解二元一次方程组ppt课件
合集下载
代入法解二元一次方程组(公开课获奖)PPT课件

.
10
抢答:为简便地解方程组,你会选择哪个方程变形
1)2xx23yy 2
① ②
不用变,把①代入②
xy3 3)3x 2y 4
① ②
4x 3y 5 ① 2)2x y 3 ②
变②,由② 得y=3-2x
3x y 4 ① 4)5x 2y 3 ②
变①,由① 得x=3+y或y=x-3 变①,由① 得y=3x-4
解: 设篮球队胜了x场,负了y场。
x+y=10 2x+y=16
.
4
具备什么特征的方程组可以直接代入消元?
解方程组
y用含x的式子表示
y = x+20 ① x + y = 200 ②
我发现:
当方程组中有一个未知数已经用含另一个未知数
的式子表示时,可以直接代入消元。
.
5
下列方程组能通过直接代入消元吗? 怎样才能直接代入消元?
张瑞红
.
1
学习目标 :
1、会用代入法解二元一次方程组。
2、感悟代入消元法所体现的化“未知 为已知”的转化思想,渗透 消元思 想,掌握其解二元一次方程组的一般 步骤。
3、经历探索代入消元法解方程组的过 程,培养小组合作及主动探索的精神。
.
2
提示:有疑问的组内交流
预习课本91-92页,探究并解答下面的问 题?
消元的思想、转化的思想
二元一次方程组
消元3
你解对了吗?
1、用代入消元法解下列方程组
y=2x x=4 ⑴ x+y=12 y=8 ⑵
x=y—2-5
4x+3y=65
x=5 y=15
3x-2y=9
⑶
x=3
x+2y=3
人教版七年级数学下册8.2 消元——代入法解二元一次方程组(课件20张PPT 教案)

例2 根据市场调查,某种消毒液的大瓶装 (500g)和小瓶装(250g)两种产品的销 售数量(按瓶计算)的比为2:5.某厂每天生产 这种消毒液 22.5吨,这些消毒液应该分装大、 小瓶两种产品各多少瓶?
问题中的条件 大瓶数:小瓶数=2:5 大瓶所装消毒液+小瓶所装消毒液=总生 产量
解:设这些消毒液应该分装x大瓶、y小瓶. ① 5 x 2 y 由题意得 ② 500 x 250 y 22500000
x y 3 的解是( 2x 4
x 5
D )
x 3 A. y 0
x 1 B. y 2
x 2 C. y 2 D. y1
作业布置
1. 必做题:97页1.(2)(4)2.(3)(4 2. 选做题:98页7.8
“即使能力有限,也要全力以赴,即使输了, 也要比从前更强,我一直都在与自己比,我要 把最美好的自己,留在这终于相逢的决赛赛 场。”
再见
•
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
46.凡事不要说"我不会"或"不可能",因为你根本还没有去做! 47.成功不是靠梦想和希望,而是靠努力和实践. 48.只有在天空最暗的时候,才可以看到天上的星星. 49.上帝说:你要什么便取什么,但是要付出相当的代价. 50.现在站在什么地方不重要,重要的是你往什么方向移动。 51.宁可辛苦一阵子,不要苦一辈子. 52.为成功找方法,不为失败找借口. 53.不断反思自己的弱点,是让自己获得更好成功的优良习惯。 54.垃圾桶哲学:别人不要做的事,我拣来做! 55.不一定要做最大的,但要做最好的. 56.死的方式由上帝决定,活的方式由自己决定! 57.成功是动词,不是名词! 28、年轻是我们拼搏的筹码,不是供我们挥霍的资本。 59、世界上最不能等待的事情就是孝敬父母。 60、身体发肤,受之父母,不敢毁伤,孝之始也; 立身行道,扬名於后世,以显父母,孝之终也。——《孝经》 61、不积跬步,无以致千里;不积小流,无以成江海。——荀子《劝学篇》 62、孩子:请高看自己一眼,你是最棒的! 63、路虽远行则将至,事虽难做则必成! 64、活鱼会逆水而上,死鱼才会随波逐流。 65、怕苦的人苦一辈子,不怕苦的人苦一阵子。 66、有价值的人不是看你能摆平多少人,而是看你能帮助多少人。 67、不可能的事是想出来的,可能的事是做出来的。 68、找不到路不是没有路,路在脚下。 69、幸福源自积德,福报来自行善。 70、盲目的恋爱以微笑开始,以泪滴告终。 71、真正值钱的是分文不用的甜甜的微笑。 72、前面是堵墙,用微笑面对,就变成一座桥。 73、自尊,伟大的人格力量;自爱,维护名誉的金盾。 74、今天学习不努力,明天努力找工作。 75、懂得回报爱,是迈向成熟的第一步。 76、读懂责任,读懂使命,读懂感恩方为懂事。 77、不要只会吃奶,要学会吃干粮,尤其是粗茶淡饭。 78、技艺创造价值,本领改变命运。 79、凭本领潇洒就业,靠技艺稳拿高薪。 80、为寻找出路走进校门,为创造生活奔向社会。 81、我不是来龙飞享福的,但,我是为幸福而来龙飞的! 82、校兴我荣,校衰我耻。 83、今天我以学校为荣,明天学校以我为荣。 84、不想当老板的学生不是好学生。 85、志存高远虽励志,脚踏实地才是金。 86、时刻牢记父母的血汗钱来自不易,永远不忘父母的养育之恩需要报答。 87、讲孝道读经典培养好人,传知识授技艺打造能人。 88、知技并重,德行为先。 89、生活的理想,就是为了理想的生活。 —— 张闻天 90、贫不足羞,可羞是贫而无志。 —— 吕坤
(完整版)二元一次方程组优秀课件PPT

