解析几何-以形助数
以形助数-以数解形——浅谈数形结合思想在初中数学中的应用

以形助数,以数解形—-浅谈数形结合思想在初中数学中的应用摘要:在初中数学中,数形结合思想无处不在,利用好它可以帮助解决较难问题,并提高解题速度。
笔者结合教学实际,对数形结合思想进行浅议,探讨其在数学教学中的应用.关键词:数形结合初中数学数学应用数形结合思想是初中数学中一种重要的数学思想.在近几年武汉中考数学试卷中,利用数形结合思想解决问题的题目屡见不鲜,而且有逐年加强的趋势,可见其重要性。
因此,笔者结合数学教学实际,探讨数形结合思想在初中数学中的应用.在《初中数学新课程标准》中提到:“数学中有一些重要内容、方法、思想是需要学生经历较长的认识过程,逐步理解和掌握的,如:数形结合思想等。
”[1]所谓数形结合,就是指把代数的精确刻划与几何的形象直观相统一,将抽象思维与形象直观相结合的一种思想方法。
利用它可以使复杂的问题简单化,抽象的问题具体化,很多难题便迎刃而解,而且解法简便易懂。
数与形是密切相关的两个数学表象,它们是一一对应的关系,且相互依存、相互促进.在解决数学问题时,我们要把它们有机的结合起来,并相互转化,即把几何图形转化为数量关系问题, 应用代数、三角函数等知识进行讨论,或者把数量关系问题转化为图形问题,借助几何知识加以解决,使学生看到“形”能想到“数”, 而看到“数”则能想到“形”,最终达到优化解题途径的目的.著名的数学家华罗庚说得好:“数缺形时少直观,形少数时难入微,数形结合百般好,隔离分家万事休,几何代数统一体,永远联系莫分离" [2].初一我们就学习了数轴,它建立起了实数与数轴上的点的一一对应关系.进而,又引入了直角坐标系,它扩大成了有序实数对与坐标平面上的点的一一对应.到了初二、初三又陆续学习了一次函数、二次函数,我们知道它们跟直线、抛物线也是一一对应的关系,以至于后来的“用函数的观点看方程”,实质上就是曲线和方程的对应关系。
正是这些数与形的对应,才促使我们要利用它们之间的联系,相互结合,相互转化,最终达到解决数学问题的目的。
数形结合思想的应用

一、以“形”助“数”
有些问题借助于图形直观的研究,给人以明示,从而简化了计算过程。
如:我们在解方程时用到的“数轴”就是最简单的“形”,它使我们很容易 地解决了绝对值问题。
例1:解下列方程:|x+3|=5
此题若只在代数范围内讨论,就会无从下手,而借助数轴则可轻松解决。由 绝对值的几何意义知:|x+3|=5的解为x=2或x=-8。
谢谢观看
一、数形结合思想概述
数形结合思想是指在解决数学问题时,将抽象的数学语言、符号和公式与直 观的图形、图像结合起来,通过二者之间的相互转化,达到化抽象为具体、化复 杂为简单、化难为易的目的,从而优化解题过程的方法。数形结合思想的核心在 于将抽象的数学问题与形象的图形结合起来,通过对图形的分析和观察,将抽象 的数学问题转化为具体的图形问题,从而找到问题的突破口。
概率是数学中比较抽象的一部分,有些概率问题比较复杂。通过数形结合思 想,我们可以将概率问题转化为直观的图形问题。例如,在解几何概型的问题中, 通过画出相应的图形,我们可以更直观地观察到概率的数值和性质。
三、数形结合思想的意义和价值
数形结合思想作为一种重要的数学思想,具有广泛的应用价值。首先,它可 以提高解题效率。通过将抽象的数学问题转化为直观的图形问题,我们可以更快 地找到问题的突破口和答案。其次,它可以增强学生的数学素养。通过运用数形 结合思想,学生可以更深入地理解数学学科的知识和方法论本质,提高其分析和 解决问题的能力。最后,它可以促进数学学科的发展。
解析:设正方体的棱长为a,长方体的长、宽、高分别为l、w、h。根据题目 条件,可以得到以下方程:6a2=2lw+2lh+2wh。这个方程表明正方体的表面积是 其棱长的平方的6倍。对于组合后的新几何体,其表面积由两部分组成:一个是 正方体的表面积(即6a2),另一个是长方体的表面积(即2lw+2lh+2wh)。
高考数学数形结合数形结合思想

当a≠0时,函数y=ex+m-1(x≥0)和函数y=ax+b(x<0)都是定高义考域导航内的单调函数, 且函数y=ex+m-1(x≥0)的值域为[m,+∞),
则由题意得函数y=ax+b(x<0)的值域为(m,+∞),
b m,
ex m-1,x 0,
所以a
0,
则函数
f(x)=
ax
m,x
0,
其值域为[m,+∞), |f(x)|的大致图象如图所示,
4
4
当直线l经过点B时,有1=- 1 ×1+a,a5= .
