6数列求和的几种方法
数列求和常见的7种方法

数列求与得基本方法与技巧一、总论:数列求与7种方法:利用等差、等比数列求与公式错位相减法求与反序相加法求与分组相加法求与裂项消去法求与分段求与法(合并法求与)利用数列通项法求与二、等差数列求与得方法就是逆序相加法,等比数列得求与方法就是错位相减法,三、逆序相加法、错位相减法就是数列求与得二个基本方法。
数列就是高中代数得重要内容,又就是学习高等数学得基础。
在高考与各种数学竞赛中都占有重要得地位、数列求与就是数列得重要内容之一,除了等差数列与等比数列有求与公式外,大部分数列得求与都需要一定得技巧、下面,就几个历届高考数学与数学竞赛试题来谈谈数列求与得基本方法与技巧、一、利用常用求与公式求与利用下列常用求与公式求与就是数列求与得最基本最重要得方法。
1、等差数列求与公式:2、等比数列求与公式:3、4、5、[例1]已知,求得前n项与。
解:由由等比数列求与公式得(利用常用公式)===1-[例2]设S n=1+2+3+…+n,n∈N*,求得最大值、解:由等差数列求与公式得, (利用常用公式)∴===∴当,即n=8时,二、错位相减法求与这种方法就是在推导等比数列得前n项与公式时所用得方法,这种方法主要用于求数列{an·bn}得前n项与,其中{a n}、{bn}分别就是等差数列与等比数列。
[例3]求与:………………………①解:由题可知,{}得通项就是等差数列{2n—1}得通项与等比数列{}得通项之积设………………………。
②(设制错位)①-②得 n n n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列得求与公式得:∴[例4] 求数列前n 项得与、解:由题可知,{}得通项就是等差数列{2n}得通项与等比数列{}得通项之积设…………………………………①………………………………② (设制错位)①—②得 (错位相减)∴三、反序相加法求与这就是推导等差数列得前n项与公式时所用得方法,就就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个。
数列求和的八种方法及题型

数列求和的八种方法及题型1、抽象加法法:把等差数列的元素抽象为某一个相同的数值(称为项数,式子为S),通过加法求出所求等差数列的和。
例题:这样一个等差数列:2、4、6、8……100,求这一数列的和是多少?答案:抽象加法法:元素个数n = 99,公差d = 2,首项a = 2。
由公式S=n*(a+l)/2可得:S = 99*(2+100)/2 = 99*102/2 = 4950。
2、数值加法法:直接对元素逐一加法求和。
例题:计算这一等差数列的和:1、3、5、7……99?答案:数值加法法:元素个数n = 49,即:1+3+5+7+...+99=49*100/2=4900。
3、改编组合法:将数列改编为组合形式,将大式化简,从这个组合计算其和。
例题:求这一等差数列的和:2、5、8、11……99?答案:改编组合法:元素个数n = 48,公差d = 3,首项a = 2。
将其转换为组合:2+48d ,即2+(48*3)=150,由公式S=n*(a+l)/2可得:S = 48*(2+150)/2 = 48*152/2 = 7344。
4、数表法:把数列列成表,统计其和。
例题:求这一等差数列的和:3、5、7、9……99?答案:数表法:数列:3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99和:3+5+7+9+11+13+15+17+19+21+23+25+27+29+31+33+35+37+39+41+43+ 45+47+49+51+53+55+57+59+61+63+65+67+69+71+73+75+77+79+81+83 +85+87+89+91+93+95+97+99=24505、立方法:一种特殊情形——这一数列两个元素的值等于这两个元素之间的位数的立方和。
数列求和的基本方法归纳

数列求和的基本方法归纳教师:王光明数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法.1、等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n n n3、)1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、213)]1(21[+==∑=n n k S nk n[例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x 由等比数列求和公式得 n n x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n --1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式)∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积设n n x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位)①-②得 n n n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+ [例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232nn前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………②(设制错位)①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S三、倒序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n