABC 中,AB =8,AC =5,AD 是△ABC 的中线,则AD 的取值范围是( )A .3<AD <13B .1.5<AD <6.5C .2.5<AD <7.5 D .10<AD <16【分析】延长AD 到E ,使AD =DE ,连接BE ,证明△ADC ≌△EDB ,推出EB =AC ,根据三角形的三边关系定理求出即可.【解答】解:延长AD 到E ,使AD =DE ,连接BE ,∵AD 是△ABC 的中线,∴BD =CD ,在△ADC 和△EDB 中,{CD =BD ∠ADC =∠BDE AD =DE,∴△ADC ≌△EDB (SAS ),∴EB =AC ,根据三角形的三边关系定理:8﹣5<AE <8+5,∴1.5<AD <6.5,故选:B .【点评】本题主要考查对全等三角形的性质和判定,三角形的三边关系定理,倍长中线等知识点的理解和掌握,能推出8﹣5<2AD <8+5是解此题的关键.【题型4 边角边判定三角形全等(实际应用)】【例4】(2020秋•浑源县期中)如图,A ,B 两点分别位于一个假山的两端,小明想用绳子测量A 、B 间的距离,首先在地面上取一个可以直接到达A 点和B 点的点C ,连接AC 并延长到点D ,使CD =AC ,连接BC 并延长到点E ,使CE =CB ,连接DE 并测量出它的长度为8m ,则AB 间的距离为 8m .【分析】根据全等三角形的判定和性质即可得到结论.【解答】解:在△CDE 和△CAB 中,{CD =CA ∠DCE =∠ACB CE =CB,∴△CDE ≌△CAB (SAS ),∴DE =AB =8m ,故答案为:8m .【点评】本题考查了全等三角形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.【变式4-1】(2020秋•西湖区校级期中)如图1、2,小明为了测出塑料瓶直壁厚度,由于不便测出塑料瓶的内径,小明动手制作一个简单的工具(如图2,AC =BD ,O 为AC 、BD 的中点)解决了测瓶的内径问题,测得瓶的外径为a 、图2中的DC 长为b ,瓶直壁厚度x = (用含a ,b 的代数式表示).【分析】直接利用全等三角形的判定与性质得出△DOC ≌△BOA ,进而得出答案.【解答】解:∵AC =BD ,O 为AC 、BD 的中点,∴DO =OB .OA =CO ,在△DOC 和△BOA 中{DO =OB ∠DOC =∠BOA CO =AO,∴△DOC ≌△BOA (SAS ),∴AB =DC =b ,∴x +x +b =a ,解得:x =a−b 2. 故答案为:a−b 2.【点评】此题主要考查了全等三角形的应用,正确掌握全等三角形的判定方法是解题关键.【变式4-2】(2020秋•温岭市期中)某中学计划为新生配备如图1所示的折叠凳,图2是折叠凳撑开后的侧面示意图(木条等材料宽度忽略不计),其中凳腿AB 和CD 的长度相等,O 是它们的中点,为了使折叠凳坐着舒适,厂家将撑开后的折叠凳宽度AD 设计为35cm ,由以上信息能求出CB 的长度吗?如果能,请求出CB 的长度;如果不能,请说明理由.【分析】根据中点定义求出OA =OB ,OC =OD ,然后利用“边角边”证明△AOD 和△BOC 全等,根据全等三角形对应边相等即可证明.【解答】解:∵O 是AB 、CD 的中点,∴OA =OB ,OC =OD ,在△AOD 和△BOC 中,{OA =OB ∠AOD =∠BOC OC =OD,∴△AOD ≌△BOC (SAS ),∴CB =AD ,∵AD =35cm ,∴CB =35(cm ),答:CB 的长度为35cm .【点评】本题考查了全等三角形的应用,证明得到三角形全等是解题的关键.【变式4-3】(2020春•郏县期末)如图所示,A 、B 两点分别位于一个池塘的两端,小明想用绳子测量A 、B 间的距离,但绳子不够长,请你利用三角形全等的相关知识带他设计一种方案测量出A 、B 间的距离,写出具体的方案,并解释其中的道理.【分析】由题意知AC =DC ,BC =EC ,根据∠ACB =∠DCE 即可证明△ABC ≌△DEC ,即可得AB =DE ,即可解题.【解答】解:如图,先在地上取一个可以直接到达A 点和B 点的点C ,连接AC 并延长到D ,使CD =AC ;连接BC 并延长到E ,使CE =CB ,连接DE 并测量出它的长度,DE 的长度就是A 、B 间的距离. 证明:由题意知AC =DC ,BC =EC ,且∠ACB =∠DCE ,在△ABC 和△DEC 中,{AC =DC ∠ACB =∠DCE BC =EC,∴△ABC ≌△DEC (SAS ),∴DE =AB .∴量出DE 的长,就是A 、B 两点间的距离.【点评】本题考查了全等三角形在实际生活中的应用,考查了全等三角形对应边相等的性质,本题中求证△ABC ≌△DEC 是解题的关键.【题型5 边角边判定三角形全等(证明题)】【例5】(2020春•沙坪坝区校级期中)如图,在直角△ABC 中,∠ABC =90°,过B 点作BD ⊥AC 于D ,E 在CD 上,且DE =AB ,过点D 作DF ∥BC ,使得DF =BD ,连接EF .求证:(1)∠ABD =∠C ;(2)DF ⊥EF .【分析】(1)由直角三角形的性质可得出答案;(2)证明△ABD ≌△EDF (SAS ),由全等三角形的性质得出∠ADB =∠DFE =90°,则可得出结论.【解答】证明:(1)∵∠ABC =90°,∴∠A +∠C =90°,∵BD ⊥AC ,∴∠BDA =90°,∵∠ABD +∠A =90°,∴∠ABD =∠C ;(2)∵DF ∥BC ,∴∠FDE =∠C ,∵∠ABD =∠C ,∴∠ABD =∠FDE ,在△ABD 和△EDF 中,{AB =DE ∠ABD =∠FDE BD =DF,∴△ABD ≌△EDF (SAS ),∴∠ADB =∠DFE =90°,∴DF ⊥EF .【点评】本题考查了直角三角形的性质,平行线的性质,全等三角形的判定与性质,熟练掌握全等三角形的性质是解题的关键.【变式5-1】(2020秋•陆川县期中)如图,AD 是△ABC 的角平分线,且AB >AC ,E 为AD 上任意一点, 求证:AB ﹣AC >EB ﹣EC .【分析】在AB 上截取AF =AC ,连接EF ,证明△AEF ≌△AEC ,可得EF =EC ,根据三角形三边的关系即可证明结论.【解答】证明:如图,在AB 上截取AF =AC ,连接EF ,∵AD是△ABC的角平分线,∴∠F AE=∠CAE,在△AEF与△AEC中,∵{AF=AC∠FAE=∠CAE AE=AE,∴△AEF≌△AEC(SAS),∴EF=EC,在△BEF中,EB﹣EF<BF,而BF=AB﹣AF=AB﹣AC,∴EB﹣EC<AB﹣AC,即AB﹣AC>EB﹣EC.【点评】本题考查了全等三角形的判定与性质,三角形三边的关系,解决本题的关键是掌握全等三角形的判定与性质.【变式5-2】(2020秋•合江县月考)已知△ABC和△ADE均为等腰三角形,且∠BAC=∠DAE,AB=AC,AD=AE.(1)如图1,点E在BC上,求证:BC=BD+BE;(2)如图2,点E在CB的延长线上,求证:BC=BD﹣BE.【分析】(1)先证∠DAB=∠EAC,再证△DAB≌△EAC(SAS),得出BD=CE,则可得出结论;(2)证明△DAB≌△EAC(SAS),得出BD=CE,进而得出结论.【解答】(1)证明:∵∠BAC=∠DAE,∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,即∠DAB=∠EAC,又∵AB=AC,AD=AE,∴△DAB≌△EAC(SAS),∴BD=CE,∴BC=BE+CE=BD+BE;(2)证明:∵∠BAC=∠DAE,∴∠BAC+∠EAB=∠DAE+∠EAB,即∠DAB=∠EAC,又∵AB=AC,AD=AE,∴△DAB≌△EAC(SAS),∴BD=CE,∴BC=CE﹣BE=BD﹣BE.【点评】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题的关键.【变式5-3】(2020秋•温岭市期中)(1)如图1,已知在△ABC中,AD为中线,求证AB+AC>2AD.(2)如图2,在△ABC中,D为BC的中点,DE⊥DF分别交AB,AC于点E,F.求证:BE+CF>EF.【分析】(1)根据SAS证明△ABD≌△CED,得出AB=EC,由三角形三边关系得出答案;(2)根据全等三角形的判定和性质解答即可.【解答】证明:(1)延长AD至点E,使DE=AD,连接CE,如图1.则AE =2AD ,在△ABD 与△ECD 中,{AD =ED ∠ADC =∠EDB DB =DC,∴△ABD ≌△ECD (SAS ),∴AB =EC ,在△ACE 中,有AC +CE >AE ,即AC +AB >2AD ;(2)延长ED 至点G ,使DG =DE ,连接CG ,FG ,如图2.∵FD 垂直平分EG ,∴EF =FG ,在△EDB 与△GDC 中,{BD =CD ∠BDE =∠CDG ED =GD,∴△EDB ≌△GDC (SAS ),∴BE =CG ,在△FCG 中,CF +CG >FG ,即CF +BE >EF .【点评】此题考查全等三角形的判定与性质.关键是根据全等三角形的判定和性质以及三角形三边关系解答.【题型6 边角边判定三角形全等(探究题)】【例6】(2020秋•怀宁县期末)如图,已知:AD =AB ,AE =AC ,AD ⊥AB ,AE ⊥AC .猜想线段CD 与BE 之间的数量关系与位置关系,并证明你的猜想.【分析】证明△ACD ≌△AEB ,根据全等三角形的性质得到CD =BE ,∠ADC =∠ABE ,根据三角形内角和定理得出∠BFD =∠BAD =90°,证明结论.【解答】解:猜想:CD =BE ,CD ⊥BE ,理由如下:∵AD ⊥AB ,AE ⊥AC ,∴∠DAB =∠EAC =90°.∴∠DAB +∠BAC =∠EAC +∠BAC ,即∠CAD =∠EAB ,在△ACD 和△AEB 中,{AD =AB ∠CAD =∠EAB AC =AE,∴△ACD ≌△AEB (SAS ),∴CD =BE ,∠ADC =∠ABE ,∵∠AGD =∠FGB ,∴∠BFD =∠BAD =90°,即CD ⊥BE .【点评】本题考查的是三角形全等的判定和性质、三角形内角和定理,掌握全等三角形的判定定理和性质定理是解题的关键.【变式6-1】(2020秋•唐山期中)如图,在△ABC 中,AD ,CE 分别是BC 、AB 边上的高,AD 与CE 交于点F ,连接BF ,延长AD 到点G ,使得AG =BC ,连接BG ,若CF =AB .(1)求证:△ABG ≌△CFB ;(2)在完成(1)的证明后,爱思考的琪琪想:BF 与BG 之间有怎样的数量关系呢?它们之间又有怎样的位置关系?请你帮琪琪解答这一问题,并说明理由.【分析】(1)根据SAS 证明△ABG ≌△CFB ,再利用全等三角形的性质证明即可;(2)根据全等三角形的性质得出∠G =∠FBD ,再证明即可.【解答】(1)证明:∵AD ,CE 是高,∴∠BAD +∠AFE =∠BCF +∠CFD =90°,∵∠AFE =∠CFD ,∴∠BAD =∠BCF ,在△ABG 与△CFB 中,{AG =BC ∠BAD =∠BCF CF =AB,∴△ABG ≌△CFB (SAS );(2)解:BF =BG ,BF ⊥BG ,理由如下:∵△ABG ≌△CFB ,∴BF =BG ,∠G =∠FBD ,∵AD ⊥BC ,∴∠BDG =90°∴∠G +∠DBG =90°,∴∠FBD +∠DBG =90°,∴∠FBG 的度数为90°,∴BF ⊥BG .【点评】此题考查全等三角形的判定和性质,关键是根据SAS 证明△ABG ≌△CFB .【变式6-2】(2021春•佛山月考)在△ABC 中,AB =AC ,点D 是射线CB 上的一动点(不与点B 、C 重合),以AD 为一边在AD 的右侧作△ADE ,使AD =AE ,∠DAE =∠BAC ,连接CE .(1)如图1,当点D 在线段CB 上,且∠BAC =90°时,那么∠DCE = 度;(2)设∠BAC =α,∠DCE =β.①如图2,当点D 在线段CB 上,∠BAC ≠90°时,请你探究α与β之间的数量关系,并证明你的结论;②如图3,当点D 在线段CB 的延长线上,∠BAC ≠90°时,请将图3补充完整,写出此时α与β之间的数量关系并证明.【分析】(1)易证∠BAD =∠CAE ,即可证明△BAD ≌△CAE ,可得∠ACE =∠B ,即可解题;(2)易证∠BAD =∠CAE ,即可证明△BAD ≌△CAE ,可得∠ACE =∠B ,根据∠B +∠ACB =180°﹣α即可解题;(3)易证∠BAD =∠CAE ,即可证明△BAD ≌△CAE ,可得∠ACE =∠B ,根据∠ADE +∠AED +α=180°,∠CDE +∠CED +β=180°即可解题.【解答】解:(1)∵∠BAD +∠DAC =90°,∠DAC +∠CAE =90°,∴∠BAD =∠CAE ,在△BAD 和△CAE 中,{AB =AC ∠BAD =∠CAE AD =AE,∴△BAD ≌△CAE (SAS ),∴∠ACE =∠B ,∵∠B +∠ACB =90°,∴∠DCE =∠ACE +∠ACB =90°;故答案为 90.(2)∵∠BAD +∠DAC =α,∠DAC +∠CAE =α,∴∠BAD =∠CAE ,在△BAD 和△CAE 中,{AB =AC ∠BAD =∠CAE AD =AE,∴△BAD ≌△CAE (SAS ),∴∠ACE =∠B ,∵∠B +∠ACB =180°﹣α,∴∠DCE =∠ACE +∠ACB =180°﹣α=β,∴α+β=180°;(3)作出图形,∵∠BAD +∠BAE =α,∠BAE +∠CAE =α,∴∠BAD =∠CAE ,在△BAD 和△CAE 中,{AB =AC ∠BAD =∠CAE AD =AE,∴△BAD ≌△CAE (SAS ),∴∠AEC =∠ADB ,∵∠ADE +∠AED +α=180°,∠CDE +∠CED +β=180°,∠CED =∠AEC +∠AED ,∴α=β.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△BAD ≌△CAE 是解题的关键.【变式6-3】(2020秋•集贤县期中)如图1,在△ABC 中,AE ⊥BC 于点E ,AE =BE ,D 是AE 上的一点,且DE =CE ,连接BD ,CD .(1)试判断BD 与AC 的位置关系和数量关系,并说明理由;(2)如图2,若将△DCE 绕点E 旋转一定的角度后,试判断BD 与AC 的位置关系和数量关系是否发生变化,并说明理由.【分析】(1)延长BD 交AC 于F ,求出∠AEB =∠AEC =90°,证出△BED ≌△AEC ,推出BD =AC ,∠DBE =∠CAE ,根据∠EBD +∠BDE =90°推出∠ADF +∠CAE =90°,求出∠AFD =90°即可;(2)求出∠BED =∠AEC ,证出△BED ≌△AEC ,推出BD =AC ,∠BDE =∠ACE ,根据∠ACE +∠EOC =90°求出∠BDE +∠DOF =90°,求出∠DFO =90°即可.【解答】解:(1)BD =AC ,BD ⊥AC ,理由:延长BD 交AC 于F .∵AE ⊥BC ,∴∠AEB =∠AEC =90°,在△BED 和△AEC 中,{BE =AE ∠BED =∠AEC ED =CE,∴△BED ≌△AEC (SAS ),∴BD =AC ,∠DBE =∠CAE ,∵∠BED =90°,∴∠EBD +∠BDE =90°,∵∠BDE =∠ADF ,∴∠ADF +∠CAE =90°,∴∠AFD =180°﹣90°=90°,∴BD ⊥AC ;(2)结论不发生变化,理由是:设AC 与DE 相交于点O ,∵∠BEA =∠DEC =90°,∴∠BEA +∠AED =∠DEC +∠AED ,∴∠BED =∠AEC ,在△BED 和△AEC 中,{BE =AE ∠BED =∠AEC ED =CE,∴△BED ≌△AEC (SAS ),∴BD =AC ,∠BDE =∠ACE ,∵∠DEC =90°,∴∠ACE +∠EOC =90°,∵∠EOC =∠DOF ,∴∠BDE +∠DOF =90°,∴∠DFO =180°﹣90°=90°,∴BD ⊥AC .【点评】本题考查了全等三角形的性质和判定的应用,等腰直角三角形的性质,熟练掌握全等三角形的判定与性质是解题的关键.。