4
4
由图可知,a∈
5 4
,时94 ,
函数y=f(x)的图象与l恰有两个交点.
另外,当直线l与曲线y= 1 ,x>1相切时,
x
恰有两个公共点,
此时a>0.
应用一 栏目索引 高考导航
联立得
y y
1,
x得
-1 x 4
=-
a,
1x+a1,即
x4
栏目索引
以形助数(数题形解)
以数辅形(形题数解)
高考导航
借助形的生动性和直观性来阐述 借助于数的精确性和规范性及严
数之间的关系,把数转化为形,即 密性来阐明形的某些属性,即以数
以形作为手段,数作为目的解决数 作为手段,形作为目的解决问题的
学问题的数学思想.
数学思想.
总纲目录 栏目索引
总纲目录
应用一 数形结合思想在解决方高程考导的航 根或函数 零点问题中的应用 应用二 数形结合思想在求解不等式或参数范 围中的应用 应用三 数形结合思想在向量中的应用 应用四 数形结合思想在解析几何中的应用
数形结合思想在初中数学几何图形中的应用

数形结合思想在初中数学几何图形中的应用摘要】在目前的初中数学教学中,最主要的教学内容就是对数与形的研究。
通过以数解形或者是以形助数的学习思维来帮助学生更好地学习数学,同时以上教学思维还是初中数学教学中最为主要的。
由此可见,数形结合不仅是初中数学中非常重要的教学思维,同时也是帮助学生学习数学,培养学生探索数学的重要途径。
数学对于学生而言,是一门非常重要的学科,是一门贯穿学生整个教育生涯的学科。
但是由于初中阶段的数学学习难度增加,面对这种更加抽象化的数学学习,更多的学生表现出的都是束手无措。
学生对数学学习的兴趣降低,学生的数学学习能力也会相应的降低。
在这种状况下,在初中数学教学过程中适当的应用数形结合的思维可以更好地帮助学生解决数学困惑。
帮助学生培养一种成熟的数学解题思维。
在目前的初中数学教学中,应用数形结合思维最多的部分就是初中数学中解析几何。
在解决解析几何基本思路这一模块的问题时,教师经常就会运用到数形结合的思想。
可见,数形结合是一种常常应用于初中数学几何图形的学习思维。
在初中阶段几何图形的教学过程中,教师如果能够适当地融入数形结合的教学思维,那么学生所面对的很多问题都会迎刃而解。
本文主要研究了数形结合的学习思维在初中几何图形的学习中的应用。
通过对数形结合学习思维的详细分析提出了一系列的解决数学几何问题的方法策略,以期对初中数学几何教学有所提升。
【关键词】数形结合;初中数学;结合图形中图分类号:G652.2 文献标识码:A 文章编号:ISSN1001-2982 (2020)10-021-01随着时间的不断推移,我国的素质教育进程也开始不断推进,越来越多的数学教师开始在数学教学过程中适当的数学思想渗入,尤其是对于初中数学教学而言,教师们开始借助数形结合的思想来将原本抽象复杂的数学知识变得更加地简单。
另外,学生也可以通过该思想学会用绘图的方式来解答数学疑惑。
除此之外,数形结合的思想不仅可以提升学生的数学解题能力,还可以有效锻炼学生的动手探索能力。
初中数学思想

初中数学思想数学是研究现实世界中数量关系和空间形成的一门科学。
随着科学技术的不断发展,数学也从原始形态的数量关系向抽象化的数量关系发展。
在发展的过程中,不仅建立了严密的理论体系,而且形成了一整套的数学思想方法。
本文结合有关的例题,对数学中常用的几种思想方法作一番探讨。
一、数形结合的思想方法数形结合思想方法就是把抽象的数学符号语言和直观的几何图形联系起来,把抽象思维与形象思维相结合,通过“以形助数” 、“以数解形” ,使抽象问题具体化,复杂问题简单化,从而达到解答目的。
