高考数学一轮复习第七章不等式7-3基本均值不等式及应用学案理
【精选】江苏专版版高考数学一轮复习第七章不等式7.3基本不等式及其应用课件

如果解题过程中不满足上述条件,可以进行必要、合理的拆分或配凑因
1, 1
2
.
∵a>0,b>0, 1 + 1 =1,
2a b b 1
∴ 1 + 1 =1,即 1 + 1 =1.
2(t 2b) b b 1
2t 3b b 1
∴ 1 =1- 1 = b .
2t 3b b 1 b 1
从而2t-3b= b 1=1+ 1 ,即2t=3b+ 1 +1≥2 3b 1 +1=2 3 +1
u
u 52 2 52
u
= 5 1,故a≥ 5 1 ,即amin= 5 1.
2
2
2
答案 5 1 2
编后语
听课对同学们的学习有着非常重要的作用。课听得好好,直接关系到大家最终的学习成绩。如何听好课,同学们可以参考如下建议:
一、听要点。
一般来说,一节课的要点就是老师们在备课中准备的讲课大纲。许多老师在讲课正式开始之前会告诉大家,同学们对此要格外注意。例如在学习物理 课“力的三要素”这一节时,老师会先列出力的三要素——大小、方向、作用点。这就是一堂课的要点。把这三点认真听好了,这节课就基本掌握了。
a
2
b
2
,∴
a
2
b
2
≥a+b+3,即 (a+b)2-1(a+b)-3≥0,解得a+b≥6(a+b≤-2舍去).
(课标专用)2020届高考数学一轮复习第七章不等式7.3基本不等式及不等式的应用教师用书文(PDF,含解析)

A.-4
B.8
C.4
D.0
(2) (2018 湖北荆州一模,14) 已知实数 a > 0,b > 0, 2 是 8a
与 2b 的等比中项,则 1 + 2 的最小值是 ab
.
1
解析 (1) 由 log 1 x>1,得 0<x< ,从而得到-1<2x-1<0,
2
2
[ ] 则
y
=
8x +2x1- 1
x)
=
x2
+3x+6 x+1
=
(
x+1) 2 +x+1+4 x+1
=
x+
1 + x +4 1 + 1,
( 因为 x>0,所以 x+1>0,则 x+1+x+41+1≥2 4 +1 = 5 当且仅
) 当
x+1
=
4
x+
,即 1
x
=
1
时取“
=
”
,故 f( x) 的最小值是 5.故答案
为 D.
1-3 已知 x>2,y>3,( x-2) ( y-3)= 4,则 x+y 的最小值是
对于
D,当
0<x≤2
时,y = x-
1 x
单调递增,所以当
x=
2
-2 (2019 安徽黄山第一次质量检测( 一模) ,8) 已知f( x)
=
x2
+3x+ x+1
6(
x>0)
,则
f(
x)
的最小值是
( )
A.2
B.3
C.4
D.5
1-2 答案 D
解析
f(
2.基本不等式的变形 (1) a2 +b2 ≥2ab( a,b∈R) ,当且仅当 a = b 时取等号.
高考数学一轮复习第七章不等式第4讲基本不等式教案理含解析新人教A版

高考数学一轮复习第七章不等式第4讲基本不等式教案理含解析新人教A 版第4讲 基本不等式基础知识整合1.重要不等式a 2+b 2≥□012ab (a ,b ∈R )(当且仅当□02a =b 时等号成立). 2.基本不等式ab ≤a +b2(1)基本不等式成立的条件:□03a >0,b >0; (2)等号成立的条件:当且仅当□04a =b 时等号成立; (3)其中a +b2叫做正数a ,b 的□05算术平均数,ab 叫做正数a ,b 的□06几何平均数. 3.利用基本不等式求最大、最小值问题 (1)如果x ,y ∈(0,+∞),且xy =P (定值),那么当□07x =y 时,x +y 有□08最小值2P .(简记:“积定和最小”) (2)如果x ,y ∈(0,+∞),且x +y =S (定值),那么当□09x =y 时,xy 有□10最大值S 24.(简记:“和定积最大”)常用的几个重要不等式 (1)a +b ≥2ab (a >0,b >0); (2)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R );(3)⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22(a ,b ∈R ); (4)b a +ab≥2(a ,b 同号).以上不等式等号成立的条件均为a =b .1.已知a ,b ∈R +,且a +b =1,则ab 的最大值为( ) A.1 B.14 C.12 D.22答案 B解析 ∵a ,b ∈R +,∴1=a +b ≥2ab ,∴ab ≤14,当且仅当a =b =12时等号成立.故选B.2.(2019·山西模拟)已知a >0,b >0,a +b =2,则y =1a +4b的最小值是( )A.72B.4C.92D.5答案 C解析 y =12(a +b )⎝ ⎛⎭⎪⎫1a +4b =12⎝ ⎛⎭⎪⎫5+4a b +b a ≥92⎝ ⎛⎭⎪⎫当且仅当a =23,b =43时等号成立.故选C.3.3-aa +6(-6≤a ≤3)的最大值为( )A.9B.92 C.3 D.322答案 B解析 当a =-6或a =3时,3-a a +6=0;当-6<a <3时,3-aa +6≤3-a +a +62=92, 当且仅当3-a =a +6,即a =-32时取等号.4.(2019·南昌摸考)已知函数y =x +m x -2(x >2)的最小值为6,则正数m 的值为________.答案 4解析 ∵x >2,m >0,∴y =x -2+mx -2+2≥2x -2·mx -2+2=2m +2,当且仅当x =2+m 时取等号,又函数y =x +mx -2(x >2)的最小值为6,∴2m +2=6,解得m =4.5.(2019·大连模拟)函数y =2x +2x(x <0)的最大值为________.答案 -4解析 ∵x <0,∴-x >0,∴(-2x )+⎝ ⎛⎭⎪⎫-2x ≥2-2x ·⎝ ⎛⎭⎪⎫-2x =4,即y =2x +2x≤-4(当且仅当-2x =-2x,即x =-1时等号成立).6.(2018·天津高考)已知a ,b ∈R ,且a -3b +6=0,则2a+18b 的最小值为________.答案 14解析 由a -3b +6=0可得a -3b =-6, 又∵2a+18b ≥22a8b =22a -3b =22-6=14(当且仅当a =-3,b =1时取等号), ∴2a+18b 的最小值为14.核心考向突破考向一 利用基本不等式求最值角度1 利用配凑法求最值例1 (1)已知0<x <1,则x (3-3x )取得最大值时x 的值为( ) A.13 B.12 C.34 D.23答案 B解析 ∵0<x <1,∴x ·(3-3x )=13·3x ·(3-3x )≤13⎝ ⎛⎭⎪⎫3x +3-3x 22=34,当3x =3-3x ,即x =12时,x (3-3x )取得最大值.故选B.(2)设x >0,则函数y =x +22x +1-32的最小值为________.答案 0 解析 y =x +22x +1-32=⎝ ⎛⎭⎪⎫x +12+1x +12-2≥2⎝ ⎛⎭⎪⎫x +12·1x +12-2=0,当且仅当x +12=1x +12,即x =12时等号成立.所以函数的最小值为0.触类旁通通过拼凑法利用基本不等式求最值的策略拼凑法的实质在于代数式的灵活变形,拼系数、凑常数是关键,利用拼凑法求解最值应注意以下几个方面的问题:1拼凑的技巧,以整式为基础,注意利用系数的变化以及等式中常数的调整,做到等价变形.2代数式的变形以拼凑出和或积的定值为目标. 3拆项、添项应注意检验利用基本不等式的前提.即时训练 1.已知x ,y 都是非负实数,且x +y =2,则8x +2y +4的最小值为________.答案 12解析 ∵x ,y 都是非负实数,且x +y =2,∴x +2+y +4=8,∴8≥2x +2y +4,即1x +2y +4≥116,当且仅当x =2,y =0时取等号,则8x +2y +4≥816=12. 角度2 利用常数代换法求最值例2 (1)(2019·绵阳诊断)若θ∈⎝⎛⎭⎪⎫0,π2,则y =1sin 2θ+9cos 2θ的取值范围为( )A .[6,+∞)B .[10,+∞)C .[12,+∞)D .[16,+∞)答案 D解析 ∵θ∈⎝⎛⎭⎪⎫0,π2,∴sin 2θ,cos 2θ∈(0,1),∴y =1sin 2θ+9cos 2θ=⎝ ⎛⎭⎪⎫1sin 2θ+9cos 2θ(sin 2θ+cos 2θ)=10+cos 2θsin 2θ+9sin 2θcos 2θ≥10+2cos 2θsin 2θ·9sin 2θcos 2θ=16,当且仅当cos 2θsin 2θ=9sin 2θcos 2θ,即θ=π6时等号成立.故选D. (2)(2017·山东高考)若直线x a +y b=1(a >0,b >0)过点(1,2),则2a +b 的最小值为________.答案 8解析 ∵直线x a +y b=1(a >0,b >0)过点(1,2), ∴1a +2b=1,∴2a +b =(2a +b )⎝ ⎛⎭⎪⎫1a +2b=4+4a b +b a ≥4+24ab·b a=8,当且仅当b a =4ab,即a =2,b =4时,等号成立. 故2a +b 的最小值为8.触类旁通常数代换法求最值的步骤常数代换法适用于求解条件最值问题.应用此种方法求解最值的基本步骤为: 1根据已知条件或其变形确定定值常数. 2把确定的定值常数变形为1.3把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积的形式. 4利用基本不等式求解最值.即时训练 2.(2019·正定模拟)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是________.答案 5解析 由x +3y =5xy ,可得15y +35x=1, 所以3x +4y =(3x +4y )⎝ ⎛⎭⎪⎫15y +35x =95+45+3x 5y +12y 5x ≥135+2 3x 5y ·12y 5x =135+125=5,当且仅当x =1,y =12时取等号,故3x +4y 的最小值是5.角度3 利用消元法求最值例3 (1)(2019·江西上饶联考)已知正数a ,b ,c 满足2a -b +c =0,则acb2的最大值为( )A .8B .2C .18D .16答案 C解析 因为a ,b ,c 都是正数,且满足2a -b +c =0,所以b =2a +c ,所以ac b 2=ac 2a +c2=ac 4a 2+4ac +c 2=14a c +ca+4≤124a c ·ca+4=18,当且仅当c =2a >0时等号成立.故选C. (2)已知正数x ,y 满足x 2+2xy -3=0,则2x +y 的最小值是________. 答案 3解析 由x 2+2xy -3=0,得y =3-x 22x =32x -12x ,则2x +y =2x +32x -12x =3x 2+32x≥23x 2·32x =3,当且仅当x =1时,等号成立,所以2x +y 的最小值为3.