图形的全等练习题
华师大版数学七年级下册_《图形的全等》拔高练习1

《图形的全等》拔高练习一、选择题(本大题共5小题,共25.0分)1.(5分)如图所示的图形是全等图形的是()A.B.C.D.2.(5分)下列说法正确的是()A.所有的等边三角形都是全等三角形B.全等三角形是指面积相等的三角形C.周长相等的三角形是全等三角形D.全等三角形是指形状相同大小相等的三角形3.(5分)下列说法正确的个数()①三角形的三条高所在直线交于一点;②一个角的补角比这个角的余角大90°;③垂直于同一条直线的两条直线互相垂直;④两直线相交,同位角相等;⑤面积相等的两个正方形是全等图形;⑥已知两边及一角不能唯一作出三角形.A.1个B.2个C.3个D.4个4.(5分)下列选项中表示两个全等图形的是()A.形状相同的两个图形B.能够完全重合的两个图形C.面积相等的两个图形D.周长相等的两个图形5.(5分)如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3的度数为()A.90°B.105°C.120°D.135°二、填空题(本大题共5小题,共25.0分)6.(5分)如图为6个边长相等的正方形的组合图形,则∠1﹣∠2+∠3=.7.(5分)如图,在3×3的正方形网格中标出了∠1和∠2,则∠1+∠2=.8.(5分)在如图所示的3×3的正方形网格中,∠1+∠2+∠3的度数为.9.(5分)如图,已知方格纸中是4个相同的正方形,则∠1与∠2的和为.10.(5分)在如图所示的3×3正方形网格中,∠1+∠2+∠3=°.三、解答题(本大题共5小题,共50.0分)11.(10分)如图,某校有一块正方形花坛,现要把它分成4块全等的部分,分别种植四种不同品种的花卉,图中给出了一种设计方案,请你再给出四种不同的设计方案.12.(10分)如图为人民公园中的荷花池,现在测量荷花池两旁A、B两棵大树间的距离(不得直接量得).请你根据图形全等的知识,用一根足够长的绳子及标杆为工具,设计两种不同的测量方案.要求:(1)画出设计的测量示意图;(2)写出测量方案及理由.13.(10分)沿着图中的虚线,用四种不同的方法将下面的图形分成两个全等的图形14.(10分)如图所示,请你在图中画两条直线,把这个“+”图案分成四个全等的图形(要求至少要画出两种方法).15.(10分)试在下列图中,沿正方形的网格线(虚线)把这两个图形分别割成两个全等的图形《图形的全等》拔高练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)如图所示的图形是全等图形的是()A.B.C.D.【分析】根据能够完全重合的两个图形叫做全等形可得答案.【解答】解:如图所示的图形是全等图形的是B,故选:B.【点评】此题主要考查了全等图形,关键是掌握全等形的定义.2.(5分)下列说法正确的是()A.所有的等边三角形都是全等三角形B.全等三角形是指面积相等的三角形C.周长相等的三角形是全等三角形D.全等三角形是指形状相同大小相等的三角形【分析】直接利用全等图形的定义与性质分析得出答案.【解答】解:A、所有的等边三角形都是全等三角形,错误;B、全等三角形是指面积相等的三角形,错误;C、周长相等的三角形是全等三角形,错误;D、全等三角形是指形状相同大小相等的三角形,正确.故选:D.【点评】此题主要考查了全等图形的性质与判定,正确利用全等图形的性质得出是解题关键.3.(5分)下列说法正确的个数()①三角形的三条高所在直线交于一点;②一个角的补角比这个角的余角大90°;③垂直于同一条直线的两条直线互相垂直;④两直线相交,同位角相等;⑤面积相等的两个正方形是全等图形;⑥已知两边及一角不能唯一作出三角形.A.1个B.2个C.3个D.4个【分析】根据全等图形、三角形的高、互补、垂直以及平行线的性质进行判断即可.【解答】解:①三角形的三条高交于同一点,所以此选项说法正确;②设这个角为α,则这个角的补角表示为180°﹣α,这个角的余角表示为90°﹣α,(180°﹣α)﹣(90°﹣α)=90°,∴一个角的补角比这个角的余角大90°,此选项正确;③垂直于同一条直线的两条直线互相平行,所以此选项不正确;④两直线平行,同位角相等,所以此选项说法不正确;⑤面积相等的两个正方形是全等图形,此选项正确;⑥已知两边及一角不能唯一作出三角形,此选项正确.故选:D.【点评】此题考查全等图形、三角形的高以及平行线的性质等知识,关键是根据全等图形、三角形的高、互补、垂直以及平行线的性质进行判断.4.(5分)下列选项中表示两个全等图形的是()A.形状相同的两个图形B.能够完全重合的两个图形C.面积相等的两个图形D.周长相等的两个图形【分析】直接利用全等图形的定义分析得出答案.【解答】解:A、形状相同的两个图形,不一定是全等图形,故此选项错误;B、能够完全重合的两个图形,一定是全等图形,故此选项正确;C、面积相等的两个图形,不一定是全等图形,故此选项错误;D、周长相等的两个图形,不一定是全等图形,故此选项错误;故选:B.【点评】此题主要考查了全等图形,正确把握全等图形的定义是解题关键.5.(5分)如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3的度数为()A.90°B.105°C.120°D.135°【分析】根据对称性可得∠1+∠3=90°,∠2=45°.【解答】解:观察图形可知,∠1所在的三角形与∠3所在的三角形全等,∴∠1+∠3=90°,又∠2=45°,∴∠1+∠2+∠3=135°,故选:D.【点评】主要考查了正方形的性质和全等三角形的判定.充分利用正方形的特殊性质来找到全等的条件从而判定全等后利用全等三角形的性质解题.二、填空题(本大题共5小题,共25.0分)6.(5分)如图为6个边长相等的正方形的组合图形,则∠1﹣∠2+∠3=45°.【分析】观察图形可知∠1与∠3互余,∠2是直角的一半,利用这些关系可解此题.【解答】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1﹣∠2+∠3=90°﹣45°=45°.故答案为:45°.【点评】此题综合考查角平分线以及全等图形,要注意∠1与∠3互余,∠2是直角的一半,特别是观察图形的能力.7.(5分)如图,在3×3的正方形网格中标出了∠1和∠2,则∠1+∠2=45°.【分析】根据题意,作出合适的辅助线,然后根据勾股定理的逆定理即可解答本题.【解答】解:如右图所示,作CD∥AB,连接DE,则∠2=∠3,设每个小正方形的边长为a,则CD=,DE=a,CE=a,∵CD2+DE2==10a2=CE2,CD=DE,∴△CDE是等腰直角三角形,∠CDE=90°,∴∠DCE=45°,∴∠3+∠1=45°,∴∠1+∠2=45°,故答案为:45°.【点评】本题考查全等图形,解答本题的关键是明确题意,作出合适的辅助线,利用数形结合的思想解答.8.(5分)在如图所示的3×3的正方形网格中,∠1+∠2+∠3的度数为135°.【分析】首先证明△ABC≌△AEF,然后证明∠1+∠2=90°,再根据等腰直角三角形的性质可得∠3=45°,进而可得答案.【解答】解:∵在△ABC和△AEF中,,∴△ABC≌△AEF(SAS),∴∠4=∠2,∵∠1+∠4=90°,∴∠1+∠2=90°,∵AE=DE,∠AED=90°,∴∠3=45°,∴∠1+∠2+∠3=135°,故答案为:135°【点评】此题主要考查了全等三角形的判定和性质,以及等腰直角三角形的性质,关键是掌握全等三角形对应角相等.9.(5分)如图,已知方格纸中是4个相同的正方形,则∠1与∠2的和为90°.【分析】首先证明△ABC≌△AED,根据全等三角形的性质可得∠1=∠AED,再根据余角的定义可得∠AED+∠2=90°,再根据等量代换可得∠1与∠2的和为90°.【解答】解:∵在△ABC和△AED中,∴△ABC≌△AED(SAS),∴∠1=∠AED,∵∠AED+∠2=90°,∴∠1+∠2=90°,故答案为:90°.