最新北师大版七年级数学上册《应用一元一次方程——追赶小明》名师教案

合集下载

北师大版七年级数学5.6 应用一元一次方程------追赶小明教案

北师大版七年级数学5.6 应用一元一次方程------追赶小明教案

应用一元一次方程——追赶小明一、内容和内容解析本节课即属于《全日制义务教育数学课程标准〔实验稿〕》中的“数与代数〞领域。

它是在学生已经学习了一元一次方程的认识及求解的根底上进行教学的,学生学好这局部知识将为今后进一步学习应用题及二元一次方程等知识打好根底,因此,这局部内容起着承上启下的作用,要使学生切实学好。

本节选择的是行程问题,它在生活中有广泛的应用。

利用线段图分析数量关系、建立方程的策略,丰富学生利用方程解决实际问题的经验。

教学重点:找等量关系,列出方程,解决实际问题。

教学难点:找等量关系列方程。

二、学情分析:学生在已经学过有关行程问题的应用题,熟悉路程、时间、速度之间的关系,已能利用“线段图〞来解决一些简单的应用题。

通过本章前几节的学习,对一元一次方程的有关知识及应用也有了一定的了解及掌握,已初步感受到方程是解决实际问题的一种有效途径。

三、教学目标知识与技能:借助“线段图〞分析复杂问题中的数量关系,从而建立方程解决实际问题。

过程与方法:使学生进一步领会采用代数方法解应用题的优越性。

情感态度与价值观:培养学生实事求是的态度及与人合作交流的能力,逐步树立克服困难的信心、意志力,培养学生学习数学的热情的良好的人格品质。

四、教学过程设计〔一〕创设情境,引入新课例:小明每天早晨要在7:50以前赶到距家1000米的上学.一天,小明以80米/分的速度出发,5分钟后,小明的爸爸发现他忘了带语文书.于是,爸爸立即以180米/分的速度去追小明,并且在途中追上了他.〔1〕爸爸追上小明用了多长时间?〔2〕追上小明时,距离还有多远?思考1:请大家思考题中的条件有哪些?问题是什么?需要用到哪些公式?思考3:我们通过线段图再来重新回忆这个问题,小明出发5min后,爸爸开始追及小明,最后追上小明〔动画演示〕观察图形,你能找到哪些等量关系呢?答案3:等量关系①小明的路程=爸爸的路程;等量关系②小明的时间-5=爸爸的时间思考4:如果我们利用第①个等量关系求解,可以怎样求解?答案4:解:(1)设爸爸追上小明用了x分钟x180x80580=+⨯4x=(2)1000-180×4=280m∴爸爸用了4分钟追上小明,此时距离还有280m远思考5:如果我们利用第②个等量关系求解,可以怎样求解?答案5:解:〔1〕设爸爸追上小明时走了y米5180y-80y=y=720∴爸爸用了720÷180=4分钟追上小明(2)1000-720=280m∴此时距离还有280m远思考6:比照以上两种方法,他们有哪些异同点?答案6:从分析发现第一种方法可以直接从线段图获得等量关系,直接设问题为未知数;第二种解法的等量关系更加隐晦,间接设的未知数。

