初一找规律题
规律题汇总(七年级)

规律题汇总(七年级)数的变化规律正整数规律1、2、3、4、5、、、、可以表示为n(其中n为正整数)奇数规律:1、3、5、7、9、、、、可以表示为2n-1(其中n为正整数)偶数规律:2、4、6、8、10、、、、可以表示为2n(其中n为正整数)正、负交替规律变化一组数,不看他们的绝对值,只看其性质,为正负交替(1)、-、+、-、+、-、+、-、+可以表示为()1n-(2)、+、-、+、-、+、-、+、-可以表示为()11n+-1、观察下列面一列数:1,-2,3,-4,5,-6,…根据你发现的规律,第2012个数是___________平方数规律:1、4、9、16、25、36、、、、、可以表示为2n (其中n 为正整数)要看得出:上面的规律数+1、+2、-1、-2 2、观察数字-1,2,7,14,23,34,……的规律,照此规律第n 个数为 。
3、观察下列单项式:0,3x 2,8x 3,15x 4,24x 5,…按此规律写出第13个单项式是_ _。
4、、有一串单项式:x ,-2x 2,3x 3,-4x 4,……,-10x 10,…… (1)请你写出第100个单项式;(2)请你写出第n 个单项式. 5、(湖南株洲市3,16)一组数据为:234,2,4,8,x x x x --⋅⋅⋅⋅⋅⋅观察其规律,推断第n 个数据应为 .6、某数学活动小组的20位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依次报自己顺序的倒数加1,第1位同学报⎪⎭⎫⎝⎛+111,第2位同学报⎪⎭⎫⎝⎛+121,…这样得到的20个数的积为_________________.7、一个自然数的立方,可以分裂成若干个连续奇数的和,例如:23,33,和43分别可以按如图所示的方式“分裂”成2个、3个和4个连续奇数的和,即23=3+5;33=7+9+11;43=13+15+17+19;……;若63也按照此规律来进行“分裂”,则63“分裂”出的奇数中,最大的那个奇数是_____.8、在下图中,每个图案均由边长为1的小正方形按一定的规律堆叠而成,照此规律,第10个图案中共有 个小正方形。
初一找规律的数学题及解题方法

初一找规律的数学题及解题方法初一找规律的数学题通常涉及数列、图形、数字变换等问题,需要观察、分析、归纳和推理。
下面是一些初一找规律的数学题及解题方法:一、数列规律题题目:观察数列1,3,7,15,31,...,求第n项的值。
解题方法:首先观察数列中相邻两项的差,发现差值分别为2,4,8,16...,即每次乘以2。
这是一个等比数列的差数列。
根据这个规律,我们可以推导出第n项的公式:第n项=2^(n-1)-1。
二、图形规律题题目:有一组图形,第一个图形有1个点,第二个图形有3个点,第三个图形有7个点,第四个图形有15个点,...,求第n个图形中点的个数。
解题方法:首先观察图形中点数的变化规律,发现相邻两项的差分别为2,4,8,...。
这是一个等比数列的差数列。
根据这个规律,我们可以推导出第n个图形中点的个数公式:第n个图形中点的个数=2^(n-1)-1。
三、数字变换规律题题目:观察数字序列1,11,21,1211,111221,...,求第n项的值。
解题方法:首先观察数字序列的变化规律,发现每个数字都是由前一个数字生成的。
具体地,第一个数字是“1”,第二个数字表示前一个数字有“1”个“1”,所以是“11”,第三个数字表示前一个数字有“2”个“1”,所以是“21”,以此类推。
这是一个描述性规律题,需要通过观察和描述来找出规律。
根据这个规律,我们可以逐步推导出第n项的值。
四、等差数列规律题题目:观察等差数列2,5,8,11,...,求第n项的值。
解题方法:首先观察等差数列的公差,发现相邻两项的差为3。
根据等差数列的通项公式an=a1+(n-1)d,其中a1为首项,d为公差,n为项数,我们可以推导出第n项的公式:第n项=2+3(n-1)。
以上是初一找规律的数学题及解题方法的一些例子。
对于找规律的数学题,重要的是通过观察和分析来发现其中的规律和模式,并根据这些规律和模式来推导出解决问题的方法。
七年级找规律经典题汇总带答案

一、数字排列规律题1、观察下列各算式: 1+3=4=22,1+3+5=9=23,1+3+5+7=16=24… 按此规律 (1)试猜想:1+3+5+7+…+2005+2007的值 ?(2)推广: 1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少 ?2、下面数列后两位应该填上什么数字呢? 2 3 5 8 12 17 __ __3、请填出下面横线上的数字。
