2017年秋季学期新版新人教版九年级数学上学期24.1.3、弧、弦、圆心角学案5
2017年秋季学期新版新人教版九年级数学上学期24.1.3、弧、弦、圆心角课件36

⌒ 重合,AB与A′B′重合. ⌒与A′B′ 因此,AB ⌒=A′B′,AB=A′B′. 即AB ⌒
知2-导
归 纳
弧、弦、圆心角之间的关系. 在同圆或等圆中: (1)相等的圆心角所对的弧相等,所对的弦也相等. (2)相等的弧所对的圆心角相等,所对的弦也相等. (3)相等的弦所对的圆心角相等,所对的弧也相等.
(来自《点拨》)
知1-练
1
⌒ 所对的圆 如图,AB为⊙O的弦,∠A=40°,则AB 心角等于( A.40° C.100° ) B.80° D.120°
(来自《典中点》)
知1-练
2 如图,在△ABC中,∠C=90°,∠A=25°,以 点C为圆心,BC为半径的圆交AB于点D,交AC于 ⌒ 点E,则BD的度数为( ) A.25° B.30° C.50° D.65°
2.补充: 完成《点拨》P145 T4、T1 P146-
P147 T5、T7
D.不能确定
(来自《典中点》)
归纳: 1.三个元素: 圆心角、弦、弧 2.三个相等关系:
(1)圆心角相等
(2)弧相等 (3)弦相等
知 一 得 二
必做:
1.完成教材P89-P90 T3、T4、T13
2.补充: 完成《典中点》P82 T9、T10 P83
T14、T15、T16
必做:
1.完成教材P89-P90 T3、T4、T13
(来自《典中点》)
知2-导
知识点
2 弧、弦、圆心角之间的关系
如图,⊙O中,当圆心角∠A?为什么? ⌒ 和A′B′ 对的弧AB
知2-导
⌒绕圆心O旋转,使射线OA与OA′重合. 我们把∠AOB连同AB
∵∠AOB=∠A′OB′,
人教版数学九年级上册教学案:24.1.3弧、弦、圆心角

教学目标1.通过观察实验,使学生了解圆心角的概念.教学重点:在同圆或等圆中,相等的圆心角所对的弧相等,•所对弦也相等及其两个推论和它们的应用.教学难点:探索定理和推导及其应用.教学过程一.课前预习1.下列说法中,正确的是 ( )A.等弦所对的弧相等B.等弧所对的弦相等C.圆心角相等,所对的弦相等D.弦相等所对的圆心角相等2.如图24-1-3-1,同心圆中,大圆的弦AB交小圆于C、D,已知AB=4,CD=2,AB的弦心距等于1,那么两个同心圆的半径之比为3.一条弦把圆分成1∶3两部分,则弦所对的圆心角为______4.弦心距是弦的一半时,弦与直径的比是_____,图24-1-3-1弦所对的圆心角是________,5.如图,⊙O在△ABC三边上截得的弦长相等,∠A=70°则∠BOC=二.课堂研讨(一)重点研讨1.如图,在⊙O中,AB、CD是两条弦,OE⊥AB,OF⊥CD,垂足分别为EF.(1)如果∠AOB=∠COD,那么OE与OF的大小有什么关系?为什么?(2)如果OE=OF,那么与的大小有什么关系?AB与CD的大小有什么关系?•为什么?∠AOB与∠COD呢?2.如图3和图4,MN是⊙O的直径,弦AB、CD•相交于MN•上的一点P,•∠APM=∠CPM.(1)由以上条件,你认为AB和CD大小关系是什么,请说明理由.(2)若交点P在⊙O的外部,上述结论是否成立?若成立,加以证明教师活动学情分析:检查预习情况:导语:精讲点拨:课堂小结:板书设计:教学札记:(二)深化提高1.如图,AB是圆O的直径,BC是弦,OD⊥BC于点E,交弧BC于点D(1)请写出四个不同类型的正确结论(2)若BC=8,ED=2求⊙O的半径(三)达标测试1.如图,AB、CD是⊙O中的两条弦,M、N分别是AB、CD的中点,且∠OMN=∠ONM.求证:AB=CD.三、课后巩固1.如图,已知⊙O的半径为2,弦AB的长为2√3 ,点C与点D分别是劣弧AB与优弧ADB上的任一点(点C、D均不与A、B重合).(1)求∠ACB;(2)求△ABD的最大面积.6.如图 AB是⊙O的直径,CD是弦,AE⊥CD,垂足为E,BF⊥CD,垂足为F,我们知道EC和DF相等.若直线EF平移到与直径AB相交于P(P不与A、B 重合),在其他条件不变的情况下,结论是否依然成立?为什么?当EF∥AB 时,情况又怎样?。
人教版 数学九年级上册24.1.3弧、弦、圆心角教案

五、教学方法自主学习,合作探究六、教学准备1、教师使用多媒体教学课件。