数形结合应用甚广,不仅在解选择题、填空题中显示它的优越性,而且在解某些抽象数学问题时也起到事半功倍的效果。
“以数解形” 是解析几何的主线,“以形助数” 是数形结合的研究重点。
如何“以数转形”是数形结合的关键,图解法是数形结合的具体体现。
数形结合是近年中、高考重点考查的思想方法之一。
下面我们结合下面的例子作简单的分析:例1. 已知0<a<1,则方程的实根个数为( )A. 1个B. 2个C. 3个D. 1个或2个或3个分析:判断方程根的个数就是判断图像两个函数图像,易知两图象只有两个交点,故方程有2个实根,选(B)。
二、函数思想方法函数思想是数学思想的重要组成部分,在高中数学中起到横向联系和纽带连结的主干作用。
用变量和函数来思考问题的方法就是函数思想。
这是一种运动变化和相依关系,以一种状态确定地刻划另一种状态,把它们过渡到研究变化过程的思想方法。
函数思想是函数概念、性质等知识更高层次的提炼和概括,是知识和方法在反复学习与运用中抽象出来的,且带有观念性的指导方法。
函数的思想就是用运动和变化的观点,分析和研究数学问题。
具体来说,即先构造函数,把给定问题转化为研究函数的性质(单调性、奇偶性、周期性、图象的交点个数、最值、极值等)问题,研究后得出所需要的结论。
上面的例1和例2也可以说阐述了这个观点。
而函数方程思想就是将数学问题转化为方程或方程组问题,通过解方程(组)或者运用方程的性质来分析、转化问题,使问题得以解决。
专题一数形结合

专题一 数形结合思想数形结合思想在高考中占有非常重要的地位,其“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合. 应用数形结合的思想,应注意以下数与形的转化:(1)集合、不等式的运算 (2)函数及其图象(3)复数模 (4)方程及方程的曲线(解析几何)以形助数常用的有:借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方法.例题1.(1) 关于x 的不等式|x-1|+|x-2|>a 恒成立, 则a 的范围(2) 关于x 的不等式|x-1|+|x-2|<a 有解, 则a 的范围2.方程x a y =和a x y += (0>a )的曲线有两个交点,则a 的取值范围是________3.若不等式0log 2<-x x a 在⎪⎭⎫ ⎝⎛21,0内恒成立,则a 的取值范围_____________4.方程x x sin lg =的实根的个数是__________5.定义在R 上的函数()x f 满足()()2+=x f x f ,当x ∈[3,5]时()x f =42--x ,则()x f 在[]1,1-上的单调性为6.设关于x 的方程0cos 3sin =++a x x 在∈x ),0(π内有两个不同的解,则实数a 的取值范围 _____________7.已知f (x )=(x –a )(x –b )–2(其中a <b ),且α、β是方程f (x )=0的两根(α<β),则实数a 、b 、α、β的大小关系为( )A.α<a <b <βB.α<a <β<bC.a <α<b <βD.a <α<β<b8.设)(x f y =是定义在R 上的奇函数,且)(x f y =的图象关于直线21=x 对称,则=++++)5()4()3()2()1(f f f f f9.已知实数y x ,满足04=-+y x ,求22y x +得最小值10.已知实数y x ,满足:6)3()3(22=-+-y x ,求x y的最大值11.若C z ∈且122=-+i z ,则i z 22--的最小值是12.已知复数yi x z ++=51,yi x z +-=52,R y x ∈,,且621=+z z ,求1232),(--=y x y x f 的最大值与最小值。