1 1 2 3 5 8 ____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个( ) 二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是(填图形名称). 三、数、式计算规律题 1、已知下列等式:① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102 ;由此规律知,第⑤个等式是 . 2、观察下面的几个算式:1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,… 根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____.3、,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+ =+⨯=+b a aba b 则符合前面式子的规律,,若 (21010)规律发现专题训练1.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第(n )个图案中有白色..地砖块。
数学规律题集锦(七年级专题)

数学规律题集锦(七年级专题)本文档是一份数学规律题集锦,专为七年级学生准备。
以下将介绍一些常见的数学规律题,并提供相应的解答。
希望这些题目能够帮助学生加深对数学规律的理解和运用。
例题1问题:下列数列中的规律是什么?下列数列中的规律是什么?1, 4, 7, 10, 13, ...解答:这个数列中,每一个数都比前一个数增加了3。
因此,规律是每一项都比前一项增加3。
这个数列中,每一个数都比前一个数增加了3。
因此,规律是每一项都比前一项增加3。
例题2问题:下列数列中的规律是什么?下列数列中的规律是什么?2, 4, 8, 16, 32, ...解答:这个数列中,每一项都是前一项的2倍。
因此,规律是每一项都是前一项的2倍。
这个数列中,每一项都是前一项的2倍。
因此,规律是每一项都是前一项的2倍。
例题3问题:下列数列中的规律是什么?下列数列中的规律是什么?1, 3, 6, 10, 15, ...解答:这个数列中,每一项都比前一项增加了一个连续的自然数。
即第1项增加1,第2项增加2,第3项增加3,以此类推。
因此,规律是每一项都比前一项增加一个连续的自然数。
这个数列中,每一项都比前一项增加了一个连续的自然数。
即第1项增加1,第2项增加2,第3项增加3,以此类推。
因此,规律是每一项都比前一项增加一个连续的自然数。
例题4问题:下列数列中的规律是什么?下列数列中的规律是什么?1, 1, 2, 3, 5, 8, ...解答:这个数列中,每一项都是前两项的和。
即第3项等于第1项和第2项的和,第4项等于第2项和第3项的和,以此类推。
因此,规律是每一项都是前两项的和。
这个数列中,每一项都是前两项的和。
即第3项等于第1项和第2项的和,第4项等于第2项和第3项的和,以此类推。
因此,规律是每一项都是前两项的和。
结论数学规律题在学习数学中扮演着重要的角色。
通过解答这些题目,学生们可以培养数学思维和逻辑推理能力。
希望这份题集能够帮助七年级的学生们更好地掌握数学规律的概念,并在解答题目中获得乐趣和成就感。
(完整word版)七年级数学找规律练习题和答案

找规律练习题1 •用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第X 1=1,第二个数为X 2=3,第三个数开始依次记为 X 3, X 4,…,X n ;从第二个数开始,每个数是它相中有白色地砖 块。
2.我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事非。
在一个边长为1的正方形纸版上, 形彩色纸片(n 1 规律,计算丄 2为大于1 1 1 48的整数) 1 班1 1 依次贴上面积为 1 , 1 ,2 4 。
请你用“数形结合”的思想, 8 ”如图, 1 丄的矩 2n 依数形变化的 邻两个数和的一半。
(如: X 2=^l X3 )2 (1)求第三、第四、第五个数,并写出计算过程; (2)根据(1)的结果,推测X 8= (3)探索这一列数的规律,猜想第 k 个数X k = . ( k 是大于2的整数) 4•将一张长方形的纸对折,如图所示可得到一条折痕(图中虚线) .继续对折,对折时每次折痕与上次的折痕保持平行,连 续对折三次后,可以得到 7条折痕,那么对折四次可以得到 ________________ 条折痕.如果对折n 次,可以得到 ______________ 条折 痕• 1 1 1 1 1 1 1 ■ ■ 1 4 1 | 1 1 1 1 1 111 1 1 V 1 1 1 1 1 1 1 hL1 V 1 1 a ii k i 1119 1 l> V i i I I I I l> 1 1 I l> I 1 I I I i 1 >1 1 ■ KPI ■ ・ W P a L h h F 1I 4 1 il >1 I ii ■l >l 4 I A I 第一次对折第二次对折第三友对折5.观察下面一列有规律的数 1 2 _5 _6_ 3,8,15,24,35,48 根据这个规律可知第 n 个数是(n 是正整数) 6.古希腊数学家把数 1, 3, 6, 10, 15, 21 ,……,叫做三角形数,它有一定的规律性,则第 形数的差为 _____________________ 。
