初一数学直线射线线段专项练习题
【数学】七年级上册直线、射线、线段、角(同步练习题三套含答案)

直线、射线、线段、角(同步练习题三套)直线、射线、线段同步练习题(一)一.选择题1.两根木条,一根长18cm,一根长22cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.2cm B.4cm C.2cm或22cm D.2cm或20cm 2.延长线AB到C,使得BC=AB,若线段AC=8,点D为线段AC的中点,则线段BD 的长为()A.2B.3C.4D.53.如图,点C是线段BD之间的点,有下列结论①图中共有5条线段;②射线BD和射线DB是同一条射线;③直线BC和直线BD是同一条直线;④射线AB,AC,AD的端点相同,其中正确的结论是()A.②④B.③④C.②③D.①③4.下列说法中,正确的是()A.若线段AC=BC,则点C是线段AB的中点B.任何有理数的绝对值都不是负数C.角的大小与角两边的长度有关,边越长角越大D.两点之间,直线最短5.平面内不同的两点确定一条直线,不同的三点最多确定三条直线,若在平面内的不同的n个点最多可确定36条直线,则n的值为()A.6B.7C.8D.96.如图,工人砌墙时在墙的两端各固定一根木桩,再拉一条线,然后沿线砌砖.用数学知识解释其中道理,正确的是()A.两点之间,线段最短B.射线只有一个端点C.两直线相交只有一个交点D.两点确定一条直线7.下列说法中正确的个数为()(1)如果AC=CB,则点C是线段AB的中点;(2)连结两点的线段叫做这两点间的距离;(3)两点之间所有连线中,线段最短;(4)射线比直线小一半;(5)平面内3条直线至少有一个交点.A.1个B.2个C.3个D.4个8.某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是()A.经过两点有一条直线,并且只有一条直线B.两条直线相交只有一个交点C.两点之间所有连线中,线段最短D.两点之间线段的长度,叫做这两点之间的距离9.下列语句:①不带“﹣”号的数都是正数;②如果a是正数,那么﹣a一定是负数;③射线AB和射线BA是同一条射线;④直线MN和直线NM是同一条直线,其中说法正确的有()A.1个B.2个C.3个D.4个10.如图是北京地铁的路线图,小明家住复兴门,打算趁着放假去建国门游玩,看了路线图后,小明打算乘坐①号线地铁去,认为可以节省时间,他这样做的依据是()A.垂线段最短B.两点之间,直线最短C.两点确定一条直线D.两点之间,线段最短二.填空题11.若两条直线相交,有个交点,三条直线两两相交有个交点.12.在直线上任取一点A,截取AB=16cm,再截取AC=40cm,则AB的中点D与AC的中点E之间的距离为cm.13.已知线段AB,在AB的延长线上取一点C,使AC=2BC,若在AB的反向延长线上取一点D,使DA=2AB,那么线段AC是线段DB的倍.14.已知:如图,B,C两点把线段AD分成2:4:3三部分,M是AD的中点,CD=6cm,则线段MC的长为.15.如图,从学校A到书店B最近的路线是①号路线,其道理用几何知识解释应是.三.解答题16.已知线段AB,在AB的延长线上取一点C,使BC=3AB,在BA的延长线上取一点D,使DA=2AB,E为DB的中点,且EB=30cm,请画出示意图,并求DC的长.17.课间休息时小明拿着两根木棒玩,小华看到后要小明给他玩,小明说:“较短木棒AB 长40cm,较长木棒CD长60cm,将它们的一端重合,放在同一条直线上,此时两根木棒的中点分别是点E和点F,则点E和点F间的距离是多少?你说对了我就给你玩”聪明的你请帮小华求出此时两根木棒的中点E和F间的距离是多少?18.已知直线l依次三点A、B、C,AB=6,BC=m,点M是AC点中点(1)如图,当m=4,求线段BM的长度(写清线段关系)(2)在直线l上一点D,CD=n<m,用m、n表示线段DM的长度.19.已知点C,D在线段AB上(点C,D不与线段AB的端点重合),AC+DB=AB.(1)若AB=6,请画出示意图并求线段CD的长;(2)试问线段CD上是否存在点E,使得CE=AB,请说明理由.参考答案与试题解析一.选择题1.【解答】解:如图,设较长的木条为AB=22cm,较短的木条为BC=18cm,∵M、N分别为AB、BC的中点,∴BM=11cm,BN=9cm,∴①如图1,BC不在AB上时,MN=BM+BN=11+9=20cm,②如图2,BC在AB上时,MN=BM﹣BN=11﹣9=2cm,综上所述,两根木条的中点间的距离是2cm或20cm;故选:D.2.【解答】解:∵BC=AB,AC=8,∴BC=2,∵D为线段AC的中点,∴DC=4,∴BD=DC﹣BC=4﹣2=2;故选:A.3.【解答】解:①图中共有6条线段,错误;②射线BD和射线DB不是同一条射线,错误;③直线BC和直线BD是同一条直线,正确;④射线AB,AC,AD的端点相同,正确,故选:B.4.【解答】解:A、若线段AC=BC,则点C是线段AB的中点,错误,A、B、C三点不一定共线,故本选项错误;B、任何有理数的绝对值都不是负数,正确,故本选项正确;C、应为:角的大小与角两边的长度无关,故本选项错误;D、应为:两点之间,线段最短,故本选项错误.故选:B.5.【解答】解:∵平面内不同的两点确定1条直线,可表示为:=1;平面内不同的三点最多确定3条直线,可表示为:=3;平面内不同的四点确定6条直线,可表示为:=6;以此类推,可得:平面内不同的n点可确定(n≥2)条直线.由已知可得:=36,解得n=﹣8(舍去)或n=9.故选:D.6.【解答】解:工人砌墙时在墙的两端各固定一根木桩,再拉一条线,然后沿线砌砖,则其中的道理是:两点确定一条直线.故选:D.7.【解答】解:(1)如果AC=CB,则点C是线段AB垂直平分线上的点,原来的说法错误;(2)连结两点的线段的长度叫做这两点间的距离,原来的说法错误;(3)两点之间所有连线中,线段最短是正确的;(4)射线与直线都是无限长的,原来的说法错误;(5)平面内互相平行的3条直线没有交点,原来的说法错误.故选:A.8.【解答】解:某同学用剪刀沿直线将一片平整的荷叶剪掉一部分(如图),发现剩下的荷叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是:两点之间所有连线中,线段最短,故选:C.9.【解答】解:①不带“﹣”号的数不一定是正数,错误;②如果a是正数,那么﹣a一定是负数,正确;③射线AB和射线BA不是同一条射线,错误;④直线MN和直线NM是同一条直线,正确;故选:B.10.【解答】解:由图可知,乘坐①号地铁走的是直线,所以节省时间的依据是两点之间线段最短.故选:D.二.填空题(共5小题)11.【解答】解:两条直线相交,有1个交点,三条直线两两相交有1或3个交点.故答案为:1,1或3.12.【解答】解:①如图1,当B在线段AC上时,∵AB=16cm,AC=40cm,D为AB中点,E为AC中点,∴AD=AB=8cm,AE=AC=20cm,∴DE=AE﹣AD=20cm﹣8cm=12cm;②如图2,当B不在线段AC上时,此时DE=AE+AD=28cm;故答案为:12或28.13.【解答】解:如下图所示:设AB=1,则DA=2,AC=2,∴可得:DB=3,AC=2,∴可得线段AC是线段DB的倍.故答案为:.14.【解答】解:∵B,C两点把线段AD分成2:4:3三部分,∴设AB=2x,BC=4x,CD=3x,∵CD=6cm,即3x=6cm,解得x=2cm,∴AD=2x+4x+3x=9x=9×2=18cm,∵M是AD的中点,∴MD=AD=×18=9cm,∴MC=MD﹣CD=9﹣6=3cm.故答案为:3cm.15.【解答】解:根据线段的性质:两点之间线段最短可得,从学校A到书店B最近的路线是①号路线,其道理用几何知识解释应是两点之间线段最短.