以形解数,_以数促形——数形结合思想在高中数学解题中的应用研究
㊀㊀㊀解题技巧与方法123㊀数学学习与研究㊀2023 13以形解数以数促形以形解数,以数促形㊀㊀㊀ 数形结合思想在高中数学解题中的应用研究Һ张㊀庆㊀(江苏省徐州市侯集高级中学,江苏㊀徐州㊀221121)㊀㊀ʌ摘要ɔ数与形是数学研究的最基本对象.使学生明确数与形之间的关联,灵活应用以形解数㊁以数促形的方法解决数学难题,对于培养高中生的解题能力有着积极意义.文章阐述了数形结合思想的含义与应用意义,同时结合具体教学案例,从以形解数㊁以数促形㊁数形结合三个层面提出数形结合思想在高中数学解题中的应用策略,希望为提升高中数学解题教学质量提供参考.ʌ关键词ɔ数形结合;高中数学;解题;应用策略高中数学解题教学不仅要为学生传授针对性的解题理论与解题方法,还要注意适时渗透数学思想,同时发展学生的解题能力与解题思维.数形结合思想是一种有机结合抽象的数学语言㊁数量关系与直观的几何图形㊁位置关系的数学思想,将其应用到高中数学解题教学当中,有利于提高学生的解题质量.教师只有认识到数形结合思想的积极教学作用,并将其合理应用于解数的问题㊁形的问题及综合问题的教学当中,才能从根本上提高学生的灵活解题能力.一㊁数形结合思想概述(一)含义数形结合思想的本质是应用 形 将 数 直观地表达出来,应用 数 将 形 准确地描述出来的一种思想方法,主张研究数学问题时将抽象的数量关系与直观的图形结合起来,综合看待数学问题.(二)应用意义将数形结合思想用于高中数学解题教学当中,可以弥补常规解题教学内容的不足,使学生学会从数㊁形两个角度综合看待数学问题,从而提高学生的问题分析㊁解答㊁总结能力.数形结合思想的应用意义具体表现在以下几方面:第一,有利于消除学生的负面解题情绪.高中数学题目具有复杂㊁抽象的特征.教师应用数形结合思想,从以形助数㊁以数解形的角度带领学生探究数学问题,有利于学生快速明确数形关系,确定解题的切入点,在降低解题难度的同时提高学生的解题效率,为学生树立数学解题学习的信心.第二,有利于发展学生灵活的解题思维.思维是思想㊁意识的集中体现,培养学生的解题思维,有利于学生解决形式不同㊁内容不同的数学问题.教师应用数形结合思想展开解题教学,有助于学生打破常规解题思维的禁锢,从新颖的角度思考数学问题,从而提升学生的数学思维水平,提高其解题效率.第三,有利于培养学生良好的解题习惯.习惯对学生的影响是巨大的.在高中数学解题教学中,通过为学生讲解以形解数㊁以数促形㊁数形结合等解决问题的思路㊁方法㊁步骤,可以使学生逐渐形成确切的解题思维体系,使其能够自觉地在遇到问题时灵活应用数学思想探究数学问题,从而达到快速㊁高效解决数学问题的目的.久而久之,学生就能养成良好的解题习惯,能够更加得心应手地解决不同类型的数学难题.二㊁数形结合思想在高中数学解题中的应用策略(一)以形解数,降低难度,提高解题效率1.以形解数巧解集合问题,培养解题兴趣高中数学解题教学的特征之一在于题目信息复杂.学生若欠缺良好的解题内驱力,则很容易在读题㊁解题时出现放弃的负面想法,导致解题教学无法顺利进行下去.在进行集合问题的解题教学时,教师可以巧妙地运用数形结合思想引领学生解决这类问题,通过将复杂的集合语言转化成简单㊁直观㊁易懂的文氏图㊁数轴等图形,激发学生的解题学习兴趣,使其主动参与集合问题的解题学习活动.