专题1-8 HL判定三角形全等-重难点题型(举一反三)(苏科版)(解析版)

专题1.8 HL判定三角形全等-重难点题型【苏科版】【题型1 HL判定三角形全等的条件】【例1】(2020秋•秦淮区期末)结合图,用符号语言表达定理“斜边和一条直角边分别相等的两个直角三角形全等”的推理形式:在Rt△ABC和Rt△DEF中,∠C=∠F=90°,AC=DF∴Rt△ABC≌Rt△DEF.【分析】根据条件可知,少一组斜边,所以可添加为:AB=DE.【解答】解:∵∠C=∠F=90°,∴在Rt△ABC和Rt△DEF中,{AC=DFAB=DE,∴Rt△ABC≌Rt△DEF(HL),故答案为:AB=DE.【点评】本题考查了直角三角形全等的判定定理,【变式1-1】(2020秋•金乡县期中)如图,在Rt△ABC与Rt△DCB中,已知∠A=∠D=90°,若利用“HL”证明Rt△ABC≌Rt△DCB,你添加的条件是.(不添加字母和辅助线)【分析】根据:斜边与直角边对应相等的两个直角三角形全等,使Rt△ABC≌Rt△DCB,添加的条件是:AB=DC.【解答】解:∵斜边与直角边对应相等的两个直角三角形全等,∴在Rt△ABC与Rt△DCB中,已知∠A=∠D=90°,使Rt△ABC≌Rt△DCB,添加的条件是:AB=DC.故答案为:AB=DC(答案不唯一)【点评】此题主要考查了全等三角形的判定和性质的应用,要熟练掌握,解答此题的关键是要明确:①判定定理1:SSS﹣﹣三条边分别对应相等的两个三角形全等.②判定定理2:SAS﹣﹣两边及其夹角分别对应相等的两个三角形全等.③判定定理3:ASA﹣﹣两角及其夹边分别对应相等的两个三角形全等.④判定定理4:AAS﹣﹣两角及其中一个角的对边对应相等的两个三角形全等.⑤判定定理5:HL﹣﹣斜边与直角边对应相等的两个直角三角形全等.【变式1-2】(2021春•宝安区期中)如图,∠C=∠D=90°,添加下列条件:①AC=AD;②∠ABC=∠ABD;③BC=BD,其中能判定Rt△ABC与Rt△ABD全等的条件的个数是()A.0B.1C.2D.3【分析】根据直角三角形的全等的条件进行判断,即可得出结论.【解答】解:①当AC=AD时,由∠C=∠D=90°,AC=AD且AB=AB,可得Rt△ABC≌Rt△ABD(HL);②当∠ABC=∠ABD时,由∠C=∠D=90°,∠ABC=∠ABD且AB=AB,可得Rt△ABC≌Rt△ABD(AAS);③当BC=BD时,由∠C=∠D=90°,BC=BD且AB=AB,可得Rt△ABC≌Rt△ABD(HL);故选:D.【点评】本题主要考查了直角三角形全等的判定,直角三角形首先是三角形,所以一般三角形全等的判定方法都适合它,同时直角三角形又是特殊的三角形,作为“HL”公理就是直角三角形独有的判定方法.【变式1-3】(2021春•金水区校级月考)下列说法正确的有()①两个锐角分别相等的的两个直角三角形全等;②一条直角边相等且另一条直角边上的中线相等的两个直角三角形全等;③两边分别相等的两个直角三角形全等;④一个锐角和一条边分别相等的两个直角三角形全等.A.1B.2C.3D.4【分析】根据直角三角形全等的判定方法逐条判定即可得到结论,【解答】解:①两个锐角分别相等的的两个直角三角形不一定全等,故该说法错误;②如图,已知:∠B=∠E=90°,BC=EF,AM=BM,DN=EN,CM=FN,求证:△ABC≌△DEF,证明:∵∠B=∠E=90°,BC=EF,CM=FN,∴Rt△BCM≌Rt△EFN(HL),∴BM=EN∵AM=BM,DN=EN,∴AB=DE,∴Rt△ABC≌Rt△EFN(SAS),故一条直角边相等且另一条直角边上的中线相等的两个直角三角形全等的说法正确;③两对应边分别相等的两个直角三角形全等,如果是一个直角三角形的两条直角边和另一个直角三角形的一条直角边和一条斜边分别相等,这两个直角三角形不全等,故该说法错误;④一个锐角和一条边分别对应相等的两个直角三角形不一定全等,如果一个直角三角形的一条直角边和另一个直角三角形的一条斜边相等,这两个直角三角形不全等,故该说法错误;故选:A.【点评】本题主要考查了直角三角形全等的判定,熟练掌握全等三角形判定方法是解决问题的关键.【题型2 直角三角形全等的判定与性质(求角的度数)】【例2】(2020秋•昌平区期末)如图,Rt△ABC中,∠ACB=90°,∠B=50°,D,F分别是BC,AC上的点,DE⊥AB,垂足为E,CF=BE,DF=DB,则∠ADE的度数为()A.40°B.50°C.70°D.71°【分析】根据已知条件得出△CDF≌△EDB,从而得出CD=DE,从而得出△ACD≌△AED,从而得出∠DAE=20°,即可得出答案.【解答】解:根据题意:在Rt△CDF和Rt△EDB中,{FC=BEDF=DB,∴Rt△CDF≌Rt△EDB(HL),∴CD=DE,∵在Rt△ACD和Rt△AED中{CD=DEAD=AD,∴Rt△ACD≌Rt△AED(HL),∴∠DAE=20°,∴∠ADE=70°.故选:C.【点评】本题主要考查了全等三角形的判定及全等三角形的性质,难度适中.【变式2-1】(2021春•娄底月考)如图,已知∠C=∠F=90°,AC=DF,AE=DB,BC与EF交于点O.(1)求证:Rt△ABC≌Rt△DEF;(2)若∠A=51°,求∠BOF的度数.【分析】(1)根据HL证明两个三角形全等;(2)根据三角形全等的性质和三角形外角的性质可得结论.【解答】(1)证明:∵AE=DB,∴AE+EB=DB+EB,即AB=DE,在Rt△ACB和Rt△DFE中,{AC=DFAB=DE,∴Rt△ABC≌Rt△DEF(HL);(2)解:∵∠C=90°,∠A=51°,∴∠ABC=∠C﹣∠A=90°﹣51°=39°,由(1)知Rt△ABC≌Rt△DEF,∴∠ABC=∠DEF.∴∠DEF=39°,∴∠BOF=∠ABC+∠BEF=39°+39°=78°.【点评】本题考查了全等三角形的性质和判定,尤其是掌握直角三角形特殊的全等判定:HL,在判定三角形全等时,关键是选择恰当的判定条件.【变式2-2】(2021春•姑苏区期末)如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:Rt△ABE≌Rt△CBF;(2)若∠CAE=30°,∠BAC=45°,求∠ACF的度数.【分析】(1)由AB =CB ,∠ABC =90°,AE =CF ,即可利用HL 证得Rt △ABE ≌Rt △CBF ;(2)由AB =CB ,∠ABC =90°,即可求得∠ACB 的度数,即可得∠BAE 的度数,又由Rt △ABE ≌Rt △CBF ,即可求得∠BCF 的度数,则由∠ACF =∠BCF +∠ACB 即可求得答案.【解答】(1)证明:∵∠ABC =90°,∴∠CBF =∠ABE =90°,在Rt △ABE 和Rt △CBF 中,{AE =CF AB =BC, ∴Rt △ABE ≌Rt △CBF (HL );(2)解:∵∠ABC =90°,∠BAC =45°,∴∠ACB =45°,又∵∠BAE =∠CAB ﹣∠CAE =45°﹣30°=15°,由(1)知:Rt △ABE ≌Rt △CBF ,∴∠BCF =∠BAE =15°,∴∠ACF =∠BCF +∠ACB =45°+15°=60°.【点评】此题考查了直角三角形全等的判定与性质.此题难度不大,解题的关键是注意数形结合思想的应用.【变式2-3】(2020秋•鹿城区校级月考)如图,已知BC =ED ,∠B =∠E =Rt ∠,∠ACD =∠ADC .(1)求证:△ABC ≌△AED ;(2)当∠BAE =140°时,求∠BCD 的度数.【分析】(1)由∠ACD =∠ADC 知AC =AD ,再利用“HL ”即可证明△ABC ≌△AED ;(2)由Rt △ABC ≌Rt △AED 可设∠BAC =∠EAD =x ,∠CAD =y ,根据∠BAE =140°知2x +y =140°,由∠B =90°得∠ACB =90°﹣x 、AC =AD 知∠ACD =∠ADC =90°−12y ,再根据∠BCD =∠ACB +∠ACD 求解可得.【解答】证明:(1)∵∠ACD =∠ADC ,∴AC =AD ,在Rt △ABC 和Rt △AED 中,∵{BC =ED AC =AD, ∴Rt △ABC ≌Rt △AED (HL );(2)∵Rt △ABC ≌Rt △AED ,∴可设∠BAC =∠EAD =x ,∠CAD =y ,∵∠BAE =140°,∴2x +y =140°,∵∠B =90°,∴∠ACB =90°﹣x ,又∵AC =AD ,∴∠ACD =∠ADC =180°−∠CAD 2=90°−12y , 则∠BCD =∠ACB +∠ACD=90°﹣x +90°−12y=180°−12(2x +y )=180°﹣70°=110°.【点评】本题主要考查全等三角形的判定与性质,解题的关键是掌握直角三角形全等的判定与性质、等腰三角形的性质.【题型3 直角三角形全等的判定与性质(求线段长度)】【例3】(2020秋•西城区校级期中)如图,已知Rt △ABC 中,∠ACB =90°,CA =CB ,D 是AC 上一点,E 在BC 的延长线上,且AE =BD ,BD 的延长线与AE 交于点F .若CD =3,则求CE 的长.【分析】证明△BDC≌△AEC得出:CD=CE.【解答】(1)解:∵∠ACB=90°,∴∠ACE=∠BCD=90°.在Rt△BDC与Rt△AEC中,{BC=ACBD=AE,∴Rt△BDC≌Rt△AEC(HL).∴CD=CE=3;【点评】本题考查了直角三角形全等的判定及性质的运用,解答时证明三角形全等是关键.【变式3-1】(2020秋•承德校级期中)在Rt△ABC中,∠ACB=90°,E是AB上一点,且BE=BC,过E 作DE⊥AB交AC于D,如果AC=5cm,则AD+DE等于()A.3 cm B.4 cm C.5 cm D.6 cm【分析】根据HL证Rt△BED≌Rt△BCD,推出DE=DC,得出AD+DE=AD+DC=AC,代入求出即可.【解答】解:∵DE⊥AB,∴∠DEB=90°=∠C,在Rt△BED和Rt△BCD中{BD=BDBE=BC,∴Rt△BED≌Rt△BCD(HL),∴DE=DC,∴AD+DE=AD+CD=AC=5cm,故选:C.【点评】本题考查了直角三角形全等的性质和判定,注意:全等三角形的对应边相等,判断直角三角形全等的方法有SAS,ASA,AAS,SSS,HL.【变式3-2】(2020秋•平谷区期末)如图,在Rt△ABC中,∠C=90°,D为BC上一点,连接AD,过D 点作DE⊥AB,且DE=DC.若AB=5,AC=3,则EB=.【分析】由“HL”可证Rt△ADE≌Rt△ADC,可得AC=AE=3,即可求BE.【解答】解:在Rt△ADE和Rt△ADC中,{AD=ADDE=DC,∴Rt△ADE≌Rt△ADC(HL),∴AC=AE=3,∴BE=AB﹣AE=2,故答案为2.【点评】本题考查了全等三角形的判定和性质,掌握全等三角形的判定定理是本题的关键.【变式3-3】(2020秋•兰山区期末)在Rt△ABC中,∠C=90°,AC=15cm,BC=8cm,AX⊥AC于A,P、Q两点分别在边AC和射线AX上移动.当PQ=AB,AP=时,△ABC和△APQ全等.【分析】分情况讨论:①AP=BC=8cm时,Rt△ABC≌Rt△QP A(HL);②当P运动到与C点重合时,Rt△ABC≌Rt△PQA(HL),此时AP=AC=15cm.【解答】解:①当P运动到AP=BC时,如图1所示:在Rt △ABC 和Rt △QP A 中,{AB =QP BC =PA, ∴Rt △ABC ≌Rt △QP A (HL ),即AP =B =8cm ;②当P 运动到与C 点重合时,如图2所示:在Rt △ABC 和Rt △PQA 中,{AB =PQ AC =PA, ∴Rt △ABC ≌Rt △PQA (HL ),即AP =AC =15cm .综上所述,AP 的长度是8cm 或15cm .故答案为:8cm 或15cm .【点评】本题考查了三角形全等的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键,注意分类讨论,以免漏解.【题型4 直角三角形全等的判定与性质(证垂直)】【例4】(2021春•万柏林区校级月考)如图,AC ∥BD ,∠C =90°,AC =BE ,AB =DE ,求证:DE ⊥AB .【分析】先根据平行线的性质求出∠DBE=∠C=90°,再由HL定理可判定△ACB≌△EBD,由全等三角形的性质解答即可.【解答】证明:设AB与DE相交于点M,∵AC∥BD,∴∠C+∠DBE=180°,∵∠C=90°,∴∠DBE=90°,在Rt△ACB与Rt△EBD中,{AC=BE,AB=DE∴Rt△ACB≌Rt△EBD(HL),∴∠ABC=∠D,∵∠D+∠MEB=90°,∴∠ABC+∠MEB=90°,∴∠EMB=180°﹣∠ABC﹣∠MEB=90°,∴DE⊥AB.【点评】此题考查了全等三角形的判定与性质,根据HL判定Rt△ACB≌Rt△EBD是解题的关键.【变式4-1】(2021•三水区一模)如图,AB=AC,直线l过点A,BM⊥直线l,CN⊥直线l,垂足分别为M、N,且BM=AN.(1)求证△AMB≌△CNA;(2)求证∠BAC=90°.【分析】(1)由HL证明△AMB≌△CNA即可;(2)先由全等三角形的性质得∠BAM=∠ACN,再由∠CAN+∠ACN=90°,得∠CAN+∠BAM=90°,即可得出结论.【解答】证明:(1)∵BM⊥直线l,CN⊥直线l,∴∠AMB=∠CNA=90°,在Rt△AMB和Rt△CNA中,{AB=CABM=AN,∴Rt△AMB≌Rt△CNA(HL);(2)由(1)得:Rt△AMB≌Rt△CNA,∴∠BAM=∠ACN,∵∠CAN+∠ACN=90°,∴∠CAN+∠BAM=90°,∴∠BAC=180°﹣90°=90°.【点评】本题考查的是全等三角形的判定和性质以及直角三角形的性质,掌握全等三角形的判定定理和性质定理是解题的关键.【变式4-2】(2020秋•西湖区校级月考)如图,∠A=∠B=90°,E是AB上的一点,且AE=BC,∠1=∠2.(1)Rt△ADE与Rt△BEC全等吗?并说明理由;(2)试判断CE和DE的关系,并说明理由.【分析】(1)由∠1=∠2,可得DE=CE,根据证明直角三角形全等的“HL”定理,证明即可;(2)由∠1=∠2,可得DE=CE,再根据题意,∠AED+∠ADE=90°,∠BEC+∠BCE=90°,又∠AED =∠BCE,∠ADE=∠BEC,所以,∠AED+∠BEC=90°,即可证得∠DEC=90°,即可得出.【解答】解:(1)结论:Rt△ADE≌Rt△BEC;理由如下:∵∠1=∠2,∴DE=CE,而∠A=∠B=90°,AE=BC∴在Rt△ADE和Rt△BEC中,DE=CE,AE=BC,∴Rt△ADE≌Rt△BEC(HL);(2)结论:DE=CE且DE⊥CE,理由如下:∵∠1=∠2∴DE=CE,∵Rt△ADE≌Rt△BEC,∴∠AED=∠BCE,∠ADE=∠BEC,又∵∠AED+∠ADE=90°,∠BEC+∠BCE=90°,∴2(∠AED+∠BEC)=180°,∴∠AED+∠BEC=90°,∴∠DEC=90°,∴DE⊥CE.【点评】本题主要考查了直角三角形的判定与性质,证明三角形全等时,关键是根据题意选取适当的条件.【变式4-3】(2020秋•城北区校级月考)如图,已知Rt△ABC中,∠ACB=90°,CA=CB,D是AC上一点,E在BC的延长线上,且AE=BD,BD的延长线与AE交于点F.试通过观察、测量、猜想等方法来探索BF与AE有何特殊的位置关系,并说明你猜想的正确性.【分析】猜想:BF⊥AE,先证明△BDC≌△AEC得出∠CBD=∠CAE,从而得出∠BFE=90°,即BF⊥AE.【解答】解:猜想:BF⊥AE.理由:∵∠ACB=90°,∴∠ACE=∠BCD=90°.∴在Rt△BDC与Rt△AEC中{BC=ACBD=AE,∴Rt△BDC≌Rt△AEC(HL).∴∠CBD=∠CAE.又∴∠CAE+∠E=90°.∴∠EBF+∠E=90°.∴∠BFE=90°,即BF⊥AE.【点评】主要考查全等三角形的判定方法,以及全等三角形的性质.猜想问题一定要认真观察图形,根据图形先猜后证.。