2、直尺,圆规。
七、教学过程教学内容教师活动学生活动1、复习引入2、探索新知活动1:圆具有旋转不变性活动2:探究圆心角的概念。
圆是中心对称图形吗?它的对称中心在哪里?活动1:圆具有旋转不变性问:圆还有其它旋转性质吗?观察多媒体,圆的旋转过程,你有什么收获?活动2:探究圆心角的概念。
如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.巩固练习:判别下列各图中的角是不是圆心角?观察思考作答;带着问题进入学习。
观察圆的旋转并思考作答。
(圆具有旋转不变性。
)教师引导,学生自学圆心角,学生完成巩固练习活动3:探究圆心角、弧、弦之间的关系1()2()3()4()活动3:探究圆心角、弧、弦之间的关系操作:将圆心角∠AOB绕圆心O旋转到∠A′OB′的位置。
B'BAA'O问题1:在旋转过程中你能发现哪些等量关系?为什么?问题2:如图,⊙O与⊙O1是等圆,∠AOB =∠A1OB1=600,请问上述结论还成立吗?为什么?问题3:由上面的现象你能猜想出什么结论?综上所述,我们可以得到关于圆心角、弧、弦之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.问题4:分析定理:去掉“在同圆或等圆中”这个条件,行吗?问题5:定理拓展:○1在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角,•所对的弦也分别相等吗?○2在同圆或等圆中,如果两条弦相等,那么它们所学生观察图形,结合圆的旋转不变性和相关知识进行思考,尝试得出关系定理,再进行几何证明.学生思考,明白该前提条件的不可缺性,师生分析,进一步理解定理.教师引导学生类比定理独立用类似的方法进行探究,得到推论3、应用新知4、例题探究5、应用提高对的圆心角,•所对的弧也分别相等吗?综上得到在同圆或等圆中,相等的弧所对的圆心角相等,所对的弦也相等.在同圆或等圆中,相等的弦所对的弧相等,所对的圆心角也相等.综上所述,同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,就可以推出它们所对应的其余各组量也相等.应用新知1、判断下列说法是否正确:(1)相等的圆心角所对的弧相等。
九年级数学上册 24.1.3《弧、弦、圆心角》教案 新人教版

∴AB=AC,△ABC是等腰三角形.
又 ∠ACB=60°,
∴ △ABC是等边.如图3,AB是⊙O的直径,BC、CD、DA是⊙O的弦,且BC=CD=DA,求∠BOD的度数.
图3
学生活动设计:
学生分析,由BC=CD=DA可以得到这三条弦所对的圆心角相等,所以考虑连接OC,得到∠AOD=∠DOC=∠BOC,而AB是直径,于是得到∠BOD=×180°=120°.
活动2:
1.如图2,在⊙O中,,∠ACB=60°,求证∠AOB=∠AOC=∠BOC.
图2
学生活动设计:
学生独立思考,根据对三量定理的理解加以分析.由,得到,△ABC是等腰三角形,由∠ACB=60°,得到△ABC是等边三角形,AB=AC=BC,所以得到∠AOB=∠AOC=∠BOC.
教师活动设计:
这个问题是对三量关系定理的简单应用,因此应当让学生独立解决,在必要时教师可以进行适当的启发和提醒,最后学生交流自己的做法.
2.根据对上述定理的理解,你能证明下列命题是正确的吗?
(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等;
(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的优(劣)弧相等.
师生活动设计:
本问题由学生在思考的基础上讨论解决,可以证明上述命题是真命题.
二、主体活动,巩固新知,进一步理解三量关系定理.
如图4所示,虽然∠AOB=∠A′O′B′,但AB≠A′B′,弧AB≠弧A′B′.
图4
教师进一步引导学生用同样的思路考虑命题:(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等;(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的优(劣)弧相等中的条件“在同圆和等圆中”是否能够去掉.