【点评】此题主要考查了全等图形,关键是掌握全等三角形的判定和性质.10.(5分)在如图所示的3×3正方形网格中,∠1+∠2+∠3=135°.【分析】根据图形判断出∠1、∠3是全等直角三角形的两个互余的锐角,∠2为等腰直角三角形的锐角,然后求解即可.【解答】解:如图,在△ABC和△EGA中,,∴△ABC≌△EGA(SAS),∴∠3=∠BAC,在Rt△ABC中,∠BAC+∠1=90°,∴∠1+∠3=90°,由图可知,△ABD是等腰直角三角形,∴∠2=45°,∴∠1+∠2+∠3=90°+45°=135°.故答案为:135.【点评】本题考查了全等图形,等腰直角三角形的性质,准确识图判断出全等三角形是解题的关键.三、解答题(本大题共5小题,共50.0分)11.(10分)如图,某校有一块正方形花坛,现要把它分成4块全等的部分,分别种植四种不同品种的花卉,图中给出了一种设计方案,请你再给出四种不同的设计方案.【分析】根据正方形的性质,①两条对角线把正方形分成四个全等的三角形;②作一组对边的平行线也能把正方形分成四个全等的矩形;③连接一组对边的中点,把正方形分成两个全等的矩形,再作矩形的对角线就把每个矩形都分成两个全等的三角形,这样就分成了四个全等的三角形;④过正方形的中心做互相垂直的两条线也能把正方形分成四个全等的四边形.【解答】解:设计方案如下:【点评】本题主要考查了全等图形的意义,要利用正方形及全等形的性质解答,方案多种多样,只要是满足要求就可以.12.(10分)如图为人民公园中的荷花池,现在测量荷花池两旁A、B两棵大树间的距离(不得直接量得).请你根据图形全等的知识,用一根足够长的绳子及标杆为工具,设计两种不同的测量方案.要求:(1)画出设计的测量示意图;(2)写出测量方案及理由.【分析】(1)本题属于主观性试题,有多种方案,我们可以构造8字形的全等三角形来测得揽月湖的长度(如下图);(2)根据三角形全等的证明得出对应边相等即可得出答案.【解答】解:(1)如图所示;分别以点A、点B为端点,作AQ、BP,使其相交于点C,使得CP=CB,CQ=CA,连接PQ,测得PQ即可得出AB的长度.(2)理由:由上面可知:PC=BC,QC=AC,又∠PCQ=∠BCA,∴在△PCQ与△BCA中,,∴△PCQ≌△BCA(SAS),∴AB=PQ.【点评】此题考查了全等三角形的应用与证明;此题带有一定主观性,学生要根据已知知识对新问题进行探索和对基础知识进行巩固,这种做法较常见,要熟练掌握.13.(10分)沿着图中的虚线,用四种不同的方法将下面的图形分成两个全等的图形【分析】直接利用图形形状分成全等的两部分即可.【解答】解:如图所示:.【点评】此题主要考查了全等图形,正确把握全等图形的定义是解题关键.14.(10分)如图所示,请你在图中画两条直线,把这个“+”图案分成四个全等的图形(要求至少要画出两种方法).【分析】根据能够完全重合的两个图形叫做全等形画线即可.【解答】解:如图所示:.【点评】此题主要考查了全等图形,关键是掌握全等图形的概念.15.(10分)试在下列图中,沿正方形的网格线(虚线)把这两个图形分别割成两个全等的图形【分析】根据全等形的定义,利用图形的对称性和互补性来分隔成两个全等的图形.【解答】解:如图所示:【点评】本题主要考查了学生的动手操作能力和学生的空间想象能力,重视知识的发生过程,让学生体验学习的过程.。
初二数学全等练习题

初二数学全等练习题题1:两直角三角形已知∆ABC和∆DEF是直角三角形,∠BAC=∠EDF,∠ABC=∠FED,AC=DF。
判断两个三角形是否全等,并给出理由。
解析:首先,根据已知条件,可以确定∆ABC和∆DEF的三个对应角分别相等。
那么只需要证明∆ABC和∆DEF的三个对应边也相等,即可判断两个三角形全等。
1) 因为∠BAC=∠EDF,并且∠ABC=∠FED,根据角度对应定理可得∠ACB=∠DFE。
2) 又已知AC=DF,所以根据斜边相等定理可得边CB=边FE。
3) 最后,根据∠ACB=∠DFE和边CB=边FE,根据角边边三个条件全等定理可得∆ABC≌∆DEF。
综上所述,根据已知条件及证明过程,可以判断∆ABC和∆DEF是全等的。
题2:等腰三角形已知∆ABC是等腰三角形,AB=AC。
点D是边BC的中点,连结AD。
证明∆ABD≌∆ACD。
解析:根据已知条件,∆ABC是等腰三角形,即AB=AC。
要证明∆ABD≌∆ACD,首先需要证明∆ABD和∆ACD的三个对应边和角相等。
1) 因为AB=AC,已知∆ABC是等腰三角形。
同时,根据边BC的中点D,可以得出BD=CD。
2) 从点D分别连结AD,可以得到∠ABD和∠ACD是公共角。
3) 根据边BD=CD和∠ABD=∠ACD,可以得到∆ABD≌∆ACD。
综上所述,根据已知条件及证明过程,可以判断∆ABD和∆ACD是全等的。
题3:直角三角形已知直角三角形ABC,∠B=90°,BD是∠B的平分线,E是边AC上的一点,且∠DCE=90°。
要证明∆DEB≌∆ACB。
解析:首先,∆ABC是直角三角形,∠B=90°。
要证明∆DEB≌∆ACB,需要证明∆DEB和∆ACB的三个对应边和角相等。
1) 根据直角三角形的性质,∠DCE=90°,所以∆DCE是直角三角形。
2) 因为∠B=∠DCE=90°,所以∆BCD和∆ABC相似,并且根据直角三角形的性质,CD=AC=BC。
华师大版数学七年级下册_《图形的全等》拓展练习1

《图形的全等》拓展练习一、选择题(本大题共5小题,共25.0分)1.(5分)如图,将一个正方形分成9个全等的小正方形,连接三条线段得到∠1,∠2,∠3,则∠1+∠2+∠3的度数和等于()A.120°B.125°C.130°D.135°2.(5分)下列四个选项中的图形与最左边的图形全等的是()A.B.C.D.3.(5分)如图所示正方形网格中,连接AB、AC、AD,观测∠1+∠2+∠3=()A.120°B.125°C.130°D.135°4.(5分)下列说法:(1)全等图形的形状相同,大小相等;(2)全等三角形的对应边相等;(3)全等图形的周长相等,面积相等;(4)面积相等的两个三角形全等.其中正确的是()A.(1 )(3)(4 )B.(2)(3 )(4 )C.(1 )(2 )(3 )D.(1 )(2)(3 )(4 )5.(5分)如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=()A.90°B.135°C.150°D.180°二、填空题(本大题共5小题,共25.0分)6.(5分)如图①,已知△ABC的六个元素,则图②中甲、乙、丙三个三角形中与图①中△ABC全等的图形是.7.(5分)如图,在3×3的正方形网格中,则∠1+∠2+∠3+∠4+∠5等于.8.(5分)下图是由全等的图形组成的,其中AB=3cm,CD=2AB,则AF=.9.(5分)如图,在3×3的正方形网格中标出了∠1和∠2,则∠1+∠2=°.10.(5分)在如图所示的4×4正方形网格中,∠1+∠2+∠3=°.三、解答题(本大题共5小题,共50.0分)11.(10分)你能把如图所示的(a)长方形分成2个全等图形?把如图所示的(b)能分成3个全等三角形吗?把如图所示的(c)分成4个全等三角形吗?12.(10分)找出全等图形.13.(10分)判断下列图形是否全等,并说明理由:(1)周长相等的等边三角形;(2)周长相等的直角三角形;(3)周长相等的菱形;(4)所有的正方形.14.(10分)如图,一块土地上共有20棵果树,要把它们平均分给四个小组去种植,并且要求每个小组分得的果树组成的图形、形状大小要相同,应该怎样分?15.(10分)找出七巧板中(如图)全等的图形.《图形的全等》拓展练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)如图,将一个正方形分成9个全等的小正方形,连接三条线段得到∠1,∠2,∠3,则∠1+∠2+∠3的度数和等于()A.120°B.125°C.130°D.135°【分析】根据全等三角形的判定定理可得出△BCA≌△BDE,从而有∠3=∠CAB,这样可得∠1+∠3=90°,根据图形可得出∠2=45°,这样即可求出∠1+∠2+∠3的度数.