触类旁通通过消元法利用基本不等式求最值的方法消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解.有时会出现多元的问题,解决方法是消元后利用基本不等式求解.即时训练 3.(2019·安徽阜阳模拟)若直线x a +y b=1(a >0,b >0)过点(1,1),则a +b +3b a的最小值为________.答案 6解析 因为直线x a +y b =1(a >0,b >0)过点(1,1),所以1a +1b =1,所以b =aa -1>0,所以a >1,所以a +b +3b a =(a -1)+4a -1+2≥4+2=6,当且仅当a =3时等号成立,所以a +b+3ba的最小值是6.考向二 求参数值或取值范围例4 (1)(2019·山西模拟)已知不等式(x +y )·⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( )A .2B .4C .6D .8答案 B解析 (x +y )⎝ ⎛⎭⎪⎫1x +a y =1+a ·x y +y x +a ≥1+a +2a =(a +1)2,当且仅当a ·x y =y x,即ax 2=y 2时“=”成立.∵(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9,∴(x +y )⎝ ⎛⎭⎪⎫1x +a y 的最小值为(a +1)2≥9.∴a ≥4.故选B.(2)(2019·珠海模拟)已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为( ) A .2 B .4 C .6 D .8答案 C解析 解法一:由已知得xy =9-(x +3y ),即3xy =27-3(x +3y )≤⎝⎛⎭⎪⎫x +3y 22,当且仅当x =3y ,即x =3,y =1时取等号,令x +3y =t ,则t >0,且t 2+12t -108≥0,解得t ≥6,即x +3y ≥6.解法二:∵x +3y =9-xy ≥23xy ,∴(xy )2+23·xy -9≤0,∴(xy +33)·(xy -3)≤0,∴0<xy ≤3,∴x +3y =9-xy ≥6.故选C.触类旁通1要敏锐地洞察到已知条件与所求式子的联系,并能灵活的进行转化. 2利用基本不等式确立相关成立条件,从而得到参数的值或范围.即时训练 4.设a >0,b >0且不等式1a +1b +ka +b ≥0恒成立,则实数k 的最小值等于( )A .0B .4C .-4D .-2答案 C解析 由1a +1b +ka +b≥0得k ≥-a +b 2ab,又a +b 2ab=a b +b a+2≥4(a =b 时取等号),所以-a +b2ab≤-4,因此要使k ≥-a +b2ab恒成立,应有k ≥-4,即实数k 的最小值等于-4.故选C.5.(2019·上海模拟)设x ,y 均为正实数,且32+x +32+y =1,则xy 的最小值为( )A .4B .4 3C .9D .16答案 D 解析32+x +32+y=1可化为xy =8+x +y ,∵x ,y 均为正实数,∴xy =8+x +y ≥8+2xy (当且仅当x =y 时等号成立),即xy -2xy -8≥0,解得xy ≥4,即xy ≥16,故xy 的最小值为16.故选D.考向三 基本不等式的实际应用例5 (2019·西安模拟)某商人投资81万元建一间工作室,第一年装修费为1万元,以后每年增加2万元,把工作室出租,每年收入租金30万元.(1)若扣除投资和各种装修费,则从第几年开始获取纯利润?(2)若干年后该商人为了投资其他项目,对该工作室有两种处理方案:①年平均利润最大时,以46万元出售该工作室;②纯利润总和最大时,以10万元出售该工作室.问该商人会选择哪种方案?解 (1)设第n 年获取利润为y 万元.n 年付出的装修费构成一个首项为1,公差为2的等差数列,n 年付出的装修费之和为n ×1+n n -12×2=n 2,又投资81万元,n 年共收入租金30n 万元,∴利润y =30n -n 2-81(n ∈N *).令y >0,即30n -n 2-81>0,∴n 2-30n +81<0, 解得3<n <27(n ∈N *),∴从第4年开始获取纯利润. (2)方案①:年平均利润t =30n -81+n2n=30-81n-n =30-⎝ ⎛⎭⎪⎫81n+n ≤30-281n ·n =12(当且仅当81n=n ,即 n =9时取等号),∴年平均利润最大时,以46万元出售该工作室共获利润12×9+46=154(万元). 方案②:纯利润总和y =30n -n 2-81=-(n -15)2+144(n ∈N *), 当n =15时,纯利润总和最大,为144万元,∴纯利润总和最大时,以10万元出售该工作室共获利润144+10=154(万元), 两种方案盈利相同,但方案①时间比较短,所以选择方案①.触类旁通有关函数最值的实际问题的解题技巧(1)根据实际问题建立函数的解析式,再利用基本不等式求得函数的最值. 2设变量时一般要把求最大值或最小值的变量定义为函数. 3解应用题时,一定要注意变量的实际意义及其取值范围.4在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解.即时训练 6.某厂家拟在2018年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x 万件与年促销费用m 万元(m ≥0)满足x =3-km +1(k 为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知2018年生产该产品的固定投入为8万元.每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2018年该产品的利润y 万元表示为年促销费用m 万元的函数; (2)该厂家2018年的促销费用投入多少万元时,厂家的利润最大? 解 (1)由题意知,当m =0时,x =1, ∴1=3-k ⇒k =2,∴x =3-2m +1, 每件产品的销售价格为1.5×8+16xx(元),∴2018年的利润y =1.5x ×8+16xx-8-16x -m=4+8x -m =4+8⎝⎛⎭⎪⎫3-2m +1-m =-⎣⎢⎡⎦⎥⎤16m +1+m +1+29(m ≥0). (2)∵m ≥0时,16m +1+(m +1)≥216=8, ∴y ≤-8+29=21, 当且仅当16m +1=m +1⇒m =3(万元)时,y max =21(万元). 故该厂家2018年的促销费用投入3万元时,厂家的利润最大为21万元.(2017·天津高考)若a ,b ∈R ,ab >0,则a 4+4b 4+1ab的最小值为________.答案 4解析 ∵a 4+4b 4≥2a 2·2b 2=4a 2b 2(当且仅当a 2=2b 2时“=”成立),∴a 4+4b 4+1ab ≥4a 2b 2+1ab =4ab +1ab,由于ab >0,∴4ab +1ab≥24ab ·1ab=4⎝ ⎛⎭⎪⎫当且仅当4ab =1ab 时“=”成立, 故当且仅当⎩⎪⎨⎪⎧a 2=2b 2,4ab =1ab 时,a 4+4b 4+1ab的最小值为4.答题启示利用基本不等式求函数或代数式的最值时一定要注意验证等号是否成立,特别是当连续多次使用基本不等式时,一定要注意每次是否能保证等号成立,并且注意取等号的条件的一致性,因此在利用基本不等式处理问题时,列出等号成立的条件不仅是解题的必要步骤,也是检验转换是否有误的一种方法.对点训练 已知a >b >0,求a 2+16ba -b的最小值. 解 ∵a >b >0,∴a -b >0.∴b (a -b )≤⎣⎢⎡⎦⎥⎤b +a -b 22=a 24. ∴a 2+16b a -b ≥a 2+64a2≥2a 2·64a2=16.当a 2=64a2且b =a -b ,即a =22,b =2时等号成立. ∴a 2+16ba -b的最小值为16.。
(山东专用)高考数学一轮复习 第七章不等式7.4基本不等式及其应用教学案 理 新人教A版

7.4 基本不等式及其应用考纲要求1.了解基本不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题.1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:__________.(2)等号成立的条件:当且仅当__________时取等号.(3)其中a +b2称为正数a ,b 的__________,ab 称为正数a ,b 的__________.2.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果积xy 是定值P ,那么当且仅当__________时,x +y 有__________是__________(简记:积定和最小).(2)如果和x +y 是定值S ,那么当且仅当__________时,xy 有__________值是__________(简记:和定积最大).3.几个常用的不等式(1)a 2+b 2__________2ab (a ,b ∈R ).(2)ab __________⎝ ⎛⎭⎪⎫a +b 22(a ,b ∈R ).(3)⎝ ⎛⎭⎪⎫a +b 22__________a 2+b 22(a ,b ∈R ). (4)a 2+b 22≥a +b2≥ab ≥21a +1b(a ,b >0). (5)b a +a b≥2(a ,b 同号且不为0).1.若x +2y =4,则2x+4y的最小值是( ). A .4 B .8 C .2 2 D .4 22.函数y =x 2+2x +2x +1(x >-1)的图象最低点的坐标是( ).A .(1,2)B .(1,-2)C .(1,1)D .(0,2)3.设x >0,y >0,且x +4y =40,则lg x +lg y 的最大值是( ). A .40 B .10 C .4 D .24.当x >2时,不等式x +1x -2≥a 恒成立,则实数a 的取值范围是( ).A .(-∞,2]B .(-∞,4]C .[0,+∞) D.[2,4]5.建造一个容积为8 m 3,深为2 m 的长方体无盖水池,如果池底和池壁1 m 2的造价分别为120元和80元,那么水池表面积的最低造价为__________元.一、利用基本不等式证明不等式【例1】设a ,b 均为正实数,求证:1a 2+1b2+ab ≥2 2.方法提炼利用基本不等式证明不等式是综合法证明不等式的一种情况,综合法是指从已证不等式和问题的已知条件出发,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后转化为所求问题,其特征是以“已知”看“可知”,逐步推向“未知”.请做演练巩固提升5二、利用基本不等式求最值 【例2-1】(2012浙江高考)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( ). A .245 B .285C .5D .6【例2-2】(1)设0<x <2,求函数y =x -2x 的最大值; (2)求4a -2+a 的取值范围;(3)已知x >0,y >0,且x +y =1,求3x +4y的最小值.