【汇总】苏科版八年级上册数学第一章 全等三角形含答案

苏科版八年级上册数学第一章全等三角形含答案一、单选题(共15题,共计45分)1、有下面的说法:①全等三角形的形状相同;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等.其中正确的说法有( )A.1个B.2个C.3个D.4个2、下列各组的两个图形属于全等图形的是()A. B. C. D.3、如图,下面是利用尺规作∠AOB的角平分线OC的作法,在用尺规作角平分线过程中,用到的三角形全等的判定方法是()作法:①以O为圆心,适当长为半径画弧,分别交OA,OB于点D,E:②分别以D,E为画心,大于DE的长为半径画弧,两弧在∠AOB内交于一点c:③画射线OC,射线OC就是∠AOB的角平分线A.ASAB.SASC.SSSD.AAS4、下列说法正确的是()A.全等图形是指形状相同的两个图形B.全等图形的周长和面积一定相等 C.两个等边三角形一定全等 D.面积相等的两个三角形一定全等5、如图,AB=CD,AC=BD,且AC交BD于点O,在原图形的基础上,用SSS证明△AOB≌△COD,还需添加的一个条件是()A.OB=OCB.∠A=∠DC.∠B=∠CD.AB∥CD6、在下列条件中,不能说明△ABC≌△A′B′C′的是()A.∠C=∠C′,AC=A′C′,BC=B′C′B.∠B=∠B′,∠C=∠C′,AB=A′B′ C.∠A=∠A′,AB=A′B′,BC=B′C′ D.AB=A′B′,BC=B′C′,AC=A′C7、用尺规作已知角的平分线的理论依据是()A.SAS.B.AASC.SSSD.ASA8、如图,尺规作图做一个角等于已知角,能得出∠A’O’B’=∠AOB的依据是()A.SASB.SSSC.ASAD.AAS9、如图,点D,E在△ABC的边BC上,△ABD≌△ACE,其中B,C为对应顶点,D,E为对应顶点,下列结论不一定成立的是()A.AC=CDB.BE=CDC.∠ADE=∠AEDD.∠BAE=∠CAD10、下列语句中,正确的个数有()①、有两个不同顶点的外角是钝角的三角形是锐角三角形;②、有两条边和一个角相等的两个三角形是全等三角形;③、方程用关于的代数式表示y是y=6-3x;④、三角形的三条角平分线的交点到三个顶点的距离相等。
专题12.2 三角形全等的判定(解析版)

专题12.2 三角形全等的判定全等三角形的判定定理(1)边边边(SSS):三边对应相等的两个三角形全等.(2)边角边(SAS):两边和它们的夹角对应相等的两个三角形全等.(3)角边角(ASA):两角和它们的夹边对应相等的两个三角形全等.(4)角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等.(5)斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等. (只适用两个直角三角形)【例题1】如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD【答案】D.【解析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.∵AB=AC,∠A为公共角,A.如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD;B.如添AD=AE,利用SAS即可证明△ABE≌△ACD;C.如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≌△ACD;D.如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件.【点拨】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.【例题2】如图,点E、F分别是矩形ABCD的边AB、CD上的一点,且DF=BE.求证:AF=CE.【答案】见解析。
【解析】证明:∵四边形ABCD是矩形,∴∠D=∠B=90°,AD=BC,在△ADF和△BCE中,,∴△ADF≌△BCE(SAS),∴AF=CE.【点拨】由SAS证明△ADF≌△BCE,即可得出AF=CE.【例题3】如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE.【答案】见解析。
12.2 三角形全等的判定(解析版)

12.2 三角形全等的判定1.理解和掌握边边边、边角边的方法判断三角形全等;2.理解和掌握角边角和角角边的方法判断三角形全等;3.理解和掌握直角三角形的判定方法。
一、判定方法一:边边边(SSS )1.边边边:三边对应相等的两个三角形全等(可以简写成“边边边“或“SSS “)。
2.书写格式①先写出所要判定的两个三角形。
②列出条件:用大括号将两个三角形中相等的边分别写出。
③得出结论:两个三角形全等。
如下图,在△ABC 和 △A ′B ′C ′中,∵AB =A ′B ′,BC =B ′C ′,AC =A ′C ′,∴△ABC≅△A ′B ′C ′(SSS ).书写判定两个三角形全等的条件:在书写全等的过程中,等号左边表示同一个三角形的量,等号右边表示另一个三角形的量。
如上图,等号左边表示△ABC 的量,等号右边表示 △A ′B ′C ′的量。
3.作一个角等于已知角已知:∠AOB 。
求作: ∠A ′O ′B ′,使 ∠A ′O ′B ′=∠AOB .作法:如上图所示,①以点O 为圆心、任意长为半径画弧,分别交 OA ,OB 于点 C ,D 。
②画一条射线( O ′A ′,以点 O ′为圆心、OC 长为半径画弧,交( O ′A ′于点 C ′.③以点C ′为圆心、CD 长为半径画弧,与上一步中所画的弧交于点 D ′.④过点。
D ′画射线 O ′B ′,则 ∠A ′O ′B ′=∠AOB .题型一 利用SSS 直接证明三角形全等如图,已知AC DB =,要用“SSS ”判定ABC DCB @V V ,则只需添加一个适当的条件是_____.【答案】AB DC=【分析】根据全等三角形的判定:三边对应相等的两个三角形全等,即可.【详解】∵全等三角形的判定“SSS ”:三边对应相等的两个三角形全等,∴当ABC V 和DCB △中,AC DB BC BC AB DC =ìï=íï=î,∴()SSS ABC DCB @V V ,故答案为:AB DC =.【点睛】本题考查全等三角形的判定,解题的关键是掌握全等三角形的判定()SSS :三边对应相等的两个三角形全等.1.如图,已知AC DB =,要使得ABC DCB @V V ,根据“SSS ”的判定方法,需要再添加的一个条件是_______.【答案】AB DC=【分析】要使ABC DCB @V V ,由于BC 是公共边,若补充一组边相等,则可用SSS 判定其全等.【详解】解:添加AB DC =.在ABC V 和DCB △中AB DC BC CB AC BD =ìï=íï=î,∴()ABC DCB SSS @△△,故答案为:AB DC =.【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .添加时注意:AAA 、SSA 不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择添加的条件是正确解答本题的关键.2.如图,AB DC =,若要用“SSS ”证明ABC DCB △△≌,需要补充一个条件,这个条件是__________.【答案】AC BD=【分析】由图形可知BC 为公共边,则可再加一组边相等,可求得答案.【详解】解:∵AB DC =,BC CB =,∴可补充AC DB =,在ABC V 和DCB V 中,AB DC BC CB AC DB =ìï=íï=î,∴ABC V ≌()SSS DCB V ;故答案为:AC DB =.【点睛】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键.题型二 全等三角形的性质与SSS 综合如图,点E 、点F 在BD 上,且AB CD =,BF DE =,AE CF =,求证:AB CD ∥.【分析】根据全等三角形的判定得出ABE CDF △≌△,推出B D Ð=Ð,利用平行线的判定解答即可.【详解】证明:∵BF DE =,∴BE DF =,在ABE V 和CDF V 中,AB DC AE CF BE DF =ìï=íï=î,∴()SSS ABE CDF V V ≌,∴B D Ð=Ð,∴AB CD ∥.【点睛】本题考查全等三角形的判定和性质,解题的关键是学会利用全等三角形解决问题,属于中考常考题型.1.已知:如图,RPQ D 中,RP RQ =,M 为PQ 的中点.求证:RM 平分PRQ Ð.【分析】先根据M 为PQ 的中点得出PM QM =,再由SSS 定理得出PRM QRM V V ≌,由全等三角形的性质即可得出结论.【详解】证明:M Q 为PQ 的中点(已知),PM QM \=,在RPM △和RQM V 中,RP RQ PM QM RM RM =ìï=íï=î,(SSS)RPM RQM \V V ≌,PRM QRM \Ð=Ð(两三角形全等,对应角相等)即RM 平分PRQ Ð.【点睛】本题考查的是全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解答此题的关键.2.已知如图,四边形ABCD 中,AB BC =,AD CD =,求证:A C Ð=Ð.【分析】连接BD ,已知两边对应相等,加之一个公共边BD ,则可利用SSS 判定ABD CBD ≌△△,根据全等三角形的对应角相等即可证得.【详解】证明:连接BD ,AB CB =Q ,BD BD =,AD CD =,SSS ABD CBD \≌()V V .A C \Ð=Ð.【点睛】此题主要考查学生对全等三角形的判定方法的理解及运用,常用的判定方法有SSS ,SAS ,ASA ,HL 等.题型三 作一个角等于已知角如图:(1)在A Ð的内部利用尺规作CED A Ð=Ð(不写作法,保留作图痕迹)(2)判断直线DE AB 与的位置关系【分析】(1)根据作一个角等于已知角的方法在;A Ð的内部作CED A Ð=Ð,即可求解.(2)根据图形及平行线的判定定理可直接得到答案.【详解】(1)解:如图所示,在A Ð的内部作CED A Ð=Ð, 则CED Ð即为所求;(2)∵CED A ÐÐ=,∴DE AB ∥.故答案为:DE AB ∥.【点睛】本题主要考查角的尺规作图及平行线的判定,熟练掌握基本作图以及平行线的判定定理是解题的关键.1.如图,已知Ðb 和线段a ,求作ABC V ,使B b Ð=Ð,2,AB a BC a==【分析】先画射线BP ,以B 为圆心,a 为半径画弧,与射线BP 交于点D ,再画DA a =,再以b 的顶点为圆心,a 为半径画弧,交b 的两边分别为E ,F ,再以D 为圆心,EF 为半径画弧,交前弧于C ,再连接AC ,从而可得答案.【详解】解:如图,ABC V 即为所求;【点睛】本题考查的是作三角形,作一个角等于已知角,作一条线段等于已知线段,熟练掌握基本作图是解本题的关键.2.已知a Ð.求作CAB a Ð=Ð.(尺规作图,保留作图痕迹,不写作法)【分析】按照作与已知角相等的角的尺规作图方法作图即可.【详解】解:如图,CAB Ð为所作.【点睛】本题主要考查了作与已知角相等的角的尺规作图,熟知相关作图方法是解题的关键.二、判定方法二:边角边(SAS )1.边角边:两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边“或“SAS “)。
_ 2021年暑假预习提升训练1.2全等三角形 苏科版上册八年级数学