【解答】解:在△ABC与△BDE中,∴△BCA≌△BDE(SAS),∴∠3=∠CAB,在RT△ABC中可得∠1+∠3=90°,由图可知,∠2=45°,∴∠1+∠2+∠3=90°+45°=135°.故选:D.【点评】此题主要考查了全等三角形的判定与性质,属于数形结合的类型,解答本题需要判定△BCA≌△BDE,这要求学生熟练掌握全等三角形的判定定理.2.(5分)下列四个选项中的图形与最左边的图形全等的是()A.B.C.D.【分析】根据全等图形判断即可.【解答】解:只有B选项的图形与已知图形全等,故选:B.【点评】此题考查全等图形问题,关键根据全等图形的定义判断.3.(5分)如图所示正方形网格中,连接AB、AC、AD,观测∠1+∠2+∠3=()A.120°B.125°C.130°D.135°【分析】由图易得∠2=45°,∠1+∠3=90°,据此求三角之和即可.【解答】解:∵∠2=45°,∠1+∠3=90°,∴∠1+∠2+∠3=135度.故选:D.【点评】此题是对角进行度的加法计算,相对比较简单,但要准确求出各角大小是本题的难点.4.(5分)下列说法:(1)全等图形的形状相同,大小相等;(2)全等三角形的对应边相等;(3)全等图形的周长相等,面积相等;(4)面积相等的两个三角形全等.其中正确的是()A.(1 )(3)(4 )B.(2)(3 )(4 )C.(1 )(2 )(3 )D.(1 )(2)(3 )(4 )【分析】能够完全重合的两个三角形叫做全等三角形,依据全等三角形的性质,即可得到正确结论.【解答】解:(1)全等图形的形状相同,大小相等,正确;(2)全等三角形的对应边相等,正确;(3)全等图形的周长相等,面积相等,正确;(4)面积相等的两个三角形不一定全等,错误;故选:C.【点评】本题主要考查了全等三角形的性质,解题时注意:能够完全重合的两个图形叫做全等形.5.(5分)如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=()A.90°B.135°C.150°D.180°【分析】标注字母,利用“边角边”判断出△ABC和△DEA全等,根据全等三角形对应角相等可得∠1=∠4,然后求出∠1+∠3=90°,再判断出∠2=45°,然后计算即可得解.【解答】解:如图,在△ABC和△DEA中,,∴△ABC≌△DEA(SAS),∴∠1=∠4,∵∠3+∠4=90°,∴∠1+∠3=90°,又∵∠2=45°,∴∠1+∠2+∠3=90°+45°=135°.故选:B.【点评】本题考查了全等图形,网格结构,准确识图判断出全等的三角形是解题的关键.二、填空题(本大题共5小题,共25.0分)6.(5分)如图①,已知△ABC的六个元素,则图②中甲、乙、丙三个三角形中与图①中△ABC全等的图形是丙.【分析】根据全等三角形的判定定理(SAS,ASA,AAS,SSS)逐个判断即可.【解答】解:已知图①的△ABC中,∠B=62°,BC=a,AB=c,AC=b,∠C=58°,∠A=60°,图②中,甲:只有一个角和∠B相等,没有其它条件,不符合三角形全等的判定定理,即和△ABC不全等;乙:只有一个角和∠B相等,还有一条边,没有其它条件,不符合三角形全等的判定定理,即和△ABC不全等;丙:符合AAS定理,能推出两三角形全等;故答案为:丙.【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.7.(5分)如图,在3×3的正方形网格中,则∠1+∠2+∠3+∠4+∠5等于225°.【分析】首先判定△ABC≌△AEF,△ABD≌△AEH,可得∠5=∠BCA,∠4=∠BDA,然后可得∠1+∠5=∠1+∠BCA=90°,∠2+∠4=∠2+∠BDA=90°,然后可得∠1+∠2+∠3+∠4+∠5的值.【解答】解:在△ABC和△AEF中,,∴△ABC≌△AEF(SAS),∴∠5=∠BCA,∴∠1+∠5=∠1+∠BCA=90°,在△ABD和△AEH中,,∴△ABD≌△AEH(SAS),∴∠4=∠BDA,∴∠2+∠4=∠2+∠BDA=90°,∵∠3=45°,∴∠1+∠2+∠3+∠4+∠5=90°+90°+45°=225°.故答案为:225°.【点评】此题主要考查了全等三角形的判定和性质,关键是掌握全等三角形的性质:全等三角形对应角相等.8.(5分)下图是由全等的图形组成的,其中AB=3cm,CD=2AB,则AF=27cm.【分析】根据已知图形得出CD=2AB=6cm,进而求出即可.【解答】解:因为AB=3cm,所以CD=2AB=6cm,所以AF=3AB+3CD=3×3+3×6=27(cm).故答案为:27cm.【点评】此题主要考查了全等图形的性质,得出CD的长是解题关键.9.(5分)如图,在3×3的正方形网格中标出了∠1和∠2,则∠1+∠2=45°.【分析】根据网格结构以∠1的顶点为顶点作出与∠2所在的直角三角形全等的三角形,再连接另两个顶点得到等腰直角三角形,然后根据等腰直角三角形的性质解答.【解答】解:如图,∠2、∠3为两个全等三角形的对应角,所以,∠2=∠3,△ABC是等腰直角三角形,所以,∠1+∠3=45°,所以,∠1+∠2=45°.故答案为:45.【点评】本题考查了全等三角形,熟练掌握网格结构,作出与∠2所在的直角三角形全等的三角形是解题的关键.10.(5分)在如图所示的4×4正方形网格中,∠1+∠2+∠3=135°.【分析】标注字母,根据图形判断出∠1、∠3是全等直角三角形的两个互余的锐角,∠2为等腰直角三角形的锐角,然后求解即可.【解答】解:如图,在△ABC和△DEA中,,∴△ABC≌△DEA(SAS),∴∠3=∠BAC,在Rt△ABC中,∠BAC+∠1=90°,∴∠1+∠3=90°,由图可知,△ABF是等腰直角三角形,∴∠2=45°,∴∠1+∠2+∠3=90°+45°=135°.故答案为:135.【点评】本题考查了全等图形,等腰直角三角形的性质,准确识图判断出全等三角形是解题的关键.三、解答题(本大题共5小题,共50.0分)11.(10分)你能把如图所示的(a)长方形分成2个全等图形?把如图所示的(b)能分成3个全等三角形吗?把如图所示的(c)分成4个全等三角形吗?【分析】根据长方形的性质以及全等图形的概念,作出一条对角线即可分成两个全等三角形;根据等边三角形的轴对称性,中心与三个顶点的连线将三角形分成三个全等三角形;先将长方形分成两个全等长方形,再分别作出一条对角线即可分成四个全等三角形.【解答】解:如图所示.【点评】本题考查了全等图形的概念,长方形的性质以及等边三角形的性质,熟练掌握各图形的性质以及全等图形的概念是解题的关键.12.(10分)找出全等图形.【分析】根据全等形是能够完全重合的两个图形进行分析判断.【解答】解:由图形可得出:(1)和(8);(2)和(6);(3)和(9);(5)和(7);(13)和(14)是全等图形.【点评】本题考查的是全等形的识别、全等图形的基本性质,属于较容易的基础题.13.(10分)判断下列图形是否全等,并说明理由:(1)周长相等的等边三角形;(2)周长相等的直角三角形;(3)周长相等的菱形;(4)所有的正方形.【分析】根据多边形全等必须同时具备各边对应相等,各角对应相等.若不能确定都相等,则两个多边形不一定全等对各小题分析判断即可得解.【解答】解:(1)全等.理由:等边三角形各角都是60°,各角对应相等,周长相等即边长相等,各边对应相等.(2)不一定全等.理由:由已知条件,只能得到一组直角对应相等,其余的角和边不能确定是否相等.(3)不一定全等.理由:菱形的四条边都相等,由周长相等只能得到四条边对应相等,不能确定四个角是否相等.(4)不一定全等.理由:正方形的四个角都是直角,所有的正方形的角对应相等,但边长不能确定.【点评】本题考查了全等图形,利用全等图形的识别方法(定义)解答,关键在于熟记概念.14.(10分)如图,一块土地上共有20棵果树,要把它们平均分给四个小组去种植,并且要求每个小组分得的果树组成的图形、形状大小要相同,应该怎样分?【分析】一共有20棵果树把它们平均分给四个小组去种植,每一个小组平均5棵,再根据条件“分得的果树组成的图形、形状大小要相同”进行分割即可.【解答】解:如图所示:.【点评】此题主要考查了全等形,关键是掌握全等形的概念:能够完全重合的两个图形叫做全等形.15.(10分)找出七巧板中(如图)全等的图形.【分析】能够完全重合的两个图形叫做全等形,做题时认真观察图形,根据是否重合去判断.【解答】解:由图知:△ADE与△DEC,△EHK与△CJF,△ADC与△ABC,四边形AGKE 与四边形CFKE,四边形AGKD与四边形CFKD是重合的,即是全等的图形.【点评】本题考查的是全等形的概念;熟练掌握七巧板中各图形的特点是解答本题的关键.。