故答案为:两点之间线段最短.三.解答题(共4小题)16.【解答】解:如图:∵E为DB的中点,EB=30cm,∴BD=2EB=60cm,又∵DA=2AB,∴AB=BD=20cm,AD=BD=40cm,∴BC=3AB=60cm,∴DC=BD+BC=120cm.17.【解答】解:如图1,当AB在CD的左侧且点B和点C重合时,∵点E是AB的中点,∴BE=AB=×40=20cm,∵点F是CD的中点(或点F是BD的中点)∴CF=CD=×60=30cm(或BF=CD=×60=30cm),∴EF=BE+CF=20+30=50cm(或EF=BE+BF=20+30=50cm);如图2.当AB在CD上且点B和点C重合时,∵点E是AB的中点,∴BE=AB=×40=20cm,∵点F是CD的中点(或点F是BD的中点),∴CF=CD=×60=30cm(或BF=CD=×60=30cm),∴EF=CF﹣BE=30﹣20=10cm(或EF=BF﹣BE=30﹣20=10cm).∴此时两根木棒的中点E和F间的距离是50cm或10cm.18.【解答】解:(1)当m=4时,BC=4,又∵AB=6,∴AC=4+6=10,又M为AC中点,∴AM=MC=5,∴BM=AB﹣AM,=6﹣5=1;(2)∵AB=6,BC=m,∴AC=6+m,∵M为AC中点,∴,①当D在线段BC上,M在D的左边时,CD=n,MD=MC﹣CD==;②当D在线段BC上,M在D的右边边时,CD=n,MD=DC﹣MC=n﹣=;③当D在l上且在点C的右侧时,CD=n,MD=MC+CD=+n=.19.【解答】解:(1)如图所示:∵AC+DB=AB,AB=6,∴AC+DB=2,∴CD=AB﹣(AC+DB)=6﹣2=4;(2)线段CD上存在点E,使得CE=AB,理由是:∵AC+DB=AB角同步练习试题一、选择题(本大题共12小题,共36分)1.如图,下面四种表示角的方法,其中正确的是()。
初一数学线段射线直线试题

初一数学线段射线直线试题1.如图,A,B在直线l上,下列说法错误的是()A.线段AB和线段BA同一条线段B.直线AB和直线BA同一条直线C.射线AB和射线BA同一条射线D.图中以点A 为端点的射线有两条.【答案】C【解析】根据线段,射线,直线的表示方法依次分析即可判断.A、B、D、均正确;C、射线AB和射线BA不是同一条射线,本选项说法错误.【考点】本题考查的是线段,射线,直线的表示方法点评:解答本题的关键是熟练掌握表示线段和直线的两个大写字母的顺序可以交换,而射线只有一个端点,表示端点的字母一定要写在前面.2.在图中,不同的线段的条数是()A.3B.4C.5D.6【答案】D【解析】根据图形的特征结合线段的表示方法即可得到结果.图中有线段AC、AD、AB、CD、CB、DB共六条,故选D.【考点】本题考查的是线段的概念点评:解答本题的关键是熟练掌握线段有两个端点,同时注意表示线段的两个大写字母的顺序可以交换.3.一条线段向一个方向无限延伸就形成了;向两个方向无限延伸就形成了 .【答案】射线,直线【解析】根据线段的性质即可得到结果.一条线段向一个方向无限延伸就形成了射线;向两个方向无限延伸就形成了直线.【考点】本题考查的是线段,射线,直线点评:解答本题的关键是熟记线段有两个端点,射线有一个端点,可以向一方无限延伸,直线没有端点,可以向两方无限延伸.4.如图,其中的线段是;射线是 .【答案】线段AB、线段BC、线段AC;射线AB、射线BC、射线CA【解析】根据线段,射线的表示方法结合图形的特征即可得到结果.线段是线段AB、线段BC、线段AC;射线是射线AB、射线BC、射线CA.【考点】本题考查的是线段,射线的表示方法点评:解答本题的关键是熟练掌握表示线段的两个大写字母的顺序可以交换,而射线只有一个端点,表示端点的字母一定要写在前面.5.如图,写出其中能用P,A,B,C中的两个字母表示的不同射线 .【答案】射线PA、射线PB、射线PC、射线AB、射线BC、射线BA、射线CB【解析】根据射线的表示方法结合图形的特征即可得到结果.图中能用P,A,B,C中的两个字母表示的不同射线有:射线PA、射线PB、射线PC、射线AB、射线BC、射线BA、射线CB.【考点】本题考查的是射线的表示方法点评:解答本题的关键是熟练掌握射线只有一个端点,表示端点的字母一定要写在前面.6.已知平面上有不在同一直线上的三点,则:以其中一点为端点且经过另一点的射线共有条;以其中两点为端点的线段共有条;经过其中两点的直线共有条;经过其中两点的线段共有条.【答案】6、3、3、无数【解析】根据线段,射线,直线的性质即可得到结果.以其中一点为端点且经过另一点的射线共有6条;以其中两点为端点的线段共有3条;经过其中两点的直线共有3条;经过其中两点的线段共有无数条.【考点】本题考查的是线段,射线,直线点评:解答本题的关键是熟记线段有两个端点,射线有一个端点,可以向一方无限延伸,直线没有端点,可以向两方无限延伸.7.如图,三条直线l,m,n,写出图中能用两个大写字母表示的所有线段:;图中能用两个大写字母表示的射线共有条.【答案】线段AB、线段AE、线段BE、线段CD、线段CF、线段DF、线段EF、10【解析】根据线段,射线的表示方法结合图形的特征即可得到结果.线段是线段AE、线段AB、线段EB、线段EF、线段CF、线段CD、线段FD,能用两个大写字母表示的射线共有10条.【考点】本题考查的是线段,射线的表示方法点评:解答本题的关键是熟练掌握表示线段的两个大写字母的顺序可以交换,而射线只有一个端点,表示端点的字母一定要写在前面.8.在图中已有的线段中,能用大写字母表示不同线段共有条.【答案】18【解析】根据线段的表示方法结合图形的特征即可得到结果.在图中已有的线段中,能用大写字母表示不同线段共有18条.【考点】本题考查的是线段的表示方法点评:解答本题的关键是熟练掌握表示线段的两个大写字母的顺序可以交换,注意较复杂的图形在找线段时,要按照顺序,作到不重不漏.9.如图,点A,B,C,D,E是直线l上的点,点P是直线l外一点,则以P为端点且经过A,B,C,D,E中的一点的射线有条;以A为一个端点且以B,C,D,EP中的一点为另一个端点的线段共有条;经过P,A,B,C,D,E中的两点的不同直线共有条.【答案】5,5,6【解析】根据线段,射线的表示方法结合图形的特征即可得到结果.以P为端点且经过A,B,C,D,E中的一点的射线有5条;以A为一个端点且以B,C,D,EP中的一点为另一个端点的线段共有5条;经过P,A,B,C,D,E中的两点的不同直线共有6条.【考点】本题考查的是线段,射线的表示方法点评:解答本题的关键是熟练掌握表示线段的两个大写字母的顺序可以交换,而射线只有一个端点,表示端点的字母一定要写在前面.10.数一数,图中共有多少条线段?并分别写出这些线段.【答案】10,线段AB、线段BC、线段CD、线段DA、线段AC、线段AO、线段CO、线段BD、线段BO、线段DO.【解析】根据线段的表示方法结合图形的特征即可得到结果.图中共有10条线段,分别为线段AB、线段BC、线段CD、线段DA、线段AC、线段AO、线段CO、线段BD、线段BO、线段DO.【考点】本题考查的是线段的表示方法点评:解答本题的关键是熟练掌握表示线段的两个大写字母的顺序可以交换,注意较复杂的图形在找线段时,要按照顺序,作到不重不漏.。
数学人教版(2024版)课时练习 含答案七年级初一上册 6.2.1 直线、射线、线段 03