1.2全等三角形- 2021年暑假预习提升训练-八年级数学苏科版上册一、选择题1、如图所示的两个三角形全等,图中的字母表示三角形的边长,则∠1的度数为()A.82°B.78°C.68°D.62°2、如图,△ABC≌△A'B'C',其中∠A=36°,∠C'=24°,则∠B=()A.150°B.120°C.90°D.60°3、如图,△ABC≌△DEF,BC=7,EC=4,则CF的长为()A.2B.3C.5D.74、如图,若△ABC≌△ADE,则下列结论中一定成立的是()A.AC=DE B.∠BAD=∠CAE C.AB=AE D.∠ABC=∠AED5、如图所示,点B、E、C、F在一条直线上,△ABC≌△DEF,则下列结论正确的是()A.AB∥DE,但AC不平行于DF B.BE=EC=CFC.AC∥DF,但AB不平行于DE D.AB∥DE,AC∥DF6、如图,△ABC≌△EDF,DF=BC,AB=ED,AC=15,EC=10,则CF的长是 ()A.5B.8C.10D.157、如图,在△ABC中,D,E分别是边AC,BC上的点.若△ADB≌△EDB≌△EDC,则∠C的度数为()8、如图所示,△ABD≌△CDB,下列四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBDD.AD∥BC,AD=BC9、图中的小正方形边长都相等,若△MNP≌△MFQ,则点Q可能是图中的()A.点D B.点C C.点B D.点A10、如图,∠C=∠CAM=90°,AC=8cm,BC=4cm,点P在线段AC上,以2cm/s速度从点A出发向点C运动,到点C停止运动.点Q在射线AM上运动,且PQ=AB.若△ABC与△PQA全等,则点P运动的时间为()A.4s B.2s C.2s或3s或4s D.2s或4s二、填空题11、如图,△ABC≌△DEF,根据图中提供的信息,得x=________.12、如图,△ACB≌△DCE,且∠BCE=60°,则∠ACD的度数为.13、已知△ABC的三边长分别是6,8,10,△DEF的三边长分别是6,6x-4,4x+2.若两个三角形全等,则x的值为________.14、如图,△ABC≌△ADE,且∠EAB=120°,∠B=30°,∠CAD=10°,∠CFD=°.16、如图,△ABC≌△ADE,且AE∥BD,∠BAD=130°,则∠BAC度数的值为.17、如图,△ABC≌△ADE,BC的延长线经过点E,交AD于F,∠AED=105°,∠CAD=10°,∠B=50°,则∠EAB=°.18、如图,已知长方形ABCD的边长AB=20cm,BC=16cm,点E在边AB上,AE=6cm,如果点P从点B出发在线段BC上以2cm/s的速度向点C向运动,同时,点Q在线段CD上从点C到点D运动.则当△BPE与△CQP全等时,时间t为s.三、解答题19、如图所示,已知△ABD≌△ACD,且点B,D,C在同一条直线上,那么AD与BC有怎样的位置关系?为什么?20、如图,△ACF≌△ADE,AD=12,AE=5,求DF的长.21、如图,△ABC≌△DBE,点D在边AC上,BC与DE交于点P,已知∠ABE=162°,∠DBC=30°,求∠CDE的度数.22、如图,已知△ABC≌△DBE,点D在AC上,BC与DE交于点P,AD=DC=2.4,BC=4.1.(1)若∠ABE=150°,∠DBC=30°,求∠CBE的度数;(2)求△DCP与△BPE的周长和.23、如图所示,已知△ABC≌△FED,AF=8,BE=2.(1)求证:AC∥DF.(2)求AB的长.24、如图,点A、B、C、D在同一条直线上,点E、F是直线.AD上方的点,连接AE、CE、BF、DF,若△ACE≌△FDB,FD=3,AD=8.(1)判断直线CE与DF是否平行?并说明理由;(2)求CD的长;(3)若∠E=26°,∠F=53°,求∠ACE的度数.25、如图,已知△ABF≌△CDE.(1)若∠B=30°,∠DCF=40°,求∠EFC的度数;(2)若BD=10,EF=2,求BF的长.26、如图所示,△ABC≌△ADE,BC的延长线交DA于F点,交DE于G点,∠ACB=105°,∠CAD=15°,∠B=30°,则∠1的度数为多少度.27、如图,在△ACE中,CD⊥AE于点D,B是AE延长线上一点,连接BC,取BC上一点F.若∠ACB=90°,△ACD≌△ECD,△CEF≌△BEF.(1)求∠B的度数;(2)求证:EF∥AC.28、如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t=时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.1.2全等三角形(解析)- 2021年暑假预习提升训练-八年级数学苏科版上册一、选择题1、如图所示的两个三角形全等,图中的字母表示三角形的边长,则∠1的度数为()A.82°B.78°C.68°D.62°【分析】根据题意和图形,可知∠1是边a和c的夹角,由第一个三角形可以得到∠1的度数,本题得以解决.【解析】∵图中的两个三角形全等,∴∠1=180°﹣40°﹣62°=78°,故选:B.2、如图,△ABC≌△A'B'C',其中∠A=36°,∠C'=24°,则∠B=()A.150°B.120°C.90°D.60°【解答】解:∵△ABC≌△A'B'C',∴∠C=∠C′=24°,∵∠A=36°,∴∠B=180°﹣24°﹣36°=120°,故选:B.3、如图,△ABC≌△DEF,BC=7,EC=4,则CF的长为()A.2B.3C.5D.7【解答】解:∵△ABC≌△DEF,∴EF=BC=7,∵EC=4,∴CF=3,故选:B.4、如图,若△ABC≌△ADE,则下列结论中一定成立的是()A.AC=DE B.∠BAD=∠CAE C.AB=AE D.∠ABC=∠AED【解答】解:∵△ABC≌△ADE,∴AC=AE,AB=AD,∠ABC=∠ADE,∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE.故A,C,D选项错误,B选项正确,故选:B.5、如图所示,点B、E、C、F在一条直线上,△ABC≌△DEF,则下列结论正确的是()A.AB∥DE,但AC不平行于DF B.BE=EC=CFC.AC∥DF,但AB不平行于DE D.AB∥DE,AC∥DF【解答】解:∵△ABC≌△DEF,∴∠B=∠DEF,∠F=∠ACB,∴AB∥DE,AC∥DF,无法得出BE=EC=CF故选项D正确.故选:D.6、如图,△ABC≌△EDF,DF=BC,AB=ED,AC=15,EC=10,则CF的长是 ()A.5B.8C.10D.15【答案】A[解析] ∵△ABC≌△EDF,AC=15,∴EF=AC=15.∵EC=10,∴CF=EF-EC=15-10=5.7、如图,在△ABC中,D,E分别是边AC,BC上的点.若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°【答案】D[解析] 由条件可知∠ADB=∠EDB=∠EDC=60°,且∠DEB=∠DEC=90°,∴∠C=30°.8、如图所示,△ABD≌△CDB,下列四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBDD.AD∥BC,AD=BC【答案】C[解析] A.∵△ABD≌△CDB,∴△ABD和△CDB的面积相等,故本选项不符合题意;B.∵△ABD≌△CDB,∴△ABD和△CDB的周长相等,故本选项不符合题意;C.∵△ABD≌△CDB,∴∠A=∠C,∠ABD=∠CDB.∴∠A+∠ABD=∠C+∠CDB≠∠C+∠CBD,故本选项符合题意;D.∵△ABD≌△CDB,∴AD=BC,∠ADB=∠CBD.∴AD∥BC,故本选项不符合题意.故选C.9、图中的小正方形边长都相等,若△MNP≌△MFQ,则点Q可能是图中的()A.点D B.点C C.点B D.点A【解答】解:观察图象可知△MNP≌△MFD.故选:A.10、如图,∠C=∠CAM=90°,AC=8cm,BC=4cm,点P在线段AC上,以2cm/s速度从点A出发向点C运动,到点C停止运动.点Q在射线AM上运动,且PQ=AB.若△ABC与△PQA全等,则点P运动的时间为()A.4s B.2s C.2s或3s或4s D.2s或4s【分析】分△ABC≌△PQA和△ABC≌△QP A两种情况,根据全等三角形的性质解答即可.【解答】解:当△ABC≌△PQA时,AP=AC=8,∵点P的速度为2cm/s,∴8÷2=4(s);当△ABC≌△QP A时,当AP=BC=4,∵点P的速度为2cm/s,∴4÷2=2(s)故选:D.二、填空题11、如图,△ABC≌△DEF,根据图中提供的信息,得x=________.【答案】2012、如图,△ACB≌△DCE,且∠BCE=60°,则∠ACD的度数为.【解答】解:∵△ACB≌△DCE,∴∠ACB=∠DCE,∴∠ACB﹣∠DCB=∠DCE﹣∠DCB,即∠ACD=∠BCE,∵∠BCE=60°,∴∠ACD=60°.故答案为:60°.13、已知△ABC 的三边长分别是6,8,10,△DEF 的三边长分别是6,6x -4,4x +2.若两个三角形全等,则x 的值为________.【答案】2[解析] 由全等三角形的对应边相等可知有以下两种情况:①4x +2=10,解得x =2;6x -4=8,解得x =2.由于2=2,所以此种情况成立.②4x +2=8,解得x =32;6x -4=10,解得x =73.由于32≠73,所以此种情况不成立.综上所述,x 的值为2.14、如图,△ABC ≌△ADE ,且∠EAB =120°,∠B =30°,∠CAD =10°,∠CFD = °.【解答】解:∵△ABC ≌△ADE ,∴∠EAD =∠CAB ,∵∠EAB =120°,∠CAD =10°,∴∠EAD =∠CAB =55°,∴∠CFD=∠F AB+∠B=10°+55°+30°=95°,故答案为:95.15、如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知△AEH≌△CEB,EB=5,AE=7,则CH的长是.【分析】根据全等三角形的性质分别求出EC、EH,结合图形计算,得到答案.【解答】解:∵△AEH≌△CEB,∴EC=AE=7,EH=EB=5,∴CH=EC﹣EH=7﹣5=2,故答案为:2.16、如图,△ABC≌△ADE,且AE∥BD,∠BAD=130°,则∠BAC度数的值为.【分析】根据全等三角形的性质,可以得到AB=AD,∠BAC=∠DAE,从而可以得到∠ABD=∠ADB,再根据AE∥BD,∠BAD=130°,即可得到∠DAE的度数,从而可以得到∠BAC的度数.【解答】解:∵△ABC≌△ADE,∴AB=AD,∠BAC=∠DAE,∴∠ABD=∠ADB,∵∠BAD=130°,∴∠ABD=∠ADB=25°,∵AE∥BD,∴∠DAE=∠ADB,∴∠DAE=25°,∴∠BAC=25°,故答案为:25°.17、如图,△ABC≌△ADE,BC的延长线经过点E,交AD于F,∠AED=105°,∠CAD=10°,∠B=50°,则∠EAB=°.【分析】根据全等三角形的性质得出∠D=∠B=50°,∠EAD=∠CAB,根据三角形内角和定理求出∠EAD,代入∠EAB=∠EAD+∠DAC+∠CAB,即可求出答案.【解析】∵△ABC≌△ADE,∠B=50°,∴∠D=∠B=50°,∠EAD=∠CAB,∵∠AED=105°,∴∠EAD=180°﹣∠D﹣∠AED=25°,∴∠CAB=25°,∵∠CAD=10°,∴∠EAB=∠EAD+∠DAC+∠CAB=25°+10°+25°=60°18、如图,已知长方形ABCD的边长AB=20cm,BC=16cm,点E在边AB上,AE=6cm,如果点P从点B出发在线段BC上以2cm/s的速度向点C向运动,同时,点Q在线段CD上从点C到点D运动.则当△BPE与△CQP全等时,时间t为s.【分析】由条件分两种情况,当△BPE≌△CQP时,则有BE=PC,由条件可得到关于t的方程,当△BPE≌△CPQ,则有BP=PC,同样可得出t的方程,可求出t的值.【解答】解:∵AB=20cm,AE=6cm,BC=16cm,∴BE=14cm,BP=2tcm,PC=(16﹣2t)cm,当△BPE≌△CQP时,则有BE=PC,即14=16﹣2t,解得t=1,当△BPE≌△CPQ时,则有BP=PC,即2t=16﹣2t,解得t=4,故答案为:1或4.三、解答题19、如图所示,已知△ABD≌△ACD,且点B,D,C在同一条直线上,那么AD与BC有怎样的位置关系?为什么?解:AD⊥BC.理由:∵△ABD≌△ACD,∴∠ADB=∠ADC.又∵∠ADB+∠ADC=180°,∴∠ADB=∠ADC=90°.∴AD⊥BC.20、如图,△ACF≌△ADE,AD=12,AE=5,求DF的长.解:∵△ACF≌△ADE,AD=12,AE=5,∴AC=AD=12,AE=AF=5,∴DF=12﹣5=7.21、如图,△ABC≌△DBE,点D在边AC上,BC与DE交于点P,已知∠ABE=162°,∠DBC=30°,求∠CDE的度数.解:∵∠ABE=162°,∠DBC=30°,∴∠ABD+∠CBE=132°,∵△ABC≌△DBE,∴∠ABC=∠DBE,∠C=∠E,∴∠ABD=∠CBE=132°÷2=66°,∵∠CPD=∠BPE,∴∠CDE=∠CBE=66°.22、如图,已知△ABC≌△DBE,点D在AC上,BC与DE交于点P,AD=DC=2.4,BC=4.1.(1)若∠ABE=150°,∠DBC=30°,求∠CBE的度数;(2)求△DCP与△BPE的周长和.解:(1)∵∠ABE=150°,∠DBC=30°,∴∠ABD+∠CBE=120°.∵△ABC≌△DBE,∴∠ABC=∠DBE.∵∠ABD=∠ABC-∠DBC,∠CBE=∠DBE-∠DBC,∴∠ABD=∠CBE=60°,即∠CBE的度数为60°.(2)∵△ABC≌△DBE,∴DE=AC=AD+DC=4.8,BE=BC=4.1.∴△DCP与△BPE的周长和=DC+DP+BP+CP+PE+BE=DC+DE+BC+BE=15.4.23、如图所示,已知△ABC≌△FED,AF=8,BE=2.(1)求证:AC∥DF.(2)求AB的长.证明:(1)∵△ABC≌△FED,∴∠A=∠F.∴AC∥DF.(2)∵△ABC≌△FED,∴AB=EF.∴AB﹣EB=EF﹣EB.∴AE=BF.∵AF=8,BE=2∴AE+BF=8﹣2=6∴AE=3∴AB=AE+BE=3+2=524、如图,点A、B、C、D在同一条直线上,点E、F是直线.AD上方的点,连接AE、CE、BF、DF,若△ACE≌△FDB,FD=3,AD=8.(1)判断直线CE与DF是否平行?并说明理由;(2)求CD的长;(3)若∠E=26°,∠F=53°,求∠ACE的度数.【分析】(1)根据全等三角形的性质和平行线的判定定理即可得到结论;(2)根据全等三角形的性质即可得到结论;(3)根据全等三角形的性质和三角形的内角和即可得到结论.【解答】解:(1)CE∥DF,理由:∵△ACE≌△FDB,∴∠ACE=∠D,∴CE∥DF;(2)∵△ACE≌△FDB,∴AC=DF=3,∵AD=8,∴CD=AD﹣AC=8﹣3=5;(3)∵△ACE≌△FDB,∴∠DBF=∠E=26°,∵CE∥DF,∴∠1=∠F=53°,∴∠ACE=180°﹣26°﹣53°=101°.25、如图,已知△ABF≌△CDE.(1)若∠B=30°,∠DCF=40°,求∠EFC的度数;(2)若BD=10,EF=2,求BF的长.解:(1)∵△ABF≌△CDE,∴∠D=∠B=30°,∴∠EFC=∠DCF+∠D=70°;(2)∵△ABF≌△CDE,∴BF=DE,∴BF﹣EF=DE﹣EF,即BE=DF,∵BD=10,EF=2,∴BE=(10﹣2)÷2=4,∴BF=BE+EF=6.26、如图所示,△ABC≌△ADE,BC的延长线交DA于F点,交DE于G点,∠ACB=105°,∠CAD=15°,∠B=30°,则∠1的度数为多少度.解:∵△ABC≌△ADE,∴∠D=∠B=30°,∵∠ACB=∠CAD+∠AFC,∴∠AFC=90°,∴∠DFG=∠AFC=90°,∴∠1=180°﹣∠D﹣∠DFG=180°﹣90°﹣30°=60°.27、如图,在△ACE中,CD⊥AE于点D,B是AE延长线上一点,连接BC,取BC上一点F.若∠ACB=90°,△ACD≌△ECD,△CEF≌△BEF.(1)求∠B的度数;(2)求证:EF∥AC.解:(1)∵△ACD≌△ECD,∴∠A=∠DEC.∵△CEF≌△BEF,∴∠ECB=∠B.∵∠DEC=∠ECB+∠B,∴∠A=2∠B.∵∠ACB=90°,∴∠A+∠B=90°.∴2∠B+∠B=90°.∴∠B=30°.(2)证明:∵△CEF≌△BEF,∴∠EFB=∠EFC.而∠EFB+∠EFC=180°,∴∠EFB=90°.∴∠ACB=∠EFB.∴EF∥AC.28、如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t=时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.【解答】解:(1)①当点P在BC上时,如图①﹣1,若△APC的面积等于△ABC面积的一半;则CP=BC=cm,此时,点P移动的距离为AC+CP=12+=,移动的时间为:÷3=秒,②当点P在BA上时,如图①﹣2若△APC的面积等于△ABC面积的一半;则P A=BA,即点P为BA中点,此时,点P移动的距离为AC+CB+BP=12+9+=cm,移动的时间为:÷3=秒,故答案为:或;(2)△APQ≌△DEF,即,对应顶点为A与D,P与E,Q与F;①当点P在AC上,如图②﹣1所示:此时,AP=4,AQ=5,∴点Q移动的速度为5÷(4÷3)=cm/s,②当点P在AB上,如图②﹣2所示:此时,AP=4,AQ=5,即,点P移动的距离为9+12+15﹣4=32cm,点Q移动的距离为9+12+15﹣5=31cm,∴点Q移动的速度为31÷(32÷3)=cm/s,综上所述,两点运动过程中的某一时刻,恰好△APQ≌△DEF,点Q的运动速为cm/s或cm/s.。