(完整版)全等三角形基础练习及答案

全等三角形判断一一、选择题1.△ABC和△中,若AB=,BC=,AC=. 则()A. △ABC≌△B. △ABC≌△C. △ABC≌△D. △ABC≌△2.如图,已知 AB= CD, AD= BC,则以下结论中错误的选项是()∥DC B. ∠B=∠ D C.∠A=∠ C= BC3.以下判断正确的选项是()A.两个等边三角形全等B.三个对应角相等的两个三角形全等C.腰长对应相等的两个等腰三角形全等D.直角三角形与锐角三角形不全等4.如图,AB、CD、EF订交于O,且被O点均分,DF=CE,BF=AE,则图中全等三角形的对数共有()A. 1 对B. 2 对C. 3 对D. 4 对5.如图,将两根钢条,的中点O连在一起,使,能够绕着点O自由转动,就做成了一个测量工件,则的长等于内槽宽AB,那么判断△ OAB≌△的原由是( )A. 边角边B. 角边角C. 边边边D. 角角边6.如图,已知AB⊥BD 于 B,ED⊥BD 于 D, AB=CD, BC= ED,以下结论不正确的选项是()⊥AC= AC+AB=DB D.DC = CB二、填空题7.如图,AB=CD,AC=DB,∠ ABD=25°,∠ AOB=82°,则∠ DCB=_________.8.如图,在四边形 ABCD中,对角线 AC、BD互相均分,则图中全等三角形共有_____对 .9.如图,在△ ABC和△ EFD中,AD=FC,AB=FE,当增加条件_______时,即可得△ ABC≌△ EFD(SSS)10.如图,AC=AD,CB=DB,∠ 2=30°,∠ 3=26°,则∠ CBE=_______.11.如图,点 D在 AB上,点 E 在 AC上, CD与 BE 订交于点 O,且 AD=AE, AB=AC,若∠ B =20°,则∠C =______.12.已知,如图,AB=CD, AC=BD,则△ ABC≌______,△ ADC≌ ______.三、解答题13.已知:如图,四边形 ABCD中,对角线 AC、 BD订交于 O,∠ ADC=∠ BCD, AD=BC,求证: CO= DO.14.已知:如图, AB∥CD, AB=CD.求证: AD∥BC.解析:要证AD∥BC,只要证∠ ______=∠ ______,又需证 ______≌______.证明:∵ AB∥CD (),∴ ∠______=∠ ______ (),在△ ______和△ ______中,∴______≌Δ ______ ().∴∠______=∠ ______ ().∴______ ∥______().15.如图,已知AB=DC, AC= DB, BE= CE求证: AE= DE.答案与解析一. 选择题1.【答案】 B;【解析】注意对应极点写在相应的地址.2.【答案】 D;【解析】连接 AC或 BD证全等 .3.【答案】 D;4.【答案】 C;【解析】△ DOF≌△ COE,△ BOF≌△ AOE,△ DOB≌△ COA.5.【答案】 A;【解析】将两根钢条,的中点O连在一起,说明OA=,OB=,再由对顶角相等可证.6.【答案】 D;【解析】△ ABC≌△ EDC,∠ ECD+∠ ACB=∠ CAB+∠ ACB=90°,所以EC⊥AC, ED + AB = BC+CD = DB.二. 填空题7.【答案】 66°;【解析】可由SSS证明△ ABC≌△ DCB,∠ OBC=∠ OCB=,所以∠ DCB=∠ABC=25°+ 41°= 66°.8.【答案】 4;【解析】△ AOD≌△ COB,△ AOB≌△ COD,△ ABD≌△ CDB,△ ABC≌△ CDA.9.【答案】 BC= ED;10.【答案】 56°;【解析】∠ CBE=26°+ 30°= 56°.11.【答案】 20°;【解析】△ ABE≌△ ACD( SAS)12.【答案】△ DCB,△ DAB;【解析】注意对应极点写在相应的地址上.三. 解答题13. 【解析】证明:在△ ADC 与△ BCD中,14.【解析】3 , 4;ABD,CDB;已知;1, 2;两直线平行,内错角相等;ABD, CDB;AB, CD,已知;∠1=∠ 2,已证;BD= DB,公共边;ABD, CDB, SAS;3, 4,全等三角形对应角相等;AD, BC,内错角相等,两直线平行.15.【解析】证明:在△ ABC 和△ DCB中∴△ ABC≌△ DCB( SSS)∴∠ ABC=∠ DCB,在△ ABE和△ DCE中∴△ ABE≌△ DCE( SAS)∴AE= DE.全等三角形判断二一、选择题1.能确定△ ABC≌△ DEF的条件是()A. AB= DE, BC= EF,∠ A=∠EB. AB= DE, BC= EF,∠ C=∠EC.∠ A=∠ E, AB= EF,∠ B=∠DD.∠ A=∠ D, AB= DE,∠ B=∠E2.如图,已知△ ABC 的六个元素,则下面甲、乙、丙三个三角形中,和△ABC全等的图形是()图4- 3A.甲和乙 B .乙和丙 C .只有乙 D .只有丙3. AD是△ ABC的角均分线,作A. DE= DF B . AE= AF DE⊥AB 于 E,DF⊥AC于 C .BD= CDF,以下结论错误的选项是(D.∠ ADE=∠ ADF)4.如图,已知MB=ND,∠ MBA=∠ NDC,以下条件不能够判断△ ABM≌△ CDN的是()A.∠ M=∠N B . AB= CD C .AM= CN D .AM∥CN5.某同学把一块三角形的玻璃打碎成了3块 , 现在要到玻璃店去配一块完满相同的玻璃, 那么最省事的方法是()A. 带①去B. 带②去C. 带③去D.①②③都带去6.如图,∠ 1=∠ 2,∠ 3=∠ 4,下面结论中错误的选项是()A.△ ADC≌△ BCD B .△ ABD≌△ BACC.△ ABO≌△ CDO D .△ AOD≌△ BOC二、填空题7.如图 , ∠1=∠ 2,要使△ ABE≌△ ACE,还需增加一个条件是 _________.( 填上你认为合适的一个条件即可).8.在△ ABC和△中,∠ A=44°,∠ B=67°,∠=69°,∠=44°,且AC=,则这两个三角形 _________全等 . (填“必然”或“不用然”)9.已知,如图,AB∥CD,AF∥DE,AF= DE,且 BE= 2, BC= 10,则 EF= ________.10.如图, AB∥CD,AD∥BC, OE= OF,图中全等三角形共有 ______ 对.11.如图, 已知:∠ 1 =∠ 2 , ∠3 =∠ 4 , 要证BD =CD , 需先证△ AEB ≌△ AEC , 依照是_________ ,再证△ BDE ≌△ ______ ___,依照是_________.12.已知 : 如图,∠ B=∠ DEF, AB= DE,要说明△ ABC≌△ DEF,(1)若以“ ASA”为依照,还缺条件_________(2)若以“ AAS”为依照,还缺条件_________(3)若以“ SAS”为依照,还缺条件_________三、解答题13.