第六章几何图形初步6.2.1直线、射线、线段一、单选题1.下列说法中,正确的是()A.相交的两条直线叫做垂直B.经过一点可以画两条直线C.平角是一条直线D.两条直线相交,只有一个交点2.如图,过A、B、C三点中的任意两点画直线,能画()A.2条B.3条C.6条D.无数条3.下列结论正确的是()A.直线比射线长B.过两点有且只有一条直线C.过三点一定能作三条直线D.过一点只能作一条直线4.如图,建筑工人砌墙时,经常用细绳在墙的两端之间拉一条参照线,使砌的每一层砖在一条直线上,这样做蕴含的数学原理是()A.过直线外一点有且只有一条直线与已知直线平行B.两点确定一条直线C.两点之间线段最短D.同一平面内,过一点有且只有一条直线与已知直线垂直5.如图所示,下面给出的直线a,b,射线OA,线段AB中,能相交的图形有()A.1个B.2个C.3个D.4个6.如图所示,下列说法不正确的是()A.点A在直线BD外B.点C在直线AB上C.射线AC与射线BC是同一条D.直线AC和直线BD相交于点B 7.如图,有下列结论:①以点A为端点的射线共有5条;②以点D为端点的线段共有4条;③射线CD和射线DC是同一条射线;④直线BC和直线EF是同一条直线.以上结论正确的是()A.①②B.①④C.②③D.②④8.下列说法不正确的是()A.直线比射线长B.射线是直线的一部分C.线段是直线的一部分D.线段是射线的一部分9.关于如图中的点和线,下列说法错误的是()A.点C在直线AB上B.点C在线段AB上C.点B在射线AC上D.点B在线段AC上10.平面上有A,B,C三点,如果10AB=,6BC=,那么下列说法正AC=,4确的是()A.点C在线段AB上B.点C在线段AB的延长线上C.点C在直线AB外D.点C的位置无法确定二、填空题11.通过画图,我们发现了如下的规律:图形直线上点的个数共有线段的条数213346510………若直线上有11个不同的点,则此图中共有条线段.12.直线AB BC CA,,的位置关系如图所示,下列语句:①点A在直线BC上;②直线BC经过点D;③直线AC BC,交于点C;④点C在直线 直外;⑤直线,,两两相交.以上表述正确的有.(只填写序号)AB BC CA13.如图图中有a条直线,b条射线,c条线段,则a+b-c的值等于.14.直线AB BC CA,,的位置关系如图所示,则下列语句:①点B在直线BC上;②直线AB经过点C;③直线AB BC CA,,两两相交;④点B 是直线AB BC,的交点,以上语句正确的有(只填写序号)15.可以朝两边的线叫做直线.16.直线上的部分叫做射线,这个点叫做射线的.三、解答题17.用尺规作图,不写作法,但要保留作图痕迹a b a b<;已知:线段,()求作:线段3=-.AB a b18.如图,已知四点A,B,C,D(任意三点都不在一条直线上),按照下列语句画出图形:(1)画线段AB;(2)画射线BD;(3)连接AC与BD相交于点O;(4)画线段BC并反向延长BC至点E,使2=(保留画图痕迹,不写画法).CE BC19.请写出图中以O为端点的各条射线.20.按要求画图:(1)画线段2AB=cm;(2)在AB上取点C,使1==cm;AC BC(3)反向延长AB到F,使1AF=cm;(4)延长AB到E,使2BE=cm;(5)过E作直线EG,以F为端点作一射线FG,并与直线EG相交于G.参考答案1.D2.B3.B4.B5.B6.C7.B8.A9.D10.A11.5512.②③④⑤13.114.①③④15.无限延伸16.一点和它一旁端点17.解:线段AB即为所求.18.(1)解:线段AB即为所求;(2)解:射线BD即为所求;(3)解:点O即为所求;(4)解:CE即为所求,19.解:如图所示:。
初一数学线段射线和直线试题

初一数学线段射线和直线试题1. A、B两点间的距离是指()A.连结A、B两点间的线段; B.过A、B两点间的直线;C.连结A、B两点间的线段长; D.直线AB的长;【答案】C【解析】此题考查了两点间的距离的定义根据两点间距离的定义:连接两点间的线段长度叫做这两点之间的距离,即可得到结果。
A、B两点间的距离是指连结A、B两点间的线段长,故选C.思路拓展:解答此题的关键是掌握好两点间距离的定义:连接两点间的线段长度叫做这两点之间的距离,切记不能忽略是线段的“长度”表示“距离”.2.关于直线,下列说法正确的是()A.可以量长度B.有两个端点C.可以用两个小写字母来表示D.没有端点【答案】D【解析】本题主要考查直线的定义,直线的表示方法直线没有端点,可以向两方无限延伸,故直线没有长度。
直线既可以用两个大写字母表示,也可以用一个小写字母表示。
A、直线没有长度,故本选项错误;B、直线没有端点,故本选项错误;C、直线可以用两个大写字母表示,也可以用一个小写字母表示,故本选项错误;D、直线没有端点,故本选项正确,故选D.思路拓展:解答本题的关键是掌握好直线的定义,直线的表示方法。
3.下列说法中,其中正确的是()A.延长射线的AB B.延长直线ABC.延长线段AB D.反向延长直线AB【答案】C【解析】本题考查的是线段、射线、直线的延伸性根据线段有两个端点,射线有一个端点,直线没有端点,依次判断各项即可。
A.射线有一个端点,可以向一方无限延伸,故本选项错误;B.直线没有端点,可以向两方无限延伸,故本选项错误;C.延长线段AB,本选项正确;D.直线没有端点,可以向两方无限延伸,故本选项错误;故选C.思路拓展:解答本题的关键是掌握好线段、射线、直线的延伸性.4.经过一点的直线可以画条,经过两点的直线有条.【答案】无数,1【解析】本题考查了直线的公理经过两点有且只有一条直线,当一个点确定时,另一个点可以有很多,即有无数条直线;由定理可以得出过两点有且只有一条直线.过一点的直线如图所示:可以得出有无数条;经过两点画直线,如图所示:,只有一条.思路拓展:解答本题的关键是掌握好直线的公理,熟记公理定理是学好数学的关键.5.在平面上画出三条直线,两两相交,交点的个数最多应该是()A.1个B.2个C.3个D.4个【答案】C【解析】本题考查了直线的性质在平面上画出三条直线,当这三条直线经过同一个点时,则可以知道有一个交点;当这三条直线不经过同一点时,则可以知道有三个交点.即可得出答案.①当三条直线过同一点时,如图,则知道只有一个交点;②当三条直线不经过同一点时,如图,则可知道有三个交点.故选C.思路拓展:解决本题的关键是画出三条直线相交时的三种情况,找出交点.6.如图,林林的爸爸只用两枚钉子就把一根木条固定在墙上,下列语句能解释这个原理的是()A.木条是直的B.两点确定一条直线C.过一点可以画无数条直线D.一个点不能确定一条直线【答案】B【解析】本题主要考查两点确定一条直线的公理根据直线的公理:两点确定一条直线解答即可.把一根木条固定在墙上,至少需要两个钉子,这是因为经过两点有且只有一条直线,简称:两点确定一条直线.故选B.思路拓展:本题主要考查两点确定一条直线的公理的记忆,熟练记忆公理对学好几何知识是大有帮助的.7.探照灯射出的光线,给我们的印象似 .【答案】射线【解析】本题利用生活中的现象考查了射线的定义根据直线、线段、射线的定义,直线:过两点有且只有一条直线(两点确定一条直线),无端点;射线:直线上的一点,可向一方无限延伸,有一个端点;线段:直线上两点间的一段,有两个端点.探照灯发射出的光线只有一个端点,可向一方无限延伸,故是射线.∵探照灯发射出的光线只有一个端点,可向一方无限延伸,∴符合射线的特征,故应填射线.思路拓展:正确掌握直线、线段、射线三者的概念是解题的关键.8.如图所示,在线段上任取两点、,那么图中共有条线段.【答案】6【解析】本题考查了线段的性质根据线段的定义:直线上两个点和它们之间的部分叫做线段,只要找到两个端点即可得出结论,图中有4个点,任取两个即可得到6条线段.如图所示:任意找到两个点,即可得到由线段:AC、AD、AB、CD、CB、DB共6条.即图中共有6条线段.思路拓展:在线段的计数时,做到不遗漏,不重复.9.请按要求画图:(1)画射线;(2)在射线上截取线段;(3)在射线上顺次截取.【答案】【解析】本题主要考查了根据射线和线段的定义作图根据射线和线段的定义,画射线AM,以A为端点向AM方向延长,后再依次截取各个线段.所作图形如下所示:思路拓展:解答本题的关键是掌握好射线和线段的定义.10.先观察图形,阅读相关文字后,再回答问题.两条直线相交,最多有1个交点;三条直线相交,最多有3个交点;四条直线相交,最多有6个交点;…………问题:10条直线相交,最多有几个交点?【答案】45【解析】本题考查直线的相交情况要使的交点最多,必须交点不重合;由此可知:设原有n条直线,最多有m个交点,此时增加一条直线,交点个数最多增加n个.故n条直线相交,最多有1+2+3+…+(n—1)=个交点.将代入得,,答:10条直线相交,最多有45个交点.解答本题的关键是找到交点个数的变化规律。