备战中考数学(苏版)巩固复习第十二章全等三角形(含解析)

备战中考数学(苏版)巩固复习第十二章全等三角形(含解析)一、单选题1.一块三角形玻璃被小红碰碎成四块,如图,小红只带其中的两块去玻璃店,买了一块和往常一样的玻璃,你认为她带哪两块去玻璃店了。
()A.带其中的任意两块B.带1,4或3,4就能够了C.带1,4或2,4就能够了D.带1,4或2,4或3,4均可2.使两个直角三角形全等的条件是()A.斜边相等B.一锐角对应相等C.两锐角对应相等 D.两直角边对应相等3.如图,∠ACB=90°,CD⊥AB,则∠1与∠B的关系是()A.互余B.互补C.相等D.不确定4.如图所示,AC=BD,AB=CD,图中全等的三角形的对数是()A.2B.3C.4D.55.小明同学画角平分,作法如下:①以O为圆心,适当长为半径作弧,交两边于D、E②分别以C、D为圆心,相同的长度为半径作弧,两弧交于E,③则射线OE确实是∠AOB的平分线.小明如此做的依据是()A.SASB.ASAC.AASD.SSS6.如图,在等腰直角△ABC中,∠ACB=90°,O是斜边AB的中点,点D、E分别在直角边AC、BC上,且∠DOE=90°,DE交OC于点P.则下列结论:(1)图形中全等的三角形只有两对;(2)△ABC的面积等于四边形CDOE面积的2倍;(3)CD+CE=OA;(4)AD2+BE2=DE2 .其中正确的结论有()A.1个B.2个C.3个D.4个7.要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),能够说明△EDC≌△ABC,得ED=AB,因此测得ED的长确实是AB的长,判定△EDC≌△ABC最恰当的理由是()A.边角边B.角边角C.边边边D.边边角8.如图所示,亮亮书上的三角形被墨迹污染了一部分,专门快他就依照所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.ASAB.AASC.SASD.SSS9.下面关于直角三角形的全等的判定,不正确的是()A.有一锐角和一边对应相等的两个直角三角形全等B.有两边对应相等的两个直角三角形全等C.有两角对应相等,且有一条公共边的两个直角三角形全等D.有两角和一边对应相等的两个直角三角形全等二、填空题10.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,运算图中阴影部分的面积S是________11.如图,在Rt△ABC中,∠B=90°,CD平分∠ACB,过点D作DE ⊥AC于点E,若AE=4,AB=10,则△ADE的周长为________.12.如图,已知△ABC≌△BAD,A和B、C和D是对应顶点.假如A B=6,BD=5,AD=4,那么BC的长度是________13.判定两个直角三角形全等的方法有________.14.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD ≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④BA+BC=2BF,其中正确的结论有________(填序号).15.在数学综合实践活动课上,张老师给了各活动小组大直角三角板一个、皮尺一条,测量如图所示小河的宽度(A为河岸边一棵柳树).小颖是如此做的:①在A点的对岸作直线MN;②用三角板作AB⊥MN垂足为B;③在直线MN取两点C、D,使BC=CD;④过D作DE⊥MN交AC的延长线于E,由三角形全等可知DE的长度等于河宽AB.在以上的做法中,△ABC≌△DEC的依照是________16.如图,△ABC≌△DEF,BE=4,AE=1,则DE的长是________.17.已知,如图:∠ABC=∠DEF,AB=DE,要说明△ABC≌△DEF,若以“ASA”为依据,还要添加的条件为________.18.如图,已知AD是△ABC的角平分线,在不添加任何辅助线的前提下,要使△AED≌△AFD,需添加一个条件是:________,并给予证明.三、解答题19.如图,P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为点E,F,AE=AF.求证:PE=PF;20.现有10个边长为1的正方形,排列形式如图1,请把它们分割后拼接成一个新的正方形.要求:在图1中用实线画出分割线,并在图2的正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.四、综合题21.如图,在△ABC中,∠ABC=90°,延长AB至E,使AE=AC,过E作EF⊥AC于F,EF交BC于G.(1)求证:AG平分∠BAC;(2)若∠E=40°,求∠AGB的度数.答案解析部分一、单选题1.【答案】D【考点】全等三角形的应用【解析】【解答】由图可知,带上1,4相当于有一角及两边的大小,即其形状及两边长确定,因此两块玻璃一样;同理,3,4中有两角夹一边(AAS),同样也可得全等三角形;2,4中,4确定了上边的角的大小及两边的方向,又由2确定了底边的方向,进而可得全等.故答案为:D.【分析】观看图形,可知利用全等三角形的判定方法:ASA,可得出答案。
专题1.2 全等三角形的判定【八大题型】(举一反三)(苏科版)(解析版)

专题1.2 全等三角形的判定【八大题型】【苏科版】【题型1 全等三角形的判定条件】 (1)【题型2 证明两个三角形全等】 (3)【题型3 全等三角形的判定与性质(证两次全等)】 (6)【题型4 全等三角形的判定与性质(证垂直)】 (9)【题型5 全等三角形的判定与性质(多结论)】 (13)【题型6 全等三角形的判定与性质(探究角度之间的关系)】 (19)【题型7 全等三角形的判定与性质(探究线段之间的关系)】 (26)【题型8 全等三角形的应用】 (34)【题型1 全等三角形的判定条件】【例1】(2022春•顺德区期末)如图,∠A=∠D=90°,给出下列条件:①AB=DC,②OB=OC,③∠ABC=∠DCB,④∠ABO=∠DCO,从中添加一个条件后,能证明△ABC≌△DCB的是( )A.①②③B.②③④C.①②④D.①③④【分析】由题意可得∠A=∠D=90°,BC=BC,即有一组对应角相等,一组对应边相等,结合全等三角形的判定条件进行分析即可.【解答】解:∵∠A=∠D=90°,BC=BC,∴①当AB=DC时,由HL可得△ABC≌△DCB,故①符合题意;②当OB=OC时,可得∠BCO=∠CBO,利用AAS可得△ABC≌△DCB,故②符合题意;③当∠ABC=∠DCB时,利用AAS可得△ABC≌△DCB,故③符合题意;④当∠ABO=∠DCO时,不能得△ABC≌△DCB,故④不符合题意;故符合题意的有①②③.故选:A.【变式1-1】(2021秋•庐阳区期末)如图,点B、E在线段CD上,若∠A=∠DEF,则添加下列条件,不一定能使△ABC≌△EFD的是( )A.∠C=∠D,AC=DE B.BC=DF,AC=DEC.∠ABC=∠DFE,AC=DE D.AC=DE,AB=EF【分析】利用三角形全等的判定方法进行分析即可.【解答】解:A、添加∠C=∠D,AC=DE可利用ASA判定△ABC≌△EFD,故此选项不合题意;B、添加BC=FD,AC=ED不能判定△ABC≌△EFD,故此选项符合题意;C、添加∠ABC=∠DFE,AC=DE可利用AAS判定△ABC≌△EFD,故此选项不合题意;D、添加AC=DE,AB=EF可利用SAS判定△ABC≌△EFD,故此选项不合题意;故选:B.【变式1-2】(2021秋•源汇区校级期末)如图,已知∠1=∠2,AC=AD,增加下列条件之一:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有( )A.1个B.2个C.3个D.4个【分析】先由∠1=∠2得到∠CAB=∠DAE,然后分别利用“SAS”、“ASA”和“AAS”对各添加的条件进行判断.【解答】解:∵∠1=∠2,∴∠CAB=∠DAE,∵AC=AD,∴当AB=AE时,可根据“SAS”判断△ABC≌△AED;当BC=ED时,不能判断△ABC≌△AED;当∠C=∠D时,可根据“ASA”判断△ABC≌△AED;当∠B=∠E时,可根据“AAS”判断△ABC≌△AED.故选:C.【变式1-3】(2022秋•佳木斯期末)在△ABC和△DEF中,其中∠C=∠F,则下列条件:①AC=DF,∠A =∠D;②AC=DF,BC=EF;③∠A=∠D,∠B=∠E;④AB=DE,∠B=∠E;⑤AC=DF,AB=DE.其中能够判定这两个三角形全等的是( )A.①②④B.①②⑤C.②③④D.③④⑤【分析】根据全等三角形的判定方法:SAS,ASA,AAS,SSS,如果是两个直角三角形,除了前面四种方法以外,还可以用HL来判定.【解答】解:①AC=DF,∠A=∠D,再加上已知∠C=∠F,符合ASA,故符合题意;②AC=DF,BC=EF,再加上已知∠C=∠F,符合SAS,故符合题意;③∠A=∠D,∠B=∠E,再加上已知∠C=∠F,不能判定两个三角形全等,故不符合题意;④AB=DE,∠B=∠E,再加上已知∠C=∠F,符合AAS,故符合题意;⑤AC=DF,AB=DE,再加上已知∠C=∠F,不能判定两个三角形全等,故不符合题意;故选:A.【题型2 证明两个三角形全等】【例2】(2022春•鼓楼区校级期末)如图,点A,E,F,B在同一直线上,CE⊥AB,DF⊥AB,垂足分别为E,F,AE=BF,∠A=∠B.求证:△ADF≌△BCE.【分析】根据ASA证明△ADF≌△BCE即可.【解答】证明:∵AE=BF,∴AF=BE,∵CE⊥AB,DF⊥AB,∴∠AFD=∠BEC=90°,在△ADF和△BCE中,∠A=∠BAF=BE,∠AFD=∠BEC∴△ADF≌△BCE(ASA).【变式2-1】(2021秋•肥西县期末)已知,如图,AB=AE,AB∥DE,∠ECB=65°,∠D=115°,求证:△ABC≌△EAD.【分析】由∠ECB=65°得∠ACB=115°,再由AB∥DE,证得∠CAB=∠E,再结合已知条件AB=AE,可利用AAS证得△ABC≌△EAD.【解答】证明:∵∠ECB=65°,∴∠ACB=180°﹣∠ECB=115°.又∵∠D=115°,∴∠ACB=∠D.∵AB∥DE,∴∠CAB=∠E.在△ABC和△EAD中,∠ACB=∠D∠CAB=∠E,AB=AE∴△ABC≌△EAD(AAS).【变式2-2】(2021秋•信州区校级期中)如图,在△ABC中,点D是BC边的中点,分别过点B、C作BE ⊥AD于点E,CF⊥AD交AD的延长线于点F,求证:△BDE≌△CDF.【分析】由“AAS”可证△BDE≌△CDF.【解答】证明:∵BE⊥AD,CF⊥AD,∴∠BED=∠CFD=90°,∵点D是BC的中点,∴BD=CD,在△BDE和△CDF中,∠BED=∠CFD∠BDE=∠CDF,BD=CD∴△BDE≌△CDF(AAS).【变式2-3】(2022•河源模拟)如图,在四边形ABCD中,AD∥BC,点M为对角线AC上一点,连接BM,若AC=BC,∠AMB=∠BCD,求证:△ADC≌△CMB.【分析】根据平行线的性质求出∠DAC=∠MCB,求出∠CBM=∠ACD,根据全等三角形的判定定理求出即可.【解答】证明:∵AD∥BC,∴∠DAC=∠MCB,∵∠AMB=∠BCD,∠CBM+∠ACB=∠AMB,∠ACB+∠ACD=∠BCD,∴∠CBM=∠ACD,在△ADC和△CMB中,∠ACD=∠CBMAC=BC,∠DAC=∠MCB∴△ADC≌△CMB(ASA).【题型3 全等三角形的判定与性质(证两次全等)】【例3】(2022春•徐汇区校级期末)如图,已知AE∥DF,OE=OF,∠B=∠C,求证:AB=CD.【分析】首先根据全等三角形的判定定理ASA推知△AOE≌△DOF,则OB=OC;然后再根据全等三角形的判定定理ASA证得△AOB≌△DOC,则AB=CD.【解答】证明:如图,∵AE∥DF,∴∠AEO=∠DFO.在△AOE与△DOF中,∠AEO=∠DFOOE=OF.∠AOE=∠DOF∴△AOE≌△DOF(ASA).∴OD=OA.在△AOB与△DOC中,∠AOB=∠DOCOD=OA.∠B=∠C∴△AOB≌△DOC(ASA).∴AB=CD.【变式3-1】(2021春•横山区期中)如图,AB=BC,∠BAD=∠BCD=90°,点D是EF上一点,AE⊥EF于E,CF⊥EF于F,AE=CF,连接BD,求证:Rt△ADE≌Rt△CDF.【分析】由直角三角形全等的“HL“判定定理证得Rt△ABD≌Rt△CBD,根据全等三角形的性质得到AD=CD,再由直角三角形全等的“HL“判定定理即可证得Rt△ADE≌Rt△CDF.【解答】证明:∵∠BAD=∠BCD=90°,在Rt△ABD和Rt△CBD中,BD=BDAB=BC,∴Rt△ABD≌Rt△CBD(HL),∴AD=CD,∵AE⊥EF于E,CF⊥EF于F,∴∠E=∠F=90°,在Rt△ADE和Rt△CDF中,AD=CDAE=CF,∴Rt△ADE≌Rt△CDF(HL).【变式3-2】(2021秋•石阡县期末)如图,AB=AC,E、D分别是AB、AC的中点,AF⊥BD,垂足为点F,AG⊥CE,垂足为点G,试判断AF与AG的数量关系,并说明理由.【分析】结论:AF=AG.先证明△ABD≌△ACE(SAS),推出∠ABD=∠ACE,再证明△ABF≌△ACG (AAS)即可解决问题.【解答】解:结论:AF=AG.理由:∵AB=AC,E、D分别是AB、AC的中点,∴AD=12AC=12AB=AE,在△ABD和△ACE中,AB=AC∠BAD=∠CAEAD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵AF⊥BD,AG⊥CE,∴∠AFB=∠AGC=90°.在△ABF和△ACG中,∠ABF=∠ACG∠AFB=∠ACG,AB=AC∴△ABF≌△ACG(AAS),∴AF=AG.【变式3-3】(2021秋•沂源县期末)如图,AD=AC,AB=AE,∠DAB=∠CAE.(1)△ADE与△ACB全等吗?说明理由;(2)判断线段DF与CF的数量关系,并说明理由.【分析】(1)由∠DAB=∠CAE得出∠DAE=∠CAB,再根据SAS判断△ADE与△ACB全等即可;(2)由△ADB与△ACE全等得出DB=EC,∠FDB=∠FCE,判断△DBF与△ECF全等,最后利用全等三角形的性质可得.【解答】解:(1)全等,理由如下:∵∠DAB=∠CAE,∴∠DAE=∠CAB,在△ADE与△ACB中AD=AC∠DAE=∠CABAB=AE∴△ADE≌△ACB(SAS)(2)DF=CF,理由如下:在△ADB与△ACE中AD=AC∠DAB=∠CAE,AB=AE∴△ADB≌△ACE(SAS),∴∠DBA=∠CEA,∵△ADE≌△ACB,∴∠ABC=∠AED,∴∠DBF=∠CEF,在△DBF与△CEF中∠DFB=∠CFE∠DBF=∠CEF,DB=EC∴△DBF≌△CEF(AAS),∴DF=CF.【题型4 全等三角形的判定与性质(证垂直)】【例4】(2022秋•孟津县期末)如图,BM,CN分别是钝角△ABC的高,点Q是射线CN上的点,点P在线段BM上,且BP=AC,CQ=AB,请问AP与AQ有什么样的关系?请说明理由.【分析】根据同角的余角相等得出∠ABP=∠ACQ,即可利用SAS证明△ACQ≌△PBA,再根据全等三角形的性质即可得解.