nn n n nn C n C C C 2)1()12(53210+=++⋅⋅⋅+++ 证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得 n nn n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加)∴ n n n S 2)1(⋅+=[例6] 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序)又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa an ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组)当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S n n -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1( ∴ ∑=++=nk n k k k S 1)12)(1(=)32(231k k k nk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和)=2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n(5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 [例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴)111(82122+-=+⋅=n n n n b n(裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和)=)111(8+-n = 18+n n[例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+(裂项)∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和)=]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2 ∴ 原等式成立六、合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例12] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.解:设S n = cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°∵ )180cos(cos n n --= (找特殊性质项)∴S n = (cos1°+ cos179°)+( cos2°+ cos178°)+ (cos3°+ cos177°)+···+(cos89°+ cos91°)+ cos90° (合并求和)= 0[例13] 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.解:设S 2002=2002321a a a a +⋅⋅⋅+++由n n n a a a a a a -====++12321,2,3,1可得,2,3,1654-=-=-=a a a,2,3,1,2,3,1121110987-=-=-====a a a a a a……2,3,1,2,3,1665646362616-=-=-====++++++k k k k k k a a a a a a∵ 0665646362616=+++++++++++k k k k k k a a a a a a (找特殊性质项)∴ S 2002=2002321a a a a +⋅⋅⋅+++ (合并求和)=)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a2002200120001999199819941993)(a a a a a a a +++++⋅⋅⋅+++⋅⋅⋅+=2002200120001999a a a a +++ =46362616+++++++k k k k a a a a =5[例14] 在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列的性质 q p n m a a a a q p n m =⇒+=+ (找特殊性质项)和对数的运算性质 N M N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++= (合并求和)=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅ =9log 9log 9log 333+⋅⋅⋅++ =10七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法.[例15] 求11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和. 解:由于)110(91999991111111-=⋅⋅⋅⨯=⋅⋅⋅k k k个个 (找通项及特征)∴11111111111个n ⋅⋅⋅+⋅⋅⋅+++ =)110(91)110(91)110(91)110(91321-+⋅⋅⋅+-+-+-n (分组求和)=)1111(91)10101010(911321 个n n +⋅⋅⋅+++-+⋅⋅⋅+++=9110)110(1091nn ---⋅=)91010(8111n n --+ [例16] 已知数列{a n }:∑∞=+-+++=11))(1(,)3)(1(8n n n n a a n n n a 求的值. 解:∵ ])4)(2(1)3)(1(1)[1(8))(1(1++-+++=-++n n n n n a a n n n (找通项及特征)=])4)(3(1)4)(2(1[8+++++⋅n n n n (设制分组)=)4131(8)4121(4+-+++-+⋅n n n n (裂项)∴ ∑∑∑∞=∞=∞=++-+++-+=-+1111)4131(8)4121(4))(1(n n n n n n n n n a a n (分组、裂项求和) =418)4131(4⋅++⋅=313说明:本资料适用于高三总复习,也适用于高一“数列”一章的学习。