方法提炼1.在应用基本不等式求最值时,要把握三个方面,即“一正——各项都是正数;二定——和或积为定值;三相等——等号能取得”,这三个方面缺一不可.2.对于求分式型的函数最值题,常采用拆项使分式的分子为常数,有些分式函数可以拆项分成一个整式和一个分式(该分式的分子为常数)的形式,这种方法叫分离常数法.3.为了创造条件使用基本不等式,就需要对式子进行恒等变形,运用基本不等式求最值的焦点在于凑配“和”与“积”,并且在凑配过程中就应考虑到等号成立的条件,另外,可利用二次函数的配方法求最值.请做演练巩固提升3,4三、基本不等式的实际应用【例3-1】某单位用2 160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2 000平方米的楼房.经测算,如果将楼房建为x (x ≥10)层,则每平方米的平均建筑费用为560+48x (单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用建筑总面积)【例3-2】要设计如图的一张矩形广告,该广告含有大小相等的左中右三个矩形栏目,这三栏的面积之和为60 000 cm 2,四周空白的宽度为10 cm ,栏与栏之间的中缝空白的宽度为5 cm ,怎样确定广告的高与宽的尺寸(单位:cm),使整个矩形广告面积最小.方法提炼基本不等式实际应用题的特点:(1)问题的背景是人们关心的社会热点问题,如“物价、销售、税收、原材料”等,题目往往较长,解题时需认真阅读,从中提炼出有用信息,建立数学模型,转化为数学问题求解.(2)当运用基本不等式求最值时,若等号成立的自变量不在定义域内时,就不能使用基本不等式求解,此时可根据变量的范围用对应函数的单调性求解.请做演练巩固提升2忽视题目的隐含条件致误【典例】在平面直角坐标系xOy 中,过坐标原点的一条直线与函数f (x )=2x的图象交于P 、Q 两点,则线段PQ 长的最小值是________.分析:由已知条件可知两交点必关于原点对称,从而设出交点代入两点间距离公式,整理后应用均值不等式求解即可.解析:由题意可知f (x )=2x的图象关于原点对称,而与过原点的直线相交,则两交点必关于原点对称,故可设两交点分别为P ⎝ ⎛⎭⎪⎫x ,2x 与Q ⎝ ⎛⎭⎪⎫-x ,-2x ,由两点间距离公式可得|PQ |=x +x 2+⎝ ⎛⎭⎪⎫2x +2x 2=x2+⎝ ⎛⎭⎪⎫4x 2≥4, 等号当且仅当x 2=2,即x =±2时取得. 答案:4 答题指导:1.在解答本题时主要有两点误区:(1)对于题目自身的含义理解不透,无法掌握交点关系,造成不会解.(2)有些同学设出直线方程与f (x )=2x联立得出两交点关系,再应用两点间距离公式求解,出现运算繁琐情况,导致错解.2.解决此类问题时还有以下几点在备考时要注意: (1)理解函数的图象、性质,明确其表达的含义;(2)熟记要掌握的公式,如本例中的两点间距离公式; (3)思考要周密,运算要准确、快速.另外,由于此类题目往往以小题形式出现,因而能用简便方法的尽量使用简便方法.1.设M 是△ABC 内一点,且S △ABC 的面积为1,定义f (M )=(m ,n ,p ),其中m ,n ,p分别是△MBC ,△MCA ,△MAB 的面积,若f (M )=⎝ ⎛⎭⎪⎫12,x ,y ,则1x +4y 的最小值是( ). A .8 B .9 C .16 D .182.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( ).A .60件B .80件C .100件D .120件3.函数y =log a (x +3)-1(a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上(其中m ,n >0),则1m +2n的最小值等于( ).A .16B .12C .9D .84.已知向量a =(x ,-1),b =(y -1,1),x ,y ∈R +,若a ∥b ,则t =x +1x +y +1y的最小值是( ).A .4B .5C .6D .81 3(a+b+c)2≥ab+bc+ac.5.已知a,b,c都是实数,求证:a2+b2+c2≥参考答案基础梳理自测 知识梳理1.(1)a >0,b >0 (2)a =b (3)算术平均数 几何平均数 2.(1)x =y 最小值 2P (2)x =y 最大S 243.(1)≥ (2)≤ (3)≤ 基础自测1.B 解析:∵2x +4y ≥2·2x ·22y =2·2x +2y =2·24=8,当且仅当2x =22y ,即x =2y =2时取等号,∴2x +4y的最小值为8.2.D 解析:y =(x +1)2+1x +1=(x +1)+1x +1≥2.当且仅当x =0时等号成立.3.D 解析:∵x +4y =40,且x >0,y >0,∴x +4y ≥2·x ·4y =4·xy .(当且仅当x =4y 时取“=”) ∴4xy ≤40.∴xy ≤100.∴lg x +lg y =lg xy ≤lg 100=2. ∴lg x +lg y 的最大值为2.4.B 解析:∵x +1x -2≥a 恒成立,∴a 必须小于或等于x +1x -2的最小值.∵x >2,∴x -2>0.∴x +1x -2=(x -2)+1x -2+2≥4,当且仅当x =3时取最小值4. 故选择B.5.1 760 解析:设水池底面的长度、宽度分别为a m ,b m ,则ab =4, 令水池表面的总造价为y , 则y =ab ×120+2(2a +2b )×80=480+320(a +b )≥480+320×2ab =480+320×4=1 760, 当且仅当a =b =2时取“=”. 考点探究突破【例1】 证明:由于a ,b 均为正实数,所以1a 2+1b 2≥21a 2·1b 2=2ab. 当且仅当1a 2=1b2,即a =b 时等号成立.又因为2ab +ab ≥22ab·ab =2 2.当且仅当2ab=ab 时等号成立.所以1a 2+1b 2+ab ≥2ab+ab ≥22,当且仅当⎩⎪⎨⎪⎧1a 2=1b2,2ab =ab ,即a =b =42时取等号.【例2-1】 C 解析:∵x +3y =5xy , ∴15y +35x=1. ∴3x +4y =(3x +4y )×1=(3x +4y )⎝ ⎛⎭⎪⎫15y +35x =3x 5y +95+45+12y 5x ≥135+23x 5y ·12y 5x=5, 当且仅当3x 5y =12y 5x ,即x =1,y =12时等号成立.【例2-2】 解:(1)∵0<x <2, ∴2-x >0.∴y =x (4-2x )=2·x (2-x )≤2·x +2-x2=2,当且仅当x =2-x ,即x =1时取等号,∴当x =1时,函数y =x (4-2x )的最大值是 2. (2)显然a ≠2,当a >2时,a -2>0,∴4a -2+a =4a -2+(a -2)+2 ≥24a -2·(a -2)+2=6, 当且仅当4a -2=a -2,即a =4时取等号;当a <2时,a -2<0,∴4a -2+a =4a -2+(a -2)+2 =-⎣⎢⎡⎦⎥⎤42-a +(2-a )+2 ≤-242-a ·(2-a )+2=-2, 当且仅当42-a=2-a ,即a =0时取等号,∴4a -2+a 的取值范围是(-∞,-2]∪[6,+∞). (3)∵x >0,y >0,且x +y =1, ∴3x +4y =⎝ ⎛⎭⎪⎫3x +4y (x +y ) =7+3y x +4xy≥7+23y x ·4x y=7+43,当且仅当3y x =4xy,即2x =3y 时等号成立,∴3x +4y的最小值为7+4 3.【例3-1】 解:设将楼房建为x 层,则每平方米的平均购地费用为2 160×1042 000x=10 800x.∴每平方米的平均综合费用y =560+48x +10 800x=560+48⎝⎛⎭⎪⎫x +225x (x ≥10),当x +225x取最小时,y 有最小值.∵x >0,∴x +225x≥2x ·225x=30,当且仅当x =225x,即x =15时,上式等号成立.∴当x =15时,y 有最小值2 000元.因此该楼房建为15层时,每平方米的平均综合费用最少. 【例3-2】 解:设矩形栏目的高为a cm ,宽为b cm , 则ab =20 000,∴b =20 000a.广告的高为a +20,宽为3b +30(其中a >0,b >0), 广告的面积S =(a +20)(3b +30) =30(a +2b )+60 600=30⎝⎛⎭⎪⎫a +40 000a+60 600 ≥30×2a ×40 000a+60 600=12 000+60 600=72 600,当且仅当a =40 000a,即a =200时,取等号,此时b =100.故当广告的高为220 cm ,宽为330 cm 时,可使整个矩形广告的面积最小. 演练巩固提升 1.D2.B 解析:由题意得平均每件产品生产准备费用为800x元,仓储费用为x 8元,从而费用和为800x +x 8≥2800x ·x8=20.当800x =x8,即x =80时等号成立. 3.D 解析:函数y =log a (x +3)-1的图象恒过定点A (-2,-1), ∴-2m -n +1=0,即2m +n =1. ∴1m +2n =⎝ ⎛⎭⎪⎫1m +2n (2m +n )=2+2+n m +4m n ≥4+2n m ·4mn =8,当n m =4m n,即n 2=4m 2,即n =2m , 即n =12,m =14时,1m +2n取得最小值8.4.B 解析:由a ∥b ,得x +y =1,t =t (x +y )=⎝ ⎛⎭⎪⎫1+1x +1y (x +y )=1+2+⎝ ⎛⎭⎪⎫y x +x y ≥3+2y x ·x y =5, 当x =y =12时,t 取得最小值5.5.证明:∵a 2+b 2≥2ab ,b 2+c 2≥2bc , a 2+c 2≥2ac ,∴2a 2+2b 2+2c 2≥2ab +2bc +2ac ,∴3(a 2+b 2+c 2)≥(a +b +c )2,即a 2+b 2+c 2≥13(a +b +c )2.由a 2+b 2+c 2≥ab +bc +ac , ∴a 2+b 2+c 2+2ab +2bc +2ac ≥3ab +3bc +3ac ,∴(a +b +c )2≥3(ab +bc +ac ). ∴13(a +b +c )2≥ab +bc +ac . 综上所述,a 2+b 2+c 2≥13(a +b +c )2≥ab +bc +ac ,命题得证.。
2020届高考理科数学一轮复习讲义:第七章§7.3 基本不等式及不等式的应用_PDF压缩

( ) ∴ 1 + 1 = mn
1+1 mn
(
m+n)=
2+
n m
+
m n
≥2+2
n · m = 4, mn
当且仅当
n m
=
m n
且
m+n = 1(m>0,n>0),即
m=n=
1 2
时,取
得等号,
∴
1+ m
1 n 的最小值为 4.