距离问题
浓度问题
通过给定的两点坐标,利用二元一次 方程组求解两点之间的距离。
通过给定的溶液浓度和体积,利用二 元一次方程组求解溶液的配制比例和 浓度。
速度问题
通过给定的时间和速度,利用二元一 次方程组求解物体的运动轨迹和速度 。
THANKS
[ 感谢观看 ]
(完整版)二元一次方程 组优秀课件
汇报人:可编辑
2023-12-25
CONTENTS
目录
• 二元一次方程组的基本概念 • 二元一次方程组的解法 • 二元一次方程组的实际应用 • 二元一次方程组的变式与拓展
CHAPTER 01
二元一次方程组的基本概念
二元一次方程组的定义
定义
二元一次方程组是由两个或两个以上的方程组成,其中含有两个未知数,且每 个方程中未知数的次数都是一次。
代数问题
例如,在求解两个未知数的和、差、 积、商等问题时,需要使用二元一次 方程组来表示和求解。
物理中的二元一次方程组问题
运动问题
例如,在计算两个物体之间的相对速度和距离时,需要使用二元一次方程组来表示和求 解。
力的问题
例如,在计算两个物体之间的相互作用力和扭矩时,需要使用二元一次方程组来表示和 求解。
示例
x + y = 1, 2x - y = 3。
二元一次方程组的表示方法
代数表示法
使用代数符号表示二元一次方程 组,如x + y = 1, 2x - y = 3。
图形表示法
通过图形表示二元一次方程组的 解,如平面直角坐标系中的直线 。
二元一次方程组的解的概念
01
02
03
解的概念
满足二元一次方程组的未 知数的值称为解。
8.2代入消元法解二元一次方程组课件(共19张PPT)

② 思路与方法:
二元一次方程组
(其中含有用一个未知数表 示另一个未知数的方程)
代 入 消 去 一 个 未 知 数
一元一次方程
探索:(用同样的思想方法你能否解下列方程?) 例1 解方程组 X-y=3 3x-8y=14
解: 由①得 : x=3+y 将 ③代入 ②,得 3 (3+y)-8y=14 解这个方程,得 y=-1 将y=-1代入③ ,得 x=2
8.2 消元——解二元一次方程组
代入消元法
复习回顾上节课的四个概念 • 什么叫二元一次方程? • 什么叫二元一次方程的解? • 什么叫二元一次方程组? • 什么叫二元一次方程组的解?
温故知新 {
2x+5y=2 1.方程组 x=8-3y 步骤是什么? 的形式 2x-8 y= 7
如何解?关键是什么?解题
再见
本堂小结
1、解二元一次方程组的思想方法:通过代入 的方法,达到消元的目的,化二元一次方 程组为一元一次方程求解;
2、用代入消元法解二元一次方程组的一般步 骤。
• 解方程组
3x-y=5 4x+2y=11
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
练习
解下列二元一次方程组
(2) x+4y=30 4x+7y=-15 x=y+3 3x-8y=14 x-y=3 3x-8y=14
(1) y=-2x+5 4x+3y=7 (3) 2x+3y=5 4x-5y=-1 (5) x+y=22 2x+y=40
(4) (6)
作业
注意
P97 习题8.2第 1、2题 《学练优》8.2(第1课时)
(完整版)二元一次方程组优秀课件PPT