初中数学直线射线线段综合练习题(附答案)

初中数学直线射线线段综合练习题一、单选题1.下列说法正确的是( )A.画射线3cm OA =B.线段AB 和线段BA 不是同一条线段C.点A 和直线l 的位置关系有两种D.三条直线相交一定有3个交点 2.从重庆站乘火车到北京站,沿途经过5个车站方可到达北京站,那么在重庆与北京两站之间需要安排不同的车票___________种.3.若平面内有点,,A B C ,过其中任意两点画直线,则最多可以画的条数是( )A.3B.4C.5D.64.如图,点O 与射线AB 的位置关系是( )A.点O 一定在射线AB 上B.点O 一定不在射线AB 上C.点O 可能在射线AB 上,也可能不在射线AB 上D.射线AB 可能会经过点O5.下列图示中,直线表示方法正确的有( )A.①②③④B.①②C.②④D.①④6.已知线段10cm AB =,点C 是直线AB 上一点,4cm BC =,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是( )A.7 cmB.3 cmC.7cm 或3cmD.5 cm7.如图,,C B 是线段AD 上的两点,若,2AB CD BC AC ==,那么AC 与CD 的关系为( )A.2CD AC =B.3CD AC =C.4CD AC =D.不能确定二、解答题8.如图,P 是线段AB 上任意一点,12cm,,AB C D =两点分别从,P B 同时向A 点运动,且C 点的运动速度为2cm/s,D 点的运动速度为3cm/s ,运动的时间为s t .(1)若8cm AP =,①运动1s 后,求CD 的长;②当D 在线段PB 上运动时,试说明2AC CD =;(2)如果2s,1cm t CD ==,试探索AP 的值.9.如图,,B C 两点把线段AD 分成2:5:3三部分,M 为AD 的中点,6cm BM =,求CM 和AD 的长.10.如图,点C 是线段AB 上一点,点,,M N P 分别是线段,,AC BC AB 的中点.(1)若12cm AB =,求线段MN 的长度;(2)若3cm,1cm AC CP ==,求线段PN 的长度.11.如图,在一条不完整的数轴上从左到右有,,A B C 三点,其中2,1AB BC ==.设点,,A B C 所对应的数的和是p .(1)若以B 为原点,写出点,A C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少?(2)若原点O 在图中数轴上点C 的右边,且28CO =,求p .12.如图,已知线段6AD =cm ,线段4AC BD ==cm,EF 分别是线段,AB CD 的中点,求线段EF 的长.13.如图,已知点,,A B C 在同一直线上,,M N 分别是,AC BC 的中点.(1)若20,8AB BC ==,求MN 的长;(2)若,8AB a BC ==,求MN 的长;(3)若,AB a BC b ==,求MN 的长;(4)从(1)(2)(3)的结果中能得到什么结论?14.已知线段10cm AB =,直线AB 上有一点,6cm,C BC M =为线段AB 的中点,N 为线段BC 的中点,求线段MN 的长.15.如图,平面上有,,,A B C D 四个村庄,为了丰富人们的生活,政府准备投资修建一个文化活动中心H ,使它到四个村庄的距离之和最小,你认为文化活动中心应建在哪里?并说明理由.16.如图(1),直线AB 上有一点P ,点,M N 分别为线段,PA PB 的中点,14AB =.(1)若点P 在线段AB 上,且8PA =,求线段MN 的长度;(2)若点P 在直线AB 上运动,设,PA x PB y ==,请分别计算下面情况时MN 的长度; ①当P 在,A B 之间(含A 或B );②当P 在A 左边;③当P 在B 右边.你发现了什么规律?(3)如图(2),若点C 为线段AB 的中点,点P 在线段AB 的延长线上,下列结论:①PA PB PC-的值不变;②PA PB PC +的值不变.请选择一个正确的结论并求其值. 三、填空题17.给出下列说法:①两条不同的直线可能有无数个公共点;②两条不同的射线可能有无数个公共点;③两条不同的线段可能有无数个公共点;④一条直线和一条线段可能有无数个公共点.其中正确说法的序号为___________.18.平面内有3条直线,它们的交点个数是_________.19.如图,画的是一条直线和两个点的位置关系,现有4种叙述:①直线AB 在点C 上;②点C 在直线AB 上;③点O 不经过直线AB ;④直线a 经过点C .其中叙述正确的有(填序号):__________.参考答案1.答案:C解析:射线没有长度,故A 错误;线段AB 和线段BA 是同条线段,故B 错误;点A 和直线l 的位置关系有两种:点A 在直线上或在直线外,故C 正确;三条直线相交可能有1个或2个或3个交点,故D 错误.2.答案:42解析:因为共有(52)+个车站,把它们看作直线上的7个点,则直线上线段的条数为7(71)212⨯-=(条),而每条线段对应两种不同的车票,故需要安排不同的车票共42种. 3.答案:A解析:平面内有点,,A B C ,过其中任意两点画直线,最多可以画的直线条数是3.4.答案:B解析:射线AB 是有方向的,是从“A ”到“B ”的方向,图中的射线AB 是向右无限延伸的,向左到端点A 终止,故点O 一定不在射线AB 上.5.答案:D解析:用两个点表示直线时,这两个点必须是大写字母,故②③错误,①正确;用一个字母表示直线时,这个字母必须是小写的,且不能在直线上标点,④正确.6.答案:D解析:当点C 在线段AB 上时,则1115cm 222MN AC BC AB =+==;当点C 在线段AB 的延长线上时,则11725(cm)22MN AC BC =-=-=.综合上述情况,线段MN 的长度是5cm . 7.答案:B解析:因为AB CD =,所以AC BC BC BD +=+,即AC BD =.又因为2BC AC =,所以2BC BD =.所以33CD BD AC ==.8.答案:(1)①由题意可知:212(cm),313(cm)CP DB =⨯==⨯=.因为8cm,12cm AP AB ==,所以1284(cm)PB AB AP =-=-=.所以2433(cm)CD CP PB DB =+-=+--.②因为8cm,12cm AP AB ==,所以1284(cm),(82)(cm)PB AC AP CP t =-==-=-.所以(43)(cm)DP PB DB t =-=-.所以243(4)(cm)CD CP DP t t t =+=+-=-.因为822(4)t t -=-,所以2AC CD =.(2)当2s t =时,224(cm),326(cm)CP DB =⨯==⨯=.当点D 在C 的右边时,如图所示:由于1cm CD =,所以167(cm)CB CD DB =+=+=.所以1275(cm)AC AB CB =-=-=,所以549(cm)AP AC CP =+=+=.当点D 在C 的左边时,如图所示;1266(cm)AD AB DB =-=-=.