人教版九年级数学上册(教案)24.1.3 弧、弦、圆心角

24.1.3弧、弦、圆心角教学目标1.了解圆心角的概念.2.探索并掌握弧、弦、圆心角的关系,了解圆的中心对称性和旋转不变性.3.能用弧、弦、圆心角的关系解决圆中的计算和证明.教学重点弧、弦、圆心角关系定理及推论.教学难点定理的探索、证明过程.教学设计一师一优课一课一名师(设计者:)教学过程设计一、创设情景明确目标剪一个圆形纸片,把它绕圆心旋转180°,所得的图形与原图形重合吗?由此你能得到什么结论?把圆绕圆心旋转任意一个角度呢?二、自主学习指向目标1.自读教材第83至84页.2.学习至此:请完成学生用书“课前预习”部分.三、合作探究达成目标探究点一圆心角活动一:出示教材第83页“探究”,问1:你能得到什么结论?问2:把圆绕圆心旋转任意一个角度呢?【展示点评】圆是中心对称图形,同时也具有旋转对称性,顶点在圆心的角叫做圆心角.【针对训练】见学生用书“当堂练习”知识点一探究点二弧、弦、圆心角之间的关系活动二:出示教材第84页思考,问1:AB和A'B',弦AB和弦A'B'相等吗?问2:如何证明它们的相等关系.思考:圆是旋转对称的,即圆绕圆心旋转任意一个角度,都能与原来的图形重合.那么,弧、弦、圆心角之间有何关系?【展示点评】定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.符号语言:在⊙O中,∵∠AOB=∠A′OB′,∴AB=A′B′.推论:1.__________________.2.__________________.符号语言:1.______________.2.________________.【小组讨论】同圆或等圆中,两个圆心角,两条弧,两条弦中如果有一组量相等,则它们所对应的其余各组量有什么关系?【反思小结】定理和推论都是以“在同圆或等圆中”为前提的,否则不成立.定理和推论可总结概括为:在同圆或等圆中,两个圆心角,两条弦,两条弧中有一组量相等,它们所对应的其余各组量也相等.【针对训练】见学生用书“当堂练习”知识点二四、总结梳理内化目标正确理解和使用弧、弦、圆心角三者关系:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,即一项相等,其余二项相等.五、达标检测反思目标1.已知圆O的半径为5,弦AB的长为5,则弦AB所对的圆心角∠AOB=__60°或300°__.第2题图2.如图,在⊙O中,AB=AC,∠B=70°,则∠A等于__40°__.3.在⊙O中,圆心角∠AOB=90°,点O到弦AB的距离为4,则⊙O的直径的长为( B )A.42 B.82 C.24 D.164.如图,AB是⊙O的直径,BC=CD, 求证:OC∥AD.【证明】连接OD.∵BC=CD,∴∠BOC=∠COD,∴∠BOD=2∠COD.∵OA=OD,∴∠OAD=∠ODA,∴∠BOD=∠OAD+∠ODA=2∠ODA,∴∠COD=∠ODA,∴OC∥AD.六、布置作业巩固目标1.上交作业教材第89页第3,4题.2.课后作业见学生用书的“课后作业”部分.教学反思。
新人教版九年级数学上册《弧、弦、圆心角》优质教案

24.1.3 弧、弦、圆心角1.在实际操作中发现圆的旋转不变性.2.结合图形了解圆心角的概念,学会辨别圆心角.3.能发现圆心角、弦、弧之间的关系,并会初步运用这些关系解决有关的问题.一、情境导入人类为了获得健康和长寿,经过不断的实践探索,到十九世纪末才提出“生命在于运动”的口号.要健康长寿,更重要的是每天要摄取均衡的营养包括蛋白质、糖类、脂肪、维生素、矿物质、纤维和水.根据中国营养学会公布的“中国居民平衡膳食指南”,每人每日摄取量如图.你能求出各扇形的圆心角吗?二、合作探究探究点一:圆心角【类型一】圆心角的识别如图所示的圆中,下列各角是圆心角的是( )A.∠ABCB.∠AOBC.∠OABD.∠OCB解析:根据圆心角的概念,∠ABC、∠OAB、∠OCB的顶点分别是B、A、C,都不是圆心O,因此都不是圆心角.只有B中的∠AOB的顶点在圆心,是圆心角.