【解答】解:AP=AQ且AP⊥AQ.理由如下:∵BM⊥AC,CN⊥AB,∴∠ABP+∠BAM=90°,∠ACQ+∠CAN=90°.∴∠ABP=∠ACQ.在△ACQ和△PBA中,AC=PB,∠ACQ=∠PBA,QC=AB,∴△ACQ≌△PBA(SAS).∴AP=AQ,∠Q=∠PAB.∵∠Q+∠NAQ=90°.∴∠PAB+∠NAQ=90°.∴∠QAP=90°.∴AP⊥AQ.即AP=AQ,AP⊥AQ.【变式4-1】(2022春•金牛区校级期中)如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE 上截取BD=AC,在CF的延长线上截取CG=AB,连结AD、AG.(1)求证:∠ABE=∠ACG;(2)试判:AG与AD的关系?并说明理由.【分析】(1)易证∠HFB=∠HEC=90°,又∠BHF=∠CHE,由三角形内角和定理即可得出结论;(2)先证△ABD≌△GCA(SAS),得出AD=GA,∠ADB=∠GAC,再由∠ADB=∠AED+∠DAE,∠GAC=∠GAD+∠DAE,则∠AED=∠GAD=90°,即可得出结果.【解答】(1)证明:∵BE⊥AC,CF⊥AB,∴∠HFB=∠HEC=90°,∴∠ABE=90°﹣∠BHF,∠ACG=90°﹣∠CHE,∵∠BHF=∠CHE,∴∠ABE=∠ACG;(2)解:AG与AD的关系为:AG=AD,AG⊥AD,理由如下:∵BE⊥AC,∴∠AED=90°,由(1)得:∠ABD=∠ACG,在△ABD和△GCA中,AB=CG∠ABD=∠ACG,BD=AC∴△ABD≌△GCA(SAS),∴AD=GA,∠ADB=∠GAC,又∵∠ADB=∠AED+∠DAE,∠GAC=∠GAD+∠DAE,∴∠AED=∠GAD=90°,∴AD⊥GA.【变式4-2】(2021春•亭湖区校级期末)如图,△ABC中,CD⊥AB,垂足为D.BE⊥AC,垂足为G,AB=CF,BE=AC.(1)求证:AE=AF;(2)AE与AF有何位置关系.请说明理由.【分析】(1)利用SAS证明△AEB≌△FAC可证明结论;(2)由全等三角形的性质可得∠E=∠CAF,由余角的定义可求得∠EAF的度数即可得解.【解答】(1)证明:∵CD⊥AB,BE⊥AC,∴∠ADC=∠AGB=90°,∴∠CAD+∠ACD=∠CAD+∠EBA=90°,∴∠ACD=∠EBA,在△AEB和△FAC中,AB=CF∠EBA=∠ACF,BE=AC∴△AEB≌△FAC(SAS),∴AE=AF;(2)解:AE⊥AF,理由如下:由(1)知△AEB≌△FAC,∴∠E=∠CAF,∵BE⊥AC,垂足为G,∴∠AGE=90°,∵∠E+∠EAG=90°,∴∠CAF+∠EAG=90°,即∠EAF=90°,∴AE⊥AF.【变式4-3】(2021春•泰兴市期末)如图,在锐角△ABC中,AD⊥BC于点D,点E在AD上,DE=DC,BD=AD,点F为BC的中点,连接EF并延长至点M,使FM=EF,连接CM.(1)求证:BE=AC;(2)试判断线段AC与线段MC的关系,并证明你的结论.【分析】(1)根据SAS证明△BDE≌△ADC,再根据全等三角形的性质即可得解;(2)根据SAS证明△BFE≌△CFM,得到∠CBE=∠BCM,BE=MC,由(1)得∠CBE=∠CAD,BE=AC,即得AC=MC,再利用直角三角形的两锐角互余得出AC⊥MC.【解答】(1)证明;∵AD⊥BC,∴∠BDE=∠ADC=90°,在△BDE与△ADC中,DE=DC∠BDE=∠ADC,BD=AD∴△BDE≌△ADC(SAS),∴BE=AC;(2)解:AC⊥MC且AC=MC,理由如下:∵F为BC中点,∴BF=CF,在△BFE与△CFM中,BF=CF∠BFE=∠CFM,EF=FM∴△BFE≌△CFM(SAS),∴∠CBE=∠BCM,BE=MC,由(1)得:∠CBE=∠CAD,BE=AC,∴∠CAD=∠BCM,AC=MC,∵∠CAD+∠ACD=90°,∴∠BCM+∠ACD=90°,即∠ACM=90°,∴AC⊥MC,∴AC⊥MC且AC=MC.【题型5 全等三角形的判定与性质(多结论)】【例5】(2022春•九龙坡区校级期末)如图,Rt△ABC中,∠BAC=90°,AD⊥BC于点D,过点A作AF ∥BC且AF=AD,点E是AC上一点且AE=AB,连接EF,DE.连接FD交BE于点G.下列结论中正确的有( )个.①∠FAE=∠DAB;②BD=EF;③FD平分∠AFE;④S四边形ABDE=S四边形ADEF;⑤BG=GE.A.2B.3C.4D.5【分析】由“SAS”可证△ABD≌△AEF,利用全等三角形的性质依次判断可求解.【解答】解:∵AD⊥BC,AF∥BC,∴AF⊥AD,∴∠FAD=90°=∠BAC,∴∠FAE=∠BAD,故①正确;在△ABD和△AEF中,AB=AE∠BAD=∠EAF,AD=AF∴△ABD≌△AEF(SAS),∴BD=EF,∠ADB=∠AFE=90°,故②正确;∵AF=AD,∠DAF=90°,∴∠AFD=45°=∠EFD,∴FD平分∠AFE,故③正确;∵△ABD≌△AEF,∴S△ABD =S△AEF,∴S四边形ABDE =S四边形ADEF,故④正确;如图,过点E作EN⊥EF,交DF于N,∴∠FEN=90°,∴∠EFN=∠ENF=45°,∴EF=EN=BD,∠END=∠BDF=135°,在△BGD和△EGN中,∠BDG=∠ENG∠BGD=∠EGNBD=NE,∴△BDG≌△ENG(AAS),∴BG=GE,故⑤正确,故选:D.【变式5-1】(2021秋•垦利区期末)如图,在△ABC中,BD、CE分别是∠ABC和∠ACB的平分线,AM ⊥CE于P,交BC于M,AN⊥BD于Q,交BC于N,∠BAC=110°,AB=6,AC=5,MN=2,结论:①AP=MP;②BC=9;③∠MAN=30°;④AM=AN.其中正确的有( )A.4个B.3个C.2个D.1个【分析】证明△ACP≌△MCP,根据全等三角形的性质得到AP=MP,判断①;根据全等三角形的性质得到CM=AC=5,BN=AB=6,结合图形计算,判断②;根据三角形内角和定理判断③;根据等腰三角形的性质判断④.【解答】解:∵CE是∠ACB的平分线,∴∠ACP=∠NCP,在△ACP和△MCP中,∠ACP=∠MCPCP=CP,∠CPA=∠CPM=90°∴△ACP≌△MCP(ASA),∴AP=MP,①结论正确;∵△ACP≌△MCP,∴CM=AC=5,同理可得:BN=AB=6,∴BC=BN+CM﹣MN=5+6﹣2=9,②结论正确;∵∠BAC=110°,∴∠MAC+∠BAN﹣∠MAN=110°,由①知:∠CMA=∠CAM,∠BNA=∠BAN,在△AMN中,∠CMA+∠BNA=180°﹣∠MAN=∠BAN+∠MAC,∴180°﹣∠MAN﹣∠MAN=110°,∴∠MAN=35°,③结论错误;④当∠AMN=∠ANM时,AM=AN,∵AB=6≠AC=5∴∠ABC≠∠ACB,∴∠AMN≠∠ANM,则AM与AN不相等,④结论错误;故选:C.【变式5-2】(2021春•锦州期末)如图,在△AOB和△COD中,OA=OB,OC=OD(OA<OC),∠AOB=∠COD=α,直线AC,BD交于点M,连接OM.下列结论:①AC=BD,②∠OAM=∠OBM,③∠AMB =α,④OM平分∠BOC,其中正确结论的个数是( )A.4B.3C.2D.1【分析】由SAS证明△AOC≌△BOD得出∠OAM=∠OBM,AC=BD,①②正确;由全等三角形的性质得出∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OBD=∠OAC+∠AOB,得出∠AMB=∠AOB=α,③正确;作OG⊥AM于G,OH⊥DM于H,则∠OGA=∠OHB=90°,即可判定△OAG≌△OBH,得出OG=OH,由角平分线的判定方法得∠AMO=∠DMO,假设OM平分∠BOC,则可求出∠AOM=∠DOM,由全等三角形的判定定理可得△AMO≌△DMO,得AO=OD,而OC=OD,所以OA=OC,而OA<OC,故④错误;即可得出结论.【解答】解:∵∠AOB=∠COD=α,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,在△AOC和△BOD中,OA=OB∠AOC=∠BOD,OC=OD∴△AOC≌△BOD(SAS),∴∠OAC=∠OBD,AC=BD,即∠OAM=∠OBM,故①②正确;由三角形的外角性质得:∠AMB+∠OBD=∠OAC+∠AOB,∵∠OAC=∠OBD,∴∠AMB=∠AOB=α,故③正确;作OG⊥AM于G,OH⊥DM于H,如图所示,则∠OGA=∠OHB=90°,在△OAG和△OBH中,∠OGA=∠OHB∠OAC=∠OBD,OA=OB∴△OAG≌△OBH(AAS),∴OG=OH,∵△AOC≌△BOD,∴OG=OH,∴MO 平分∠AMD ,∴∠AMO =∠DMO ,假设OM 平分∠BOC ,则∠BOM =∠COM ,∵∠AOB =∠COD ,∴∠AOB +∠BOM =∠COD +∠COM ,即∠AOM =∠DOM ,在△AMO 与△DMO 中,∠AOM =∠DOM OM =OM ∠AMO =∠DMO,∴△AMO ≌△DMO (ASA ),∴OA =OD ,∵OC =OD ,∴OA =OC ,而OA <OC ,故④错误;正确的个数有3个;故选:B .【变式5-3】(2021春•江北区校级期末)如图,已知AB =AC ,点D 、E 分别在AC 、AB 上且AE =AD ,连接EC ,BD ,EC 交BD 于点M ,连接AM ,过点A 分别作AF ⊥CE ,AG ⊥BD ,垂足分别为F 、G ,下列结论:①△EBM ≌△DCM ;②∠EMB =∠FAG ;③MA 平分∠EMD ;④若点E 是AB 的中点,则BM +AC >EM +BD ;⑤如果S △BEM =S △ADM ,则E 是AB 的中点;其中正确结论的个数为( )A .2个B .3个C .4个D .5个【分析】①先证明△ABD ≌△ACE 得出∠B =∠C ,即可证明△EBM ≌△DCM ,即可判断①;②根据垂直的定义和四边形的内角和可得结论,即可判断②;③证明△AEM ≌△ADM ,得∠AME =∠AMD ,即可判断③;④如图,延长CE至N,使EN=EM,连接AN,BN,证明△AEN≌△BEM(SAS),得AN=BM,根据三角形三边关系可判断④;⑤根据面积相等可知:S△ADM=S△CDM,由同高可知底边AD=CD,从而判断⑤.【解答】解:①在△ABD和△ACE中,AB=AC∠BAD=∠CAE,AD=AE∴△ABD≌△ACE(SAS),∴∠B=∠C,∵AB=AC,AE=AD,∴AB﹣AE=AC﹣AD,即BE=CD,在△EBM和△DCM中,∠EMB=∠DMC∠B=∠C,EB=CD∴△EBM≌△DCM(AAS),故①正确;②∵AF⊥CE,AG⊥BD,∴∠AFM=∠AGM=90°,∴∠FAG+∠FMG=180°,∵∠FMG+∠EMB=180°,∴∠EMB=∠FAG,故②正确;③由①知:△EBM≌△DCM,∴EM=DM,在△AEM和△ADM中,AE=ADAM=AM,EM=DM∴△AEM≌△ADM(SSS),∴∠AME=∠AMD,∴MA 平分∠EMD ;故③正确;④如图,延长CE 至N ,使EN =EM ,连接AN ,BN ,∵E 是AB 的中点,∴AE =BE ,在△AEN 和△BEM 中,AE =BE ∠AEN =∠BEM EN =EM,∴△AEN ≌△BEM (SAS ),∴AN =BM ,由①知:△ABD ≌△ACE ,∴BD =CE ,△ACN 中,AC +AN >CN ,∴BM +AC >BD +EM ,故④正确;⑤∵S △BEM =S △ADM ,S △EBM =S △DCM ,∴S △ADM =S △CDM ,∴AD =CD =12AC ,∵AD =AE ,AB =AC ,∴AE =12AB ,∴E 是AB 的中点;故⑤正确;本题正确的有5个;故选:D .【题型6 全等三角形的判定与性质(探究角度之间的关系)】【例6】(2022春•杏花岭区校级期中)已知AB =AC ,AD =AE ,∠BAC =∠DAE .(1)如图1,当点D 在BC 上时,求证:BD =CE ;(2)如图2,当点D 、E 、C 在同一直线上,且∠BAC =α,∠BAE =β时,求∠DBC 的度数(用含α和β的式子表示).【分析】(1)证出△ABD≌△ACE即可;(2)由(1)的结论以及四边形的内角和定理可得答案.【解答】(1)证明:∵∠BAC=∠DAE,∴∠BAC﹣∠CAD=∠DAE﹣∠CAD,即∠BAD=∠CAE,在△ABD和△ACE中,AB=AC∠BAD=∠CAEAD=AE,∴△ABD≌△ACE(SAS),∴BD=CE;(2)解:∵AB=AC,AD=AE,∠BAC=∠DAE=α,∴∠ABC=∠ACB=180°α2=90°―12α=∠ADE=∠AED,由(1)得△ABD≌△ACE,∴∠ADB=∠AEC=180°﹣∠AED=90°+12α,∴∠DBC=360°﹣∠BCA﹣∠CAD﹣∠ADB=360°﹣(90°―12α)﹣(2α﹣β)﹣(90°+12α)=180°﹣2α+β.【变式6-1】(2022•南京模拟)在△ABC中,AB=AC,点D是射线CB上的一动点(不与点B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段CB上,且∠BAC=90°时,那么∠DCE= 90 度;(2)设∠BAC=α,∠DCE=β.①如图2,当点D在线段CB上,∠BAC≠90°时,请你探究α与β之间的数量关系,并证明你的结论;②如图3,当点D在线段CB的延长线上,∠BAC≠90°时,请将图3补充完整,并直接写出此时α与β之间的数量关系(不需证明).【分析】(1)易证∠BAD=∠CAE,即可证明△BAD≌△CAE,可得∠ACE=∠B,即可解题;(2)易证∠BAD=∠CAE,即可证明△BAD≌△CAE,可得∠ACE=∠B,根据∠B+∠ACB=180°﹣α即可解题;(3)易证∠BAD=∠CAE,即可证明△BAD≌△CAE,可得∠ACE=∠B,根据∠ADE+∠AED+α=180°,∠CDE+∠CED+β=180°即可解题;【解答】解:(1)∵∠BAD+∠DAC=90°,∠DAC+∠CAE=90°,∴∠BAD=∠CAE,在△BAD和△CAE中,AB=AC∠BAD=∠CAE,AD=AE∴△BAD≌△CAE(SAS),∴∠ACE=∠B,∵∠B+∠ACB=90°,∴∠DCE=∠ACE+∠ACB=90°;故答案为90.(2)∵∠BAD+∠DAC=α,∠DAC+∠CAE=α,∴∠BAD=∠CAE,在△BAD和△CAE中,AB=AC∠BAD=∠CAE,AD=AE∴△BAD≌△CAE(SAS),∴∠ACE=∠B,∵∠B+∠ACB=180°﹣α,∴∠DCE=∠ACE+∠ACB=180°﹣α=β,∴α+β=180°;(3)作出图形,∵∠BAD+∠BAE=α,∠BAE+∠CAE=α,∴∠BAD=∠CAE,在△BAD和△CAE中,AB=AC∠BAD=∠CAE,AD=AE∴△BAD≌△CAE(SAS),∴∠AEC=∠ADB,∵∠ADE+∠AED+α=180°,∠CDE+∠CED+β=180°,∠CED=∠AEC+∠AED,∴α=β.【变式6-2】(2022秋•江夏区期末)已知△ABC,分别以AB、AC为边作△ABD和△ACE,且AD=AB,AC=AE,∠DAB=∠CAE,连接DC与BE,G、F分别是DC与BE的中点.(1)如图1,若∠DAB=60°,则∠AFG= ;(2)如图2,若∠DAB=90°,则∠AFG= ;(3)如图3,若∠DAB=α,试探究∠AFG与α的数量关系,并给予证明.【分析】(1)连接AG .