阅读下题及一位同学的解答过程:如图,AB和CD订交于点O,且 OA= OB,∠A=∠ C.那么△ AOD与△COB全等吗?若全等,试写出证明过程;若不全等,请说明原由.答:△ AOD≌△ COB.证明:在△ AOD和△ COB中,∴△AOD≌△ COB( ASA).问:这位同学的回答及证明过程正确吗?为什么?14.已知如图, E、 F 在 BD上,且 AB= CD, BF= DE, AE= CF,求证: AC与 BD互相均分 .15.已知:如图, AB∥CD,OA=OD, BC 过 O点 ,点E、F在直线AOD上,且AE=DF.求证: EB∥CF.答案与解析【答案与解析】一.选择题1.【答案】 D;【解析】 A、 B 选项是 SSA,没有这种判断, C 选项字母不对应 .2.【答案】 B;【解析】乙可由 SAS证明,丙可由 ASA证明 .3.【答案】 C;【解析】可由AAS证全等,获取A、 B、 D 三个选项是正确的.4.【答案】 C;【解析】没有 SSA定理判断全等 .5.【答案】 C;【解析】由 ASA定理,能够确定△ ABC.6.【答案】 C;【解析】△ ABO 与△ CDO中,只能找出三对角相等,不能够判断全等.二、填空题7.【答案】∠ B=∠ C;【解析】可由 AAS来证明三角形全等 .8.【答案】必然;【解析】由题意,△ ABC≌△,注意对应角和对应边.9.【答案】 6;【解析】△ ABF≌△ CDE, BE=CF= 2,EF= 10-2- 2= 6.10.【答案】 5;【解析】△ ABO≌△ CDO,△ AFO≌△ CEO,△ DFO≌△ BEO,△ AOD≌△ COB,△ ABD≌△ CDB.11.【答案】 ASA, CDE, SAS;【解析】△ AEB ≌△ AEC 后可得 BE= CE.12.【答案】(1)∠ A=∠D;( 2)∠ ACB=∠F; (3) BC = EF.三、解答题13.【解析】解:这位同学的回答及证明过程不正确.因为∠D 所对的是AO,∠C所对的是OB,证明中用到了OA= OB,这不是一组对应边,所以不能够由ASA去证明全等 .14.【解析】证明:∵ BF= DE,∴B F- EF= DE-EF,即 BE= DF在△ ABE和△ CDF中,∴△ ABE≌△ CDF( SSS)∴∠ B=∠ D,在△ ABO和△ CDO中∴△ ABO≌△ CDO( AAS)∴AO= OC, BO=DO, AC与 BD互相均分 .15.【解析】证明:∵ AB∥CD,∴∠ CDO=∠ BAO在△ OAB和△ ODC中,∴△ OAB≌△ ODC( ASA)∴OC= OB又∵ AE = DF ,∴AE+ OA= DF+ OD,即 OE= OF 在△ OCF和△ OBE中∴△ OCF≌△ OBE( SAS)∴∠ F=∠ E,∴CF∥EB.。
初中数学全等图形练习题

初中数学全等图形练习题1. 下列图形是全等图形的是( )A.B.C.D.2. 如图,在△ABC中,D,E分别为BC,AC边上的中点,AD,BE相交于点G,若S△BDE=1,S△ABC=( )A.1B.2C.3D.43. 如图,O是等边△ABC内的一点,OA=1,OC=3,∠AOC=150∘,则OB的长为()A.3B.4C.2√2D.√104. 下列说法中,正确的个数为()①用一张像底片冲出来的10张五寸照片是全等形;②我国国旗上的四颗小五角星是全等形;③所有的正六边形是全等形④面积相等的两个直角三角形是全等形.A.1个B.2个C.3个D.4个5. 如果两个图形全等,则这个图形必定是()A.形状相同,但大小不同B.形状大小均相同C.大小相同,但形状不同D.形状大小均不相同6. 如图,菱形ABCD∽菱形AEFG,菱形AEFG的顶点G在菱形ABCD的BC边上运动,GF与AB相交于点H,∠E=60∘,若CG=3,AH=7,则菱形ABCD的边长为()A.8B.9C.D.7. 下列说法正确的是()A.所有正方形都是全等图形B.所有长方形都是全等图形C.所有半径相等的圆都是全等图形D.面积相等的两个三角形是全等图形8. 如图,在由边长为1cm的小正方形组成的网格中,画如图所示的燕尾形工件,现要求最大限度的裁剪出10个与它全等的燕尾形工件,则这个网格的长至少为(接缝不计)________.9. 用两个全等的直角三角形拼下列图形:①平行四边形(不包含菱形、矩形、正方形);②矩形;③菱形;④正方形;⑤等腰三角形.一定可以拼成的图形是________(填序号)10. 如图,有6个条形方格图,图上由实线围成的图形是全等形的有________.11. 请在下图中把正方形分成2个、4个、8个全等的图形:________.12. 下图是由全等的图形组成的,其中AB=3cm,CD=2AB,则AF=________.13. 全等图形的形状和大小都相同.________ (判断对错).14. 如图,请沿图中的虚线,用三种方法将下列图形划分为两个全等图形.15. 判断下列图形是否全等,并说明理由:(1)周长相等的等边三角形;(2)周长相等的直角三角形;(3)周长相等的菱形;(4)所有的正方形.16. 沿网格线把正方形分割成两个全等图形?用三种不同的方法试一试.17. 我们把两个能够互相重合的图形称为全等形.(1)请你用四种方法把长和宽分别为5和3的矩形分成四个均不全等的小矩形或正方形,且矩形或正方形的各边长均为整数;(2)是否能将上述3×5的矩形分成五个均不全等的整数边矩形?若能,请画出.18. 如图,在Rt△ABC中,∠ACB=90∘,请用尺规过点C作直线l,使其将Rt△ABC分割成两个等腰三角形.(保留作图痕迹,不写作法)19. 如图,△ABC中,∠B=∠C,点D、E、分别在AB、BC、AC上,且BD=CE,∠DEF=∠B,求证:ED=EF.参考答案与试题解析初中数学全等图形练习题一、选择题(本题共计 7 小题,每题 5 分,共计35分)1.【答案】B【考点】全等图形【解析】全等图形应形状相同,大小一致.【解答】解:全等图形应形状相同,大小一致.只有B符合题意.故选B.2.【答案】D【考点】三角形的面积【解析】此题暂无解析【解答】解:由题意得:△BDE和△CDE等底同高,所以S△CDE=S△BDE=1.所以S△BCE=2S△BDE=2.因为△BCE和△BAE等底同高,所以S△ABC=2S△BCE=4.故选D.3.【答案】D【考点】旋转的性质等边三角形的性质【解析】此题暂无解析【解答】解:将△AOC绕A点顺时针旋转60∘到△AO′B的位置,由旋转的性质,得AO=AO′,所以△AOO′是等边三角形,由旋转的性质可知∠AOC=∠AO′B=150∘,所以∠BO′O=150∘−60∘=90∘.因为OO′=OA=1,BO′=OC=3,所以OB=√12+32=√10.故选D.4.【答案】B【考点】全等图形【解析】根据能互相重合的两个图形叫做全等图形对各小题分析判断即可得解.【解答】解:①用一张像底片冲出来的10张五寸照片是全等形,正确;②我国国旗上的四颗小五角星是全等形,正确;③所有的正六边形是全等形,错误,正六边形的边长不一定相等;④面积相等的两个直角三角形是全等形,错误.综上所述,说法正确的是①②共2个.故选B.5.【答案】B【考点】全等图形【解析】根据全等图形的定义,能够完全重合的两个图形是全等图形解答即可.【解答】解:如果两个图形全等,则这个图形必定是形状大小完全相同.故选B.6.【答案】B【考点】菱形的性质等边三角形的性质与判定相似多边形的性质【解析】此题暂无解析【解答】此题暂无解答7.【答案】C【考点】全等图形【解析】根据全等形的概念:能够完全重合的两个图形叫做全等形进行分析即可.【解答】解:A、所有正方形都是全等图形,说法错误;B、所有长方形都是全等图形,说法错误;C、所有半径相等的圆都是全等图形,说法正确;D、面积相等的两个三角形是全等图形,说法错误;故选:C.二、填空题(本题共计 6 小题,每题 5 分,共计30分)8.