以 交集㊁并集 一课的解题教学为例,有问题如下:设集合A={x|-5ɤx<1},B={x|xɤ2},则AɣB等于(㊀㊀).A.{x|-5ɤx<1}㊀㊀㊀㊀B.{x|-5ɤxɤ2}C.{x|x<1}D.{x|xɤ2}这一问题的题目㊁选项都以数学语言呈现,并未给出过多解释.许多学生在初次接触这类题目时,容易㊀㊀解题技巧与方法㊀㊀124数学学习与研究㊀2023 13为复杂的题目信息所影响,产生畏难的解题情绪.对此,教师可以将以形解数的思想方法传授给学生,帮助学生将复杂代数问题转化为直观的㊁可视化的图形问题: 对于求并集的数学问题,我们可以运用画数轴的方式解决.将集合A,B在数轴上表示出来,观察两个图形可以发现,集合A被包含在集合B中,两个集合的并集自然是xɤ2.如此,即可得到原题答案.通过巧妙应用数轴图绘制集合的示意图降低集合问题的难度,从而消除学生的负面解题情绪,使其主动投入解决集合问题的过程当中,提高其解题效率.2.以形解数巧解函数问题,简化解题步骤函数问题在高中数学解题教学中占据较大比重.由于函数问题具有较强的抽象性,部分学生在解读题目㊁分析题目时出现了思路混乱的问题,导致解题步骤复杂,不能很快求解出问题答案.教师可以将数形结合思想运用到函数问题的解题教学当中,利用形象㊁直观的图像解释函数问题,以此降低函数问题的难度,使学生在观察图像㊁分析图像的过程中确定解决函数问题的解题方法.以 函数的单调性 一课的解题教学为例,有问题如下:函数y=1x在其定义域(-ɕ,0)上是减函数吗?这一问题给出的信息较为简单,若使用作差法解决这一问题,需要经过较多的计算步骤方能完成此题.为此,教师可以结合 函数的单调性 相关知识点,指导学生绘制函数y=1x的草图,在草图上将该函数图像的上升㊁下降情况反映出来.接着,教师再为函数y=1x进行赋值,如x1=-1,x2=1时,f(x1)=-1,f(x2)=1,让学生明确在x1<x2时有f(x1)<f(x2)的结果.对照函数图像,确定在区间(-ɕ,0)上函数并不是减函数的答案.将以数解形的思想方法用于高中数学函数解题教学当中,可以简化学生的函数解题思路,使其通过绘制草图㊁分析草图㊁代入数据快速完成问题探究,从而提高学生的解题效率.(二)以数促形,强化逻辑,提高解题质量1.以数促形解决解析几何问题,引发逻辑思考解析几何是高中数学教学的重点与难点之一.要使学生具备解决解析几何问题的关键能力,教师需要在常规解题教学的基础上融入数形结合思想,使学生形成以数解形的解题意识,进一步促进其逻辑思考.对此,教师可以为学生呈现解析几何的典型例题,先让学生尝试独立解题,后为学生演绎以数促形解决难题的过程,使其在学习的过程中进行逻辑思考,逐渐形成以数促形解决问题的能力.以 直线与圆的位置关系 一课的解题教学为例,有问题如下:判定直线l:3x+4y-12=0与圆C:(x-32)+(y-2)2=4的位置关系.出示题目后,教师可以给学生5分钟左右的时间,让学生自行解题,启发其深度思考.接着,教师可以通过提问㊁引导的方式,带领学生应用以数促形的思想解决这一习题,如: 根据原题,你能想到什么?如果让你列方程组,这个方程组该怎么列? 通过提问引导学生回顾代数法解决解析几何问题的相关知识点,使学生在教师的点拨下列出方程组.接着,教师再进行追问: 当方程组有两个不相同的解时,圆与直线是怎样的位置关系?当方程组只有一个解时,圆与直线是怎样的位置关系?当方程组没有解时,圆与直线是怎样的位置关系? 借助具体问题引发学生的逻辑思考,使其按照具体步骤解决问题,得到直线l与圆C相交的答案.