七年级找规律经典题汇总带答案

一、数字排列规律题1、观察下列各算式: 1+3=4=22,1+3+5=9=23,1+3+5+7=16=24… 按此规律 (1)试猜想:1+3+5+7+…+2005+2007的值 ?(2)推广: 1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少 ?2、下面数列后两位应该填上什么数字呢? 2 3 5 8 12 17 __ __3、请填出下面横线上的数字。
1 1 2 3 5 8 ____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个( ) 二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是(填图形名称). 三、数、式计算规律题 1、已知下列等式:① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102 ;由此规律知,第⑤个等式是 . 2、观察下面的几个算式:1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,… 根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____.3、,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+ =+⨯=+b a aba b 则符合前面式子的规律,,若 (21010)规律发现专题训练1.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第(n )个图案中有白色..地砖块。
初一找规律专题训练
一、填空题1.观察一列单项式:a,-2a2,4a3,-8a4,….根据你发现的规律,第8个单项式为___________ 2.如图,将等边三角形按一定规律排列,第①个图形中有1个小等边三角形,第②个图形中有4个小等边三角形,按此规律,则第⑥个图形中有___________个小等边三角形.3.已知1+3=41+3+5=91+3+5+7=161+3+5+7+9=25则1+3+5+7+9+…+(2n+1)= (其中n为自然数)4.用●表示实心圆,用○表示空心圆,现有若干个实心圆与空心圆,按一定的规律排列如下:●○●●○●●●○●○●●○●●●○●○●●○●●●○…,在前2019个圆中,有____________个实心圆.5.下图表示1张餐桌和6张椅子(每个小半圆代表1张椅子),若按这种方式摆放10张餐桌需要的椅子张数是____。
6.我国的纪年方法有两种:一、与世界各国同步的公元纪年法;二、干支纪年法.中国自古便有十天干与十二地支,简称“干支”,取意于树木的干和枝.十天干即:甲、乙、丙、丁、戊、己、庚、辛、壬、癸;十二地支即:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.将一个天干和一个地支顺次循环搭配起来就出现了“甲子”、“乙丑”、“丙寅”等年,这种纪年方法又称为农历.例如公元2019 年为农历“己亥”年.那么1949 年是农历“_____ ”年.7.一列数按某规律排列如下:,,,,,,,,,,…,若第n个数为,则n的值为____.8.探索规律:71+1=8,72+1=50,73+1=344,74+1=2402,75+1=16808,76+1=117650…,那么72019+1的个位数字为_____.9.将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第4个图形有________个小圆,第n个图形有________个小圆.10.正整数按图中的规律排列.由图知,数字6在第二行,第三列.请写出数字2019在第______行,第________列.11.用完全一样的火柴棍按如图所示的方法拼成“金鱼”形状的图形,则按照这样的方法拼成第4个图形需要火柴棍________根,拼成第n个图形(n为整数)需要火柴棍________根(用含n的代数式表示).12.观察:,根据规律填空:_____;请你将这个规律用含n(n为正整数)的等式表示出来:_____13.观察下列单项式、、、、按照这些单项式的系数和指数的变化规律,第十个单项式应该是________.14. 已知 a 1 = , a 2 = , a 3 =1(1)4+ ,…,a n =1(1)1n ++ ,123...n n S a a a a =⋅⋅⋅⋅,则 ___________.15. 