答案 4
1-1 (2019 安徽江南十校第二次大联考,10) 已知实数 x
对应学生用书起始页码 P112
利用基本不等式求最值
1.利用基本不等式解决条件最值问题的关键是构造和为定
值或乘积为定值,主要有三种思路:①对条件使用基本不等式,
建立相应的不等式求解.②对条件变形,以进行“1” 的代换,从而
利用基本不等式求最值.③针对待求最值的式子,可以通过添项、
分离常数、平方等方法使之能运用基本不等式.
>A 的解集为 D; 不等式 f(x) <B 恰在区间 D 上成立⇔f(x) <B 的解集为 D.
8 5 年高考 3 年模拟 B 版( 教师用书)
��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������1
(2) 如果和 x+y 是定值 s,那么当且仅当 x = y 时,xy 有 最大
值,是
s2 4
.( 简记:和定积最大)
2024届高考数学一轮复习+均值不等式+课件

例4 (1)若0<a<b,则下列不等式一定成立的是
a+b A.b> 2 >a> ab
√ a+b
C.b> 2 > ab>a
a+b B.b> ab> 2 >a
a+b D.b>a> 2 > ab
∵0<a<b,∴2b>a+b, ∴b>a+2 b> ab.
∵b>a>0,∴ab>a2,∴ ab>a.
故
a+b b> 2 >
(2)设
0<x<32,则函数
9 y=4x(3-2x)的最大值为__2___.
∵0<x<32,∴3-2x>0, y=4x(3-2x)=2[2x(3-2x)]≤22x+23-2x2=92,
当且仅当 2x=3-2x,即 x=34时,等号成立.
∵34∈0,32, ∴函数 y=4x(3-2x)0<x<32的最大值为92.
(2)已知 x>1,则 y=xx2-+13的最大值为__16___.
令t=x-1,∴x=t+1, ∵x>1,∴t>0, ∴y=t+1t2+3=t2+2tt+4=t+41t +2≤2 41+2=16, 当且仅当 t=4t ,t=2,即 x=3 时,等号成立, ∴当 x=3 时,ymax=16.
二 均值不等式的常见变形应用
=1+2 ab≤1+2 14=2当且仅当a=b=12时等号成立, 则 a+ b≤ 2,则 8 a+8 b有最大值 8 2,故 B 正确; 1a+1b=a+abb=a1b≥4当且仅当a=b=12时等号成立,
故1a+1b有最小值 4,故 C 正确; a2+b2=(a+b)2-2ab=1-2ab≥12当且仅当a=b=12时等号成立, 所以 a2+b2 有最小值12,故 D 错误.
高考数学一轮复习第七章不等式第四节基本均值不等式课件理

对实际问题,在审题和建模时一定不可忽略对目标函数定义 域的准确挖掘,一般地,每个表示实际意义的代数式必须为正, 由此可得自变量的范围,然后再利用基本(均值)不等式求最值.
某公司购买一批机器投入生产,据市场分析,每台机器生 产的产品可获得的总利润 y(单位:万元)与机器运转时间 x(单 位:年)的关系为 y=-x2+18x-25(x∈N*),则该公司年平均 利润的最大值是________万元.
3.算术平均数与几何平均数
a+b
设 a>0,b>0,则 a,b 的算术平均数为 2 为 ab,基本(均值)不等式可叙述为:
两个正数的算术平均数不小于它们的几何平均数
,几何平均数 .
4.利用基本(均值)不等式求最值问题
已知 x>0,y>0,则:
(1)如果积 xy 是定值 p,那么当且仅当 x=y 时,x+y 有最
[易错防范] 1.使用基本(均值)不等式求最值,“一正”“二定”“三相 等”三个条件缺一不可. 2.连续使用基本(均值)不等式求最值要求每次等号成立的条 件一致.
编后语
• 同学们在听课的过程中,还要善于抓住各种课程的特点,运用相应的方法去听,这样才能达到最佳的学习效果。 • 一、听理科课重在理解基本概念和规律 • 数、理、化是逻辑性很强的学科,前面的知识没学懂,后面的学习就很难继续进行。因此,掌握基本概念是学习的关键。上课时要抓好概念的理解,
800 元,若每批生产 x 件,则平均仓储时间为x8天,且每件产品每天的
仓储费用为 1 元.为使平均到每件产品的生产准备费用与仓储费用之
和最小,每批应生产产品( )
A.60 件
B.80 件
C.100 件
D.120 件
(苏教版)高考数学一轮复习第七章不等式第三节基本不等式及其应用教案文(解析版)

1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 2.几个重要的不等式(1)a 2+b 2≥ 2ab (a ,b ∈R);(2)b a +ab ≥2(a ,b 同号);(3)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R);(4)⎝⎛⎭⎫a +b 22≤a 2+b22(a ,b ∈R). 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.4.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 24(简记:和定积最大).[小题体验]1.(2019·南京调研)已知m ,n 均为正实数,且m +2n =1,则mn 的最大值为________. 解析:∵m +2n =1,∴m ·2n ≤⎝⎛⎭⎫m +2n 22=14,即mn ≤18,当且仅当m =2n =12时,mn 取得最大值18.答案:182.若实数x ,y 满足xy =1,则x 2+2y 2的最小值为________. 解析:x 2+2y 2=x 2+(2y )2≥2x (2y )=22, 所以x 2+2y 2的最小值为2 2. 答案:2 23.若把总长为20 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是________m 2. 解析:设一边长为x m ,则另一边长可表示为(10-x )m , 由题知0<x <10,则面积S =x (10-x )≤⎝⎛⎭⎫x +10-x 22=25,当且仅当x =10-x ,即x =5时等号成立,故当矩形的长与宽相等,且都为5 m 时面积取到最大值25 m 2.答案:251.使用基本不等式求最值,“一正”“二定”“三相等”三个条件缺一不可.2.“当且仅当a =b 时等号成立”的含义是“a =b ”是等号成立的充要条件,这一点至关重要,忽略它往往会导致解题错误.3.连续使用基本不等式求最值,要求每次等号成立的条件一致. [小题纠偏]1.(2019·启东检测)函数y =x +9x -1(x >1)的最小值为________. 解析:∵x >1,∴x -1>0, ∴y =x +9x -1=(x -1)+9x -1+1≥2x -19x -1+1=7,当且仅当x =4时取等号. 答案:72.函数f (x )=x +1x 的值域为____________________.答案:(-∞,-2]∪[2,+∞)考点一 利用基本不等式求最值重点保分型考点——师生共研[典例引领]1.(2018·启东期末)设正实数a ,b 满足a +b =1,则b a +4b 的最小值为________.解析:∵a +b =1, ∴b a +4b =b a+4a +b b =b a +4ab+4≥2b a ·4a b +4=8,当且仅当b a =4a b ,即a =13,b =23时等号成立, ∴b a +4b 的最小值为8. 答案:82.(2019·常州调研)若实数x 满足x >-4,则函数f (x )=x +9x +4的最小值为________.解析:因为x >-4,所以x +4>0, 所以f (x )=x +9x +4=x +4+9x +4-4≥2x +49x +4-4=2, 当且仅当x +4=9x +4,即x =-1时取等号.答案:23.(2018·徐州调研)已知实数x ,y 满足x 2+y 2=3,|x |≠|y |,则12x +y2+4x -2y2的最小值为________.解析:因为(2x +y )2+(x -2y )2=5(x 2+y 2)=15,所以令(2x +y )2=t ,(x -2y )2=μ,所以t +μ=15,12x +y2+4x -2y2=1t +4μ=115(t +μ)⎝⎛⎭⎫1t +4μ=115⎝ ⎛⎭⎪⎫5+4t μ+μt ≥115(5+4)=35,当且仅当t =5,μ=10时取等号,所以12x +y2+4x -2y2的最小值为35. 答案:35[由题悟法]利用基本不等式求最值的方法利用基本不等式解决条件最值的关键是构造和为定值或积为定值,主要有两种思路:(1)对条件使用基本不等式,建立所求目标函数的不等式求解.常用的方法有:拆项法、变系数法、凑因子法、换元法、整体代换法等.(2)条件变形,进行“1”的代换求目标函数最值.[即时应用]1.设0<x <32,则函数y =4x (3-2x )的最大值为________.解析:y =4x (3-2x )=2[2x (3-2x )]≤2⎣⎡⎦⎤2x +3-2x 22=92,当且仅当2x =3-2x ,即x =34时,等号成立.又因为34∈⎝⎛⎭⎫0,32, 所以函数y =4x (3-2x )⎝⎛⎭⎫0<x <32的最大值为92. 答案:922.已知正数x ,y 满足x 2+2xy -3=0,则2x +y 的最小值是________. 解析:由题意得y =3-x 22x,所以2x +y =2x +3-x 22x =3x 2+32x =32⎝⎛⎭⎫x +1x ≥3,当且仅当x =y =1时,等号成立. 答案:33.(2017·天津高考)若a ,b ∈R ,ab >0,则a 4+4b 4+1ab 的最小值为________.解析:因为ab >0,所以a 4+4b 4+1ab ≥24a 4b 4+1ab =4a 2b 2+1ab =4ab +1ab ≥24ab ·1ab=4,当且仅当⎩⎪⎨⎪⎧a 2=2b 2,ab =12时取等号,故a 4+4b 4+1ab 的最小值是4. 答案:4考点二 基本不等式的实际应用重点保分型考点——师生共研[典例引领]经调查测算,某产品的年销售量(即该厂的年产量)x 万件与年促销费用m 万元(m ≥0)满足x =3-km +1(k为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知2018年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2018年该产品的利润y 万元表示为年促销费用m 万元的函数; (2)该厂家2018年的促销费用投入多少万元时,厂家的利润最大? 解:(1)由题意可知,当m =0时,x =1, 所以1=3-k ,解得k =2,即x =3-2m +1,每1万件产品的销售价格为1.5×8+16xx (万元),所以2018年的利润y =x ⎝⎛⎭⎫1.5×8+16x x -(8+16x +m )=4+8x -m =4+8⎝⎛⎭⎫3-2m +1-m =28-16m +1-m (m ≥0).