故选B.方法总结:确定一个角是否是圆心角,只要看这个角的顶点是否在圆心上,顶点在圆心上的角就是圆心角,否则不是.探究点二:圆心角的性质 【类型一】利用圆心角的性质求角如图,已知:AB 是⊙O 的直径,C 、D 是BE ︵的三等分点,∠AOE =60°,则∠COE 的大小是( )A .40°B .60°C .80°D .120°解析:∵C 、D 是BE ︵的三等分点,∴BC ︵=CD ︵=DE ︵,∴∠BOC =∠COD =∠DOE.∵∠AOE =60°,∴∠BOC =∠COD =∠DOE =13×(180°-60°)=40°,∴∠COE =80°.故选C. 方法总结:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.探究点三:圆心角、弦、弧之间的关系 【类型一】结合三角形内角和求角如图所示,在⊙O 中,AB ︵=AC ︵,∠B =70°,则∠A =________.解析:由AB ︵=AC ︵,得这两条弧所对的弦AB =AC ,所以∠B =∠C.因为∠B =70°,所以∠C =70°.由三角形的内角和定理可得∠A 的度数为40°.故答案为40°.方法总结:在应用弧、弦、圆心角之间的关系定理时,注意根据具体的需要选择有关部分,本题只需由两弧相等,得到两弦相等就可以了. 【类型二】弧相等的简单证明如图所示,已知AB 是⊙O 的直径,M ,N 分别是OA ,OB 的中点,CM ⊥AB ,DN ⊥AB ,垂足分别为M ,N.求证:AC ︵=BD ︵.解析:根据圆心角、弧、弦、弦心距之间的关系,可先证明它们所对的圆心角相等或它们所对的弦相等.证法1:如图所示,连接OC ,OD ,则OC =OD.∵OA =OB.又M ,N 分别是OA ,OB 的中点,∴OM =ON.又∵CM ⊥AB ,DN ⊥AB ,∴∠CMO =∠DNO =90°.∴Rt △CMO ≌Rt △DNO.∴∠1=∠2.∴AC ︵=BD ︵.证法2:如图①所示,分别延长CM ,DN 交⊙O 于点E ,F.∵OM =12OA ,ON =12OB ,OA =OB ,∴OM =ON.又∵OM ⊥CE ,ON ⊥DF ,∴CE =DF ,∴CE ︵=DF ︵.又∵AC ︵=12CE ︵,BD ︵=12DF ︵.∴AC ︵=BD ︵. 图①图②证法3:如图②所示,连接AC ,BD.由证法1,知CM =DN.又∵AM =BN ,∠AMC =∠BND =90°,∴△AMC ≌△BND.∴AC =BD ,∴AC ︵=BD ︵.方法归纳:在同圆或等圆中,要证明圆心角、弧、弦、弦心距这四组量中的某一组量相等,通常是转化成证明另外三组量中的某一组量相等.三、板书设计教学过程中,强调弧、弦、圆心角及弦心距之间的关系,只要确定一组等量关系,其他三组也随之确定了.学生励志寄语:同学们,通过这节课的学习,你们学到了哪些知识?要珍惜时间好好学习,要明白时间就像日历一样,撕掉一张就不会再回来。
人教版九年级上册数学 24.1.3 弧、弦、圆心角 优秀教案
24.1.3 弧、弦、圆心角1.在实际操作中发现圆的旋转不变性. 2.结合图形了解圆心角的概念,学会辨别圆心角.3.能发现圆心角、弦、弧之间的关系,并会初步运用这些关系解决有关的问题.一、情境导入人类为了获得健康和长寿,经过不断的实践探索,到十九世纪末才提出“生命在于运动”的口号.要健康长寿,更重要的是每天要摄取均衡的营养包括蛋白质、糖类、脂肪、维生素、矿物质、纤维和水.根据中国营养学会公布的“中国居民平衡膳食指南”,每人每日摄取量如图.你能求出各扇形的圆心角吗?二、合作探究 探究点一:圆心角【类型一】圆心角的识别如图所示的圆中,下列各角是圆心角的是()A .∠ABCB .∠AOBC .∠OABD .∠OCB解析:根据圆心角的概念,∠ABC 、∠OAB 、∠OCB 的顶点分别是B 、A 、C ,都不是圆心O ,因此都不是圆心角.只有B 中的∠AOB 的顶点在圆心,是圆心角.故选B.方法总结:确定一个角是否是圆心角,只要看这个角的顶点是否在圆心上,顶点在圆心上的角就是圆心角,否则不是.