在面对抽象的解析几何问题时,教师可以让学生运用以数解形的思想方法列方程组㊁消元㊁计算,使学生在练习的过程中逐渐形成逻辑思考㊁逻辑分析的数学解题能力,提高其解题质量.2.以数促形解决立体几何问题,提高辨析能力立体几何问题看似是 形 的问题,但其问题本质与 数 的知识㊁方法有着紧密的关联.教师将数形结合思想用于立体几何问题的解题教学当中,可以为学生提供新的解题学习思路,使其拥有更多的解题选择.如此,学生能够在解题学习中自觉辨析代数方法㊁几何方法解决立体几何问题的优缺点,从而选择更适合自己的解题方法,提升自身解题学习质量.㊀图1以 空间向量与立体几何 一章的解题教学为例,有典型问题如下:如图1,在四面体ABCD中,平面ABCʅ平面ACD,ABʅBC,AC=AD=2,BC=CD=1,求四面体ABCD的体积.为了使学生形成运用最优解法解决立体几何问题的解题能力,教师可以为学生分别讲解用几何法㊁代数法解题的思路,通过呈现两种解题方法,为学生提供更多解题选择,使其按照自㊀㊀㊀解题技巧与方法125㊀数学学习与研究㊀2023 13己的解题爱好选择合适的解题方法,彻底掌握解决立体几何难题的方法,提高其对几何问题的解答能力.(三)数形结合,灵活切入活跃解题思维1.数形结合解决三角函数问题,激活解题思维三角函数是研究三角形与圆等几何形状性质,研究周期性现象的基础数学工具.高中阶段的三角函数问题具有一定的难度,学生的解题思维若过于僵化,则很容易在解题时陷入误区,无法正确解决问题.对此,教师可将数形结合思想渗透进三角函数问题的解题教学当中,通过提问引导㊁组织探究等方式使学生打破僵化的解题思维,从而提高其灵活解题的数学能力.以 解三角形 一章的解题教学为例,有例题如下:讨论函数y=sinx+cosx的图像和性质.很多学生在读题之后,直接运用两角和的正弦公式计算,如:y=sinx+cosx=2sinx+π4æèçöø÷,得到振幅是2,周期是2π等性质.这样的解题方法过于常规,不利于学生发展灵活的解题思维.对此,教师可以提出启发性问题,引导学生从数形结合的角度思考问题: 该函数的图像是怎样的?如果利用图像,能否很快得到问题答案? 基于此问题,教师组织学生以小组为单位进行问题讨论,使其在讨论过程中分别绘制出正弦函数㊁余弦函数的图像,并对图像进行叠加处理,使其在绘图㊁挑选特殊点叠加的过程中体会函数y=sinx+cosx的图像与性质,从而得出该函数周期是2π,合成的振动周期是2π的答案.如此,学生可以进一步理解三角函数问题的本质,形成从数㊁形两个角度分析问题的解题思维.三角函数的问题形式多样,难度较高.教师将数形结合思想运用到解题教学当中,并提出有关引导性问题,引导学生思考㊁探究,使其在解题的过程中逐渐形成综合分析的解题思维,为提高学生的三角函数解题能力奠定基础.2.数形结合解决不等式问题,拓宽思维视野培养高中生举一反三的解题思维是非常重要的.在进行不等式问题的解题教学时,教师可以将数形结合思想融入教学当中,为学生呈现同一问题的不同解答方法,充分扩宽学生的解题思维视野.借助数形结合思想落实一题多解教学,之后组织学生回顾不同解法的解题思路㊁解题步骤,使学生在想㊁用㊁反思的过程中掌握用数形结合思想妙解不等式问题的方式方法,从而提升学生的解题水平.以 基本不等式 一课的解题教学为例,有问题如下:不等式x+2>x的解集是什么?在看到这一问题时,大多数学生选择使用常规的代数方法解决该问题,即:根据原题,将不等式化为xȡ0,x+2ȡ0,x+2>x2或x<0,x+2ȡ0两组不等式,分别解得0ɤx<2与-2ɤx<0,得到原不等式解集为{-2ɤx<2}.