数列求和的8种常用方法

数列求和的8种常用方法数列求和是数学中常见的问题,解决数列求和问题有很多方法。
下面将介绍数列求和的8种常用方法。
1.直接相加法:这是最基本的方法,实际上就是将数列中的所有项相加。
例如,对于等差数列1,3,5,7,9,可以直接相加得到1+3+5+7+9=252.偶数项和与奇数项和之和法:对于一些数列,可以将其分解为偶数项和与奇数项和,然后再求和。
例如,对于等差数列1,3,5,7,9,可以分解为偶数项和4+8和奇数项和1+3+5+7+9,再相加得到(4+8)+(1+3+5+7+9)=373.首项与末项和的乘法法:对于等差数列,可以利用首项与末项之和的公式来求和。
首项与末项之和等于和的平均数乘以项数。
例如,对于等差数列1,3,5,7,9,首项与末项之和等于(1+9)*(项数/2)=10*5/2=254.首项与公差与项数的乘法法:对于等差数列,可以利用首项、公差和项数的乘积来求和。
等差数列的和等于首项乘以项数,再加上项数与公差之积的和。
例如,对于等差数列1,3,5,7,9,和等于1*5+(5*4)/2=10+10=20。
5.平均数法:对于一些特殊的数列,可以利用平均数的性质来求和。
平均数等于数列中的第一项与最后一项的平均值。
例如,对于等差数列1,3,5,7,9,平均数等于(1+9)/2=5,然后将平均数乘以项数,得到5*5=256.高斯求和法:高斯求和法是一种数学推导方法,用于求等差数列的和。
首先将数列化为由首项和末项构成的和,然后将数列顺序颠倒,再将之前的和与颠倒后的和相加,得到的结果就是等差数列的和。
例如,对于等差数列1,3,5,7,9,将其化为(1+9)+(3+7)+5,然后将数列颠倒得到5+(7+3)+9,再相加得到257. telescopage法(消去法):telescopage法是一种利用抵消的思想来求和的方法。
可以将数列中相邻的两项之差相消为0,最终得到一个简单的表达式,然后再求值。
例如,对于数列1, 2, 3, 4, 5,可以将(2-1) + (3-2) + (4-3) + (5-4)相加,得到1 + 1 + 1 + 1 = 48.更一般的求和方法:对于一些复杂的数列,可能需要应用更一般的数学方法来求解。
数列求和方法(带例题和练习题)

数列的求和数列求和主要思路:1.求数列的和注意方法的选取:关键是看数列的通项公式; 2.求和过程中注意分类讨论思想的运用; 3.转化思想的运用; 数列求和的常用方法一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 11123(1)2nn k S k n n n ===+++++=+∑… 4、2222211123(1)(21)6nn k S k n n n n ===++++=++∑5、 2333331(1)1232nn k n n S kn =+⎡⎤===++++=⎢⎥⎣⎦∑ 公式法求和注意事项(1)弄准求和项数n 的值;(2)等比数列公比q 未知时,运用前n 项和公式要分类。
例1.求和221-++++n xx x (0,2≠≥x n )二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n ·b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. 例2.求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S例3.求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 三、倒序相加法如果一个数列与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列前n 项和即可用倒序相加发,如等差数列的前n 项和就是此法推导的例4.求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值例4变式训练1:求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值. 例4变式训练2: 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.例4变式训练3:在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.例5.已知数列{}n a 的通项公式321n n a n =+-,求数列{}n a 的前n 项和n S 。
数列求和的几种常用方法