所以利润y 表示为年促销费用的函数关系式是y =28-16m +1-m (m ≥0). (2)由(1)知y =-⎣⎡⎦⎤16m +1+m +1+29(m ≥0).因为m ≥0时,16m +1+(m +1)≥216m +1m +1=8,当且仅当16m +1=m +1,即m =3时取等号.所以y ≤-8+29=21, 即当m =3时,y 取得最大值21.所以当该厂家2018年的促销费用投入3万元时,厂家获得的利润最大,为21万元.[由题悟法]解实际应用题的3个注意点(1)设变量时一般要把求最大值或最小值的变量定义为函数.(2)根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值. (3)在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.[即时应用]某房地产开发公司计划在一楼区内建造一个长方形公园ABCD ,公园由形状为长方形的休闲区A 1B 1C 1D 1和人行道(阴影部分)组成.已知休闲区A 1B 1C 1D 1的面积为4 000 m 2,人行道的宽分别为4 m 和10 m(如图所示).(1)若设休闲区的长和宽的比A 1B 1B 1C 1=x (x >1),求公园ABCD 所占面积S 关于x 的函数S (x )的解析式; (2)要使公园所占面积最小,则休闲区A 1B 1C 1D 1的长和宽该如何设计? 解:(1)设休闲区的宽为a m ,则长为ax m , 由a 2x =4 000,得a =2010x.则S (x )=(a +8)(ax +20)=a 2x +(8x +20)a +160=4 000+(8x +20)·2010x +160= 8010⎝⎛⎭⎫2x +5x +4 160(x >1).(2)S (x )=8010⎝⎛⎭⎫2x +5x +4 160≥8010×22x ·5x+4 160=1 600+4 160= 5 760,当且仅当2x =5x,即x =2.5时,等号成立,此时a =40,ax =100. 所以要使公园所占面积最小,休闲区A 1B 1C 1D 1的长和宽应分别设计为100 m,40 m. 考点三 利用基本不等式求参数的值或范围重点保分型考点——师生共研 [典例引领]1.(2019·淮安调研)若x ∈(0,1)时,不等式m ≤1x +11-x 恒成立,则实数m 的最大值为________.解析:∵x ∈(0,1),∴1-x ∈(0,1),∵x +(1-x )=1, ∴1x +11-x =⎝⎛⎭⎫1x +11-x [x +(1-x )]=2+1-x x +x1-x ≥2+21-x x ·x 1-x=4, 当且仅当1-x x =x 1-x ,即x =12时取等号,∴m ≤4,即实数m 的最大值为4. 答案:42.已知函数f (x )=x 2+ax +11x +1(a ∈R),若对于任意的x ∈N *,f (x )≥3恒成立,则a 的取值范围是________.解析:对任意x ∈N *,f (x )≥3,即x 2+ax +11x +1≥3恒成立,即a ≥-⎝⎛⎭⎫x +8x +3. 设g (x )=x +8x ,x ∈N *,则g (x )=x +8x≥42,当x =22时等号成立,又g (2)=6,g (3)=173.因为g (2)>g (3),所以g (x )min =173.所以-⎝⎛⎭⎫x +8x +3≤-83, 所以a ≥-83,故a 的取值范围是⎣⎡⎭⎫-83,+∞. 答案:⎣⎡⎭⎫-83,+∞ [由题悟法]求解含参数不等式的求解策略(1)观察题目特点,利用基本不等式确定相关成立条件,从而得参数的值或取值范围.(2)在处理含参数的不等式恒成立问题时,往往将已知不等式看作关于参数的不等式,体现了主元与次元的转化.[即时应用]1.(2019·东台月考)若对任意x >0,xx 2+3x +1≤a 恒成立,则a 的最小值为________.解析:x x 2+3x +1=1x +3+1x ,∵x >0,∴x +3+1x ≥3+2x ·1x =3+2=5,当且仅当x =1x,即x =1时取等号, ∴0<1x +3+1x≤15,∴要使x x 2+3x +1≤a 恒成立,则a ≥15,故a 的最小值为15.答案:152.已知正数x ,y 满足x +22xy ≤λ(x +y )恒成立,求实数λ的最小值.解:依题意得x +22xy ≤x +(x +2y )=2(x +y ),即x +22xy x +y ≤2(当且仅当x =2y 时取等号),即x +22xyx +y 的最大值为2.又λ≥x +22xyx +y,因此有λ≥2,即λ的最小值为2.一抓基础,多练小题做到眼疾手快1.(2019·连云港调研)若x >0,y >0,且log 2x +log 2y =2,则1x +2y 的最小值为________.解析:∵x >0,y >0,且log 2x +log 2y =log 2xy =2, ∴xy =4, ∴1x +2y≥22xy =2,当且仅当1x =2y且xy =4,即x =2,y =22时取等号, ∴1x +2y 的最小值为 2. 答案: 22.当x >0时,f (x )=2xx 2+1的最大值为________. 解析:因为x >0,所以f (x )=2x x 2+1=2x +1x≤22=1,当且仅当x =1x ,即x =1时取等号.答案:13.(2018·苏州期末)已知a >0,b >0,且1a +1b =1,则3a +2b +ba 的最小值为________.解析:∵a >0,b >0,且1a +1b=1,∴3a +2b +b a =3a ⎝⎛⎭⎫1a +1b +2b ⎝⎛⎭⎫1a +1b +b a =5+3a b +3ba ≥5+29=11,当且仅当a =b =2时取等号, ∴3a +2b +ba 的最小值为11.答案:114.当3<x <12时,函数y =x -312-xx的最大值为________.解析:y =x -312-xx =-x 2+15x -36x=-⎝⎛⎭⎫x +36x +15≤-2 x ·36x+15=3. 当且仅当x =36x ,即x =6时,y max =3.答案:35.(2018·通州期末)若log 4(a +4b )=log 2ab ,则a +b 的最小值是________. 解析:∵log 4(a +4b )=log 2ab ,∴log 2a +4b =log 2ab ,a +4b >0,ab >0. ∴a +4b =ab ,即a +4b =ab , ∴1b +4a=1, ∴a +b =(a +b )⎝⎛⎭⎫1b +4a =5+a b +4ba ≥5+2ab ·4ba=9,当且仅当a =2b =6时取等号. ∴a +b 的最小值是9. 答案:96.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品________件.解析:每批生产x 件,则平均每件产品的生产准备费用是800x 元,每件产品的仓储费用是x 8元,则800x +x8≥2 800x ·x 8=20,当且仅当800x =x8,即x =80时“=”成立,所以每批生产产品80件. 答案:80二保高考,全练题型做到高考达标1.(2019·盐城调研)若x >0,y >0,且x +1x +y +4y ≤9,则1x +4y的最大值为________.解析:令x +y =n ,1x +4y =m ,∴m ·n =(x +y )⎝⎛⎭⎫1x +4y =5+y x +4x y≥9. ∴⎩⎪⎨⎪⎧m ·n ≥9,m +n ≤9⇒9≥m +n ≥m +9m .∴m 2-9m +9≤0,解得9-352≤m ≤9+352.∴1x +4y 的最大值为9+352. 答案:9+3522.已知ab =14,a ,b ∈(0,1),则11-a +21-b 的最小值为________.解析:由题意得b =14a ,所以0<14a <1,即a ∈⎝⎛⎭⎫14,1, 得11-a +21-b =11-a +8a 4a -1=11-a +24a -1+2. 4(1-a )+(4a -1)=3,记S =11-a +24a -1, 则S =44-4a +24a -1=13[(4-4a )+(4a -1)]⎝⎛⎭⎫44-4a +24a -1=2+23⎣⎢⎡⎦⎥⎤4-4a 4a -1+24a -14-4a ≥2+423,当且仅当4-4a 4a -1=24a -14-4a时等号成立,所以所求最小值为4+423.答案:4+4233.(2018·连云港期末)已知x >0,y >0,且2x +4y =4,则2x +1y 的最小值是________.解析:∵x >0,y >0,且2x +4y =4, ∴4=2x +4y ≥22x+2y,即x +2y ≤2,∴2x +1y ≥12⎝⎛⎭⎫2x +1y (x +2y )=12⎝⎛⎭⎫4+4y x +x y ≥12⎝⎛⎭⎫4+24y x ·x y =4, 当且仅当x =2y 时等号成立, ∴2x +1y 的最小值是4. 答案:44.(2019·湖北七市(州)协作体联考)已知直线ax +by -6=0(a >0,b >0)被圆x 2+y 2-2x -4y =0截得的弦长为25,则ab 的最大值是________.解析:将圆的一般方程化为标准方程为(x -1)2+(y -2)2=5,圆心坐标为(1,2),半径r =5,故直线过圆心,即a +2b =6,所以a +2b =6≥2a ·2b ,可得ab ≤92,当且仅当a =2b =3时等号成立,即ab 的最大值是92.答案:925.某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边夹角为60°(如积为93图),考虑到防洪堤的坚固性及水泥用料等因素,要求设计其横断面的面m 2,且高度不低于 3 m ,记防洪堤横断面的腰长为x m ,外周长(梯形的上底与两腰长的和)为y m ,若要使堤的上面与两侧面的水泥用料最省(即横断面的外周长最小),则防洪堤的腰长x =________.解析:设横断面的高为h ,由题意得AD =BC +2·x 2=BC +x ,h =32x ,所以93=12(AD +BC )h =12(2BC +x )·32x ,故BC =18x -x2,由⎩⎨⎧h =32x ≥ 3,BC =18x -x2>0,得2≤x <6,所以y =BC +2x =18x +3x2(2≤x <6),从而y =18x +3x 2≥218x ·3x2=63, 当且仅当18x =3x2(2≤x <6),即x =23时等号成立.答案:2 36.(2018·苏州期末)已知正数x ,y 满足x +y =1,则4x +2+1y +1的最小值为________. 解析:令x +2=a ,y +1=b ,则a +b =4(a >2,b >1),所以4x +2+1y +1=4a +1b =14(a +b )⎝⎛⎭⎫4a +1b =14⎝⎛⎭⎫5+4b a +a b ≥14(5+4)=94,当且仅当a =83,b =43,即x =23,y =13时取等号.则4x +2+1y +1的最小值为94.答案:947.(2018·南通三模)若正实数x ,y 满足x +y =1,则y x +4y 的最小值是________.