所以61411(cm)AP AD CD CP =++=++=.综上所述,9cm AP =或11cm .解析:9.答案:【解】设2cm,5cm,3cm AB x BC x CD x ===.所以10cm AD AB BC CD =++=.因为M 是AD 的中点, 所以15cm 2AM MD AD x ===. 所以523cm BM AM AB x x x =-=-=.因为6cm BM =,所以36,2x x ==.故532224(cm)CM MD CD x x x =-=-==⨯=.1010220(cm)AD x ==⨯-.解析:10.答案:(1)因为,M N 分别是,AC BC 的中点,所以11,22MC AC CN BC ==. 所以1111()6cm 2222MN MC CN AC BC AC BC AB =+=+=+==. (2)因为3cm,1cm AC CP ==,所以4cm AP AC CP =+=.因为P 是线段AB 的中点,所以28cm AB AP ==.所以5cm CB AB AC =-=.因为N 是线段CB 的中点,1 2.5cm 2CN CB ==. 所以 1.5cm PN CN CP =-=.解析:(1)根据,M N 分别是线段,AC BC 的中点及AB 的长度,可求出MN .(2)先求出AP ,再利用P 是AB 的中点,求出AB .进而利用BC AB AC =-求出BC .根据N 为BC 的中点又可求出12CN BC =.最后利用PN CN CP =-求出结果. 11.答案:解:(1)若以B 为原点,则C 表示1,A 表示-2,所以1021p =+-=-.若以C 为原点,则A 表示-3,B 表示一I ,所以3104p =--+=-.(2)若原点O 在图中数轴上点C 的右边,28CO =,则C 表示-28,B 表示-29,A 表示-31, 所以31292888p =---=-.解析:12.答案:解:因为2AB AD BD =-=cm,2CD AD AC =-=cm , 所以112EB AB ==cm ,112CF CD == cm 所以6222BC AD AB CD =--=--=(cm ),所以1214EF EB BC CF =++=++= (cm).解析:13.答案:(1)因为20,8AB BC ==,所以28AC AB BC =+=,因为点,,A B C 在同一直线上,,M N 分别是,AC BC 的中点, 所以1114,422MC AC NC BC ====, 所以14410MN MC NC =-=-=.(2)根据(1)得111()222MN AC BC AB a =-==. (3)根据(1)得111()222MN AC BC AB a =-==.(4)从(1)(2)(3)的结果中能得到线段MN的长度始终等于线段AB的一半,与C点的位置无关.解析:14.答案:【解】第一种情况:若为图(1)情形,因为M为AB的中点,所以5cmMB MA==.因为N为BC的中点,所以3cmNB NC==.所以2cmMN MB NB=-=.第二种情况:若为图(2)情形,因为M为AB的中点,所以5cmMB MA==.因为N为BC的中点,所以3cmNB NC==.所以8cmMN MB BN=+=.解析:15.答案:【解】文化活动中心应建在,AC BD连线的交点处.理由如下:若把文化活动中心建在,AC BD连线的交点处,则中心到四个村庄的距离之和等于,AC BD两条线段的长度之和,而两点之间,线段最短,故这个位置符合要求.解析:16.答案:(1)因为8PA=,所以6BP AB PA=-=.因为点M是AP中点,所以142PM AP==.又因为点N是PB中点,所以132PN PB==.所以7MN PM PN=+=.(2)①当点P在,A B之间时,17222x yMN AB=+==;②当点P在BA的延长线上,11()72222y xMN PN PM y x AB =-=-=-==;③当点P在AB的延长线上时,11()72222x yMN PM PN x y AB =-=-=-==.规律:不管P在什么位置,MN的长度不变,都为7. (3)选择②.设PB x =.由题意,知7AC BC ==, ①1477PA PB AB PC x x -==++(在变化); ②21427PA PB x PC x ++==+(定值). 解析:(1)根据线段中点的定义及线段的和差,可求得结果.(2)根据线段中点的定义可求得,MP NP ,再根据线段的和差,可求得结果.(3)根据线段的和差可得,PA PB PA PC +-,进而可得所求的结论.17.答案:②③④解析:①错误,因为两条不同的直线不能重合,若两直线有两个或两个以上公共点,这两直线就是同一条直线;而两条不同的射线、两条不同的线段、一条直线和一条线段都可以有部分重合,因此它们都可以有无数个公共点,故②③④正确.18.答案:0或1或2或3解析:如图,若平面内有3条直线,则它们的交点个数有如下四种情况:19.答案:②④解析:只能说点在(或不在)直线上,而不能说直线在(或不在)点上,故①错;只能说直线经过(或不经过)点,而不能说点经过(或不经过)直线,故③错,②④正确.。
人教版七年级数学上册《4.2直线、射线、线段》练习-带参考答案

人教版七年级数学上册《4.2直线、射线、线段》练习-带参考答案一、单选题1.把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释正确的是()A.线段可以比较大小B.线段有两个端点C.两点之间线段最短D.过两点有且只有一条直线2.M、N两点的距离是20厘米,有一点P,如果PM+PN=30厘米,那么下面结论正确的是 ( ) A.点P必在线段MN上B.点P必在直线MN外C.点P必在直线MN上D.点P可能在直线MN上,也可能在直线 MN外3.已知线段AB=10cm,点C是直线AB上一点,BC=4cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.7cm B.3cm C.7cm或3cm D.5cm4.如图,在数轴上,点A、B分别表示a、b,且,若,则点A表示的数为()A.B.0 C.3 D.5.杭衢高铁线上,要保证衢州、金华、义乌、诸暨、杭州每两个城市之间都有高铁可乘,需要印制不同的火车票()A.20种B.15种C.10种D.5种6.如图,点A、B在数轴上所表示的数分别是2和5,若点C与A、B在同一条数轴上且AC-AB=m(m >0),则点C所表示的数为()A.B.C.或D.或7.已知数轴上的三点A,B,C所对应的数a,b,c满足,和,那么线段AB与BC的大小关系是()A.B.C.D.不能确定8.数轴上,点对应的数是,点对应的数是,点对应的数是0.动点、从、同时出发,分别以每秒3个单位和每秒1个单位的速度向右运动.在运动过程中,下列数量关系一定成立的是()A.B.C.D.二、填空题9.一条直线上有n个不同的点,则该直线上共有线段条.10.已知线段AB=3cm,点C在直线AB上,AC= AB,则BC的长为.11.数轴上,如果点 A所表示的数是 ,已知到点A 的距离等于 4 个单位长度的点所表示的数为负数,则这个数是.12.如图,点C,D为线段AB上两点,AC+BD=a,若AD+BC= AB,用含a代数式表示CD的长为.13.体育课上,小聪、小明、小智、小慧分别在点O处进行了一次铅球试投,若铅球分别落在图中的点A,B,C,D处,则他们四人中,成绩最好的是三、解答题14.已知,点A、B、C在同一直线上,且,点、分别是线段、的中点,求线段的长.15.如图,C,D两点将线段AB分成2:3:4三部分,E为线段AB的中点,AD=10cm.求:(1)线段AB的长;(2)线段DE的长.16.如图,点C在线段AB上,点M,N分别是AC,BC的中点.(1)若AC=24cm,CB=16cm,求线段MN的长.(2)若C为线段AB上任一点,且满足AC+BC=x(cm),其他条件不变,你能猜想MN的长度吗?请说明理由.(3)若点C在线段AB的延长线上,且满足AC﹣BC=y(cm),点M,N分别为AC,BC的中点,请画出图形,并求MN的长度.17.我们知道,若有理数、表示在数轴上得到点、且,则点点与点之间的距离为,现已知数轴上三点A、B、C,其中A表示的数为,B表示的数为3,C与A的距离等于m,C与B的距离等于n,请解答下列问题:(1)若点C在数轴上表示的数为,求的值(2)若,请你写出点C表示的数。