专题: 数列求和的几种常用方法知识点归纳1等差数列的前n 项和公式, 等比数列的前n 项和公式: S n =d n n na 2)1(1-+S n =2)(1n a a n + S n =d n n na n 2)1(--当d ≠0时,S n 是关于n 的二次式且常数项为0; 当d=0时(a 1≠0),S n =na 1是关于n 的正比例式 当q=1时,S n =n a 1 (是关于n 的正比例式); 当q≠1时,S n =qq a n--1)1(1 S n =qq a a n --112.基本公式法:○1等差、等比数列的前n项和公式、○2()()2221121216n n n n +++=++ 、○3()23333112314n n n ++++=+⎡⎤⎣⎦ 、○40122nnn n n n C C C C ++++=3拆项法求数列的和,如a n =2n+3n4错位相减法求和,如a n =(2n-1)2n(非常数列的等差数列与等比数列的积的形式) 5分裂项法求和,如a n =1/n(n+1)111n n =-+(分子为非零常数,分母为非常数列的等差数列的两项积的形式) 6反序相加法求和,如a n =nnC 1007求数列{a n }的最大、最小项的方法:①a n+1-a n =……⎪⎩⎪⎨⎧<=>000如a n = -2n 2+29n-3②⎪⎩⎪⎨⎧<=>=+1111 nn a a (a n >0) 如a n =nnn 10)1(9+ ③ a n =f(n) 研究函数f(n)的增减性 如a n =1562+n n题型讲解例7 (分情况讨论)求和:)(*122221N n b abba b ab a a S n n n n n nn ∈++++++=----解:①当a=0或b=0时,)(n n n a b S =②当a=b 时,n n a n S )1(+=; ③当a ≠b 时,ba baS n n n --=++11例8(分部求和法)已知等差数列{}n a 的首项为1,前10项的和为145,求解:首先由3145291010110=⇒=⨯⨯+=d da S则12(1)32322n nn a a n d n a =+-=-⇒=⋅- 22423(222)2n na a a n ∴+++=+++- 12(12)32322612nn n n +-=-=⋅---练习(分部求和法)求数列1,3+13,32+132, (3)+13n的各项的和解:其和为: (1+3+ (3))+(13132++……+13n)=3121321n n+--+-=12(3n +1-3-n )例9(裂项求和法))(,32114321132112111*N n n∈+++++++++++++++解:)1(2211+=+⋯++=k k k a k ,])1n (n 1321211[2S n ++⋯+⋅+⋅=∴1211121113121211[2+=⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+-+⋯+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=n n n n n 练习(裂项求和法)已知数列{}n a 为等差数列,且公差不为0,首项也不为0,求和:∑=+ni i i a a 111解:首先考虑=∑=+ni i i a a 111∑=+-ni i ia a d 11)11(1则∑=+ni i i a a 111=1111)11(1++=-n n a a na a d.242n a a a +++点评:已知数列{}na为等差数列,且公差不为0,首项也不为0,下列求和11n ni id===∑∑例10(错位相减法)1.设a为常数,求数列a,2a2,3a3,…,na n,…的前n项和解:①若a=0时,S n=0②若a=1,则S n=1+2+3+…+n=)1n(n21-③若a≠1,a≠0时,S n-aS n=a(1+a+…+a n-1-na n),S n=]naa)1n(1[)a1(a1nn2+++--练习(错位相减法)2.已知1,0≠>aa,数列{}n a是首项为a,公比也为a的等比数列,令)(lg Nnaabnnn∈⋅=,求数列{}n b的前n项和n S解:,lgn nn na ab n a a==⋅232341(23)lg(23)lgnnnnS a a a na aaS a a a na a+∴=++++=++++……①……②①-②得:anaaaaSa nnnlg)()1(12+-+++=-3.求和Sn=nnnn212232252321132-+-++++-解由原式乘以公比21得:21Sn=1322122322321+-+-+++nnnn原式与上式相减,由于错位后对应项的分母相同,可以合并,∴S n-21Sn=21+112212212121+---+++nnn即S n=32232++-nn一般地, 当等比数列{b n}的公比为q, 则错位相减的实质是作“S n- qS n”求和.点评:设数列{}n a的等比数列,数列{}n b是等差数列,则数列{}n n ba的前n项和nS求解,均可用错位相减法例11(递推法)已知数列{}n a的前n项和n S与n a满足:21,,-n n n S S a )2(≥n 成等比数列,且11=a ,求数列{}n a 的前n 项和n S解:由题意:21(),2n n n S a S =-1n n n a S S -=-∴211111()()()22n n n n n n n n S S S S S S S S ---=--⇒-=1111112(1)2211.21nn nn n n S S S S S n -∴-=⇒=+-=-∴=-点评:本题的常规方法是先求通项公式,然后求和,但逆向思维,直接求出数列{}n a 的前n 项和n S 的递推公式,是一种最佳解法例12 数列{}n a 中,2,841==a a 且满足n n n a a a -=++122 *N n ∈ ⑴求数列{}n a 的通项公式;⑵设||||||21n n a a a S +++= ,求n S ; ⑶设n b =)12(1n a n -)(),(*21*N n b b b T N n n n ∈+++=∈ ,是否存在最大的整数m ,使得对任意*N n ∈,均有>n T 32m 成立?