北师大版七年级数学上册:5.6应用一元一次方程追赶小明教学设计

北师大版七年级数学上册:5.6应用一元一次方程追赶小明教学设计
北师大版七年级数学上册:5.6应用一元一次方程追赶小明教学设计
一、教学目标
(一)知识与技能
1.理解一元一次方程的概念,掌握一元一次方程的解法,并能运用到实际情境中。
2.能够根据实际问题,找出数量关系,正确列出相应的一元一次方程。
3.能够运用等式的性质,进行方程的化简与求解,解决实际问题。
4.通过解决实际问题,提高学生的观察、分析、归纳和解决问题的能力。
b.实例演示:给出具体实例,展示如何根据实际问题列出方程。
c.学生跟随:让学生跟随教师一起列出方程,加深理解。
d.知识拓展:介绍一元一次方程在其他实际问题中的应用,如购物、计费等。
(三)学生小组讨论
1.教学内容:小组合作,共同解决实际问题。
2.教学方法:采用分组合作、交流讨论的方式。
3.教学过程:
a.分组:将学生分成若干小组,每组分配一个实际问题。
1.培养学生积极参与数学学习的兴趣,激发学生学习数学的热情。
2.培养学生面对问题,勇于挑战、积极思考的良好习惯。
3.通过解决实际问题,让学生体会数学与生活的紧密联系,感受数学的实用价值。
4.培养学生合作交流、共同解决问题的团队精神,增强集体荣誉感。
在设计“应用一元一次方程追赶小明”的教学活动时,我将结合学生的实际情况,以生活情境为背景,引导学生运用一元一次方程解决实际问题。通过丰富多样的教学手段,激发学生的学习兴趣,培养学生的数学思维能力,提高他们解决实际问题的能力。同时,注重培养学生的情感态度与价值观,使他们在学习过程中,获得成功的体验,增强自信心,形成积极向上的学习态度。
4.精讲多练,提高学生的解题技能。在教学过程中,教师进行适当的讲解,为学生提供丰富的练习机会,使学生在实践中不断提高解题能力。

初中数学北师大七年级上册(2023年修订) 一元一次方程应用一元一次方程追赶小明教案

初中数学北师大七年级上册(2023年修订) 一元一次方程应用一元一次方程追赶小明教案

《追赶小明》教案一、教材及学情分析追赶小明是北师大版七年级(上)第五章应用一元一次方程最后一节的内容。

教材首先由一个实际实例“追赶小明”创设问题情境,激发学生去分析问题、探究解决问题的方法,然后通过画“线段图”建立一元一次方程模型解决问题.目的是培养学生把生活中的实际问题转化为数学模型的能力,让学生体会数学在生活中的作用.教学时是让学生根据事实提出问题并尝试去解决问题,让学生在自主探索、互相启迪、合作交流中提高分析问题和解决问题的能力,梳理所学知识,培养学生的数学能力.认知基础:学生在小学阶段学过有关行程问题的应用题,熟悉路程、时间、速度之间的关系.前几节课又学习了解一元一次方程及一些运用方程模型解决的实际问题的有关知识.学生是学习的“主人”,教学应以学生为中心,从学生已有的生活经验出发,创设有助于学生自主学习的情境,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,促使学生在教师的指导下生动活泼地、主动地、富有个性地学习.本节课让学生主动地参与数学活动,并通过亲身实践,演示追赶过程,更进一步认识和体会方程的作用.活动经验基础:学生在小学已能利用线段图来解决一些简单的应用题,并且在本章前几节的学习中,已初步感受到方程是解决实际问题的一种有效途径,学生已具备一定的分析问题、解决问题的能力,已初步形成合作、交流、勇于探究与实践的良好学风,学生间互相评价和师生互动气氛较浓.二、教学目标1.借助“线段图”分析复杂问题中的数量关系,从而建立方程解决实际问题,进一步掌握列方程解应用题的步骤.发展分析问题、解决问题的能力,进一步体会方程模型的作用.2.能充分利用行程中的速度、路程、时间之间的关系列方程解应用题.3.培养学生分析问题、解决问题的能力,进一步体会方程模型的作用,提高学生应用数学的意识.4.培养学生文字语言、图形语言、符号语言这三种语言转换的能力.三、教学重难点、教学重点:1.画出“线段图”找相等关系.2.会进行文字语言、图形语言、符号语言的相互转换.教学难点:借助画“线段图”寻找行程问题中的等量关系.四、教学设计情境创设小明每天早上要在7:50之前赶到距家1 000米的学校上学.一天,小明以80米/分钟的速度出发,5分钟后,小明的爸爸发现他忘了带语文书.于是爸爸以180米/分钟的速度去追小明.问题1:爸爸能追上小明吗?问题2:爸爸追上小明用了多长时间?问题3:追上小明时,距离学校还有多远?设计说明列方程解一些实际问题的过程是一个数学建模的过程,及时鼓励学生通过亲身体验、观察、分析找出其中的等量关系,并尝试用文字语言表述出来,通过画线段图让学生明白了数形结合的好处,教学中可以适当对文字语言、图形语言、符号语言的互相转换加以渗透,既提高了学生的语言表达能力,又培养学生对三种语言进行转换的能力.1.亲身演示,自主探索师:这是行程问题中的追赶问题,我们请两位同学分别扮演小明和爸爸来演示一下追赶的过程.2.语言描述师:根据刚才的演示,你发现了哪些等量关系?(1)爸爸要追上小明,爸爸的速度与小明的速度关系怎样?(2)爸爸从家出发到追上小明时,两人所用的时间有何关系?(3)两人所行的总路程有何关系?3.图形语言师:如下图,你能用简单的“线段图”表示演示的追赶过程吗?4.建立方程模型,得出结论路程、速度和时间三者之间有何关系呢?“线段图”反映了怎样的等量关系?教学说明在学生亲身体验追赶过程的基础上,比较容易画出“线段图”,可以让他们独立完成,教师可以适当帮助一些有问题的学生.充分利用生活实践自己去提出问题并解决问题,这样更有利于扩展学生的思考空间,亲身体会数学变式问题的趣味性,感受到数学的实用性.三种语言的转换在教师点拨引导、学生探究分析过程中自然渗透、自然转换,让学生体会各种表达方式的优越性.另外,求爸爸追上小明时离学校还有多远,由于学生的思路不同,学生的解决方法就不同,有“总路程减去小明走过的路程=剩余路程”,即1 000-80×(4+5)=280(米),也有“总路程减去爸爸走过的路程=剩余路程”,即1 000-180×4=280(米),出现这些不同的见解,教师就因势利导,培养学生的思维的灵活性,拓宽学生思路.活动一:小强和小斌每天早晨坚持跑步,小斌每秒跑4米,小强每秒跑6米。