易证△ADC ≌△ABE ,可得DC =BE ,∠ADC =∠ABE ,AD =AB ,根据G 、F 分别是DC 与BE 的中点,可得DG =BF ,即可证明△ADG ≌△ABF ,可得AG =AF ,∠DAG =∠BAF ,即可求得∠DAB =∠GAF ,即可解题.(2)根据(1)中结论即可求得∠AFG 的值,即可解题;(3)根据(1)中结论即可求得∠AFG 的值,即可解题.【解答】解:(1)连接AG .∵∠DAB =∠CAE ,∴∠DAB +∠BAC =∠CAE +∠BAC ,∴∠DAC =∠BAE .在△ADC 和△ABE 中,AD =AB ∠DAC =∠BAE AC =AE,∴△ADC ≌△ABE (SAS ),∴DC =BE ,∠ADC =∠ABE .AD =AB .∵G 、F 分别是DC 与BE 的中点,∴DG =12DC ,BF =12BE ,∴DG =BF .在△ADG 和△ABF 中,AD =AB ∠ADC =∠ABE DG =BF,∴△ADG ≌△ABF (SAS ),∴AG =AF ,∠DAG =∠BAF ,∴∠AGF =∠AFG ,∠DAG ﹣∠BAG =∠BAF ﹣∠BAG ,∴∠DAB =∠GAF .∵∠DAB =60°,∴∠GAF =60°.∵∠GAF +∠AFG +∠AGF =180°,∴∠AFG =60°;(2)∵∠DAB =90°,∠DAB =∠GAF ,(已证)∴∠GAF =90°,∵AG =AF ,∴∠AFG=12(180°﹣90°)=45°;(3)∵∠DAB=α,∠DAB=∠GAF,(已证)∴∠GAF=α,∵AG=AF,∴∠AFG=12(180°﹣α);故答案为60°,45°,12(180°﹣α).【变式6-3】(2021秋•肥西县期末)在△ABC中,AB=AC,D是直线BC上一点,连接AD,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.(1)如图,当点D在BC延长线上移动时,若∠BAC=26°,则∠DCE= .(2)设∠BAC=α,∠DCE=β.①当点D在BC延长线上移动时,α与β之间有什么数量关系?请说明理由;②当点D在直线BC上(不与B,C两点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论.【分析】(1)证△BAD≌△CAE,推出∠B=∠ACE,根据三角形外角性质求出即可;(2)①证△BAD≌△CAE,推出∠B=∠ACE,根据三角形外角性质求出即可;②分三种情况:(Ⅰ)当D在线段BC上时,证明△ABD≌△ACE(SAS),则∠ADB=∠AEC,∠ABC=∠ACE,推出∠DAE+∠DCE=180°,即α+β=180°;(Ⅱ)当点D在线段BC反向延长线上时,α=β,同理可证明△ABD≌△ACE(SAS),则∠ABD=∠ACE,推出∠BAC=∠DCE,即α=β;(Ⅲ)当点D在线段BC的延长线上时,由①得α=β.【解答】解:(1)如图1所示:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE,在△BAD 和△CAE 中,AB =AC ∠BAD =∠CAE AD =AE,∴△BAD ≌△CAE (SAS ),∴∠ACE =∠B =12(180°﹣26°)=77°,BD =CE ,∴BC +DC =CE ,∵∠ACD =∠B +∠BAC =∠ACE +∠DCE ,∴∠BAC =∠DCE ,∵∠BAC =26°,∴∠DCE =26°,故答案为:26°;(2)①当点D 在线段BC 的延长线上移动时,α与β之间的数量关系是α=β,理由如下:∵∠DAE =∠BAC ,∴∠DAE +∠CAD =∠BAC +∠CAD ,∴∠BAD =∠CAE ,在△BAD 和△CAE 中,AB =AC ∠BAD =∠CAE AD =AE,∴△BAD ≌△CAE (SAS ),∴∠B =∠ACE ,∵∠ACD =∠B +∠BAC =∠ACE +∠DCE ,∴∠BAC =∠DCE ,∵∠BAC =α,∠DCE =β,∴α=β;②分三种情况:(Ⅰ)当D 在线段BC 上时,α+β=180°,如图2所示,理由如下:同理可证明:△ABD ≌△ACE (SAS ),∴∠ADB =∠AEC ,∠ABC =∠ACE ,∵∠ADC +∠ADB =180°,∴∠ADC +∠AEC =180°,∴∠DAE +∠DCE =180°,∵∠BAC =∠DAE =α,∠DCE =β,∴α+β=180°;(Ⅱ)当点D 在线段BC 反向延长线上时,α=β,如图3所示,理由如下:同理可证明:△ABD ≌△ACE (SAS ),∴∠ABD =∠ACE ,∵∠ACE =∠ACD +∠DCE ,∠ABD =∠ACD +∠BAC ,∴∠ACD +∠DCE =∠ACD +∠BAC ,∴∠BAC =∠DCE ,∵∠BAC =α,∠DCE =β,∴α=β;(Ⅲ)当点D 在线段BC 的延长线上时,如图1所示,α=β;综上所述,当点D 在BC 上移动时,α=β或α+β=180°.【题型7 全等三角形的判定与性质(探究线段之间的关系)】【例7】(2022春•沙坪坝区校级期中)如图,在△ABC 中,∠ABC 、∠ACB 的平分线交于点D ,延长BD 交AC 于E ,G 、F 分别在BD 、BC 上,连接DF 、GF ,其中∠A =2∠BDF ,GD =DE .(1)当∠A =80°时,求∠EDC 的度数;(2)求证:CF =FG +CE .【分析】(1)在BC 上取点M ,使CM =CE ,证明△CDE ≌△CDM (SAS ),可得DE =DM ,∠DEC =∠DMC ,∠EDC =∠MDC ,证明∠BDM =180°―12∠ABC ﹣∠DMB =180°―12∠ABC ﹣∠AEB =∠A =80°,进而可以解决问题.(2)结合(1)然后证明△DGF≌△DMF(SAS),可得GF=MF,进而可以解决问题.【解答】(1)解:如图,在BC上取点M,使CM=CE,∵CD平分∠ACB,∴∠ACD=∠BCD,在△CDE和△CDM中,CE=CM∠ECD=∠MCDCD=CD,∴△CDE≌△CDM(SAS),∴DE=DM,∠DEC=∠DMC,∠EDC=∠MDC,∵GD=DE,∴GD=MD,∵∠DEC+∠AEB=180°,∠DMC+∠DMF=180°,∴∠AEB=∠DMF,∵BE平分∠ABC,∴∠ABE=∠CBE=12∠ABC,∴∠BDM=180°―12∠ABC﹣∠DMB=180°―12∠ABC﹣∠AEB=∠A=80°,∴∠EDM=100°,∴∠EDC=50°;(2)证明:∵∠A=2∠BDF,∴∠BDM=2∠BDF,∴∠FDM=∠BDF,在△DGF和△DMF中,DG=DM∠GDF=∠MDFDF=DF,∴△DGF≌△DMF(SAS),∴GF=MF,∴CF=CM+FM=CE+GF.∴CF=FG+CE.【变式7-1】(2022•黄州区校级模拟)如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.【分析】(1)根据题意和题目中的条件可以找出△ABC≌△ADE的条件;(2)根据(1)中的结论和等腰直角三角形的定义可以得到∠FAE的度数;(3)根据题意和三角形全等的知识,作出合适的辅助线即可证明结论成立.【解答】证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,AB=AD∠BAC=∠DAE,AC=AE∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,BF=GF∠AFB=∠AFG,AF=AF∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,∵∠GCA=∠DCA=45°,在△CGA和△CDA中,∠GCA=∠DCA∠CGA=∠CDA,AG=AD∴△CGA≌△CDA(AAS),∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.【变式7-2】(2021秋•两江新区期末)在Rt△ABC中,∠ABC=90°,点D是CB延长线上一点,点E是线段AB上一点,连接DE.AC=DE,BC=BE.(1)求证:AB=BD;(2)BF平分∠ABC交AC于点F,点G是线段FB延长线上一点,连接DG,点H是线段DG上一点,连接AH交BD于点K,连接KG.当KB平分∠AKG时,求证:AK=DG+KG.【分析】(1)证明Rt△ACB≌Rt△DEB即可解决问题;(2)作BM平分∠ABD交AK于点M,证明△BMK≌△BGK,△ABM≌△DBG,即可解决问题.【解答】证明:(1)在Rt△ACB和Rt△DEB中,AC=DEBC=BE,∴Rt△ACB≌Rt△DEB(HL),∴AB=BD,(2)如图:作BM平分∠ABD交AK于点M,∵BM平分∠ABD,KB平分∠AKG,∴∠ABM=∠MBD=45°,∠AKB=∠BKG,∵∠ABF=∠DBG=45°∴∠MBD=∠GBD,在△BMK和△BGK中,∠MBD=∠GBDBK=BK,∠AKB=∠BKG∴△BMK≌△BGK(ASA),∴BM=BG,MK=KG,在△ABM和△DBG中,AB=BD∠ABM=∠DBG,BM=BG∴△ABM≌△DBG(SAS),∴AM=DG,∵AK=AM+MK,∴AK=DG+KG.【变式7-3】(2022春•济南期中)把两个全等的直角三角板的斜边重合,组成一个四边形ACBD以D为顶点作∠MDN,交边AC、BC于M、N.(1)若∠ACD=30°,∠MDN=60°,当∠MDN绕点D旋转时,AM、MN、BN三条线段之间有何种数量关系?证明你的结论;(2)当∠ACD+∠MDN=90°时,AM、MN、BN三条线段之间有何数量关系?证明你的结论;(3)如图③,在(2)的条件下,若将M、N改在CA、BC的延长线上,完成图3,其余条件不变,则AM、MN、BN之间有何数量关系(直接写出结论,不必证明)【分析】(1)延长CB到E,使BE=AM,证△DAM≌△DBE,推出∠BDE=∠MDA,DM=DE,证△MDN≌△EDN,推出MN=NE即可;(2)延长CB到E,使BE=AM,证△DAM≌△DBE,推出∠BDE=∠MDA,DM=DE,证△MDN≌△EDN,推出MN=NE即可;(3)在CB截取BE=AM,连接DE,证△DAM≌△DBE,推出∠BDE=∠MDA,DM=DE,证△MDN ≌△EDN,推出MN=NE即可.【解答】(1)AM+BN=MN,证明:延长CB到E,使BE=AM,∵∠A=∠CBD=90°,∴∠A=∠EBD=90°,在△DAM和△DBE中AM=BE∠A=∠DBE,AD=BD∴△DAM≌△DBE,∴∠BDE=∠MDA,DM=DE,∵∠MDN=∠ADC=60°,∴∠ADM=∠NDC,∴∠BDE=∠NDC,∴∠MDN=∠NDE,在△MDN和△EDN中DM=DE∠MDN=∠NDE,DN=DN∴△MDN≌△EDN,∴MN=NE,∵NE=BE+BN=AM+BN,∴AM+BN=MN.(2)AM+BN=MN,证明:延长CB到E,使BE=AM,连接DE,∵∠A=∠CBD=90°,∴∠A=∠DBE=90°,∵∠CDA+∠ACD=90°,∠MDN+∠ACD=90°,∴∠MDN=∠CDA,∵∠MDN=∠BDC,∴∠MDA=∠CDN,∠CDM=∠NDB,在△DAM和△DBE中AM=BE∠A=∠DBE,AD=BD∴△DAM≌△DBE,∴∠BDE=∠MDA=∠CDN,DM=DE,∵∠MDN+∠ACD=90°,∠ACD+∠ADC=90°,∴∠NDM=∠ADC=∠CDB,∴∠ADM=∠CDN=∠BDE,∵∠CDM=∠NDB∴∠MDN=∠NDE,在△MDN和△EDN中DM=DE∠MDN=∠NDE,DN=DN∴△MDN≌△EDN,∴MN=NE,∵NE=BE+BN=AM+BN,∴AM+BN=MN.(3)BN﹣AM=MN,证明:在CB截取BE=AM,连接DE,∵∠CDA+∠ACD=90°,∠MDN+∠ACD=90°,∴∠MDN=∠CDA,∵∠ADN=∠ADN,∴∠MDA=∠CDN,∵∠B=∠CAD=90°,∴∠B=∠DAM=90°,在△DAM和△DBE中AM=BE∠DAM=∠DBE,AD=BD∴△DAM≌△DBE,∴∠BDE=∠ADM=∠CDN,DM=DE,∵∠ADC=∠BDC=∠MDN,∴∠MDN=∠EDN,在△MDN和△EDN中DM=DE∠MDN=∠NDE,DN=DN∴△MDN≌△EDN,∴MN=NE,∵NE=BN﹣BE=BN﹣AM,∴BN﹣AM=MN.【题型8 全等三角形的应用】【例8】(2022春•二七区期末)为了测量一池塘的两端A,B之间的距离,同学们想出了如下的两种方案:方案①如图1,先在平地上取一个可直接到达A,B的点C,再连接AC,BC,并分别延长AC至点D,BC至点E,使DC=AC,EC=BC,最后量出DE的距离就是AB的长;方案②如图2,过点B作AB的垂线BF,在BF上取C,D两点,使BC=CD,接着过D作BD的垂线DE,在垂线上选一点E,使A、C、E三点在一条直线上,则测出DE的长即是AB的距离.问:(1)方案①是否可行?请说明理由;(2)方案②是否可行?请说明理由;(3)小明说在方案②中,并不一定需要BF⊥AB,DE⊥BF,只需要 AB∥DE 就可以了,请把小明所说的条件补上.【分析】(1)根据SAS证明△DCE≌△ACB,根据全等三角形的性质即可得证;(2)根据ASA证明△ABC≌△EDC,进一步即可得证;(3)只需要AB∥DE,此时∠ABC=∠EDC,证明△ABC≌△EDC(ASA)即可得证.【解答】解:(1)方案①可行,理由如下:在△DCE和△ACB中,DC=AC∠DCE=∠ACB,EC=BC∴△DCE≌△ACB(SAS),∴DE=AB,∴方案①可行;(2)方案②可行,理由如下:∵AB⊥BF,DE⊥BF,∴∠ABC=∠EDC=90°,在△ABC和△EDC中,∠ABC=∠EDCBC=CD,∠ACB=∠ECD∴△ABC≌△EDC(ASA),∴DE=AB,故方案②可行;(3)只需要AB∥DE,此时∠ABC=∠EDC,证明步骤同(2),故答案为:AB∥DE.【变式8-1】(2021春•普宁市期末)学校为开展数学实践活动,成立了以小明为首的户外测量小组,测量小组带有测量工具:绳子、拉尺、小红旗、测角器(可测量两个点分别到测量者连线之间的夹角大小).小明小组的任务是测量某池塘不能直接到达的两个端点A、B之间的距离.(1)小明小组提出了测量方案:在池塘南面的空地上(如图),取一个可直接到达A、B的点C,用绳子连接AC和BC,并利用绳子分别延长AC至D、BC至E,使用拉尺丈量CD=CA、CE=CB,确定D、E 两个点后,最后用拉尺直接量出线段DE的长,则端点A、B之间的距离就是DE的长.你认为小明小组测量方案正确吗?请说明理由.(2)你还有不同于小明小组的其他测量方法吗?请写出其中一个完整的测量方案(在备用图1中画出简图,但不必说明理由).(3)假设池塘南面(即点D、E附近区域)没有足够空地(或空地有障碍物或不可直达等不可测量情况),而点B的右侧区域有足够空地并可用于测量,请你设计一个可行的测量方案(在备用图2中画出图形),并说明理由.【分析】(1)根据SAS证明△ABC≌△DEC即可;(2)先过点B作AB的垂线BF,再在BF上取C,D两点,使BC=CD,接着过点D作BD的垂线DE,交AC的延长线于点E,则测出DE的长即为A,B的距离;(3)过点B作BD⊥AB,再由点D观测,在AB的延长线上取一点C,使∠BDC=∠BDA.这时只要测出BC的长即为A,B的距离.理由根据ASA证明△ABD≌△CBD即可.【解答】解:(1)小明小组测量方案正确,理由如下:连接AB,如图所示:在△ABC和△DEC中,CD=CA∠ACB=∠DCE,CE=CB∴△ABC≌△DEC(SAS),∴DE=AB.