【答案】21cm【考点】规律型:图形的变化类全等图形【解析】观察图形,发现:以中间的点看,再画第二个图形的时候,需要再往右用1个格,画第三个图的时候,需要再往右用3个格,画第四个图的时候,需要再往右走1个格,以此类推,则画10个图,需要4+1+3+1+3+1+3+1+3+1=21个.【解答】解:∵后面画出的图形与第一个图形完全一样,∴以中间的点看,再画第二个图形的时候,需要再往右用1个格,画第三个图形的时候,需要再往右用3个格,画第四个图形的时候,需要再往右用1个格,以此类推,则画10个图形,需要4+(1+3+1+3+1+3+1+3+1)=21个.故答案为:21cm.9.【答案】①②⑤【考点】全等图形【解析】解:拿两个“90∘60∘30∘的三角板一试可得:(1)平行四边形(不包含菱形、矩形、正方形);(2)矩形;(5)等腰三角形.而菱形、正方形需特殊的直角三角形:等腰直角三角形.故答案为:①②⑤.【解答】此题暂无解答10.【答案】①和⑥,②③⑤【考点】全等图形【解析】设每个小方格的边长为1,分别表示出第个图形的各边长,再根据全等形是可以完全重合的图形进行判定即可.【解答】解:由图可知,①与⑥的的三条边对应相等,②,③,⑤的四条边对应相等,故①⑥是全等形,②③⑤是全等形.故答案为:①和⑥,②③⑤.11.【答案】分法可分别如下所示:【考点】全等图形【解析】(1)选择对边的两个中点连接即可;(2)分别连接对边的两个中点即可;(3)分别连接对边的两个中点及不相邻的两个顶点即可.【解答】解:所作图形如下所示:.12.【答案】27cm【考点】全等图形【解析】根据已知图形得出CD=2AB=6cm,进而求出即可.【解答】解:∵AB=3cm,∴CD=2AB=6cm,∴AF=3AB+3CD=3×3+3×6=27(cm).故答案为:27cm13.【答案】正确【考点】全等图形【解析】利用能够完全重合的两个图形称为全等图形,全等图形的大小和形状都相同,进而判断即可.【解答】解:全等图形的形状和大小都相同,正确.故答案为:正确.三、解答题(本题共计 6 小题,每题 5 分,共计30分)14.【答案】解:如图所示:.【考点】全等图形【解析】利用网格图形的特征和全等图形的性质即可求解.【解答】此题暂无解答15.【答案】解:(1)全等.理由:等边三角形各角都是60∘,各角对应相等,周长相等即边长相等,各边对应相等.(2)不一定全等.理由:由已知条件,只能得到一组直角对应相等,其余的角和边不能确定是否相等.(3)不一定全等.理由:菱形的四条边都相等,由周长相等只能得到四条边对应相等,不能确定四个角是否相等.(4)不一定全等.理由:正方形的四个角都是直角,所有的正方形的角对应相等,但边长不能确定.【考点】全等图形【解析】根据多边形全等必须同时具备各边对应相等,各角对应相等.若不能确定都相等,则两个多边形不一定全等对各小题分析判断即可得解.【解答】解:(1)全等.理由:等边三角形各角都是60∘,各角对应相等,周长相等即边长相等,各边对应相等.(2)不一定全等.理由:由已知条件,只能得到一组直角对应相等,其余的角和边不能确定是否相等.(3)不一定全等.理由:菱形的四条边都相等,由周长相等只能得到四条边对应相等,不能确定四个角是否相等.(4)不一定全等.理由:正方形的四个角都是直角,所有的正方形的角对应相等,但边长不能确定.16.【答案】解:如下图所示:【考点】作图—应用与设计作图全等图形【解析】观察图形发现:这个正方形网格的总面积为16,因此只要将面积分为8,即占8个方格,且必须保证分割后的两个图形相同.【解答】解:如下图所示:17.【答案】解:(1)所画图形如上.(2)能,所画图形如上所示.【考点】全等图形【解析】(1)根据题意画出图形即可,注意所得的图形不应全等.(2)作长为1,宽分别为1,2,3,4,5的图形即可.【解答】解:(1)所画图形如上.(2)能,所画图形如上所示.18.【答案】,△ACD和△CDB即为所求【考点】作图—应用与设计作图【解析】作斜边AB的中垂线可以求得中点D,连接CD,根据直角三角形斜边上的中线等于斜边AD=DB.的一半,可得CD=12【解答】解19.【答案】证明:∠DEC=∠B+∠BDE,∠DEC=∠DEF+∠CEF 又∵∠DEF=∠B,∴∠BDE=∠CEF又∵BD=CE,∠B=∠C,∴△EBD≅△FCE,∴ED=EF.【考点】全等三角形的性质【解析】此题暂无解析【解答】证明:∠DEC=∠B+∠BDE,∠DEC=∠DEF+∠CEF 又∵∠DEF=∠B,∴∠BDE=∠CEF又∵BD=CE,∠B=∠C,∴△EBD≅△FCE,∴ED=EF.。
北师版数学七年级下册同步练习4.2图形的全等

4.2图形的全等一、单选题1.下列说法正确的是()A. 所有的等边三角形都是全等三角形B. 全等三角形是指面积相等的三角形C. 周长相等的三角形是全等三角形D. 全等三角形是指形状相同大小相等的三角形2.下列说法中,错误的是()A. 全等三角形对应角相等B. 全等三角形对应边相等C. 全等三角形的面积相等D. 面积相等的两个三角形一定全等3.下列命题①两个图形全等,它们的形状相同;②两个图形全等,它们的大小相同;③面积相等的两个图形全等;④周长相等的两个图形全等.其中正确的个数为()A.1个B.2个C.3个D.4个4.全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC 和△A1B1C1是全等(合同)三角形,点A与点A1对应,点B与点B1对应,点C与点C1对应,当沿周界A→B→C→A,及A1→B1→C1→A1环绕时,若运动方向相同,则称它们是真正合同三角形如图,若运动方向相反,则称它们是镜面合同三角形如图,两个真正合同三角形都可以在平面内通过平移或旋转使它们重合,两个镜面合同三角形要重合,则必须将其中一个翻转180°如图,下列各组合同三角形中,是镜面合同三角形的是()A. B. C. D.5.下列说法正确的是()A. 全等三角形是指形状相同的三角形B. 全等三角形是指面积相等的两个三角形C. 全等三角形的周长和面积相等D. 所有等边三角形是全等三角形6.下列说法正确的是()A. 形状相同的两个三角形全等B. 面积相等的两个三角形全等C. 完全重合的两个三角形全等D. 所有的等边三角形全等7.如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°,下列结论不正确的是()A. EF⊥ACB. AD=4AGC. 四边形ADEF为菱形D. FH=BD8.下列说法正确的是()A. 两个等边三角形一定全等B. 腰对应相等的两个等腰三角形全等C. 形状相同的两个三角形全等D. 全等三角形的面积一定相等9.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=()A. 90°B. 120°C. 135°D. 150°10.下列说法正确的是()A. 面积相等的两个图形全等B. 周长相等的两个图形全等C. 形状相同的两个图形全等D. 全等图形的形状和大小相同二、填空题11.如图,方格纸中是4个相同的正方形,婉婷同学在这张方格纸上画了∠1、∠2、∠3三个角,那么∠1+∠2+∠3=________度。
图形的全等练习题

图形的全等课堂练习
1. 下列说法正确的是()
①用一张像纸冲洗出来的10张1寸像片是全等形;②我国国旗上的4颗小五角星是全等形;③所有的正方形是全等形;④全等形的面积一定相等.
A.1个B.2个C.3个D.4个
2. 对于两个图形,给出下列结论:①两个图形的周长相等;②两个图形的面积相等;③两个图形的周长和面积都相等;④两个图形的形状相同,面积也相同.其中能获得这两个图形全等的结论共有()A.1个B.2个C.3个D.4个
3. 下列图形:①两个正方形;②每边长都是1cm的两个四边形;③每边都是2cm•的两个三角形;④半径都是1.5cm的两个圆.其中是一对全等图形的有()
A.1个B.2个C.3个D.4个
4. 全等图形的____和_____都相同.