若存在,求出m 的值;若不存在,请说明理由解:(1)由题意,n n n n a a a a -=-+++112,}{n a ∴为等差数列,设公差为d ,由题意得2382-=⇒+=d d ,n n a n 210)1(28-=--=∴(2)若50210≤≥-n n 则,5,n ≤时12||||||n n S a a a =+++ 21281029,2n na a a n n n +-=+++=⨯=-6n ≥时,n n a a a a a a S ---+++= 765214092)(2555+-=-=--=n n S S S S S n n故229940n n n S n n ⎧-=⎨-+⎩ 65≥≤n n(3))111(21)1(21)12(1+-=+=-=n n n n a n b n n ∴n T )]111()111()4131()3121()211[(21+-+--++-+-+-=n nnn .)1(2+=n n若32m T n >对任意*N n ∈成立,即161mn n>+对任意*N n ∈成立,)(1*N n n n ∈+ 的最小值是21,,2116<∴m m ∴的最大整数值是7 即存在最大整数,7=m 使对任意*N n ∈,均有.32m T n >说明:本例复习数列通项,数列求和以及有关数列与不等式的综合问题 例13(倒数法)已知函数13)(+=x x x f ,数列{a n }满足a 1 = 1,a n+1 = f(a n ) (n ∈N *)(Ⅰ) 求数列{a n }的通项公式;(Ⅱ) 记S n = a 1a 2 +a 2a 3+…+a n a n+1 , 求S n 解: (Ⅰ) 由131+=+n n n a a a 得 3a n a n+1 +a n+1 = a n ,从而 1113+=+n na a ,即 3111=-+nn a a ,数列}1{na 是以111=a 为首项3为公差的等差数列∴233)1(11-=⋅-+=n n a n, ∴231-=n a n(Ⅱ) 设b n = a n a n+1 ,则 )131231(31)13)(23(1+--=+-=n n n n b n ,∴ )1312311017171414111(3121+--++-+-+-=+++=n n b b b S n n ∴ 13)1311(31+=+-=n nn S n ,1等价转换思想是解决数列问题的基本思想方法,复杂的数列转化为等差、等比数列 2 由特殊到一般及由一般到特殊的思想是解决数列问题的重要思想,数学归纳法是这一思想的理论基础练习1(倒数法)已知数列{a n }中,a 1=53,a n +1=12+n n a a ,求{a n }的通项公式.解:211211+=+=+nnn n a a a a∴⎭⎬⎫⎩⎨⎧n a 1是以35为首项,公差为2的等差数列,即351=na +2(n -1)=316-n ∴a n =163-n练习2(倒数法)已知数列{a n }中,a 1=1,S n =1211+--n n S S ,求{a n }的通项公式.解:21121111+=+=---n n n nS S S S∴⎭⎬⎫⎩⎨⎧n S 1是以1为首项,公差为2的等差数列. ∴nS 1=1+2(n -1)=2n -1,即S n =121-n .∴a n =S n -S n -1=321121---n n =)32)(12(2---n n∴a n =⎪⎩⎪⎨⎧---3211211n n )2()1(≥=n n例14(叠加法)已知数列{a n }的前n 项和S n 满足S n -S n -2=3×(-21)n -1(n ≥3),且S 1=1,S 2=-23,求{a n }的通项公式.解:先考虑偶数项有:S 2n -S 2n -2=-3·1221-⎪⎭⎫⎝⎛nS 2n -2-S 2n -4=-3·3221-⎪⎭⎫⎝⎛n……S 4-S 2=-3·321⎪⎭⎫⎝⎛将以上各式叠加得S 2n -S 2=-3×4114112113-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛-n ,所以S 2n =-2+)1(2112≥⎪⎭⎫⎝⎛-n n .再考虑奇数项有:S 2n +1-S 2n -1=3·n221⎪⎭⎫⎝⎛S 2n -1-S 2n -3=3·2221-⎪⎭⎫⎝⎛n……S 3-S 1=3·221⎪⎭⎫⎝⎛将以上各式叠加得S 2n +1=2-)1(212≥⎪⎭⎫⎝⎛n n.所以a 2n +1=S 2n +1-S 2n =4-3×n221⎪⎭⎫⎝⎛,a 2n =S 2n -S 2n -1=-4+3×1221-⎪⎭⎫⎝⎛n .综上所述a n =⎪⎪⎩⎪⎪⎨⎧⎪⎭⎫ ⎝⎛⨯+-⎪⎭⎫⎝⎛⨯---为偶数,为奇数n n n n 112134,2134,即a n =(-1)n -1·⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⨯--12134n . 例15(a n +1=pa n +r 类型数列)在数列{a n }中,a n +1=2a n -3,a 1=5,求{a n }的通项公式.解:∵a n +1-3=2(a n -3)∴{a n -3}是以2为首项,公比为2的等比数列. ∴a n -3=2n ∴a n =2n +3.练习.在数列{a n }中,a 1=2,且a n +1=212+n a ,求{a n }的通项公式.解:a n +12=21a n 2+21∴a n +12-1=21(a n 2-1)∴{a n +12-1}是以3为首项,公比为21的等差数列.∴a n +12-1=3×121-⎪⎭⎫⎝⎛n ,即a n =1231-+n例16(a n +1=pa n +f (n )类型)已知数列{a n }中,a 1=1,且a n =a n -1+3n -1,求{a n }的通项公式.解:(待定系数法)设a n +p ·3n =a n -1+p ·3n -1则a n =a n -1-2p ·3n -1,与a n =a n -1+3n -1比较可知p =-21.所以⎭⎬⎫⎩⎨⎧-23nn a 是常数列,且a 1-23=-21. 所以23nn a -=-21,即a n =213-n.。
数列求和7种方法(方法全_例子多)
2、等比数列求和公式:
3、 4、
5、
[例1]已知 ,求 的前n项和.