解析:因为正实数x ,y 满足x +y =1,所以y x +4y =y x+4x +y y =y x +4xy +4≥2y x ·4xy+4=8,当且仅当y x =4x y ,即x =13,y =23时取“=”,所以y x +4y的最小值是8.答案:88.(2018·扬州期末)已知正实数x ,y 满足x +y =xy ,则3x x -1+2y y -1的最小值为________. 解析:∵x +y =xy , ∴3x x -1+2y y -1=3x y -1+2y x -1x -1y -1 =5xy -3x -2y xy -x -y +1=5x +5y -3x -2yx +y -x -y +1=2x +3y .又∵x +y =xy 可化为1y +1x =1,∴2x +3y =(2x +3y )⎝⎛⎭⎫1y +1x =2x y +3yx +5≥22x y ·3yx+5=26+5,当且仅当2x 2=3y 2时取等号, ∴3x x -1+2y y -1的最小值为26+5. 答案:26+59.(1)当x <32时,求函数y =x +82x -3的最大值;(2)设0<x <2,求函数y =x 4-2x 的最大值. 解:(1)y =12(2x -3)+82x -3+32=-⎝ ⎛⎭⎪⎫3-2x2+83-2x +32.当x <32时,有3-2x >0,所以3-2x 2+83-2x≥23-2x 2·83-2x=4, 当且仅当3-2x 2=83-2x ,即x =-12时取等号.于是y ≤-4+32=-52,故函数的最大值为-52.(2)因为0<x <2,所以2-x >0,所以y =x 4-2x =2·x 2-x ≤ 2·x +2-x2=2,当且仅当x =2-x ,即x =1时取等号,所以当x =1时,函数y =x 4-2x 的最大值为 2. 10.(2019·泰州调研)已知x >0,y >0,且2x +y =4. (1)求xy 的最大值及相应的x ,y 的值; (2)求9x +3y 的最小值及相应的x ,y 的值.解:(1)因为4=2x +y ≥22xy ⇒xy ≤2, 所以xy 的最大值为2,当且仅当2x =y =2, 即x =1,y =2时取“=”.(2)因为9x +3y =32x +3y ≥232x +y =18,所以9x +3y 的最小值为18,当且仅当9x =3y ,即2x =y =2⇒x =1,y =2时取“=”. 三上台阶,自主选做志在冲刺名校1.(2018·启东期中)已知α为锐角,则2tan α+3tan 2α的最小值为________.解析:∵α为锐角,∴tan α>0, ∴2tan α+3tan 2α=2tan α+31-tan 2α2tan α=32tan α+tan α2≥232tan α·tan α2=3,当且仅当tan α= 3,即α=π3时取得等号, ∴2tan α+3tan 2α的最小值为 3.答案: 32.(2018·苏北四市联考)已知对满足x +y +4=2xy 的任意正实数x ,y ,都有x 2+2xy +y 2-ax -ay +1≥0,则实数a 的取值范围为________.解析:法一:由x +y +4=2xy ≤x +y22得(x +y )2-2(x +y )-8≥0,又x ,y 是正实数,得x +y ≥4.原不等式整理可得(x +y )2-a (x +y )+1≥0,令x +y =t ,t ≥4,则t 2-at +1≥0,t ∈[4,+∞) (*)恒成立,当Δ=a 2-4≤0,即-2≤a ≤2时,(*)式恒成立;当a <-2时,对称轴t =a2<-1,(*)式恒成立;当a >2时,对称轴t =a 2,要使(*)式恒成立,则a 2<4,且16-4a +1≥0,得2<a ≤174.综上可得(*)式恒成立时,a ≤174,则实数a 的取值范围是⎝⎛⎦⎤-∞,174. 法二:由x +y +4=2xy ≤x +y22得(x +y )2-2(x +y )-8≥0,又x ,y 是正实数,得x +y ≥4.原不等式整理可得(x +y )2-a (x +y )+1≥0,令x +y =t ,t ≥4,则t 2-at +1≥0,t ∈[4,+∞) (*)恒成立,则a ≤⎝⎛⎭⎫t +1t min =174,故实数a 的取值范围是⎝⎛⎦⎤-∞,174. 答案:⎝⎛⎦⎤-∞,174 3.某工厂某种产品的年固定成本为250万元,每生产x 千件,需另投入成本为C (x ),当年产量不足80千件时,C (x )=13x 2+10x (万元).当年产量不小于80千件时,C (x )=51x +10 000x -1 450(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部 售完.(1)写出年利润L (x )(万元)关于年产量x (千件)的函数解析式.(2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大? 解:(1)因为每件商品售价为0.05万元,则x 千件商品销售额为0.05×1 000x 万元,依题意得:当0<x <80时,L (x )=(0.05×1 000x )-13x 2-10x -250=-13x 2+40x -250.当x ≥80时,L (x )=(0.05×1 000x )-51x -10 000x+1 450-250=1 200-⎝⎛⎭⎫x +10 000x . 所以L (x )=⎩⎨⎧-13x 2+40x -250,0<x <80,1 200-⎝⎛⎭⎫x +10 000x ,x ≥80.(2)当0<x <80时,L (x )=-13(x -60)2+950.此时,当x =60时,L (x )取得最大值L (60)=950万元. 当x ≥80时,L (x )=1 200-⎝⎛⎭⎫x +10 000x ≤1 200-2x ·10 000x=1 200-200=1 000. 此时x =10 000x,即x =100时,L (x )取得最大值1 000万元.由于950<1 000,所以,当年产量为100千件时,该厂在这一商品生产中所获利润最大,最大利润为1 000万元.命题点一 一元二次不等式1.(2017·山东高考改编)设函数y =4-x 2的定义域为A ,函数y =ln(1-x )的定义域为B ,则A ∩B =________.解析:由题意可知A ={x |-2≤x ≤2},B ={x |x <1},故A ∩B ={x |-2≤x <1}. 答案:[-2,1)2.(2014·江苏高考)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________.解析:由题可得f (x )<0对于x ∈[m ,m +1]恒成立,即⎩⎪⎨⎪⎧fm =2m 2-1<0,f m +1=2m 2+3m <0,解得-22<m <0.答案:⎝⎛⎭⎫-22,0 3.(2012·江苏高考)已知函数f (x )=x 2+ax +b (a ,b ∈R)的值域为[0,+∞),若关于x 的不等式f (x )<c 的解集为(m ,m +6),则实数c 的值为________.解析:因为f (x )的值域为[0,+∞),所以Δ=0,即a 2=4b ,所以x 2+ax +a 24-c <0的解集为(m ,m+6),易得m ,m +6是方程x 2+ax +a 24-c =0的两根,由一元二次方程根与系数的关系得⎩⎪⎨⎪⎧2m +6=-a ,m m +6=a 24-c ,解得c =9. 答案:9命题点二 简单的线性规划问题1.(2016·江苏高考)已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +4≥0,2x +y -2≥0,3x -y -3≤0,则x 2+y 2的取值范围是________.解析:根据已知的不等式组画出可行域,如图阴影部分所示,则(x ,y )为阴影区域内的动点.d =x 2+y 2可以看做坐标原点O 与可行域内的点(x ,y )之间的距离.数形结合,知d 的最大值是OA 的长,d 的最小值是点O 到直线2x +y -2=0的距离.由⎩⎪⎨⎪⎧x -2y +4=0,3x -y -3=0可得A (2,3),所以d max =22+32=13,d min =|-2|22+12=25.所以d 2的最小值为45,最大值为13.所以x 2+y 2的取值范围是⎣⎡⎦⎤45,13. 答案:⎣⎡⎦⎤45,13 2.(2018·全国卷Ⅰ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -2y -2≤0,x -y +1≥0,y ≤0,则z =3x +2y 的最大值为________.解析:作出满足约束条件的可行域如图中阴影部分所示.由z =3x +2y ,得y =-32x +z2.作直线l 0:y =-32x .平移直线l 0,当直线y =-32x +z2过点(2,0)时,z 取最大值,z max =3×2+2×0=6. 答案:63.(2017·全国卷Ⅲ改编)设x ,y 满足约束条件⎩⎪⎨⎪⎧3x +2y -6≤0,x ≥0,y ≥0,则z =x -y 的取值范围是________.解析:作出不等式组表示的可行域如图中阴影部分所示,作出直线l 0:y =x ,平移直线l 0,当直线z =x -y 过点A (2,0)时,z 取得最大值2,当直线z =x -y 过点B (0,3)时,z 取得最小值-3, 所以z =x -y 的取值范围是[-3,2]. 答案:[-3,2]4.(2018·全国卷Ⅱ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -5≥0,x -2y +3≥0,x -5≤0,则z =x +y 的最大值为________.解析:作出不等式组所表示的可行域如图中阴影部分所示.由图可知当直线x +y =z 过点A 时z 取得最大值.由⎩⎪⎨⎪⎧x =5,x -2y +3=0, 得点A (5,4),∴z max =5+4=9. 答案:95.(2018·北京高考)若x ,y 满足x +1≤y ≤2x ,则2y -x 的最小值是________.解析:由条件得⎩⎪⎨⎪⎧x +1≤y ,y ≤2x ,即⎩⎪⎨⎪⎧x -y +1≤0,2x -y ≥0,作出不等式组所表示的可行域如图中阴影部分所示.设z =2y -x ,即y =12x +12z ,作直线l 0:y =12x 并向上平移,显然当l 0过点A (1,2)时,z 取得最小值,z min =2×2-1=3.答案:36.(2017·天津高考)电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x ,y 表示每周计划播出的甲、乙两套连续剧的次数.(1)用x ,y 列出满足题目条件的数学关系式,并画出相应的平面区域; (2)问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多? 解:(1)由已知,x ,y 满足的数学关系式为⎩⎪⎨⎪⎧70x +60y ≤600,5x +5y ≥30,x ≤2y ,x ≥0,y ≥0,即⎩⎪⎨⎪⎧7x +6y ≤60,x +y ≥6,x -2y ≤0,x ≥0,y ≥0,该二元一次不等式组所表示的平面区域为图中的阴影部分中的整数点.