北师大版数学七年级上册《6 应用一元一次方程—追赶小明》教学设计

北师大版数学七年级上册《6 应用一元一次方程—追赶小明》教学设计

北师大版数学七年级上册《6 应用一元一次方程—追赶小明》教学设计一. 教材分析《6 应用一元一次方程—追赶小明》这一节内容是北师大版数学七年级上册的一部分,主要介绍了如何利用一元一次方程解决实际问题。

通过小明和同学之间的追赶游戏,引出一元一次方程在现实生活中的应用,让学生体会数学与生活的紧密联系。

本节内容旨在让学生掌握一元一次方程的解法,并能应用于解决实际问题。

二. 学情分析学生在学习这一节内容前,已经学习了二元一次方程和一元一次方程的解法,具备了一定的数学基础。

但部分学生对一元一次方程在实际问题中的应用还不够清晰,需要在教学中加以引导和培养。

此外,学生对于实际问题的分析能力、数学思维的培养也需要在教学过程中给予关注。

三. 教学目标1.知识与技能:使学生掌握一元一次方程的解法,并能应用于解决实际问题。

2.过程与方法:通过解决追赶小明的实际问题,培养学生运用一元一次方程解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,体会数学与生活的紧密联系。

四. 教学重难点1.重点:一元一次方程的解法及其在实际问题中的应用。

2.难点:如何将实际问题转化为一元一次方程,并运用解法求解。

五. 教学方法1.情境教学法:通过设置追赶小明的场景,激发学生兴趣,引导学生主动参与。

2.案例教学法:分析追赶小明的问题,引导学生发现并总结一元一次方程的解法。

3.小组合作学习:鼓励学生分组讨论,培养学生的团队协作能力和沟通能力。

4.引导发现法:教师引导学生发现问题、分析问题,培养学生的问题解决能力。

六. 教学准备1.教学课件:制作课件,展示追赶小明的场景和问题。

2.练习题:准备相关练习题,巩固学生对一元一次方程的掌握。

3.教学道具:准备一些实物道具,如小车、棋子等,用于模拟追赶游戏。

七. 教学过程1.导入(5分钟)利用课件展示追赶小明的场景,引导学生关注实际问题。

提问:“如何用数学方法表示小明和同学之间的距离和速度关系?”2.呈现(10分钟)呈现追赶小明的问题,引导学生分析问题,发现其中的数学关系。

北师大版数学七年级上册5.6《应用一元一次方程——追赶小明》教学设计

北师大版数学七年级上册5.6《应用一元一次方程——追赶小明》教学设计

北师大版数学七年级上册5.6《应用一元一次方程——追赶小明》教学设计一. 教材分析《北师大版数学七年级上册5.6<应用一元一次方程——追赶小明>》这一节主要通过一个实际问题引导学生应用一元一次方程解决问题。

通过列方程、解方程的过程,让学生掌握一元一次方程在实际问题中的应用。

教材通过追赶小明的例子,让学生理解速度、时间和路程之间的关系,并运用一元一次方程求解实际问题。

二. 学情分析学生在之前的学习中已经接触过一元一次方程的基本概念和解法,但对于如何将实际问题转化为方程,并将方程应用于解决实际问题可能还有一定的困难。

因此,在教学过程中,教师需要引导学生将实际问题转化为方程,并通过实际问题让学生理解一元一次方程在实际生活中的应用。