射线直线线段练习题
射线、直线、线段练习题一、选择题1. 下列说法正确的是:A. 射线有一个端点,无限长B. 直线有两个端点,有限长C. 线段有一个端点,有限长D. 射线与直线长度相等2. 在下列图形中,哪个是线段?A. 两条平行线B. 一个端点,向一方无限延伸C. 两个端点,有限长D. 一个端点,向两边无限延伸A. 两个端点,有限长B. 一个端点,向一方无限延伸C. 两个端点,无限长D. 无端点,无限长二、填空题1. 线段是由两个______和它们之间的______组成的。
2. 射线有一个______,向一方______延伸。
3. 直线无______,______延伸。
三、判断题1. 射线的长度大于线段的长度。
()2. 直线比射线更长。
()3. 线段有两个端点,有限长。
()四、连线题请将下列射线、直线、线段的定义与相应的图形连线:1. 直线:______2. 射线:______3. 线段:______五、作图题1. 画出一条线段,长度为5厘米。
2. 画出一条射线,从一个端点出发,经过点A。
3. 画出一条直线,使它与线段AB平行。
六、简答题1. 请简要说明射线、直线和线段的特点。
2. 如何用直尺和三角板画出一条指定长度的线段?3. 在日常生活中,你能找到哪些射线、直线和线段的例子?请分别列举。
七、应用题1. 在平面直角坐标系中,点A(2,3)和点B(5,3)是线段AB的两个端点,求线段AB的长度。
2. 已知射线OC从点O(0,0)出发,经过点C(4,0),求射线OC上距离点O 6个单位长度的点D的坐标。
3. 在直角坐标系中,直线l经过点P(1,2)和点Q(4,6),请写出直线l的方程。
八、拓展题1. 如果一条射线逆时针旋转90度,它变成了什么?2. 在平面上,两条直线相交,形成的四个角中,有几个角是相等的?3. 有一根无限长的直线,你在上面任意取两点,这两点之间的是什么?九、探究题1. 如何证明两条平行线之间的距离处处相等?2. 在同一平面内,如果两条直线不相交,那么它们一定是平行的吗?3. 请设计一个实验,证明线段的长度是可以通过测量得到的。
七年级数学上册数学 6.1线段、射线、直线(七大题型)(解析版)
6.1线段、射线、直线分层练习考察题型一线段、射线、直线的概念辨析1.如图中射线OA与OB表示同一条射线的是()A.B.C.D.【详解】解:A、方向相反,不是同一条射线;B、端点相同,方向相同,是同一条射线;C、端点相同,方向不同,不是同一条射线;D、方向相反,不是同一条射线.故本题选:B.2.下列说法错误的是()A.直线AB和直线BA表示同一条直线B.过一点能作无数条直线C.射线AB和射线BA表示不同射线D.射线比直线短【详解】解:直线AB和直线BA表示同一条直线,A选项正确;过一点能作无数条直线,B选项正确;射线AB和射线BA表示不同射线,C选项正确;射线、直线都是无限长的,不能比较长短,D选项错误.故本题选:D.3.线段、射线、直线的位置如图所示,图中能相交的是()A.B.C.D.【详解】解:A、图中两线段不能相交;B、图中射线与直线能相交;C、图中线段与直线不能相交;D、图中线段与射线不能相交.故本题选:B.4.如图,AB是一段高铁行驶路线图,图中字母表示的5个点表示5个车站,在这段路线上往返行车,需印制多少种车票?()A.10B.11C.18D.20【详解】解:图中线段有AB,AC,AD,AE,BC,BD,BE,CD,CE,DE,共10条,单程要10种车票,往返就是20种,即5(51)20⨯-=.故本题选:D.考察题型二符号语言和几何图形的匹配1.如图,已知三点A、B、C,画射线AB,画直线BC,连接AC.画图正确的是()A.B.C.D.【详解】解:如图,画射线AB,画直线BC,连接AC,.故本题选:B.2.下列几何图形与相应语言描述相符的是()A.如图1所示,延长线段BA到点CB.如图2所示,射线CB不经过点AC.如图3所示,直线a和直线b相交于点AD.如图4所示,射线CD和线段AB没有交点【详解】解:A、如图1,点C在线段BA的延长线上,与语言描述不相符;B、如图2,射线BC不经过点A,与语言描述不相符;C、如图3,直线a和直线b相交于点A,与语言描述相符;D、如图4,射线CD和线段AB有交点,与语言描述不相符.故本题选:C.考察题型三两点确定一条直线1.如图,下列说法正确的是()A.点O在射线BA上B.点B是直线AB的端点C.直线AO比直线BO长D.经过A,B两点的直线有且只有一条【详解】解:A.点O在射线BA的反向延长线上,故此项错误;B.直线没有端点,故此项错误;C.直线无法比较长短,故此项错误;D.两点确定一条直线,故此项正确.故本题选:D.2.在下列生活、生产现象中,可以用基本事实“两点确定一条直线”来解释的是() A.钟表的秒针旋转一周,形成一个圆面B.把笔尖看成一个点,当这个点运动时便得到一条线C.把弯曲的公路改直,就能缩短路程D.木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两个点弹出一条墨线【详解】解:A、钟表的秒针旋转一周,形成一个圆面,说明线动成面;B、把笔尖看成一个点,当这个点运动时便得到一条线,说明点动成线;C、把弯曲的公路改直,就能缩短路程,说明两点之间,线段最短;D、木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两个点弹出一条墨线,说明两点确定一条直线.故本题选:D.3.平面上有3个点,并且这3个点不在同一直线上,经过每两点画一条直线,则共可以画()条直线.A.3B.4C.5D.6【详解】解:可以画的直线条数为3(31)32⨯-=.故本题选:A.考察题型四两点之间,线段最短1.下列说法:①经过一点有无数条直线;②两点之间线段最短;③经过两点,有且只有一条直线;④若线段AM等于线段BM,则点M是线段AB的中点,其中正确的有()A.1个B.2个C.3个D.4个【详解】解:①经过一点有无数条直线,说法正确;②两点之间线段最短,说法正确;③经过两点,有且只有一条直线,说法正确;④若线段AM等于线段BM,则当A、B、M三点共线时,点M是线段AB的中点,原说法错误;综上,说法正确的一共有3个.故本题选:C.2.如图,某同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长小,能正确解释这一现象的数学知识是()A .两点之间,直线最短B .两点确定一条直线C .两点之间,线段最短D .经过一点有无数条直线【详解】解: 两点之间线段最短,∴剩下树叶的周长比原树叶的周长小.故本题选:C .3.如图,某市汽车站A 到高铁站P 有四条不同的路线,其中路程最短的是()A .从点A 经过 BF 到点PB .从点A 经过线段BF 到点PC .从点A 经过折线BCF 到点PD .从点A 经过折线BCDF 点P 【详解】解:如图,某市汽车站A 到高铁站P 有四条不同的路线,其中路程最短的是从点A 经过线段BF 到点P .故本题选:B .4.在一条沿直线l 铺设的电缆一侧有P ,Q 两个小区,要求在直线l 上的某处选取一点M ,向P ,Q 两个小区铺设电缆,现有如下四种铺设方案,图中实线表示铺设的电缆,则所需电缆材料最短的是()A .B .C .D .