观察下面的单项式:x, , , ,…根据规律写出第7个式子:______. 16. 计算机利用的是二进制数,它共有两个数码0、1,将一个十进制数转化为二进制数,只需要把该数写成若干个2n 数的和,依次写出1或0即可.如十进制数19=16+2+1=1×24+0×23+0×22+1×21+1×20,转化为二进制数就是10011,所以19是二进制下的5位数.问:365是二进制下的______位数.17. 找规律并填空:1234,,,392781--、_____. 18. 寻找规律填空(1)(2)(3) ......请用含字母n 的代数式描述上述规律:_______________19. 按规律填空:a ,-2a 2,3a 3,-4a 4…则第10个为____.20. 观察下面一列数,探究其中的规律:-1, , , , , …… 第2019个数是 _______;二、解答题21. 探索规律,观察下面算式,解答问题.1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52;…(1)请猜想:1+3+5+7+9+…+19=________;(2)请猜想:1+3+5+7+9+…+(2n-1)=________;(3)试计算:101+103+…+197+199.22.阅读材料:求1+2+22+23+24+…+22019的值.解:设S=1+2+22+23+24+…+22018+22019,①将等式两边同时乘2,得2S=2+22+23+24+25+…+22019+22020,②将②式减去①式,得2S-S=22020-1,即S=22020-1,则1+2+22+23+24+…+22019=22020-1.请你仿照此法计算:(1)1+2+22+23+24+ (210)(2)1+3+32+33+34+…+3n(其中n为正整数).23.小明是个爱动脑筋的同学,在发现教材中的用方框在月历中移动的规律后,突发奇想,将连续的偶数2、4、6、8,…排成如下表,并用一个十字形框架住其中的五个数,请你仔细观察十字形框架中数字的规律,并回答下列问题:十字框中的五个数的和与中间的数16有什么关系?设中间的数为x,用代数式表示十字框中的五个数的和.24.观察下面一列数,探求其规律:,,,,,,(1)请问第7个,第8个,第9个数分别是什么?(2)第2007个数是什么?用n的代数式表示这一规律;(3)如果这列数无限排列下去,越来越接近哪一个数?25.先阅读下面的文字,然后按要求解题:例:1+2+3+ …+100=?如果一个一个顺次相加显然太繁琐,我们仔细分析这100个连续自然数的规律和特点,可以发现运用加法运算律,是可以大大简化计算,提高运算速度的.因为1+100=2+99=3+98= …=50+51=101所以将所给算式中各加数经过交换、结合以后,可以很快求出结果.解:1+2+3+ …+100=(1+100)+(2+99)+(3+98)+ …+(50+51)=101×____________=____________ .(1)补全例题的解题过程;(2)计算:26.从2开始,连续的偶数相加,它们的和的情况如下表:(1)如果n=8时,那么S的值为;(2)根据表中的规律猜想:用n的代数式表示S的公式为:S=2+4+6+8+…+2n= ;(3)由上题的规律计算100+102+104+…+996+998+1000的值.(写出计算过程)27.观察如图图形:它们是按一定规律排列的:(1)依照此规律,第8个图形共有__枚五角星.(2)用代数式表示第n个图形共有___枚五角星(3)第99个图形共有多少枚五角星?28.观察下列各式:,,(1)猜想:11 100101 -⨯=(2)你发现的规律是:111n n-⨯=+;(n 为正整数)(3)用规律计算:1(1)2-⨯+11()23-⨯+11()34-⨯11...()20142015++-⨯11()20152016+-⨯=.29.如图所示,在下面由火柴棒拼出的一系列的图形中,第n个图形由n个正方形组成.……(1)第2个图形中,火柴棒的根数是________.(2)第3个图形中,火柴棒的根数是________.(3)第n个图形中,火柴棒的根数是_______.30.用火柴棒按下列方式搭建三角形:(1)当三角形的个数为n时,火柴棒的根数是多少?(2)求当n=100时,有多少根火柴棒?(3)当火柴棒的根数为2017时,三角形的个数是多少?31.观察下面三行数:-3,9,-27,81…①1,-3,9,-27…②-2,10,-26,82…③(1)按第①行数排列的规律,第5个数是.观察第②行数与第①行数的关系,第②行第n个数是(用含n的式子表示)观察第③行数与第①行数的关系,第③行第n个数是(用含n的式子表示)(2)取每行数的第7个数,计算这三个数的和.32.一列数1,-2,3,-4,5,-6…(1)写出这列数的第10个,第11个数和第2016个数;(2)求前100个数的和.33. 先观察、研究下列算式,再解答问题(1)(2).11122=⨯, ; 11236=⨯, ;113412=⨯, ;… (1)你能归纳出 =___________(n 表示大于或等于1的整数);(2)计算:111112233420182019++++⨯⨯⨯⨯….34. 先化简,再求值:阅读材料,大数学家高斯在上学读书时曾经研究过这样一个问题:1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+1(1)2n n n =+,其中n是正整数。