三. 教学目标1.知识与技能:学生会将实际问题转化为一元一次方程,并能运用一元一次方程求解实际问题。

2.过程与方法:学生通过自主探究、合作交流的方式,掌握一元一次方程在实际问题中的应用。

3.情感态度与价值观:学生体会数学与生活的紧密联系,培养解决实际问题的能力。

四. 教学重难点1.重点:学生能将实际问题转化为一元一次方程,并能运用一元一次方程求解实际问题。

2.难点:学生如何将实际问题转化为方程,并理解方程在实际问题中的应用。

五. 教学方法采用问题驱动法、情境教学法和合作交流法。

通过设置追赶小明的实际问题,激发学生的学习兴趣,引导学生自主探究、合作交流,从而掌握一元一次方程在实际问题中的应用。

六. 教学准备1.教师准备:教师需要准备与追赶小明相关的实际问题,以及解题过程中可能用到的数学知识。

2.学生准备:学生需要预习相关的一元一次方程知识,并准备参与课堂讨论。

七. 教学过程1.导入(5分钟)教师通过讲解一个简单的实际问题,引导学生思考如何将实际问题转化为方程。

例如,教师可以提出一个问题:如果小明每分钟跑60米,小红每分钟跑70米,小明比小红慢多少米?让学生思考如何用数学方法表示这个问题。

北师大版七年级数学上册5.6一元一次方程追赶小明优秀教学案例

北师大版七年级数学上册5.6一元一次方程追赶小明优秀教学案例
三、教学策略
(一)情景创设
本节课通过设计“追赶小明”的情境,让学生在解决问题的过程中,自然地引入一元一次方程的概念和解法。教师可以利用多媒体展示小明和小华赛跑的情景,让学生观察并描述小华追上小明的过程。通过实际情境的创设,激发学生的学习兴趣,引发学生的思考。
(二)问题导向
教师以问题为导向,引导学生主动探究一元一次方程的解法。首先,教师可以提出问题:“小华追上小明时,他们的速度关系是什么?”让学生思考并引导学生用数学语言描述这个问题。然后,教师可以继续提问:“如何用数学方程来表示这个问题?”引导学生思考并引入一元一次方程的概念。接着,教师可以提出问题:“如何求解这个方程?”引导学生探究一元一次方程的解法。通过问题导向,激发学生的思考,培养学生的自主学习能力。
2.问题导向:教师以问题为导向,引导学生主动探究一元一次方程的解法。通过提出一系列具有挑战性和启发性的问题,激发了学生的思考,培养了学生的自主学习能力。问题导向的教学策略,使学生在解决问题的过程中,自然而然地掌握了一元一次方程的概念和解法。
3.小组合作:教师组织学生进行小组合作,共同探究一元一次方程的解法。在合作过程中,学生互相启发、互相学习,培养了学生的合作意识和团队精神。小组合作不仅提高了学生的学习效果,还使学生在交流互动中提升了数学思维能力。
(五)作业小结
在课堂的最后,我会布置与本节课相关的一元一次方程作业,让学生课后巩固所学知识。同时,我会提醒学生在完成作业的过程中,注意运用一元一次方程的解法,提高解题效率。作业小结环节,有助于学生巩固新知,培养学生的自主学习能力。
五、案例亮点
1.情境导入:通过设计小明和小华赛跑的实际情境,激发了学生的学习兴趣,让学生感受到数学与生活的紧密联系。情境导入既符合学生的认知水平,又能够引起学生的关注,为后续的教学环节打下了坚实的基础。