解:由等比数列求和公式得 (利用常用公式)
= = =1-
[例2]设Sn=1+2+3+…+n,n∈N*,求 的最大值.
解:由等差数列求和公式得 , (利用常用公式)
∴ =
= =
∴ 当 ,即n=8时,
二、错位相减法求和
∴
题1已知函数
(1)证明: ;
(2)求 的值.
解:(1)先利用指数的相关性质对函数化简,后证明左边=右边
(2)利用第(1)小题已经证明的结论可知,
两式相加得:
所以 .
四、分组法求和
有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.
.
练习题2。 =
答案:
求数列通项公式的常用方法
(1)求差(商)法
[练习]数列 满足 ,求
注意到 ,代入得 ;又 ,∴ 是等比数列,
时,
(2)叠乘法
如:数列 中, ,求
解 ,∴ 又 ,∴ .
(3)等差型递推公式
由 ,求 ,用迭加法
时, 两边相加得
∴
[练习]数列 中, ,求 ( )
已知数列 满足 , ,求 。
(1)求数列 和 的通项公式;
(2)若数列{ 前n项和为 ,问 > 的最小正整数n是多少?
0.【 成等比数列, ,所以 ;
又公比 ,所以 ;
又 , , ;
数列 构成一个首相为1公差为1的等差数列, ,
当 , ;
( );
(2)
数列求和的几种方法
数列求和的几种方法一、数列的求和问题在数学中非常常见,可以通过各种方法进行求解。
下面将介绍一些数列求和的常用方法。
1.直接求和法直接求和法是最基础的求和方法,即将数列中的所有项相加得到数列的总和。
例如,对于等差数列an = a1 + (n-1)d,其中a1为首项,d为公差,n为项数。
根据等差数列求和公式Sn = n(a1 + an)/2,可以直接将数列中的所有项相加来求和。
2.差分法差分法是一种将数列转化为差分序列进行求和的方法。
对于数列an,可以构造差分序列∆an = an+1 - an,然后将差分序列的所有项相加,得到数列的和。
差分法在数列中的应用较为广泛,尤其对于一些递推关系式的求和问题具有很好的效果。
3.转化法转化法是将数列进行变换,使其转化为容易求解的形式进行求和的方法。
例如,对于等差数列an,可以将其转化为等比数列,再利用等比数列的求和公式进行求解。
转化法需要根据具体数列的性质进行变换,通常需要一定的技巧和经验。
4.等差数列求和公式对于等差数列an = a1 + (n-1)d,其中a1为首项,d为公差,n为项数,有等差数列求和公式Sn = n(a1 + an)/2、该公式是数列求和中最常用的公式之一,可以快速计算得到等差数列的和。
此外,还可以利用等差数列的对称性求和,即Sn = na1 + n(n-1)d/25.等比数列求和公式对于等比数列an = a1 * q^(n-1),其中a1为首项,q为公比,n为项数,有等比数列求和公式Sn = a1 * (q^n - 1)/(q - 1)。
该公式是数列求和中另一个常用的公式,可以迅速计算得到等比数列的和。
6.综合求和法当数列无法通过上述方法直接求和时,可以尝试使用综合求和法。
综合求和法是利用数列中的递推关系式和数学归纳法进行求和的方法。
通过观察数列中的规律,可以得到数列中前n项的和与前n-1项的和之间的关系,从而得到数列的总和。
以上是数列求和的一些常用方法,不同的数列可以采用不同的方法求解。
数列求和的四种方法
) 1
3 n 1
n 3 n 1
3
数列求和
例5
求数列
, , , , 22 42 62
13 35 57
(2n)2 ( 2 n 1)(2 n 1)
的前n项和
Sn
分析: 该数列的分子是偶数的平方,分母是奇数列相邻两项 的乘积;从例4的经验看:该数列求和使用“裂项相消法” 的可能性较大,那就看分子能否化为常数。
Sn
n(a1an ) 2
na1