初一数学找规律练习题
初一数学找规律练习题初一数学找规律的练习题对于培养学生的观察力、分析力和推理能力非常重要。
以下是一些适合初一学生的数学找规律练习题:1. 观察数列,找出规律并填写缺失的数字:2, 4, 6, 8, __, 14, 162. 根据给出的数列,找出规律并完成数列:3, 6, 11, 18, __, 47, 763. 观察下列图形序列,找出规律并画出下一个图形:第一个图形:一个正方形第二个图形:两个正方形第三个图形:三个正方形,排成一行第四个图形:四个正方形,排成两行,每行两个第五个图形:______(请画出)4. 观察下列数列,找出规律并填写下一个数字:2, 5, 10, 17, 26, __5. 根据给出的图形序列,找出规律并完成下一个图形:第一个图形:一个圆形第二个图形:两个圆形,中间有一个正方形第三个图形:三个圆形,中间有一个正方形,正方形周围有四个三角形第四个图形:______(请画出)6. 观察下列数列,找出规律并计算第10个数字:1, 3, 6, 10, 15, ...7. 根据给出的图形序列,找出规律并画出第5个图形:第一个图形:一个三角形第二个图形:两个三角形,一个在另一个上面第三个图形:三个三角形,一个在另一个上面,最上面的三角形是倒立的第四个图形:四个三角形,最上面的三角形是倒立的,下面三个三角形依次排列第五个图形:______(请画出)8. 观察下列数列,找出规律并填写下一个数字:1, 4, 9, 16, 25, __9. 根据给出的图形序列,找出规律并完成下一个图形:第一个图形:一个圆形,里面有一个正方形第二个图形:一个圆形,里面有一个正方形和一个三角形第三个图形:一个圆形,里面有一个正方形,一个三角形和一个五边形第四个图形:______(请画出)10. 观察下列数列,找出规律并填写下一个数字:1, 1, 2, 3, 5, 8, ...答案提示:1. 102. 273. 五个正方形,排成两行,每行三个4. 375. 五个圆形,中间有一个正方形,正方形周围有五个三角形6. 1207. 五个三角形,最上面的三角形是倒立的,下面四个三角形依次排列,最下面的三角形也是倒立的8. 369. 一个圆形,里面有一个正方形,一个三角形,一个五边形和一个六边形10. 13这些练习题旨在帮助学生通过观察和分析来发现数字和图形的规律,从而提高他们的数学思维能力。
数学找规律题初中
数学找规律题初中一、观察数列:1,3,6,10,15,...,请问下一个数字是多少?A. 20B. 21C. 22D. 25(答案)B。
解析:这是一个累加数列,每个数字都是前一个数字加上一个递增的自然数(1+2=3,3+3=6,6+4=10,10+5=15),所以下一个数字是15+6=21。
二、观察数列:2,5,10,17,26,...,请问下一个数字是多少?A. 34B. 35C. 36D. 37(答案)D。
解析:这是一个平方加1的数列(12+1=2,22+1=5,32+1=10,42+1=17,52+1=26),所以下一个数字是62+1=37。
三、观察数列:1,1,2,3,5,8,13,...,请问下一个数字是多少?A. 19B. 20C. 21D. 22(答案)C。
解析:这是一个斐波那契数列,每个数字都是前两个数字的和(1+1=2,1+2=3,2+3=5,3+5=8,5+8=13),所以下一个数字是8+13=21。
四、观察数列:2,3,5,8,13,21,...,请问下一个数字是多少?A. 32B. 33C. 34D. 35(答案)C。
解析:这也是一个斐波那契数列的变种,从第二项开始,每个数字都是前两个数字的和(2+3=5,3+5=8,5+8=13,8+13=21),所以下一个数字是13+21=34。
五、观察数列:1,4,9,16,25,...,请问下一个数字是多少?A. 30B. 34C. 36D. 49(答案)C。
解析:这是一个平方数列,每个数字都是一个自然数的平方(12=1,22=4,32=9,42=16,52=25),所以下一个数字是62=36。
六、观察数列:3,6,12,24,48,...,请问下一个数字是多少?A. 84B. 88C. 96D. 100(答案)C。
解析:这是一个等比数列,每个数字都是前一个数字的两倍(32=6,62=12,122=24,242=48),所以下一个数字是48*2=96。
(完整)初一上册数学找规律练习题