答案:
1.C
2.A
3.B
4. 大小,形状。
三角形全等专题练习

一.选择题(共20小题)1.如图,已知点D是△ABC中AC边上的一点,线段BD将△ABC分为面积相等的两部分,则线段BD是△ABC的一条()A.角平分线B.中线C.高线D.边的垂直平分线2.如图,D,E是△ABC中BC边上的点,且BD=DE=EC,那么()A.S1<S2<S3B.S1>S2>S3C.S1=S2=S3D.S2<S1<S33.下列说法中,正确的个数有()①三角形具有稳定性;②如果两个角相等,那么这两个角是对顶角;③三角形的角平分线是射线;④直线外一点到这条直线的垂线段叫做这点到直线的距离;⑤任何一个三角形都有三条高、三条中线、三条角平分线;⑥三角形的三条角平分线交于一点,且这点在三角形内;A.2B.3C.4D.54.如图,小明用铅笔可以支起一张质地均匀的三角形卡片,则他支起的这个点应是三角形的()A.三边高的交点B.三条角平分线的交点C.三边垂直平分线的交点D.三边中线的交点5.小明有两根3cm、7cm的木棒,他想以这两根木棒为边做一个三角形,还需再选用的木棒长为()A.3cm B.4cm C.9cm D.10cm6.适合条件∠A=∠B=∠C的△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形7.如图,在△ABC中,∠A=60度,点D,E分别在AB,AC上,则∠1+∠2的大小为多少度()A.140B.190C.320D.2408.下列说法不正确的是()A.如果两个图形全等,那么它们的形状和大小一定相同B.图形全等,只与形状、大小有关,而与它们的位置无关C.全等图形的面积相等,面积相等的两个图形是全等图形D.全等三角形的对应边相等,对应角相等9.如图,∠C=∠D=90°,补充下列条件后不能判定△ABC≌△BAD的是()A.∠1=∠2B.∠3=∠4C.AC=BD D.AD=BC10.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS11.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3B.4C.5D.612.能将一个三角形分成面积相等的两个三角形的一条线段是()A.三角形的高线B.边的中垂线C.三角形的中线D.三角形的角平分线13.等腰三角形的两边长分别为4和9,则它的周长()A.17B.22C.17或22D.2114.下列条件中,不能判定△ABC是等腰三角形的是()A.a=3,b=3,c=4B.a:b:c=2:3:4C.∠B=50°,∠C=80°D.∠A:∠B:∠C=1:1:215.如图,∠ABC=50°,BD平分∠ABC,过D作DE∥AB交BC于点E,若点F在AB上,且满足DF=DE,则∠DFB的度数为()A.25°B.130°C.50°或130°D.25°或130°16.如图,已知等边△ABC的周长是12,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC,则PD+PE+PF的值是()A.12B.8C.4D.317.如图,在钝角三角形ABC中,∠ABC为钝角,以点B为圆心,AB长为半径画弧;再以点C为圆心,AC长为半径画弧;两弧交于点D,连接AD,CB的延长线交AD于点E.下列结论错误的是()A.CE垂直平分AD B.CE平分∠ACDC.△ABD是等腰三角形D.△ACD是等边三角形18.已知:如图,△ABC和△DEC都是等边三角形,D是BC延长线上一点,AD与BE相交于点P,AC、BE相交于点M,AD、CE相交于点N,则下列五个结论:①AD=BE;②∠BMC=∠ANC;③∠APM =60°;④AN=BM;⑤△CMN是等边三角形.其中,正确的有()A.2个B.3个C.4个D.5个19.在汉字“生活中的日常用品”中,成轴对称的有()A.2个B.3个C.4个D.5个20.如图,在△ABC中,AB=AC,∠C=70°,△AB'C'与△ABC关于直线AD对称,∠CAD=10°,连接BB',则∠ABB'的度数是()A.45°B.40°C.35°D.30°二.填空题(共20小题)21.如图所示,第1个图中有1个三角形,第2个图中共有5个三角形,第3个图中共有9个三角形,依此类推,则第6个图中共有三角形个.22.在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多5cm,AB与AC的和为11cm,则AC的长为.23.如图,在长方形ABCD的边上有P、Q两个动点速度分别为2cm/s,1cm/s,两个点同时出发,运动过程中,一个点停止运动时另一个点继续向终点运动,运动时间为t秒.动点P从A点出发,沿折线A﹣D ﹣C向终点C运动,动点Q从C点出发,沿折线C﹣D﹣A向终点A运动.若AB=8cm,AD=6cm,当△APC和△AQC的面积之和为8平方厘米时,t的值为.24.如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是.25.如图,△ABC的两条中线AM、BN相交于点O,已知△ABC的面积为18,△BOM的面积为3,则四边形MCNO的面积是.26.一个三角形有两边分别为4cm和8cm,则第三边长x的取值范围.27.如图,把一张三角形纸片(△ABC)进行折叠,使点A落在BC上的点F处,折痕为DE,点D,点E 分别在AB和AC上,DE∥BC,若∠B=75°,则∠BDF的度数为.28.如图,在△ABC中,∠A=40°,外角∠ACD=100°,则∠B=.29.如图是淮口工业集中发展区中某厂房的平面图,请你指出,其中全等的有组.30.已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为秒时,△ABP和△DCE全等.31.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D,下列结论:①EF=BE+CF;②点O到△ABC各边的距离相等;③∠BOC=90°+∠A;④设OD=m,AE+AF=n,则S△AEF=mn.⑤AD=(AB+AC﹣BC)其中正确的结论是.32.如图,线段AB,BC的垂直平分线l1,l2相交于点O,若∠B=50°,则∠AOC=.33.已知△ABC是等腰三角形,它的周长为20cm,一条边长6cm,那么腰长是cm.34.用一条长为20cm的细绳围成一个等腰三角形,如果腰长是底边长的2倍,则底边长为cm.35.如图,OB、OC分别平分∠ABC与∠ACB,MN∥BC,若AB=24,AC=36,则△AMN的周长是.36.如图,直线a∥b,△ABC的顶点C在直线b上,边AB与直线b相交于点D.若△BCD是等边三角形,∠A=24°,则∠1=°.37.如图,某景区湖中有一段“九曲桥”连接湖岸A,B两点,“九曲桥”的每一段与AC平行或BD平行,若AB=100m,∠A=∠B=60°,则此“九曲桥”的总长度为.38.如图,△ABC中,∠ACB=90°,BC=6,AC=8,AB=10,动点P在边AB上运动(不与端点重合),点P关于直线AC,BC对称的点分别为P1,P2.则在点P的运动过程中,线段P1P2的长的最小值是.39.如图,OE是∠AOB的平分线,BD⊥OA于点D,AC⊥BO于点C,则关于直线OE对称的三角形共有对.40.如图,在平面直角坐标系xOy中,点A的坐标为(0,6),点B为x轴上一动点,以AB为边在直线AB 的右侧作等边三角形ABC.若点P为OA的中点,连接PC,则PC的长的最小值为.三.解答题(共20小题)41.如图①,在△ABC中,AD是三角形的高,且AD=6cm,E是一个动点,由B向C移动,其速度与时间的变化关系如图②,已知BC=8cm.(1)求当E点在运动过程中△ABE的面积y与运动时间x之间的关系式;(2)当E点停止后,求△ABE的面积.42.已知:如图,AB∥CD,AC与BD相交于点E,且EA=EC.(1)求证:EB=ED;(2)过点E作EF⊥BD,交DC的延长线于点F,连接FB,求证:S△BEF=S△AEB+S△CEF.43.如图,在五边形ABCDE的各边上任意取一点,并顺次连接它们.试比较得到的图形周长与原五边形周长的大小,并说明理由.44.已知△ABC三边长是a、b、c,试化简代数式|a+b﹣c|﹣|b﹣c﹣a|﹣|c﹣a+b|+|b﹣a﹣c|45.如图,在Rt△ABE中,∠AEB=90°,C为AE延长线上的一点,D为AB边上的一点,DC交BE于F,若∠ADC=80°,∠B=30°,求∠C的度数.46.如图1,∠MON=80°,点A、B在∠MON的两条边上运动,∠OAB与∠OBA的平分线交于点C.(1)点A、B在运动过程中,∠ACB的大小会变吗?如果不会,求出∠ACB的度数;如果会,请说明理由.(2)如图2,AD是∠MAB的平分线,AD的反向延长线交BC的延长线于点E,点A、B在运动过程中,∠E的大小会变吗?如果不会,求出∠E的度数;如果会,请说明理由.(3)在(2)的条件下,若∠MON=n,请直接写出∠ACB=;∠E=.47.已知:△ABC中,BO平分∠ABC,CO平分∠ACB,(1)如图1,∠BOC和∠A有怎样的数量关系?请说明理由(2)如图2,过O点的直线分别交△ABC的边AB、AC于E、F(点E不与A,B重合,点F不与A、C 重合),BP平分外角∠DBC,CP平分外角∠GCB,BP、CP相交于P.求证:∠P=∠BOE+∠COF;(3)如果(2)中过O点的直线与AB交于E(点E不与A、B重合),与CA的延长线交于F在其它条件不变的情况下,请直接写出∠P、∠BOE、∠COF三个角之间的数量关系.48.(1)探究:如图1,求证:∠BOC=∠A+∠B+∠C.(2)应用:如图2,∠ABC=100°,∠DEF=130°,求∠A+∠C+∠D+∠F的度数.49.如图,在长方形ABCD中,AB=CD=6cm,BC=10cm,点P从点B出发,以2cm/秒的速度沿BC向点C运动,设点P的运动时间为t秒:(1)PC=cm.(用t的代数式表示)(2)当t为何值时,△ABP≌△DCP?