【详解】解:观察四个选项中的图形发现:选项D 中,点Q 与点P 关于直线l 对称点的连线交l 于M ,根据轴对称的性质可知:PM QM +为最短,即所需电缆材料最短.故本题选:D .5.如图,3AB =,2AD =,1BC =,5CD =,则线段BD 的长度可能是()A.3.5B.4C.4.5D.5【详解】解:由“两点之间,线段最短”得:BD-<<+,15∴<<,BD3232BD∴<<,BD-<<+,465151BD∴<<.45四个选项中,只有4.5在这个范围内.故本题选:C.6.如图,已知四点A、B、C、D,请用尺规作图完成.(保留画图痕迹)(1)画直线AB;(2)画射线AC;(3)连接BC并延长BC到E,使得CE AB BC=+;(4)在线段BD上取点P,使PA PC+的值最小.【详解】解:如图所示:.考察题型五比较线段的大小1.如图,用圆规比较两条线段的长短,其中正确的是()A .A B A C ''''>B .A B A C ''''=C .A B A C ''''<D .不能确定【详解】解:如图用圆规比较两条线段的长短,A B A C ''<''.故本题选:C .2.如图,AC BD >,则AD 与BC 的大小关系是:AD BC .(填“>”或“<”或“=”)【详解】解:AC BD > ,AC CD BD CD ∴+>+,AD BC ∴>.故本题答案为:>.3.如图,下列关系式中与图不符合的式子是()A .AD CD AB BC-=+B .AC BC AD BD -=-C .AC BC AC BD -=+D .AD AC BD BC-=-【详解】解:A 、AD CD AB BC -=+,正确,B 、AC BC AD BD -=-,正确;C 、AC BC AB -=,而AC BD AB +≠,故本选项错误;D 、AD AC BD BC -=-,正确.故本题选:C .考察题型六线段的中点1.下列说法正确的个数有()①若AB BC =,则点B 是AC 中点;②两点确定一条直线;③射线MN 与射线NM 是同一条射线;④线段AB 就是点A 到点B 之间的距离.A .1B .2C .3D .4【详解】解:①没有说明A 、B 、C 在同一条直线上,故可能出现这种情况,不合题意;②两点确定一条直线,符合题意;③射线MN 是以M 为端点,射线NM 是以N 为端点,射线MN 与射线NM 不是同一条射线,不合题意;④线段AB 是指连接A 、B 两点的线段,是一条有长度的几何图形,点A 到点B 之间的距离是指点A 和点B 之间的直线距离,是线段AB 的长度,不合题意.故本题选:A .2.如图,点D 是线段AC 上一点,点C 是线段AB 的中点,则下列等式不成立的是()A .AD BD AB +=B .BD CD CB -=C .2AB AC =D .12AD AC =【详解】解:由图可知:AD BD AB +=,BD CD CB -=,故选项A 、选项B 符合题意; 点C 是线段AB 的中点,2AB AC ∴=,故选项C 符合题意;D 是不是线段AC 的中点,12AD AC ∴≠,故本题选项D 不合题意.故本题选:D .3.小亮正确完成了以下两道作图题:①“延长线段AB 到C ,使BC AB =”;②“反向延长线段DE 到F ,使点D 是线段EF 的一个三等分点”.针对小亮的作图,小莹说:“点B 是线段AC 中点”.小轩说:“2DE DF =”.下列说法正确的是()A .小莹、小轩都对B .小莹不对,小轩对C .小莹、小轩都不对D .小莹对,小轩不对【详解】解:①“延长线段AB 到C ,使BC AB =”,如图①所示,此时点B 是AC 的中点;2综上,小莹说得对,小轩说得不对.故本题选:D.考察题型七线段长度的有关计算1.平面上有三点A、B、C,如果10BC=,那么()AC=,3AB=,7A.点C在线段AB上B.点C在线段AB的延长线上C.点C在直线AB外D.点C可能在直线AB上,也可能在直线AB外【详解】解: 1073==+=+,AB AC BC∴点C在线段AB上.故本题选:A.2.已知直线AB上有两点M,N,且8+=,则P点的位置()MP PN cmMN cm=,再找一点P,使10A.只在直线AB上B.只在直线AB外C.在直线AB上或在直线AB外D.不存在【详解】解: 108MP PN cm MN cm+=>=,∴分两种情况:如图,P点在直线AB上或在直线AB外.故本题选C.3.点A、B、C在同一直线上,10BC=)=,则(=,2AC cmAB cmA.12cm B.8cm C.12cm或8cm D.以上均不对【详解】解:①如图,点C在A、B中间时,=-=-=;BC AB AC cm1028()②如图,点C在点A的左边时,BC AB AC cm=+=+=;10212()综上,线段BC的长为12cm或8cm.故本题选:C.4.已知点A、B、C位于直线l上,其中线段4AB=,且23=,若点M是线段AC的中点,则线段BC ABBM的长为()A.1B.3C.5或1D.1或4综上,线段BM 的长为5或1.故本题选:C .5.如图,C 、D 是线段AB 上两点,M 、N 分别是线段AD ,BC 的中点,下列结论:①若AD BM =,则3AB BD =;②AC BD =,则AM BN =;③2()AC BD MC DN -=-;④2MN AB CD =-.其中正确的结论是()A .①②③B .③④C .①②④D .①②③④【详解】解:如图,AD BM = ,AD MD BD ∴=+,12AD AD BD ∴=+,2AD BD ∴=,2AD BD BD BD ∴+=+,即3AB BD =,故①正确;AC BD = ,AD BC ∴=,∴1122AD BC =,M 、N 分别是线段AD 、BC 的中点,AM BN ∴=,故②正确;AC BD AD BC -=- ,222()AC BD MD CN MC DN ∴-=-=-,故③正确;222MN MC CN =+ ,MC MD CD =-,22()2MN MD CD CN ∴=-+,12MD AD = ,12CN BC =,1122()22MN AD BC CD AD CD BC CD AB CD ∴=+-=-+-=-,故④正确.故本题选:D .6.已知A ,B ,C ,D 四点在同一直线上,线段8AB =,点D 在线段AB 上.(1)如图1,点C是线段AB的中点,13CD BD=,求线段AD的长度;(2)若点C是直线AB上一点,且满足:4:1AC BC=,2BD=,求线段CD的长度.:4:1AC BC=,8AB=,:4:1AC BC=,8AB=,7.(1)如图1,点C在线段AB上,M,N分别是AC,BC的中点.若12AB=,8AC=,求MN的长;(2)设AB a=,C是线段AB上任意一点(不与点A,B重合),①如图2,M,N分别是AC,BC的三等分点,即13AM AC=,13BN BC=,求MN的长;②若M,N分别是AC,BC的n等分点,即1AM ACn=,1BN BCn=,直接写出MN的值.8.如图1,已知B、C在线段AD上.(1)图1中共有条线段;(2)①若AB CD=,比较线段的长短:AC BD(填:“>”、“=”或“<”);②(图2)若18AD=,14MN=,M是AB的中点,N是CD的中点,求BC的长度.③(图3)若AB CD=,M是AB的中点,N是CD的中点,直接写出BC的长度.(用=,MN b≠,AD a含a,b的代数式表示)1.同一平面内的三条直线最多可把平面分成多少部分()A.4B.5C.6D.7【详解】解:任意画三条直线,相交的情况有四种可能:1、三直线平行,将平面分成4部分;2、三条直线相交同一点,将平面分成6部分;3、两直线平行被第三直线所截,将平面分成6部分;4、三条直线两两相交于不同的三个点,将平面分成7部分;综上,同一平面内的三条直线最多把平面分成7个部分.