探究点二:圆心角的性质【类型一】利用圆心角的性质求角如图,已知:AB 是⊙O 的直径,C 、D 是BE ︵的三等分点,∠AOE =60°,则∠COE的大小是()A .40°B .60°C .80°D .120°解析:∵C 、D 是BE ︵的三等分点,∴BC ︵=CD ︵=DE ︵,∴∠BOC =∠COD =∠DOE .∵∠AOE=60°,∴∠BOC =∠COD =∠DOE =13×(180°-60°)=40°,∴∠COE =80°.故选C.方法总结:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.探究点三:圆心角、弦、弧之间的关系 【类型一】结合三角形内角和求角如图所示,在⊙O 中,AB ︵=AC ︵,∠B =70°,则∠A =________.解析:由AB ︵=AC ︵,得这两条弧所对的弦AB =AC ,所以∠B =∠C .因为∠B =70°,所以∠C =70°.由三角形的内角和定理可得∠A 的度数为40°.故答案为40°.方法总结:在应用弧、弦、圆心角之间的关系定理时,注意根据具体的需要选择有关部分,本题只需由两弧相等,得到两弦相等就可以了.【类型二】弧相等的简单证明如图所示,已知AB 是⊙O 的直径,M ,N 分别是OA ,OB 的中点,CM ⊥AB ,DN ⊥AB ,垂足分别为M ,N .求证:AC ︵=BD ︵.解析:根据圆心角、弧、弦、弦心距之间的关系,可先证明它们所对的圆心角相等或它们所对的弦相等.证法1:如图所示,连接OC ,OD ,则OC =OD .∵OA =OB .又M ,N 分别是OA ,OB 的中点,∴OM =ON .又∵CM ⊥AB ,DN ⊥AB ,∴∠CMO =∠DNO =90°.∴Rt △CMO ≌Rt △DNO .∴∠1=∠2.∴AC ︵=BD ︵.证法2:如图①所示,分别延长CM ,DN 交⊙O 于点E ,F .∵OM =12OA ,ON =12OB ,OA=OB ,∴OM =ON .又∵OM ⊥CE ,ON ⊥DF ,∴CE =DF ,∴CE ︵=DF ︵.又∵AC ︵=12CE ︵,BD ︵=12DF ︵.∴AC ︵=BD ︵.图①图②证法3:如图②所示,连接AC ,BD .由证法1,知CM =DN .又∵AM =BN ,∠AMC =∠BND =90°,∴△AMC ≌△BND .∴AC =BD ,∴AC ︵=BD ︵.方法归纳:在同圆或等圆中,要证明圆心角、弧、弦、弦心距这四组量中的某一组量相等,通常是转化成证明另外三组量中的某一组量相等.三、板书设计教学过程中,强调弧、弦、圆心角及弦心距之间的关系,只要确定一组等量关系,其他三组也随之确定了.。
人教版九年级上册(新)数学同步教案24.1.3弧、弦、圆心角
24.1圆的有关性质(第3课时)一、内容和内容解析1.内容弧、弦、圆心角之间的关系.2.内容解析弧、弦、圆心角之间的关系,是继垂径定理后圆的又一个重要性质,它是圆中论证同圆或等圆中弧相等、角相等、线段相等的主要依据,也是后继研究圆周角以及圆的其他知识的重要基础,是转化思想的具体体现.在同圆或等圆中,如果两条弧、两条弧所对的弦、两条弧所对的圆心角中有一组量相等,那么其他各组量也相等.弧、弦、圆心角之间的关系,是圆的旋转不变性的具体表现,因此在研究方法上依然采用的是利用图形变化的方法,再次体现了图形变化在发现问题、解决问题时的作用.基于以上分析,确定本节课的教学重点是:弧、弦、圆心角的关系的探索与应用.二、目标及其解析1.目标(1)了解圆心角的概念.掌握在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,就可以推出它们所对应的其余各组量也相等,以及它们在解题中的应用.(2)在探索弧、弦、圆心角的关系的过程中体会圆的旋转不变性,在应用弧、弦、圆心角的关系的过程中体会转化思想.2.目标解析达成目标(1)的标志是:学生能识别圆心角,能理解弧、弦、圆心角的关系反映了两条弧,两条弦、两个圆心角三组量中只要其中一组量相等,那么它们所对应的其余各组量也都相等,并能利用这一关系进行有关的证明.