答案解析
答案解析1
首先将方程组中的两个方程相加和相减,消去其中一个变量,得到一个一元一次方程,然 后求解得到一个变量的值,最后将这个变量的值代入原方程组中的任意一个方程,求得另 一个变量的值。
答案解析2
首先将方程组中的两个方程相加和相减,消去其中一个变量,得到一个一元一次方程,然 后求解得到一个变量的值,最后将这个变量的值代入原方程组中的任意一个方程,求得另 一个变量的值。
几何问题
例如,在计算几何图形的面积、 周长或体积时,需要使用二元一 次方程组来表示相关变量之间的
关系。
代数问题
例如,在解决代数方程组时,需要 使用二元一次方程组来表示未知数 之间的关系。
概率统计问题
例如,在计算概率分布或统计数据 时,需要使用二元一次方程组来表 示相关变量之间的关系。
科学中的二元一次方程组问题
化学反应
在化学反应中,常常需要用到 二元一次方程组来表示反应物 和生成物的关系。
几何问题
在解决涉及两个未知数的几何 问题时,如两点之间的距离、 角度等,常常需要用到二元一
次方程组。
02
二元一次方程组的解法
代入消元法
通过代入一个方程中的未知数,将其表示为另一个变量的函数,从而简化方程组的方法。
代入消元法是解二元一次方程组的一种常用方法。首先,选择一个方程中的未知数,用另一个未知数表示出来,然后将其代 入到另一个方程中,消去一个未知数,得到一个一元一次方程。接着解这个一元一次方程,得到一个变量的值,再将其代回 原方程中求得另一个变量的值。
01
02
03
购物问题
例如,在购买商品时,需 要计算不同商品的价格和 折扣,以确定最佳购买方 案。
交通问题
七年级数学下册2.3解二元一次方程组(第1课时)课件(新版)浙教版公开课

解方程组
2x y37 x y1
① ②
解:把②代入①,得
2(y-1)+y=37
即 2y-2+y=37
解得 y=13
把y=1代入②,得
x=13-1=12
{ ∴原方程组的解是
x12 y13
想试一试吗
高高又把这道题作了变化,请同学们做做:
{ 解方程组
2x y8
①
3x8 y120 ②
兴兴也来凑热闹了,他又把题变了:
2.3 解二元一次方程组(1)
2x+y=b 1、若二元一次方程组 x-by=a的解是
x=0 y=2
,则|a-b|=___6____
2、已知二元一次方程 3x+2y=7-4y (1)用y的代数式表示x: __x_=__7_/3_-_2_y______
(2)用x的代数式表示y:_____y_=_7_/_6_-1_/_2_x________
为多少岁?
若设高高的年龄为 x 岁,兴兴的年龄为y
岁;则列出关于x,y的二元一次方程组为
2x y37
x y1
x=12 ,y=13
兴兴对高高说,请你用一元一次方程来解 看:若设兴兴的年龄为y 岁,则高高的年 龄为 (y-1) 岁,有 2(y-1)+y=37
y=13, y-1=12
把二元一次方程组化为一元一 次方程,体现了化归的思想,达 到消元的目的,方法是采用了代 入,这种解方程组的方法称为代 入消元法,简称代入法。
{ 解方程组 2x7 y8
3x8 y100
{2x7 y8
①
解方程组 3x887y
即 x=2 把8 ③7y代入②,得 3×2〔 〕-8y-10=0
21 ∴ 122+ y-8y-10=0
人教版数学七年级下册8.1 二元一次方程组 课件(共26张PPT)