(2)有其他方案,测量方案如下:先过点B作AB的垂线BF,再在BF上取C,D两点,使BC=CD,接着过点D作BD的垂线DE,交AC的延长线于点E,则测出DE的长即为A,B的距离,如图所示:(3)测量方案:过点B作BD⊥AB,再由点D观测,在AB的延长线上取一点C,使∠BDC=∠BDA.这时只要测出BC的长即为A,B的距离,如图所示:理由如下:∵BD⊥AB,∴∠ABD=∠CBD=90°,在△ABD和△CBD中,∠ABD=∠CBDBD=BD,∠BDC=∠BDA∴△ABD≌△CBD(ASA),∴BC=AB.【变式8-2】(2022春•金乡县期中)如图,小明和小华住在同一个小区不同单元楼,他们想要测量小明家所在单元楼AB的高度,首先他们在两栋单元楼之间选定一点E,然后小华在自己家阳台C处测得E处的俯角为∠1,小明站在E处测得眼睛F到AB楼端点A的仰角为∠2,发现∠1与∠2互余,已知EF=1米,BE=CD=20米,BD=58米,试求单元楼AB的高.【分析】过F作FG⊥AB于G,则四边形BEFG是矩形,求得FG=BE=20米,BG=EF=1米,根据全等三角形的性质即可得到结论.【解答】解:过F作FG⊥AB于G,则四边形BEFG是矩形,∴FG=BE=20米,BG=EF=1米,∵∠1+∠2=90°,∠1+∠3=90°,∴∠2=∠3,在△AFG与△ECD中,∠AGF=∠EDC=90°FG=CD,∠2=∠3∴△AFG≌△ECD(ASA),∴AG=DE=BD﹣BE=38(米),∴AB=AG+BG=38+1=39(米),答:单元楼AB的高为39米.【变式8-3】(2022春•郑州期末)阅读并完成相应的任务.如图,小明站在堤岸凉亭A点处,正对他的B点(AB与堤岸垂直)停有一艘游艇,他想知道凉亭与这艘游艇之间的距离,于是制定了如下方案.课题测凉亭与游艇之间的距离测量工具皮尺等测量方案示意图(不完整)测量步骤①小明沿堤岸走到电线杆C旁(直线AC与堤岸平行);②再往前走相同的距离,到达D点;③他到达D点后向左转90度直行,当自己,电线杆与游艇在一条直线上时停下来,此时小明位于点E处.测量数据AC=20米,CD=20米,DE=8米(1)任务一:根据题意将测量方案示意图补充完整.(2)任务二:①凉亭与游艇之间的距离是 米.②请你说明小明方案正确的理由.【分析】(1)任务一:根据题意可知,小华的方案中蕴含着一对全等三角形,即△ABC≌△DEC,将图形补充完整即可;(2)任务二:①由补充完整的图形可知,△ABC≌△DEC,且AB与DE是对应边,可知AB=DE=8米,得出答案为8;②由题意可知AC=CD=20米,∠A=∠D=90°,∠ACB与∠DCE是对顶角,由“ASA”可判定△ABC≌△DEC,则AB=DE=8米,说明小明的方案是正确的.【解答】解:(1)任务一:将测量方案示意图补充完整如图所示.(2)任务二:①由△ABC≌△DEC得AB=DE=8(米),故答案为:8.②理由:如图,由题意可知,AC=20米,CD=20米,DE=8米,∠A=90°,∠D=90°,∴AC=DC,∠A=∠D,在△ABC和△DEC中,∠A=∠DAC=DC,∠ACB=∠DCE∴△ABC≌△DEC(ASA),∴AB=DE=8米,∴小明的方案是正确的.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2 全等三角形1.如图,△ABC ≌△ADE ,如果AB =5cm ,BC =7cm ,AC =6cm ,那么DE 的长是( )A .6cmB .5cmC .7cmD .无法确定【答案】C 【解析】∵△ABC ≌△ADE ,∴BC DE =,∵BC =7cm ,∴7DE cm =;故答案选C .2.如图,ABC DBE ≌,80ABC ∠=︒,65D ∠=︒,则C ∠的度数为( )A .20°B .25°C .30°D .35°【答案】D 【解析】解:∵△ABC ≌△DBE ,∴∠A=∠D=65°,∴∠C=180°-∠ABC -∠A=35°,故选:D .3.如图,△ABE ≌△ACD ,BC =10,DE =4,则DC 的长是( )A .8B .7C .6D .5【答案】B【解析】解:∵△ABE ≌△ACD ,∴BE =CD ,∴BE+CD =BC+DE =14,∴2CD =14,∴CD =7,故选:B .4.下列说法中正确的是( )A .两个面积相等的图形,一定是全等图形B .两个等边三角形是全等图形C .两个全等图形的面积一定相等D .若两个图形周长相等,则它们一定是全等图形【答案】C【解析】解:A 、两个面积相等的图形不一定是全等图形,故A 错误;B 、两个等边三角形不一定是全等图形,故B 错误;C 、两个全等图形的面积一定相等,正确;D 、若两个图形的周长相等,则它们不一定是全等形,故D 错误;故选:C .5.如图,ABC DEC ≌△△,过点A 作AF CD ⊥,垂足为点F ,若65BCE ∠=︒,则CAF ∠的度数为( )A .30B .25︒C .35︒D .65︒【答案】B 【解析】解:∵ABC DEC ≌△△,∴ACB DCE ∠=∠,∴ACB ACE DCE ACE ∠-∠=∠-∠,即ACF BCE ∠=∠,∵65BCE ∠=︒,∴65ACF BCE ∠=∠=︒,∵AF CD ⊥,∴90AFC ∠=︒,∴9025CAF ACF ∠=︒-∠=︒;故选B .6.如图,将三角形纸板ABC 沿直线AB 向右平行移动,使点A 到达点B 的位置,若∠CAB =40°,∠ABC =105°,则∠CBE 的度数为______度.【答案】35【解析】∵将△ABC沿直线AB向右平移到达△BDE的位置,∴△ACB≌△BED,∵∠CAB=40°,∠ABC=105°,∴∠EBD=40°,∠BDE=105°,则∠CBE的度数为:180°﹣105°﹣40°=35°.故答案为:35.7.如图,ABC中,点D、点E分别在边AB、BC上,连结AE、DE,若ADE BDEAC AB BC=,≌,::2:3:4且ABC的周长比AEC的周长大6.则AEC的周长为______【答案】12【解析】解:∵AC:AB:BC=2:3:4,∴设AC=4a,AB=6a,BC=8a,∵△ADE≌△BDE,∴AD=BD,AE=BE,再设AE=BE=x,则EC=8a-x,△ABC的周长= AC+AB+BC=4a+6a +8a=18a,△AEC的周长= AC+AE+EC=4a+x +8a-x=12a,由题意得:18a-12a=6,解得:a=1,∴△AEC的周长为12,故答案为:12.B C=,8.如图,ABC的边BC与直线l重合,将ABC沿着直线l向右平移6个单位长度得到111△.若11A B CBC的长度是______.则1【答案】11【解析】解:∵ABC 沿着直线l 向右平移6个单位长度得到111A B C △,∴111ABC A B C △≌△,16BB =,又∵11B C =,∴1111615BC B C BB B C ==-=-=,∴11116511BC BB BC =+=+=.故答案为:11.9.如图,已知△ABC ≌△EBD ,(1)若BE=6,BD=4,求线段AD 的长;(2)若∠E=30°,∠B=48°,求∠ACE 的度数.【答案】(1)2;(2)78°.【解析】(1)∵△ABC ≌△EBD ,∴AB=BE=6,∵AD=AB-BD ,BD=4,∴AD=6-4=2;(2)∵△ABC ≌△EBD ,∴∠A=∠E=30°,∵∠ACE=∠A+∠B ,∠B=48°,∴∠ACE=30°+48° =78°.10.如图,已知CBE ADF ∆≅∆,点B 、D 在线段EF 上.(1)线段AD 与BC 的数量关系是:_________,判断该关系的数学根据是: (用文字表达);(2)判断AD 与BC 之间的位置关系,并说明理由.【答案】(1)相等(或写AD BC =),全等三角形的对应边相等;(2)//AD BC ,见详解【解析】(1)∵CBE ADF ∆≅∆∴AD=BC根据全等三角形的对应边相等故答案为:相等(或写AD BC =)全等三角形的对应边相等(2)猜想://AD BC .理由:∵CBE ADF ∆≅∆,∴ADF CBE ∠=∠,∵∠ADB=180°-∠ADF,∠CBD=180°-∠CBE,∴ADB CBD ∠=∠,∴//AD BC故答案为//AD BC11.如图,点E 在AB 上,AC 与DE 相交于点F ,△ABC ≌△DEC ,∠A =20°,∠B =∠CEB=65°.则∠DFA 的度数为( )A .65°B .70°C .85°D .110°【答案】B 【解析】证明:∵△ABC ≌△DEC ,∠CEB=∠B=65°,∴∠DCE=∠ACB ,∠D=∠A=20°,在△BEC 中,∠CEB+∠B+∠ECB=180°,∴∠ECB=180°-65°-65°=50°,∴∠DCA=∠ECB=50°,在△DFC 中,∠DFA=∠DCA+∠D=50°+20°=70°.故选:B .12.如图,已知△ABC 与△BDE 全等,其中点D 在边AB 上,AB >BC ,BD=CA ,DE ∥AC ,BC 与DE 交于点F ,下列与AD+AC 相等的是( )A .DEB .BEC .BFD .DF【答案】A 【解析】解:∵DE ∥AC ,∴∠A=∠EDB .∵△ABC 与△BDE 全等,∴BC=BE ,AC=DB ,AB=DE ,∴AC+AD=DB+AD=AB=DE ,故选:A .13.已知ABC 与DEF 全等,A 、B 、C 的对应点分别为D 、E 、F ,且E 点在AE 上,B 、F 、C 、D 四点共线,如图所示.若=40A ∠︒,=35CED ∠︒,则下列叙述何者正确?( )A .=EF EC ,=AE FCB .=EF EC ,AE FC ≠ C .EF EC ≠,=AE FCD .EF EC ≠,AE FC ≠【答案】B【解析】解:ABC ≌DEF , ==40A D ∴∠∠︒,AC=DF ,=ACB DFE ∠∠,=ACB DFE ∠∠,=EF EC ∴.=35CED ∠︒,=40D ∠︒,D CED ∴∠>∠.CE CD ∴>.=AC DF ,AC CE DF CD ∴-<-,即AE FC <.AE FC ∴≠.=EF EC ∴,AE FC ≠.故选:B .14.如图,90C CAM ∠=∠=︒,8AC cm =,4BC cm =,点P 在线段AC 上,以2/cm s 速度从点A 出发向点C 运动,到点C 停止运动.点Q 在射线AM 上运动,且PQ AB =.若ABC ∆与PQA ∆全等,则点P 运动的时间为( )A .4sB .2sC .2s 或3s 或4sD .2s 或4s【答案】D 【解析】解:当ABC PQA ∆≅∆时,8AP AC ==,点P 的速度为2/cm s ,824()s ∴÷=;当ABC QPA ∆≅∆时,当4AP BC ==,点P 的速度为2/cm s ,422()s ∴÷=故选:D .15.如图,△ABC ≌△DBE ,△ABC 的周长为30,AB =9,BE =8,则AC 的长是__.【答案】13【解析】解:∵△ABC ≌△DBE ,BE =8,∴BC =BE =8,∵△ABC 的周长为30,∴AB+AC+BC =30,∴AC =30﹣AB ﹣BC =13,故答案为:13.16.如图,ABC ADE ∆≅∆,且120EAB ∠=︒,30B ∠=︒,10CAD ∠=︒,CFD ∠=____︒.【答案】95【解析】解:ABC ADE ≅,EAD CAB ∴∠=∠,120EAB ∠=︒,10CAD ∠=︒,55EAD CAB ∴∠=∠=︒,10553095CFD FAB B ∴∠=∠+∠=︒+︒+︒=︒, 故答案为:95.17.如图,△ABC ≌△ADE ,①若△ABC 周长为24,AD=6,AE=9,则BC=______;②若∠BAD=42°,则∠EFC=______.【答案】9 42°【解析】解:①∵△ABC ≌△ADE ,∴AB=AD=6,AC=AE=9,∵△ABC 周长为24,∴BC=24-6-9=9;②∵△ABC ≌△ADE ,∴∠BAC=∠DAE ,∠C=∠E ,∴∠BAC-∠CAD=∠DAE-∠CAD ,即∠CAE=∠BAD=42°,∴∠EFC=∠CAE=42°.故答案为:9;42°.18.如图,三角形ABC 中,90ABC ∠=︒,将三角形ABC 沿AB 方向平移AD 的长度得到三角形DEF ,且8EF =,4=AD ,3CG =,则图中阴影部分的面积是______.【答案】26【解析】解:∵三角形ABC 沿AB 方向平移AD 的长度得到三角形DEF ,∴△ABC≌△DEF,BC=EF=8,AD=BE=4 ∴BG=BC-CG=8-3=5,∵S阴影部分+S△DBG=S△DBG+S梯形BEFG,∴S阴影部分=S梯形BEFG=12(5+8)×4=26.故答案为:26.19.如图所示,A,D,E三点在同一直线上,且BAD ACE≌△△,求证:BD CE DE=+.【答案】证明见解析.【解析】证明:BAD ACE≌,BD AE∴=,AD CE=,AE AD DE=+,BD CE DE∴=+.20.如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F.(1)当DE=9,BC=5时,线段AE的长为,(2)已知∠D=35°,∠C=60°,求∠AFD的度数.【答案】(1)4;(2)130°.【解析】解:(1)△ABC≌△DEB,DE=9,BC=5,95AB DE BC BE∴====,,95 4.AE AB BE∴=-=-=故答案为:4.(2) △ABC ≌△DEB ,∠C=60°,∠D=35°,60C DBE ∴∠=∠=︒, 35A D ∠=∠=︒,∠D=35°,603595AED DBE D ∴∠=∠+∠=︒+︒=︒,3595130.AFD A AEF ∴∠=∠+∠=︒+︒=︒21.如图,14AB =,6AC =,AC AB ⊥,BD AB ⊥,垂足分别为A 、B .点P 从点A 出发,以每秒2个单位的速度沿AB 向点B 运动;点Q 从点B 出发,以每秒a 个单位的速度沿射线BD 方向运动.点P 、点Q 同时出发,当以P 、B 、Q 为顶点的三角形与CAP 全等时,a 的值为( )A .2B .3C .2或3D .2或127【答案】D 【解析】解:当△CAP ≌△PBQ 时,则AC=PB ,AP=BQ ,∵AC=6,AB=14,∴PB=6,AP=AB-AP=14-6=8,∴BQ=8,∴8÷a=8÷2,解得a=2;当△CAP ≌△QBP 时,则AC=BQ ,AP=BP ,.∵AC=6,AB=14,∴BQ=6,AP=BP=7,∴6÷a=7÷2,解得a=127, 由上可得a 的值是2或127, 故选:D .22.如图,在锐角ABC 中,D 、E 分别是AB 、AC 上的点,'ADC ADC ≌,AEB AEB '△≌△,且////C D EB BC '',BE 、CD 相交于点F ,若35BAC ∠=︒,求∠BFC 的度数.【答案】110°【解析】解:设∠C′=α,∠B′=β,∵△ADC≌△ADC′,△AEB≌△AEB′,∴∠ACD=∠C′=α,∠ABE=∠B′=β,∠BAE=∠B′AE=35°,∴∠CDB=∠BAC+ACD=35°+α,∠CEB′=35°+β.∵C′D∥EB′∥BC,∴∠ABC=∠C′DB=35°+α,∠ACB=∠CEB′=35°+β,∴∠BAC+∠ABC+∠ACB=180°,即105°+α+β=180°.则α+β=75°.∵∠BFC=∠BDC+∠DBE,∴∠BFC=35°+α+β=35°+75°=110°.故答案为:110°.。