(2)设总收视人次为z 万,则目标函数为z =60x +25y .考虑z =60x +25y ,将它变形为y =-125x +z 25,这是斜率为-125,随z 变化的一族平行直线.z25为直线在y 轴上的截距,当z25取得最大值时,z 的值最大.又因为x ,y 满足约束条件,所以由图可知,当直线z =60x +25y 经过可行域上的点M 时,截距z25最大,即z 最大.解方程组⎩⎪⎨⎪⎧7x +6y =60,x -2y =0,得点M 的坐标为(6,3).所以电视台每周播出甲连续剧6次、乙连续剧3次时才能使总收视人次最多. 命题点三 基本不等式1.(2017·江苏高考)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.解析:由题意,一年购买600x 次,则总运费与总存储费用之和为600x ×6+4x =4⎝⎛⎭⎫900x +x ≥8900x·x =240,当且仅当x =30时取等号,故总运费与总存储费用之和最小时x 的值是30.答案:302.(2016·江苏高考)在锐角三角形ABC 中,若sin A =2sin B sin C ,则tan A tan B tan C 的最小值是________.解析:在锐角三角形ABC 中,因为sin A =2sin B sin C , 所以sin(B +C )=2sin B sin C ,所以sin B cos C +cos B sin C =2sin B sin C ,等号两边同除以cos B cos C , 得tan B +tan C =2tan B tan C .所以tan A =tan[π-(B +C )]=-tan (B +C )=tan B +tan C tan B tan C -1=2tan B tan Ctan B tan C -1.①因为A ,B ,C 均为锐角,所以tan B tan C -1>0,所以tan B tan C >1. 由①得tan B tan C =tan Atan A -2.又由tan B tan C >1得tan Atan A -2>1,所以tan A >2.所以tan A tan B tan C =tan 2Atan A -2=tan A -22+4tan A -2+4tan A -2=(tan A -2)+4tan A -2+4≥24+4=8,当且仅当tan A -2=4tan A -2,即tan A =4时取得等号.故tan A tan B tan C 的最小值为8. 答案:83.(2018·天津高考)已知a ,b ∈R ,且a -3b +6=0,则2a +18b 的最小值为________.解析:∵a -3b +6=0,∴a -3b =-6. ∴2a +18b =2a +2-3b ≥22a ·2-3b =22a -3b=22-6=2×2-3=14,当且仅当⎩⎪⎨⎪⎧ a =-3b ,a -3b +6=0,即⎩⎪⎨⎪⎧a =-3,b =1时等号成立. 答案:144.(2017·全国卷Ⅰ改编)已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A ,B 两点,直线l 2与C 交于D ,E 两点,则|AB |+|DE |的最小值为________.解析:抛物线C :y 2=4x 的焦点为F (1,0), 由题意可知l 1,l 2的斜率存在且不为0. 不妨设直线l 1的斜率为k ,则l 1:y =k (x -1),l 2:y =-1k(x -1),由⎩⎪⎨⎪⎧y 2=4x ,y =k x -1消去y ,得k 2x 2-(2k 2+4)x +k 2=0,设A (x 1,y 1),B (x 2,y 2), 所以x 1+x 2=2k 2+4k 2=2+4k 2,由抛物线的定义可知,|AB |=x 1+x 2+2=2+4k 2+2=4+4k 2.同理得|DE |=4+4k 2,所以|AB |+|DE |=4+4k 2+4+4k 2=8+4⎝⎛⎭⎫1k 2+k 2≥8+8=16,当且仅当1k 2=k 2,即k =±1时取等号, 故|AB |+|DE |的最小值为16. 答案:16。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【2019最新】精选高考数学一轮复习第七章不等式7-3基本均值不等式及应用学案理考纲展示► 1.了解基本(均值)不等式的证明过程.2.会用基本(均值)不等式解决简单的最大(小)值问题.考点1 利用基本(均值)不等式求最值1.基本(均值)不等式≤a+b2(1)基本(均值)不等式成立的条件:________.(2)等号成立的条件:当且仅当________时等号成立.答案:(1)a>0,b>0 (2)a=b2.几个重要的不等式(1)a2+b2≥________(a,b∈R).(2)+≥________(a,b同号).(3)ab≤2(a,b∈R).(4)≥2(a,b∈R).答案:(1)2ab (2)23.算术平均数与几何平均数设a>0,b>0,则a,b的算术平均数为,几何平均数为,基本(均值)不等式可叙述为:________________________________.答案:两个正数的算术平均数不小于它们的几何平均数4.利用基本(均值)不等式求最值问题已知x>0,y>0,则(1)如果积xy是定值p,那么当且仅当________时,x+y有最________值是2.(简记:积定和最小) (2)如果和x+y是定值p,那么当且仅当________时,xy有最________值是.(简记:和定积最大)答案:(1)x =y 小 (2)x =y 大1.基本不等式的两个易错点:忽视不等式成立的条件;忽视等号成立的条件.(1)函数y =x +在区间(0,+∞)上的最小值是________,在区间(-∞,0)上的最大值是________.答案:2 -2解析:当x>0时,y =x +≥2=2,当且仅当x =,即x =1时取等号,故y 的最小值为2.当x<0时,-x>0,y =x +=-⎣⎢⎡⎦⎥⎤-x +⎝ ⎛⎭⎪⎫-1x ≤-2=-2,当且仅当-x =-,即x =-1时取等号,故y 的最大值为-2.(2)函数y =sin x +,x∈的最小值为________.答案:5解析:y =sin x +≥2=4,当sin x =时,sin x =±2,显然取不到等号.事实上,设t =sin x ,x∈,则t∈(0,1],易知y =t +在(0,1]上为减函数,故当t =1时,y 取得最小值5.2.应用基本不等式的技巧:凑;拆.(1)已知0<x<1,则x(3-3x)取得最大值时,x 的值为________.答案:12解析:由x(3-3x)=×3x(3-3x)≤×=,当且仅当3x =3-3x ,即x =时,等号成立.(2)若x>1,则x +的最小值为________.答案:5解析:x +=x -1++1≥4+1=5,当且仅当x -1=,即x =3时,等号成立.利用基本不等式确定最值的两种常见类型:代换变形;变量是负数.(1)已知a>0,b>0,a +b =2,则y =+的最小值是________.答案:92解析:∵a+b =2,∴=1,∴+==+≥+2=.故y =+的最小值为.(2)已知0<x<1,则y =lg x +的最大值是________.答案:-4解析:∵0<x<1,∴lg x<0,-lg x>0,∴-y =-lg x +⎝ ⎛⎭⎪⎫4-lg x ≥2=4,当且仅当-lg x =,即x =时,等号成立,故ymax =-4.[考情聚焦] 利用基本(均值)不等式求最值,一般是已知两个非负数的和为定值求其乘积的最大值,或已知两个非负数的乘积为定积求其和的最小值,是每年高考的重点内容.主要有以下几个命题角度:角度一通过配凑法利用基本(均值)不等式求最值[典题1] (1)已知0<x<1,则x(3-3x)取得最大值时x 的值为( )A.B. C.D.23 [答案] B[解析] 因为0<x<1,所以x(3-3x)=3x(1-x)≤32=.当且仅当x =1-x ,即x =时等号成立.(2)已知x <,求f(x)=4x -2+的最大值.[解] 因为x <,所以5-4x >0,则f(x)=4x -2+14x -5=-+3≤-2+3=1.当且仅当5-4x =,即x =1时等号成立.故f(x)=4x -2+的最大值为1.(3)已知x 为正实数且x2+=1,求x 的最大值.[解] 因为x >0,所以x =2x2⎝ ⎛⎭⎪⎫12+y22 ≤.又x2+=+=,所以x≤ =,即(x)max =.(4)求函数y =的最大值.[解] 令t = ≥0,则x =t2+1,所以y ==.当t =0,即x =1时,y =0;当t >0,即x >1时,y =,因为t +≥2=4,当且仅当t =2时等号成立,所以y =≤,即y 的最大值为(当t =2,即x =5时y 取得最大值).[点石成金] 1.利用基本(均值)不等式解题一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指正数,“二定”是指应用基本(均值)不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件.2.在利用基本(均值)不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本(均值)不等式.角度二通过常数代换法利用基本(均值)不等式求最值[典题2] 已知a >0,b >0,a +b =1,则+的最小值为________.[答案] 4[解析] ∵a>0,b >0,a +b =1,∴+=+=2++a b≥2+2=4,即+的最小值为4,当且仅当a =b =时等号成立.[题点发散1] 本例的条件不变,则的最小值为________.答案:9解析:=·=⎝ ⎛⎭⎪⎫2+b a ⎝ ⎛⎭⎪⎫2+a b =5+2≥5+4=9.当且仅当a =b =时等号成立.[题点发散2] 本例的条件和结论互换,即:已知a >0,b >0,+=4,则a +b 的最小值为________.答案:1解析:由+=4,得+=1.∴a +b =(a +b)=++a 4b≥+2=1.当且仅当a =b =时等号成立.[题点发散3] 若将本例中的“a+b =1”换为“a+2b =3”,如何求解?解:∵a+2b =3,∴a+b =1,∴+=⎝ ⎛⎭⎪⎫1a +1b ⎝ ⎛⎭⎪⎫13a +23b =+++2b 3a≥1+2=1+.当且仅当a=b=3-3时等号成立.故+的最小值为1+. [题点发散4] 若将本例变为:设a,b,c均为正数,满足a-2b+3c=0,则的最小值是________.答案:3解析:∵a-2b+3c=0,∴b=,∴=≥=3,当且仅当a=3c时等号成立.[题点发散5] 若将本例变为:已知各项为正数的等比数列{an}满足a7=a6+2a5,若存在两项am,an,使得=2a1,则+的最小值为________.答案:95解析:设公比为q(q>0),由a7=a6+2a5⇒a5q2=a5q+2a5⇒q2-q-2=0(q>0)⇒q=2.am·an=2a1⇒a12m-1·a12n-1=8a21⇒2m-1·2n-1=8⇒m+n-2=3⇒m+n=5,则+=(m+n)=≥×(5+2)=,当且仅当n=2m=时等号成立.