达成目标(2)的标志是:学生能从旋转的角度发现问题,并能从旋转的角度对结论进行论证;学生能将证明弦相等、弧相等、圆心角相等的问题进行转化.三、教学问题诊断分析由于学生对圆的旋转不变性不甚了解,所以在探讨圆心角、弧、弦之间的相等关系时可能感到困难,另外对等弧等的理解可能不透彻;初始阶段在证明角相等,线段相等等有关问题时受思维定势的影响,学生往往会走利用“三角形全等”的老路.本课的教学难点是:探索定理和推导及其应用.四、教学过程设计引言上节课,我们研究发现圆是轴对称图形,并且利用圆的轴对称性探索出了垂径定理,这节课继续探索圆的性质.1.探索弧、弦、圆心角之间的关系问题1圆是中心对称图形吗?将圆旋转任意角度后会出现什么情况?师生活动:学生观察课件得到“圆是中心对称图形,对称中心是圆心,而且圆绕圆心旋转任意角度都能够与原来的图形重合”的性质.设计意图:通过学生亲自动手操作发现圆的旋转不变性,为后续探究打下基础.问题2观察图1中∠1,∠2,∠3,它们有何共同特点?图1师生活动:学生观察,归纳出∠1,∠2,∠3的共同特征:顶点是圆心.教师给出圆心角定义:像∠1,∠2,∠3这样,顶点在圆心的角叫做圆心角.设计意图:通过从具体实例中归纳出圆心角的特征,帮助学生准备理解圆心的概念.问题2如图2,将圆心角∠AOB绕圆心O旋转到∠A'OB'的位置,你能发现哪些等量关系?为什么?师生活动:教师出示问题,教师组织学生观察、思考、讨论、交流.当学生无法证明AB=A'B'时,教师追问:追问1:目前,我们已知的证明弧相等的方法有哪些?图2 追问2:为什么将∠AOB绕圆心O旋转到∠A'OB' 的位置时,AB与A'B'会重合?追问3:由问题2,我们可以得出怎样的结论?请用文字语言进行概括.追问4:在等圆中是否也能得出类似的结论呢?设计意图:通过探索,使学生体会从旋转的角度可以发现问题,也可以进行结论的论证.问题3在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角有何关系?所对的弦呢?在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角有何关系?所对的弧呢?师生活动:教师启发学生对照图2,类比问题2的探索方法,判断上述判断的正确性.追问:综合以上3个发现,你能说说在同圆和等圆中,圆心角、弧、弦之间的关系吗?设计意图:感受类比思想,类比中全面地理解圆心角、弧、弦之间的关系,并进一步体会从旋转角度进行论证的方法.2.应用弧,弦,圆心角之间的关系练习1:教科书第85页练习第1题.设计意图:通过此练习帮助学生进一步明确圆心角、弧、弦之间的关系的条件与结论,并使学生学会如何用符号语言表达圆心角、弧、弦之间的关系.例如图3,在⊙O中,AB=AC,∠ACB=60°.求证:∠AOB=∠BOC=∠AOC.师生活动:教师组织学生思考、讨论、交流,师生共同书写证明过程.如果学生有困难,教师可进行启发:“从圆的角度看,要图3求证相等的三个角属于什么角?通过本堂课的学习,圆心角相等可通过什么条件得到?”追问:通过本题,你能否谈谈学习了圆心角、弧、弦之间的关系定理之后,我们可以在圆中怎样证明两个圆心角相等?怎样证明两条弧相等?两条弦相等呢?设计意图:通过例题让学生初步学会运用圆心角、弧、弦之间的关系定理进行有关的证明,建立圆心角、弧、弦之间相等关系的相互转化意识,渗透转化思想.通过追问让学生注意反思圆心角、弧、弦之间的关系定理的作用,总结圆中证明角等、弧等、线段等的方法,积累解决数学问题的经验.练习2:教科书第85页练习第2题.设计意图:帮助学生进一步掌握运用圆心角、弧、弦之间的关系定理证明角相等、弧相等、线段相等的方法.3.小结教师与学生一起回顾本节课所学的主要内容,并请学生回答以下问题:(1)什么样的角叫圆心角?(2)在同圆与等圆中,圆心角、弧、弦之间有何关系?能否将定理中的“在同圆与等圆中”的条件去掉?(3)通过本节课的学习,你能总结一下在圆中,证明两个圆心角、两条弧、两条弦相等的方法吗?