n(n1) 2
d
等比数列的求和公式: Sn
na1
a1 (1qn ) 1q
(q 1) (q 1)
还有一些常用公式:
12
22
32
n2
n ( n 1) (2 n 1) 6
请看下面例子:
数列求 和
例1 求数列
1
1 2
,3 14
,5 81
,7 116
,9 312
,
的前n项和
的前n项和
分析:该数列可看作等差数列2n 1等比数列
1 2n
的积数列
解:
这里等比数列的公比
q
=
1 2
Sn
1 2
3 22
5 23
7 24
2n1 2n
1 2
Sn
1 3 5
22 23 24
2n3 2n
2n1 2n1
两式相减:(1
1 2
)Sn
1 2
2 22
2 23
2 24
2 2n
2n1 2n1
求法步骤如下:
1、在 Sn a1 a2 an 的两边同时乘于公比q
2、两式相减 ;左边为(1 q)Sn ,右边q的同次式相减 3、右边去掉最后一项(有时还得去掉第一项)剩下的
数列求和7种方法
数列求和7种方法一、求等差数列的和:等差数列的通项公式为 an = a1 + (n-1)d ,其中an 表示第 n 个数,a1 表示首项,d 表示公差,n 表示项数。
1.直接求和法:根据数列的首项 a1、末项 an 和项数 n,直接相加即可。
例如:已知等差数列的首项 a1 = 2,公差 d = 3,项数 n = 5,求和公式为 S = (a1 + an) * n / 2 = (2 + 2 + 4 * 3) * 5 / 2 = 35 2.公式法:利用等差数列的求和公式:S = (a1 + an) * n / 2例如:已知等差数列的首项a1=2,公差d=3,项数n=5,代入公式即可得到结果。
3.递推法:利用数列的递推关系a(n)=a(n-1)+d,可得到递归式,通过递归累加求和。
例如:已知等差数列的首项a1=2,公差d=3,项数n=5,则S(n)=S(n-1)+(a(n-1)+d)=S(n-1)+a(n-1)+d。
二、求等比数列的和:等比数列的通项公式为 an = a1 * q^(n-1),其中an 表示第 n 个数,a1 表示首项,q 表示公比,n 表示项数。
4.直接求和法:根据数列的首项 a1、末项 an 和项数 n,直接相加即可。
例如:已知等比数列的首项a1=2,公比q=3,项数n=5,求和公式为S=(a1*(q^n-1))/(q-1)=(2*(3^5-1))/(3-1)=2425.公式法:利用等比数列的求和公式:S=(a1*(q^n-1))/(q-1)。
例如:已知等比数列的首项a1=2,公比q=3,项数n=5,代入公式即可得到结果。
6.迭代法:利用数列的递推关系a(n)=a(n-1)*q,可得到递归式,通过递归累加求和。
例如:已知等比数列的首项a1=2,公比q=3,项数n=5,则S(n)=S(n-1)+a(n-1)*q=S(n-1)+a(n-1)*q。
三、其他数列的求和方法:7.利用数列的递归关系:对于一些特殊的数列,可能没有通项公式,但可以根据数列的递归关系利用递归求和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数 列 求 和 的 几 种 方 法
201600 上海市松江二中 朱伟卫
1、题目:
数列}{na的首项为11a,且),,3,2,1(1mnCaanmnn,mmaaaaS321。
证明:*)(21NmmSmm。
2、命题意图
数列求和是数列知识的一个重要方面。数列求和的基本方法有转化为等差(比)数列求和、倒序相
加、错位相减、叠加法、裂项法、数学归纳法等等。学生要熟练掌握这些求和方法。本题结合组合数的知
识,设计了一个数列求和问题,旨在考察学生在灵活和综合运用知识的能力。
3、解题思路
依题意,数列}{na是项数为m的数列,mS是数列}{na的所有项的和。为了求mS,必需先求na。