故本题选:D .2.如图,已知点A 、点B 是直线上的两点,12AB =厘米,点C 在线段AB 上,且8AC =厘米.点P 、点Q 是直线上的两个动点,点P 的速度为1厘米/秒,点Q 的速度为2厘米/秒.点P 、Q 分别从点C 、点B 同时出发,在直线上运动,则经过秒时线段PQ 的长为6厘米.【详解】解:12AB = 厘米,8AC =厘米,1284CB ∴=-=(厘米);①点P 、Q 都向右运动时,(64)(21)-÷-21=÷2=(秒);②点P 、Q 都向左运动时,(64)(21)+÷-101=÷10=(秒);③点P 向左运动,点Q 向右运动时,(64)(21)-÷+23=÷23=(秒);④点P 向右运动,点Q 向左运动时,(64)(21)+÷+103=÷103=(秒);综上,经过2、10、23或103秒时线段PQ 的长为6厘米.故本题答案为:2、10、23或103.3.如图,点M 在线段AN 的延长线上,且线段20MN =,第一次操作:分别取线段AM 和AN 的中点1M ,1N ;第二次操作:分别取线段1AM 和1AN 的中点2M ,2N ;第三次操作:分别取线段2AM 和2AN 的中点3M ,3N ;⋯⋯连续这样操作10次,则每次的两个中点所形成的所有线段之和11221010(M N M N M N ++⋯+=)A .910202-B .910202+C .1010202-D .1010202+【详解】解: 线段20MN =,线段AM 和AN 的中点1M ,1N ,4.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A 、点B 表示的数分别为a 、b ,则A ,B 两点之间的距离||AB a b =-,线段AB 的中点表示的数为2a b +.【问题情境】如图,数轴上点A 表示的数为2-,点B 表示的数为8,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(0)t >.【综合运用】(1)填空:①A 、B 两点间的距离AB =,线段AB 的中点表示的数为;②用含t 的代数式表示:t 秒后,点P 表示的数为;点Q 表示的数为.(2)求当t 为何值时,P 、Q 两点相遇,并写出相遇点所表示的数;(3)求当t 为何值时,12PQ AB =;(4)若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN 的长.。
直线、射线、线段同步练习题已整理
《直线、射线、线段》同步练习题1.经过一点,有______条直线;经过两点有_____条直线,并且______条直线.2.如图1,图中共有______条线段,它们是_________.1()2()3()3.如图2,图中共有_______条射线,指出其中的两条________.4.线段AB=8cm,C 是AB 的中点,D 是BC 的中点,A 、D 两点间的距离是_____cm.5.如图3,在直线I 上顺次取A 、B 、C 、D 四点,则AC=______+BC=AD-_____, AC+BD- BC=________.6.下列语句准确规范的是( )A.直线a 、b 相交于一点mB.延长直线ABC.反向延长射线AO(O 是端点)D.延长线段AB 到C,使BC=AB 7.下列四个图中的线段(或直线、射线)能相交的是( )1()2()3()4()A.(1)B.(2)C.(3)D.(4) 8.如果点C 在AB 上,下列表达式①AC=12AB;②AB=2BC;③AC=BC;④AC+BC=AB 中,能表示C 是AB 中点的有( )A.1个B.2个C.3个D.4个9.如图,从A 到B 有3条路径,最短的路径是③,理由是( )A.因为③是直的B.两点确定一条直线C.两点间距离的定义D.两点之间,线段最短10.如图,平面上有四个点A 、B 、C 、D,根据下列语句画图(1)画直线AB 、CD 交于E 点; (2)画线段AC 、BD 交于点F; (3)连接E 、F 交BC 于点G; (4)连接AD,并将其反向延长;(5)作射线BC;(6)取一点P,使P 在直线AB 上又在直线CD 上.11.在一条直线上取两上点A 、B,共得几条线段?在一条直线上取三个点A 、B 、 C,共得几条线段?在一条直线上取A 、B 、C 、D 四个点时,共得多少条线段? 在一条直线上取n 个点时,共可得多少条线段?B A线段、直线、射线1、关于线段,下列判断正确的是 ( ) A.只有一个端点; B.有两个以上的端点; C.有两个端点; D.没有端点。
直线 射线 线段的练习题
直线射线线段的练习题直线、射线和线段是解析几何中的基本概念,它们广泛应用于数学和物理领域。
本文将为您提供一系列与直线、射线和线段相关的练习题,以帮助您更好地理解和运用这些概念。
1. 练习题一已知直线AB的斜率为1/2,经过点C(-1, 3),求直线AB的方程。
解析:由直线的斜率与过一点的关系,可以得到直线AB过点C(-1, 3)的方程为:y - 3 = 1/2(x + 1)。
2. 练习题二已知射线OA和射线OB的夹角为60°,OA的长度为2,求射线OB的长度。
解析:根据三角函数的定义,可以得到三角形OAB的边长比关系为:OB = OA * tan(60°) = 2 * tan(60°)。
3. 练习题三已知线段PQ的长度为5,线段PQ的中点为M,求线段PM的长度。
解析:线段PQ的中点M即为线段PQ的中垂线的交点,根据中垂线的性质,可以得到线段PM的长度为PQ的一半,即2.5。
4. 练习题四已知直线L1过点A(2, 4),斜率为2,直线L2过点B(-1, 3),斜率为-1/2,求直线L1和L2的交点坐标。
解析:由两条直线的方程可得:y - 4 = 2(x - 2) 和 y - 3 = -1/2(x + 1),解方程组得到交点坐标为(1, 2)。
5. 练习题五已知直线L与x轴交于点A(-3, 0),L与y轴交于点B(0, 4),求直线L的方程。
解析:由直线与坐标轴的交点可以直接得到直线的截距,进而得到直线L的方程为y = -4/3x + 4。
通过以上的练习题,希望能够加深您对直线、射线和线段的理解,并且对解析几何的运用有更好的掌握。
在解题过程中,注意合理运用直线和点的性质,灵活应用相关的计算公式和几何知识。
在实际应用中,这些基本概念和方法将为您提供有力的工具和思路。
祝您在解析几何学习中取得优异的成绩!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学直线射线线段专项练习题
1如图所示,直线上有4个点,A, B, C, D,问图中有几条射线,几条线段,几条直线?
2如图所示,指出图中的直线,射线,线段。
3如图所示,平面上有三个点A,B,C,这三个点都不在同一条直线上,问,经过这三个点中的两个点作直线,一共可以作几条,分别表示出来?
4平面上有四个点,经过这四个点中的两个点作直线,一共可以作几条直线?
5如图所示,在同一条直线上有n个点,这时,在图中有多少条射线,有多少条线段?
6如图所示,点A,B,C,D是直线L上的四点,则图中共有几条线段?
7已知线段AB=8cm,在直线AB 上有一点C,且BC=4cm,M为线段AC的中点,求线段AM的长?
8已知线段AB=12cm,直线AB上一点、C,且BC=6cm,M是线段AC的中点,求线段AM的长?
9如图所示,AB是河流L两旁的两个村庄,现在要在河边修一个饮水站,向两村供水,问饮水站修在什么地方最短,请在图上表示出饮水站P的位置,并说明理由。
(河的宽度不计)
10往返与甲乙两地的客车,中途停靠三个站,问:(1)要有多少种不同的票价?(2)要准备多少种车票?。