[点石成金] 将条件灵活变形,利用常数代换法求最值是解决此类问题的常用方法.角度三通过消元法利用基本(均值)不等式求最值[典题3] [2017·江西南昌模拟]已知x>0,y>0,x+3y+xy=9,则x+3y的最小值为________.[答案] 6[解析] 由已知,得x=.解法一:∵x>0,y>0,∴0<y<3,∴x+3y=+3y=+3(y+1)-6≥2-6=6,当且仅当=3(y+1),即y=1,x=3时,等号成立,故(x+3y)min=6.解法二:∵x>0,y>0,9-(x+3y)=xy=x·(3y)≤·2,当且仅当x=3y时等号成立.设x+3y=t>0,则t2+12t-108≥0,∴(t-6)(t+18)≥0,又∵t>0,∴t≥6.故当x=3,y=1时,(x+3y)min=6. [点石成金] 消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解.有时会出现多元的问题,解决方法是消元后利用基本(均值)不等式求解.考点2 基本(均值)不等式与函数的综合问题[典题4] (1)已知f(x)=32x-(k+1)3x+2,当x∈R时,f(x)恒为正值,则k的取值范围是( )A.(-∞,-1)B.(-∞,2-1)C.(-1,2-1)D.(-2-1,2-1)[答案] B[解析] 由32x-(k+1)3x+2>0恒成立,得k+1<3x+.∵3x+≥2,∴k+1<2,即k<2-1.(2)已知函数f(x)=(a∈R),若对于任意x∈N*,f(x)≥3恒成立,则a 的取值范围是________.[答案] ⎣⎢⎡⎭⎪⎫-83,+∞ [解析] 由f(x)≥3恒成立,得x2+ax +11x +1≥3, 又x∈N*,∴x2+ax +11≥3(x+1),∴a -3≥-.令F(x)=-,x∈N*,则F(x)max =F(3)=-,即a -3≥-,∴a≥-.[点石成金] 1.a>f(x)恒成立⇔a>f(x)max ,a<f(x)恒成立⇔a<f(x)min.2.求最值时要注意其中变量的条件,有些不能用基本(均值)不等式的问题可考虑利用函数的单调性.已知函数f(x)=x +(p 为常数,且p>0) ,若f(x)在(1,+∞)上的最小值为4,则实数p =( )A .2B. C .4D.92 答案:B解析:由题意,得x -1>0,f(x)=x -1++1≥2+1,当且仅当x =+1时等号成立.因为f(x)在(1,+∞)上的最小值为4,所以2+1=4, 解得p =.考点3 基本(均值)不等式的实际应用(1)[教材习题改编]现有一段长为18 m 的铁丝,要把它围成一个底面一边长为另一边长2倍的长方体形状的框架,当长方体体积最大时,底面的较短边长是( )B.1.5 mA.1 mD.0.5 mC.0.75 m答案:A (2)[教材习题改编]将一根铁丝切割成三段做一个面积为2 m2、形状为直角三角形的框架,选用最合理(够用且浪费最少)的铁丝的长为________m.答案:4+22解析:设两直角边分别为a m,b m,框架的周长为l,则ab=2,即ab=4,∴ l=a+b+≥2+=4+2,当且仅当a=b=2时取等号,故选用最合理(够用且浪费最少)的铁丝的长为(4+2)m.(3)[教材习题改编]建造一个容积为8立方米,深为2米的长方体无盖水池,若池底的造价为每平方米120元,池壁的造价为每平方米80元,则这个水池的最低造价为________元.答案:1 760解析:池底一边长为x米,则另一底边为米,则总造价y=4×120+4×80≥1760,当且仅当x=2时取得最小值.[典题5] 某项研究表明:在考虑行车安全的情况下,某路段车流量F(单位时间内经过测量点的车辆数,单位:辆/时)与车流速度v(假设车辆以相同速度v行驶,单位:米/秒)、平均车长l(单位:米)的值有关,其公式为F=.(1)如果不限定车型,l=6.05,则最大车流量为________辆/时;(2)如果限定车型,l=5,则最大车流量比(1)中的最大车流量增加________辆/时.[答案] (1)1 900 (2)100[解析] (1)当l=6.05时,F=,∴F ==76 000v +121v+18 ≤=1 900,当且仅当v =,即v =11时等号成立.∴最大车流量F 为1 900辆/时.(2)当l =5时,F ==,∴F ≤=2 000,当且仅当v =,即v =10时等号成立.∴最大车流量比(1)中的最大车流量增加2 000-1 900=100(辆/时).[点石成金] 解实际应用题的三个注意点(1)设变量时一般要把求最大值或最小值的变量定义为函数.(2)根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值.(3)在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.某车间分批生产某种产品,每批产品的生产准备费用为800元,若每批生产x 件,则平均仓储时间为天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( )A .60件B .80件C .100件D .120件 答案:B解析:若每批生产x 件产品,则每件产品的生产准备费用是元,仓储费用是元,总的费用是+≥2=20,当且仅当=,即x =80时等号成立.[方法技巧] 1.基本(均值)不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,常常用于比较数(式)的大小或证明不等式,解决问题的关键是分析不等式两边的结构特点,选择好利用基本(均值)不等式的切入点.2.对使用基本(均值)不等式时等号取不到的情况,可考虑使用函数y=x+(m>0)的单调性.[易错防范] 1.使用基本(均值)不等式求最值,“一正”“二定”“三相等”三个条件缺一不可.2.连续使用基本(均值)不等式求最值要求每次等号成立的条件一致.真题演练集训1.[2016·江苏卷]在锐角三角形ABC中,若sin A=2sin Bsin C,则tan AtanBtan C的最小值是________.答案:8解析:由sin A=sin(B+C)=2sin Bsin C,得sin Bcos C+cos Bsin C=2sin Bsin C,两边同时除以cos Bcos C,得tan B+tan C=2tan Btan C,令tan B+tan C=2tan Btan C=m,因为△ABC是锐角三角形,所以2tan Btan C>2,则tan Btan C>1,m>2.又在三角形中有tan Atan Btan C=-tan(B+C)tan Btan C=-·m==m-2++4≥2+4=8,当且仅当m-2=,即m=4时等号成立,故tan Atan Btan C的最小值为8. 2.[2014·福建卷]要制作一个容积为4 m3,高为1 m的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________(单位:元).答案:160解析:设该容器的总造价为y元,长方体的底面矩形的长为x m,因为无盖长方体的容积为4 m3,高为1 m,所以长方体的底面矩形的宽为 m,依题意,得y=20×4+10=80+20≥80+20×2=160,当且仅当x=,即x=2时等号成立,所以该容器的最低总造价为160元.3.[2013·天津卷]设a+b=2,b>0,则当a=________时,+取得最小值.答案:-2解析:∵a+b=2,∴+=+|a|b=+=++|a|b≥+2 =+1.当且仅当=且a<0,即b=-2a,a=-2时,+取得最小值.课外拓展阅读基本(均值)不等式在压轴题中的应用关于基本(均值)不等式的高考试题,它可以涉及的知识点很多,尤其是在数列、解析几何中运用时,难度一般较大,需要有较强的分析问题及解决问题的能力.1.与数列搭配基本不等式在数列解答题中多出现在第(2)问中,常见的是比较大小或证明不等式,问题的求解需要有较强的运算能力.[典例1] 已知等差数列{an}的前n项和为Sn,公差d≠0,a1=1,且a1,a2,a7成等比数列.(1)求数列{an}的前n项和Sn;(2)设bn=,数列{bn}的前n项和为Tn,求证:2Tn-9bn-1+18>(n>1).[思路分析] (1)根据等差数列和等比数列的性质易求;(2)中数列{bn}满足bn=,这是一个等差数列的前n 项和与一个关于n 的一次函数之比,数列{bn}极可能也是一个等差数列,求出其和后,根据不等式的有关知识解决.(1)[解] 因为a1,a2,a7成等比数列,所以a =a1a7,即(a1+d)2=a1(a1+6d).又a1=1,d≠0,所以d =4.所以Sn =na1+d =n +2n(n -1)=2n2-n.(2)[证明] 因为bn ===2n ,所以{bn}是首项为2,公差为2的等差数列.所以Tn ==n2+n.所以2Tn -9bn -1+18=2n2+2n -18(n -1)+18=2n2-16n +36=2(n2-8n +16)+4=2(n -4)2+4≥4,当且仅当n =4时等号成立.①64bn ++1=64×2n ++==≤646+10=4,当且仅当n =,即n =3时等号成立.②又①②中等号不可能同时取到,所以2Tn -9bn -1+18>(n>1).温馨提示本题在求解时注意,两次放缩取等号的条件不一致,最后结果不能取等号.2.与函数、导数共现在函数的解答题中出现的基本(均值)不等式一般都与导数有密切的联系,在多数情况下问题的求解需要构造新的函数,通过合理转化,巧妙放缩去完成.求解这类问题一般难度较大,在高考中常以压轴题的形式出现,需要较强的综合能力.[典例2] 已知h(x)=ln(x +1)-.(1)当a>0时,若对任意的x≥0,恒有h(x)≥0,求实数a 的取值范围;(2)设x∈N 且x>2,试证明:ln x≥+++…+.(1)[解] h(x)=ln(x +1)-,则h(x)的定义域为(-1,+∞),h′(x)=-=.①当0<a ≤1时,对任意的x ≥0,h ′(x)≥0恒成立,则h(x)在[0,+∞)上单调递增,h(x)≥h(0)=0,所以满足题意.②当a>1时,h(x)在x ∈(0,a -1]上单调递减,h(x)在x ∈[a -1,+∞)上单调递增.若对任意的x≥0,恒有h(x)≥0,则h(x)的最小值h(a -1)=ln a +1-a≥0恒成立.令m(a)=ln a +1-a(a>1),则m′(a)=,m′(a)<0,m(a)在a∈(1,+∞)上单调递减,所以当a∈(1,+∞)时,有m(a)<m(1)=0,与h(a -1)=ln a +1-a≥0恒成立矛盾.所以实数a 的取值范围为(0,1].(2)[证明] 由(1)知,ln(1+x)≥,所以ln x =ln ⎝ ⎛⎭⎪⎫21×32×43×…×xx -1 =ln 2+ln +ln +…+ln x x -1=ln(1+1)+ln +ln +…+ln ⎝ ⎛⎭⎪⎫1+1x -1 ≥++…+1x -11+1x -1=+++…+.所以ln x≥+++…+.。