(3)当点P从点B开始运动,同时,点Q从点C出发,以vcm/秒的速度沿CD向点D运动,是否存在这样v的值,使得△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.50.在△ABC中,点D在BC上,AD平分∠BAC,点E,F分别在AC,AB上,满足AE=BF,DE∥AB.(1)求证:∠DAE=∠ADE;(2)判断△BFD与△EDF是否全等,并说明理由.51.△ABC中,∠ABC与∠ACB的平分线交于点O,过点O作一直线交AB、AC于E、F.且BE=EO.(1)说明OF与CF的大小关系;(2)若BC=12cm,点O到AB的距离为4cm,求△OBC的面积.52.如图,△ABC中,∠ABC=30°,∠ACB=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)直接写出∠BAC的度数;(2)求∠DAF的度数,并注明推导依据;(3)若△DAF的周长为20,求BC的长.53.已知:△ABC是等腰三角形,(1)若∠A=80°,当∠A为顶角,∠B为底角时,则∠B=°;当∠A为底角,∠B为底角时,则∠B=°;当∠A为底角,∠B为顶角时,则∠B=°;(2)若∠A=α,求∠B的度数(用含α的代数式表示).54.如图:已知AB=AE,BC=ED,∠B=∠E,AF⊥CD,F为垂足,求证:①AC=AD;②CF=DF.55.如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠EDC=°,∠DEC=°;点D从B向C运动时,∠BDA 逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数.若不可以,请说明理由.56.图(1)中,C点为线段AB上一点,△ACM,△CBN是等边三角形,AN与BM相等吗?说明理由;如图(2)C点为线段AB上一点,等边三角形ACM和等边三角形CBN在AB的异侧,此时AN与BM相等吗?说明理由;如图(3)C点为线段AB外一点,△ACM,△CBN是等边三角形,AN与BM相等吗?说明理由.57.如图,已知△ABC为等边三角形,D为BC延长线上的一点,CE平分∠ACD,CE=BD,求证:△ADE为等边三角形.58.如图,直线l1∥l2,直线l3交直线l1于点B,交直线l2于点D,O是线段BD的中点.过点B作BA⊥l2于点A,过点D作DC⊥l1于点C,E是线段BD上一动点(不与点B,D重合),点E关于直线AB,AD 的对称点分别为P,Q,射线PO与射线QD相交于点N,连接PQ.(1)求证:点A是PQ的中点;(2)请判断线段QN与线段BD是否相等,并说明理由.59.如图,已知四边形ABCD中,AC与BD互相垂直平分,垂足为O,(1)四边形ABCD是不是轴对称图形?如果是,它的对称轴是什么?(2)图中有哪些相等的线段?(3)图中是否存在等腰三角形,请指出;(4)作出点O到∠BAD两边的垂线段,并说明它们的大小关系?(5)等腰三角形底边的中点到两腰的距离有什么特点?60.如图,在直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5),请回答下列问题:(1)作出△ABC关于x轴的对称图形△A1B1C1,并直接写出△A1B1C1的顶点坐标.(2)求△A1B1C1的面积.参考答案一.选择题(共20小题)1.B;2.C;3.B;4.D;5.C;6.B;7.D;8.C;9.B;10.D;11.A;12.C;13.B;14.B;15.C;16.C;17.D;18.D;19.B;20.B;二.填空题(共20小题)21.21;22.8cm;23.或12;24.利用三角形的稳定性;25.6;26.4cm<x<12cm;27.30°;28.60°;29.3;30.1或7;31.①②③⑤;32.100°;33.6或7;34.4;35.60;36.36;37.200m;38.9.6;39.4;40.;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形的全等练习题
一、填空题
1.如图,BC平分∠ABD,AB=DB,P为BC上一点,要证∠CAP=∠CDP,应先证_________≌___________;得__________=____________,___________=___________;继而有△PAC≌__________,理由是___________.
2.如图,△ABD≌△ACE,AE=3cm,AC=5cm,则CD=___________cm.
3.若两个图形全等,则其中一个图形可通过平移、__________或__________与另一个三角形完全重合。
4.如图,在△ABC和△DEF,若AB=DE,BE=CF,要使△ABC≌△DEF,还需添加一个条件(只要写出一个就可以)是_________.
5.已知:如图,AB//CD,点O为AC的中点,则图中相等的线段(除OA=OC外)有___________.
6.已知:如图AB//CD,AD//BC,点E,F分别为BD上两点,要使△BCF≌△DAE,还需添加一个条件(只需一个条件)是__________.
7.已知:如图,在△ABC中,AB=AC,∠BAC=∠DAE,D为BE上一点,且∠ADE+∠AEC=180°,则AD=_______.
8.在△ABC与△MNP中,①AB=MN,②BC=NP,③AC=MP,④∠A=∠M,⑤∠B=∠N,
⑥∠C=∠P,从这六个条件中任选三个条件,能判定△ABC与△MNP全等的方法共有__________种.
9.铁路上A,B两站(视为直线上两点)相距26km,C,D为两村庄(视为两点),DA⊥AB于点A,CB⊥AB于点B(如图),已知DA=15km,CB=10km,现在要在铁路AB上建设一个土特产品收购站E,使C,D两村到E站的距离相等,则E站应建在距A站________km处.
二、选择题:
10.已知:在△ABC中,AB=AC,∠A=56°,则高BD于BC的夹角为()
A、28°
B、34°
C、68°
D、62°
11.在ΔABC中,AB=3,AC=4,延长BC至D,使CD=BC,连接AD,则AD的取值范围是()
A.1<AD<7
B.2<AD<14
C.2.5<AD<5.5
D.5<AD<11
12.如图,在ΔABC中,∠C=90°,CA=CB,AD平分∠CAB交BC于D,DE⊥AB与点E,且AB=6,则ΔDEB的周长为()
A.4
B.6
C.8
D.10
13.点P为ΔABC的外角平分线上一点(与C点不重合),则PA+PB与AC+BC的大小关系为()
A. PA+PB>AC+BC
B. PA+PB=AC+BC
C. PA+PB<AC+BC
D. 无法比较大小
14.已知如图,D是ΔABC边AB上一点,DF交AC与点E,DE=EF,FC//AB,若BD=2,CF=5,则AB=()
A.1
B.3
C.5
D.7
15.如图,ΔABC是不等边三角形,DE=BC,以D、E为两个顶点作位置不同的三角形,使所作三角形与ΔABC全等,则这样的三角形最多可以画出()
A.2个
B.4个
C.6个
D.8个
16.如图,在ΔABC中,AB=AC,高BD,CE交与点O,AO交BC于点F,则图中共有全等三角形()
A.7对
B.6对
C.5对
D.4对
17.如图,在ΔABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于点D,DE⊥AB与点E,若ΔDEB的周长为10cm,则斜边AB的长为()
A.8cm
B.10cm
C.12cm
D.20cm
18.如图,ΔABC与ΔBDE均为等边三角形,AB<BD.若ΔABC不动,将ΔBDE绕点B旋转,则在旋转过程中,AE与CD的大小关系为()
A.AE=CD
B.AE>CD
C.AE<CD
D.无法确定
19.已知∠P=80°,过不在∠P上一点Q作QM,QN分别垂直与∠P的两边,垂足为M,N 则∠Q的度数等于()
A.10°
B.80°
C.100°
D.80°或100°
三、解答题
20.已知如图,在ΔABC中,∠ACB=90°,AC=BC,AE为BC边上的中线,过点C作CF ⊥AE,垂足为F,在直线CD上截取CD=AE.
求证:
(1)BD⊥BC;
(2)若AC=12cm,求BD的长。
21.探究题:“有两边及第三边上的高对应相等的两个三角形全等”这一命题是否成立?若成立,请证之;若不成立,请试举一反例,并将命题作适当改正,使之成为一真命题。
22.能够互相重合的多边形叫做全等形,即如果两个多边形对应角相等,那么两个多边形一定全等。
但判定两个三角形全等只需三组对应量相等即可,如SAS,SSS等,但如果要判定两个四边形全等仅有四组对应量相等是不够的,必须具备至少五组对应量相等。
(1)请写出两个四边形全等的一种判定方法(五组量对应相等)____________。
(2)如图,简要证明你的判定方法是正确的。
(3)举例说明仅有四边相等的两个四边形不一定全等(画出图形并简要证明)。
答案:
1.ΔABCΔDBC AC DC∠ACP∠DCPΔPDC SAS
2.2 3.翻转旋转4.AC=DF 5.BO=DO,AB=DC 6.BF=DE 7.AE 8.10 9.km
10.A 11.D 12.B 13.A 14.D 15.B
16.A 17.B 18.A 19.D
20.(1)由∠DCB+∠AEC=90°,∠AEC+∠EAC=90°,得∠EAC=∠DCB,在
ΔDBC和ΔECA中,
可知ΔDBC≌ΔECA.有∠ACE=∠DBC=90°,故BD⊥BC.
(2)AC=BC,E是BC的中点,
故,
又ΔDBC≌ΔECA,EC=DB.
由AC=12cm,故EC=6cm,DB=6cm.
21.这个命题是假命题,举一反例即可。
22.(1)∠D=∠D′,AD=A′D′,DC=D′C′,BC=B′C′,AB=A′B′.
(2)连AC
在ΔADC和ΔA′D′C′中,
,
可得ΔADC≌ΔA′D′C′,
故AC=A′C′,
易证:ΔACB≌ΔA′C′B′,
从而获得四边形ABCD和四边形A′B′C′D′对应角,对应边均相等。
即四边形ABCD≌四边形A′B′C′D′。
(3)举一凸四边形和一凹四边形。