(4)圆具有怎样的对称性?这些对称性有何作用?设计意图:通过小结,帮助学生梳理本节课的知识、方法、数学思想,同时对定理的条件进一步加深理解,并对圆的对称性进行系统认识,不断丰富、更新学生的认知体系.4.布置作业教科书习题24.1第1,2题.五、目标检测设计1.下列语句正确的是( ).A.如果两条弦相等,这两条弦所对的弧相等B.等弧所对的弦相等C.长度相等的弧所对的圆心角相等D.圆有无数条对称轴,每条直径都是它的对称轴设计意图:考查学生对于弦、弧、圆心角关系定理条件的正确理解.2.如图4,在⊙O中,AB=AC,∠A=110°,求∠B的度数.图4设计意图:考查学生是否能运用定理进行弦、弧、圆心角之间相等关系的相互转化.3.如图5,在⊙O中,AB=CD.求证:AD=BC.图5设计意图:考查学生能否运用定理进行弦、弧、圆心角之间相等关系的相互转化,进行有关的证明.。
人教版九年级数学上册 24-1-3 弧、弦、圆心角导学案
人教版九年级数学上册导学案第二十四章圆24.1.3 弧、弦、圆心角【学习目标】1.理解圆心角的概念和圆的旋转不变性,会辨析圆心角。
2.掌握在同圆或等圆中,圆心角与其所对的弦、弧之间的关系,并能应用此关系的证明和计算。
3.能利用圆心角、弦、弧之间的关系解决有关问题。
【课前预习】1.在半径为1的弦所对的弧的度数为()A.90°B.145度C.90°或270°D.270度或145度2.一个点到圆的最小距离为4cm,最大距离为9cm,则该圆的半径是()A.2.5 cm或6.5 cm B.2.5 cm C.6.5 cm D.5 cm或13cm3.下列命题①若a>b,则am²>bm²②相等的圆心角所对的弧相等③各边都相等的多边形是正多边形是±4.其中真命题的个数是()A.0B.1C.2D.34.若AB和CD的度数相等,则下列命题中正确的是()A.AB=CD B.AB和CD的长度相等C.AB所对的弦和CD所对的弦相等D.AB所对的圆心角与CD所对的圆心角相等5.下列说法中错误的有()①过弦的中点的直线平分弦所对的两条弧;②弦的垂线平分它所对的两条弧;③过弦的中点的直径平分弦所对的两条弧;④平分不是直径的弦的直径平分弦所对的两条弧.A.1个B.2个C.3个D.4个6.下列说法错误的是()A.垂直于弦的直径平分这条弦B.平分弦的直径垂直于这条弦C.弦的垂直平分线经过圆心D.同圆或等园中相等的弧所对的圆周角相等7.下列命题正确的是( )A .点(1,3)关于x 轴的对称点是(1,3)-B .函数23y x =-+中,y 随x 的增大而增大C .若一组数据3,x ,4,5,6的众数是3,则中位数是3D .同圆中的两条平行弦所夹的弧相等8.如图,扇形AOB 中,90AOB ∠=︒,半径6,OA C =是AB 的中点,//CD OA ,交AB 于点D ,则CD 的长为()A .2BC .2D .69.如图,△ABC 中,AB=5,AC=4,BC=2,以A 为圆心AB 为半径作圆A ,延长BC 交圆A 于点D ,则CD 长为()A .5B .4C .92 D .10.如图,弧 AB 等于弧CD ,OE AB ⊥于点E ,OF CD ⊥于点F ,下列结论中错误..的是( )A .OE=OFB .AB=CDC .∠AOB =∠COD D .OE >OF【学习探究】自主学习阅读课本,完成下列问题1、填空:(1)圆心角的概念:顶点在_______的角叫做圆心角。
2017年秋季学期新版新人教版九年级数学上学期24.1.3、弧、弦、圆心角导学案2
通过回顾上节课的内容,解决相关问题,引入本节课----弧、弦、圆心角。
二、质疑:
学生质疑,说出自己在解答上述问题时的疑问并思考。
三、自主学习
学生自学课本的基本内容,通过“思考、探究、合作、尝试”等环节初步掌握本节课所学内容。然后解决自主学习的相关问题。教师可适当强调,解释学生的质疑问题。
四、新题操练
相等.
注:同圆或等圆中,两个圆心角、两条弧、两条弦、两条弦心距中有一组量相等,它们所对应的其余各组量也。

四、新题操练
1.如图,AB、CD是⊙O的两条弦.