(完整)初一上册数学找规律练习题找规律专题练习1、你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉出64根细面条。
第一次捏合第二次捏合第三次捏合2、如下图,将一张正方形纸片,剪成四个大小形状一样的小正方形,然后将其中的一个小正方形再按同样的方法剪成四个小正方形,再将其中的一个小正方形剪成四个小正方形,如此循环进行下去;(1)填表:(2)如果剪n次,共剪出多少个小正方形?(3)如果剪了100次,共剪出多少个小正方形?(4)观察图形,你还能得出什么规律?3、小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是.(2)当x非常大时,2100x的值接近于什么数?5、现有黑色三角形“▲”和“△”共200个,按照一定规律排列如下:▲▲△△▲△▲▲△△▲△▲▲。
则黑色三角形有个,白色三角形有个。
6、仔细观察下列图形.当梯形的个数是n时,图形的周长是.7、用火柴棒按如下方式搭三角形:(1)填写下表:(2)照这样的规律搭下去,搭n个这样的三角形需要______12根火柴棒8、把编号为1,2,3,4,。
的若干盆花按右图所示摆放,花盆中的花按红、黄、蓝、紫的颜色依次循环排列,则第8行从左边数第6盆花的颜色为___________色.9、已知一列数:1,D2,3,D4,5,D6,7,。
将这列数排成下列形式:第1行1第2行-2 3第3行-4 5 -6第4行7 -8 9 -10第5行11 -12 13 -14 15 。
按照上述规律排下去,那么第10行从左边数第5个数等于.10、观察下列算式:23451=+? ,24462=+?,25473=+?,*****?+=,请你在察规律之后并用你得到的规律填空:250___________=+?, 第n 个式子呢? ___________________11、一张长方形桌子可坐6人,按下列方式讲桌子拼在一起。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学基础找规律习题汇总
1.下面两个多位数1248624……、6248624……,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位。
对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的。
当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是…………………………………………()
A、495
B、497
C、501
D、503
2.填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m的值是
A.38 B.52 C.66 D.74
3.如图,将一张正方形纸片剪成四个小正方形,得到4个小正方形,称为第一次操作;然后,将其中的一个正方形再剪成四个小正方形,共得到7个小正方形,称为第二次操作;
再将其中的一个正方形再剪成四个小正方形,共得到10个小正方形,称为第三
次操作;...,根据以上操作,若要得到2011个小正方形,则需要操作
的次数是( ) .
A. 669
B. 670 D. 672
4.古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…这样的数为正方形数.下列数中既是三角形数又是正方形数的是()
A、15
B、25
C、55
D、1225
5.(2010江苏淮安)观察下列各式:
……
计算:3×(1×2+2×3+3×4+…+99×100)=()
A.97×98×99 B.98×99×100 C.99×100×101 D.100×101×102 6.如图所示的运算程序中,若开始输入的x值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2010次输出的结果为
图③图②图①
A 、6
B 、3
C 、200623
D 、10033231003⨯+
7.用棋子摆出下列一组“口”字,按照这种方法摆下去,则摆第n 个“口”字需用棋子
8.
观察下列算式,用你所发现的规律得出
2010的末位数字是(
) 21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,… A .2 B .4 C .6 D .8
9.观察下列算式:Λ,65613,21873,7293,2433,813,273,93,1387654321========,通过观察,用你所发现的规律确定20023的个位数字是( )
10.如图,将第一个图(图①)所示的正三角形连结各边中点进行分割,得到第二个图(图
②);再将第二个图中最中间的小正三角形按同样的方式进行分割,得到第三个图(图③);再将第三个图中最中间的小正三角形按同样的方式进行分割,……,则得到的第五个图中,共有________个正三角形.