根据题设条件),,3,2,1(1mnCaanmnn,分别取)11(,,3,2,1mkkn,得
,112mCaa,223mCaa,,334mCaa
,11kmkkCaa
即,112mCaa,223mCaa,,334mCaa,11kmkkCaa
将这1k个式子相加得(这里用到了叠加法)
1101211122311)()()(kmmmmmk
mkkk
CCCCCCaaaaaaaa
,
所以
)()()()(110110210100321mmmmkmmmmmmmmmmmCCCCCCCCCCCCaaaaS+ +
1232102)3()2()1(mmm
mmmmm
CCCmCmCmmC
。
下面就可以求mS了。
(1)用倒序相加法。
一方面,1232102)3()2()1(mmmmmmmmmCCCmCmCmmCS,
另一方面,
0123321)1()2()3(32mmmmmmmmmmmmCCmCmCmCCCS
。
两式相加,注意到mnnmnCC得
] +[][0123321123210)1()2()3(322)3()2()1(2mmmmmmmmmmmmmmmmmmmmCCmCmCmCCCCCCmCmCmmCS
] +[][321mmmmmmmmmmmmmmmmmmmmCCmCmCmCCCCCCmCmCmmC123123210)1()2()3(32
2)3()2()1(
m
mmmmmmmmmmmmCmCmCmCmCmCmC2123210
所以,*)(21NmmSmm。
(2)用另一种倒序相加法。
因为110kmmmkCCCa,
所以)()(101101kmmmmkmmmkmkCCCCCCaa
mmmkmkmkmmmCCCCCC21110
,
即
m
mkmkmmaaaaaaaa211121
。
所以将mmaaaaS321和
121aaaaSmmmm
两边分别相加得
m
mmkmkmmmmaamaaaaaaaaS2)()()()()(2111121
,所以
*)(21NmmSmm
。
(3)用数学归纳法。
关键在:假设当km时*)(21NkkSkk,那么,由归纳假设和组合数性质
11mnmnm
n
CCC
得
kkkkkkkkCCCkkCCkS11121110112)1()1(
kkkkkkkkkkkkkkkkkkkkkCCCSCCCCCCkCCkCk222)(2)()(2))(1()()1(11012112010
1)1(2)1(k
k
。
(4)用组合数的性质转化。
在1232102)3()2()1(mmmmmmmmmCCCmCmCmmCS中考虑第k项
k
m
Ckm)(
的转化。由组合数公式,kmkmmCkmkmmkmkmkmCkm1)!1(!)!1()!(!!)()(,其中
mkNkNmm,*,,2
。所以2m时,
1232102)3()2()1(mmm
mmmmmm
CCCmCmCmmCS
.2)(111213121110111213121110mmmmmmmmmmmmmmmmmm
CCCCCCm
mCmCmCmCmCmC
当1m时等式显然是成立的。
4、错误剖析
本题有以下几个典型错误:
(1)不能正确理解数列}{na及mS的含义,无法求出na,所以也不能求出mS。
(2)能用叠加法求出na,但在求mS时没有分清组成mS的各项的结构,致使运算无法进行。
(3)在运用数学归纳法时,以为11kkkaSS,说明对mS的结构不清楚。
(4)用组合数的性质转化求和时,没有补充说明1m的情形等式是否成立。
5、题目评价
这是一道以组合数为主体的数列求和问题,比较全面地运用了解决数列问题的一般方法,对学生提
高运用数学符号的能力和运算能力提出了较高的要求。另外,本题作为一道代数推理题,可以培养学生演
绎推理的能力,使学生体会运用演算进行推理是数学证明中的重要手段。