第八章 二元一次方程组
8.1 二元一次方程组
1.经历根据实际问题列二元一次方程(组)的过程,让学生体 会方程组是刻画现实世界中含有多个未知数的数学模型. 2.通过复习类比一元一次方程,探究掌握二元一次方程(组) 及其解的概念. 3.培养学生的数学类比思想,感受方程组的实际应用价值.
学习重点:二元一次方程(组)以及解的概念. 学习难点:二元一次方程组的解的概念.
写出二元一次方程3x+2y=19的正整数解. 解:ቊyx==81;, ቊyx==53;, ቊxy==25.,
例3 二元一次方程组ቊxx−+yy==180, 的解是( C )
A.ቊxy==35,
B.ቊxy==111,
C.ቊyx==−91,
D.ቊxy==16..55,
下列各组值中是二元一次方程组ቊxx−+yy==35,的解的 是( C )
我们已经学习了一元一次方程,并学会了用它解 决实际问题。 一元一次方程中只含有一个未知数,下面我们来 看下这些问题含有几个未知数?
篮球比赛不仅出现在奥运赛场上,在生活中也随处可见,请 同学们看下面这个问题:在某次篮球联赛中,每场比赛都要分 出胜负,每队胜1场得2分,负1场得1分.某队在10场比赛中得到 16分,那么这个队胜负场数分别是多少呢?
思考:这个问题中包含了 哪些必须同时满足的条件?
分析:胜的场数+负的场数=总场数,胜场积分+负场积分=
总积分.
胜
负
合计
场数
x
y
10
积分
2x
y
16
解:设这个队胜的场数为x场,负的场数为y场. 依据题意,得x+y=10,2x+y=16.
学生活动一【一起探究】
8.1 二元一次方程组
1.经历根据实际问题列二元一次方程(组)的过程,让学生体 会方程组是刻画现实世界中含有多个未知数的数学模型. 2.通过复习类比一元一次方程,探究掌握二元一次方程(组) 及其解的概念. 3.培养学生的数学类比思想,感受方程组的实际应用价值.
学习重点:二元一次方程(组)以及解的概念. 学习难点:二元一次方程组的解的概念.
写出二元一次方程3x+2y=19的正整数解. 解:ቊyx==81;, ቊyx==53;, ቊxy==25.,
例3 二元一次方程组ቊxx−+yy==180, 的解是( C )
A.ቊxy==35,
B.ቊxy==111,
C.ቊyx==−91,
D.ቊxy==16..55,
下列各组值中是二元一次方程组ቊxx−+yy==35,的解的 是( C )
我们已经学习了一元一次方程,并学会了用它解 决实际问题。 一元一次方程中只含有一个未知数,下面我们来 看下这些问题含有几个未知数?
篮球比赛不仅出现在奥运赛场上,在生活中也随处可见,请 同学们看下面这个问题:在某次篮球联赛中,每场比赛都要分 出胜负,每队胜1场得2分,负1场得1分.某队在10场比赛中得到 16分,那么这个队胜负场数分别是多少呢?
思考:这个问题中包含了 哪些必须同时满足的条件?
分析:胜的场数+负的场数=总场数,胜场积分+负场积分=
总积分.
胜
负
合计
场数
x
y
10
积分
2x
y
16
解:设这个队胜的场数为x场,负的场数为y场. 依据题意,得x+y=10,2x+y=16.
学生活动一【一起探究】
二元一次方程组的应用PPT课件

解得
x=50 y=300
答:火车的速度为50 m/s,长度为300m.
知识要点
CONTENTS
3
知识要点
1.(2019·自贡)某活动小组购买了4个篮球和5个 足球,一共花费
了466元,其中篮球的单价比足球 的单价多4元,求篮球的单
价和足球的单价.设篮 球的单价为x元,足球的单价为y元,依
题意,可列方程组为
七年级数学下册冀教版
第六章 二元一次方程组
6.3 二元一次方程组的应用
知识要点
1
知识要点
CONTENTS
1
知识要点
想一想:
前面所学的解二元一次方程组的基本思路及常见方法是什么呢?
基本思路:
加减消元法
消元: 二元
一元
代入消元法
1.代入法:求表示式 代入消元 解一元一次方程 回代求解
2.加减法 :变换系数 加减消元 解一元一次方程 回代求解
(2)如果设大马驮货x包,小马驮货y包,请列出二元一次方程组. (3)请你试着解出2中所列的二元一次方程组,并和同学们进行交流.
知识要点
利用二元一次方程组解决实际问题
根据题意,得 x1 y1, x+1=2( y1).
整理,得 x y2, ① x2 y3. ② ①-②, 得 y=5. 把y=5代入①,得 x=7. 所以,方程组的解为 x7, y 5. 答:大马驮物7包,小马驮物5包.
x y 4, 4x 5y
466.
.
知识要点
2.如图,周长为68 cm的长方形ABCD被分成7个相同的小长方 形,设小长方形的长为x cm,宽为y cm,
( 3x y) 2 68,
则可以列出的方程组为 2x=5y.