然而,这样的解题思路过于常规,若题目内容变得更加复杂,学生很容易在大量的计算中得到错误的答案.对此,教师可以为学生演绎应用数形结合方法解决不等式问题的过程:将原不等式化为y1=x+2与y2=x两个函数,并依据函数绘制出函数草图,那么不等式x+2>x的解集就对应函数y1=x+2图像在y2=x图像上方的部分,很快得到不等式解集为{x|-2ɤx<2}.在该过程中,教师通过引导学生从不同的角度思考问题,为学生演绎用不同方法解决问题,进一步开阔了学生的解题视野,培养了学生灵活解决不等式问题的能力.代数法并不是解决不等式问题的唯一方法.进行不等式问题解题教学时,教师可以将数形结合思想合理渗透进解题课程当中,通过为其说明㊁演绎使学生掌握不同解决不等式问题的方法,从而拓宽学生的数学解题思维.结束语数形结合百般好,隔裂分家万事休. 只有让学生形成从数㊁形两个方面看待问题的解题思维习惯,才能够进一步提高学生灵活思考㊁灵活解题的能力,提升其解题效率与解题质量.实际教学中,教师应明确当下高中数学解题教学的主要目标,并结合解题教学的具体需求合理地将数形结合思想融入不同类型题目的解题教学当中,以此开阔学生的解题视野,提升学生的解题水平.ʌ参考文献ɔ[1]田昆.探析高中数学解题中数形结合思想的应用[J].数学学习与研究,2021(36):153-155.[2]王晨晨.高中数学解题技巧之 数形结合 策略研究[J].高中数理化,2021(24):13.[3]宁邦青.高中数学解题中数形结合思想的有效应用[J].数理化解题研究,2021(33):8-9.[4]徐欣欣.浅析数形结合思想方法在高中数学教学中的应用[J].新课程,2021(41):135.[5]赵文奎.高中数学教学时数形结合方法的应用[J].当代家庭教育,2021(21):11-12.。
“以形助数”,巧解方程和解析几何题
数形结合思想是一种重要的数学思想,也是非常重要的解题方法.在解题中,灵活运用数形结合思想,以形助数,即借助图形来解答数学问题,能使问题中的数量关系变得更加直观,有利于快速找到解题的思路.要借助图形来分析、解答问题,需首先深入挖掘代数式背后的几何意义,将代数式与曲线、图象、数轴等对应起来,然后根据题意建立合适的坐标系或画出相应的数轴,绘制出相应的图形,再通过分析图形来建立新的关系式,求得问题的答案.例1.设关于θ的方程3cos θ+sin θ+a =0在区间(0,2π)内有相异的两个实根α,β.求(1)实数a 的取值范围;(2)求α+β的值.分析:本题若通过解方程的方法来求解,很难成功,我们需以形助数,根据题意绘制相应的图形,借助图形来分析、解答问题.可将方程有两个不同的实数根的问题,转化成两个函数图象在区间内的交点的个数问题,画出函数的图象,便可借助图象来分析a 的取值范围、求得α+β的值.解:(1)由3cos θ+sin θ+a =0可得sin(θ+π3)=-a 2,设y =sin(θ+π3),y =-a2,θ∈(0,2π),则方程3cos θ+sin θ+a =0在(0,2π)内有不同的实数根α,β等价于函数y =sin(θ+π3)与y =-a 2的图象在(0,2π)内有两个不同的交点.在同一坐标系中画出y 1=sin(θ+π3)与y 2=-a2的图象,如图1所示.由图可知ìíîïï-1<a 21,-a 2≠解得-2<a <-3或2>a >-3.图1(2)由上图可知,当2>a >-3,即-a 2时,直线y =-a2与函数y =sin(θ+π3)的图象相交于C和D 两点,由其横坐标可得它们的中点的横坐标为7π6,所以α+β2=7π6,即α+β=7π3.