11.如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA 开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,….则“17上;
“2007”在射线 上。
12.已知a ≠0,12S a =,21
2S S =,322S S =,…,201020092S S =, 则2010S = (用含a 的代数式表示).
13.如下图是一组有规律的图案,第1个 图案由4个基础图形组成,第2个图案由7个
基础图形组成,……,第n(n 是正整数)个图案中由 个基础图形组成.
(第11题) 第2个“口” 第1个“口” 第3个“口” 第n 个“口”
……………
-
14.已知:3212323=⨯⨯=C ,1032134535=⨯⨯⨯⨯=C ,154
321345646=⨯⨯⨯⨯⨯⨯=C ,…, 观察上面的计算过程,寻找规律并计算=610
C . 15.搭建如图①的单顶帐篷需要17根钢管,这样的帐篷按图②,图③的方式串起来搭建,
则串7顶这样的帐篷需要 根钢管.
16.符号“f ”表示一种运算,它对一些数的运算结果如下:
(1)f (1)=0,f (2) = 1,f (3)=2,f (4)= 3,……
(2)1111()()()()2345
2,3,4,5f f f f ====…… 利用以上规律计算:1(2010)()2010f f -=
17.用围棋子按下面的规律摆图形,则摆第n 个图形需要围棋子的枚数是 .
18.右图为手的示意图,在各个手指间标记字母A ,B ,C ,D .请你按图中箭头所指方向(即
A →
B →
C →
D →C →B →A →B →C →…的方式)从A 开始数连续的正整数1,2,3,4,…,当数到12时,对应的字母是 ;当字母C 第201次出现时,恰好数到的数是 ;当字母C 第2n +1次出现时(n 为正整数),恰好数到的数是 (用含n 的代数式表示).
19.如图,用火柴摆出一列正方形图案,若按这种方式摆下去,摆出第n 个图案用 根火柴棍(用含n 的代数式表示)
① ② ③
20.观察式子:
),7
151(21751),5131(21531),311(21311-=⨯-=⨯-=⨯……. 由此计算:+⨯+⨯+⨯751531311…=⨯+201120091_____________.
21.如图,下面是按照一定规律画出的“数形图”,经观察可以发现:图A 2比图A 1多出2个“树枝”, 图A 3比图A 2多出4个“树枝”, 图A 4比图A 3多出8个“树枝”,……,
照此规律,图A 6比图A 2多出“树枝”( )
(1)
(2) (3)
……
.56 C D. 124
22.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n (n 是大于0的整数)个图形需要黑色棋子的个数是 . 23.观察图中每一个大三角形中白色三角形的排列规律,则第4个大三角形中白色三角形有 ________ 个. 24.如图,是用火柴棒摆出的一系列三角形图案,按这种方式摆下去,当每边上摆2006根火柴棒时,共需要摆
根火柴棒. 25.观察由等腰梯形组成的下图和所给表中数据的规律后回答问题:
当等腰梯形个数为2006时,图形的周长为( ) A.D.6020
26.观察算式:211=;21342+==;135++21357164+++==;213579255++++==;……
用代数式表示这个规律(n 为正整数):13579(21)n ++++++-=L . 已知:2222233+=⨯,2333388+=⨯,244441515+=⨯,…,若299a a b b
+=⨯(a b ,为正整数),则ab = .
27.阅读下列材料:
)210321(3
121⨯⨯-⨯⨯=⨯, )321432(3
132⨯⨯-⨯⨯=⨯, )432543(3
143⨯⨯-⨯⨯=⨯, 由以上三个等式相加,可得
读完以上材料,请你计算下列各题:
(1)1110433221⨯++⨯+⨯+⨯Λ(写出过程);
(2))1(433221+⨯++⨯+⨯+⨯n n Λ= ;
(3)987543432321⨯⨯++⨯⨯+⨯⨯+⨯⨯Λ= . 第一个 (第18题)
第二个
…
2006200620061
2 2 2 2 1
1 1 1 1 1 1 1 梯形个数 1
2
3
4 5。