(1)如果AB=CD,那么_________,_____________.
(2)如果 ,那么__________,__________.
(3)如果∠AOB=∠COD,那么_____________,__________.
弧、弦、圆心角
学习
内容
第二十四章:弧、弦、圆心角(第1课时) 课型:新课
学
习
目
标
1.、了解圆心角的概念。
2、掌握在同圆或等圆中,两个圆心角、两条弦、两条弧、两个弦心距中有一组量相等,则它们所对的其余各组量也相等。
3、圆心角、弦、弧、弦心距在解题中的应用.
重点:掌握在同圆或等圆中,圆心角、弦、弧、弦心距中有一个量的两个相等就可以推出其它两个量的相对应的两个值就相等。
A.这两个圆心角所对的弦相等B.这两个圆心角所对的弧相等
C.这两个圆心角所对的弦的弦心距相等D.以上说法都不对
2.一条弦长恰好为半径长,则此弦所对的弧是半圆的_________.
3.如图,已知AB、CD为⊙O的两条弦, ,求证AB=CD

4、课本p85---练习2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题: §24.1.3弧、弦、圆心角
学习目标:
1.探索圆的弧、弦、圆心角之间的关系;
2.通过课堂师生、生生之间的互动,增强参与课堂教学的意识..
学习重点:探索圆的弧、弦、圆心角之间的关系;
学习难点:本节定理的运用.
【学前准备】
1..预习P82—83页内容,并回答下列问题:
(1)圆既是 对称图形,也是 对称图形;
(2)顶点在 的角叫做圆心角;
(3)如右图所示的⊙O中,将圆心角∠AOB绕圆心O旋转任意角度到∠A′OB′的位置,根据旋转
的特征,显然∠AOB=∠A′OB′,除此之外,你还能发现哪些等量关系?为什么?
归纳总结:在同圆或等圆中
(1)相等的圆心角所对的弧 ,所对的弦 .
(2)相等的两条弧所对的 相等,所对的 也相等.
(3)相等的两条弦所对的 相等,所对的 也相等.
想一想:
(1)在上述定理中,为什么要强调“在同圆或等圆”?请举例说明!
(2)请用最简洁的语言归纳出叙述上述三个定理:
在同圆或等圆中,
.
把定理用数学语言表示为:如右图,在⊙O中,AB、CD是两条弦,
(1)如果AB=CD,那么 , ;
(2)如果AB ︵=CD ︵,那么 , ;
(3)如果∠AOB=∠COD,那么 , .
【课堂探究】
问题1. 如图,在⊙O中,AB ︵=AC ︵,∠ACB=60.°,
(1)△ABC是怎样的三角形?为什么?
(2)求∠AOB,∠COB,∠AOC的度数.
问题2:如图,AB是⊙O的直径,BC ︵=CD ︵=DE ︵,∠COD=35.°,求∠AOE的度数.
C
D
O
A
B
A
O
B
问题3:如图,在⊙O中,AB、CD是两条弦,OE⊥AB,OF⊥CD,垂足分别为EF.
(1)如果AB=CD,那么 , ;
(2)如果AB ︵=CD ︵,那么 , ;
(3)如果∠AOB=∠COD,那么 , ;
【课堂检测】
1.如图,AD=BC,比较AB ︵与CD ︵的长度,并证明你的结论.
2.如图,在⊙O中,AB ︵=AC ︵,∠A=30.°,求∠B.
3.如图,A,B是⊙O上的两点,∠AOB=120°,C是AB ︵的中点,求证四边形OACB是菱形.
EF
A
B
C
D
O
E
C
O
A
B
D
O
A
B
C
【拓展延伸】
如图,在⊙O中,AB是弦,OC、OD是半径,且分别与弦AB交于E、F,若AC ︵=BD ︵,
求证:AE=BF.
【课后作业】
1.如图,在⊙O中,AB︵=AC︵,∠A=40,则∠B= 度.
2.如图,⊙O的直径AB垂直于弦CD,AB、CD相交于点E,
① 若∠COD=100°,则∠COE= 度;
② 若AB=10,OE=3,则CD= .
3.如图,AB、AC、BC都是⊙O的弦,∠CAB=∠CBA,
求证:OC⊥AB.
4.如图,AB=CD,那么AD与BC相等吗?证明你的结论.