当-2<a <-3,即-a 2时,直线y =-a2与函数y =sin(θ+π3)的图象相交于A 和B 两点,由三角函数的对称性可得α+β2=π6,所以α+β=π3.综上所述,α+β=π3或α+β=7π3.有些问题是与图形有关的,但题目中并未给出具体的图形,此时,我们需根据题意绘制出相应的图形,找出对应的点、线、面的位置及其关系,然后借助图形来分析问题,找出曲线间相切、相交、相离的位置,或讨论取得最值的情形等,由此建立新的关系式,使问题获解.(下转68页)学考方略47思路点拨development of Middle English?2.What is the influ-ence of the new factors appeared in this period on Eng-lish?显然,这两个问题不仅仅考查学生对于课文的理解能力,也考查学生对于英语语言文化的认知能力。
数形结合的思想方法
数形结合的思想方法每一个几何图形中都蕴藏着一定的数量关系,而数量关系又常常可以通过图形的直观性作出形象的描述。
因此,在解决数学问题时,常常根据数学问题的条件和结论之间的内在联系,将数的问题利用形来观察,提示其几何意义;而形的问题也常借助数去思考,分析其代数含义,如此将数量关系和空间形式巧妙地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决的方法,简言之,就是把数学问题中的数量关系和空间形式相结合起来加以考察的处理数学问题的方法,称之为数形结合的思想方法。
数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。
数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。
在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。
一、解题方法指导1.转换数与形的三条途径:①通过坐标系的建立,引入数量化静为动,以动求解。
②转化,通过分析数与式的结构特点,把问题转化到另一个角度来考虑,如将转化为勾股定理或平面上两点间的距离等。
③构造,比如构造一个几何图形,构造一个函数,构造一个图表等。
2.运用数形结合思想解题的三种类型及思维方法:①“由形化数”:就是借助所给的图形,仔细观察研究,提示出图形中蕴含的数量关系,反映几何图形内在的属性。
②“由数化形”:就是根据题设条件正确绘制相应的图形,使图形能充分反映出它们相应的数量关系,提示出数与式的本质特征。
以形助数求值域
以形助数求值域
张润泽
【期刊名称】《数理天地:高中版》
【年(卷),期】2011(000)003
【摘要】本文介绍:构造几何图形,求型如y=kx±√ax2+bx+c(ak≠0)以及型如y=√ax+b±√cx-d(ad〉0)的无理函数值域.
【总页数】2页(P8-9)
【作者】张润泽
【作者单位】福建省晋江市侨声中学,362271
【正文语种】中文
【中图分类】G633.6
【相关文献】
1.利用向量求两类无理函数的值域——兼谈一对“姐妹函数”值域的探求
2.浅谈函数值域的求法——两题看高一新生求函数值域
3.解析几何法在求函数值域与最值中的研究——用斜率法求一类函数的值域与最值
4.以形助数求参数范围:从\"抽象\"到\"形象\"——从2018年河北中考卷第16题\"网传错解\"说起
5.求圆锥曲线最值(值域)常见函数“模型”的解法
因版权原因,仅展示原文概要,查看原文内容请购买。