七年级数学上册《应用一元一次方程追赶小明》教案、教学设计

七年级数学上册《应用一元一次方程追赶小明》教案、教学设计
2.选做题:
(1)探索一元一次方程的其他解法,比较各种解法的优缺点。
(2)研究一元一次方程在实际问题中的应用,总结出至少三个不作业质量。
(2)书写工整,步骤清晰,方便教师批改和指导。
(3)完成后认真检查,确保无误。
4.作业提交时间:
下节课前将作业交给课代表,由课代表统一交给教师。
(2)培养学生熟练掌握一元一次方程的解法,并在实际运算中避免出错。
(二)教学设想
1.教学方法:
(1)采用情境教学法,以实际问题为背景,激发学生的学习兴趣,引导学生主动参与课堂。
(2)采用探究式教学法,鼓励学生自主探究、合作交流,培养学生的创新能力和团队合作精神。
(3)运用多媒体辅助教学,通过动态演示、图像展示等手段,增强学生对一元一次方程的直观认识。
二、学情分析
七年级的学生在数学学习上已经具备了一定的基础,掌握了基本的算术运算和简单的代数知识。在此基础上,学生对一元一次方程的学习既有挑战性,也具有可行性。学生对实际问题情境具有较强的兴趣,但将实际问题抽象成数学模型的能力尚需培养。此外,学生在解决实际问题时,可能存在以下问题:
1.对问题的分析不够深入,难以正确列出相应的一元一次方程。
(2)一元一次方程的解法及注意事项;
(3)如何避免在解一元一次方程时出现错误。
2.各小组汇报讨论成果,教师点评并总结。
(四)课堂练习
1.设计不同难度的练习题,让学生独立完成,巩固所学知识。
2.练习题包括以下类型:
(1)列出一元一次方程解决实际问题;
(2)解一元一次方程;
(3)应用一元一次方程解决实际问题。
3.加强一元一次方程解法的训练,提高学生的运算速度和准确率。
4.针对不同学生的学习情况,给予个性化的指导和鼓励,帮助学生克服恐惧心理,树立学习信心。

北师大版七年级数学上册:5.6应用一元一次方程-追赶小明教案

北师大版七年级数学上册:5.6应用一元一次方程-追赶小明教案
(2)根据题目条件,列出小明和朋友行走路程相等的一元一次方程,并求解。
二、核心素养目标
1.培养学生运用数学知识解决实际问题的能力,特别是在行程问题中的速度、时间和路程关系的理解和应用;
2.强化学生的逻辑思维和抽象思维能力,通过建立一元一次方程模型,提升他们对数学问题的分析和解决能力;
3.激发学生的探究意识,引导他们在小组合作中交流思想,培养团队合作精神和解决问题的能力;
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了如何通过一元一次方程来解决行程问题,包括速度、时间和路程的关系,以及如何在实际问题中运用这一数学工具。同时,我们也通过实践活动和小组讨论加深了对这些概念的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
然后,在新课讲授环节,我发现有些学生对速度、时间和路程的关系理解不够深入。在讲解过程中,我应该更加注意观察学生的反应,适时地调整教学节奏和方式,用更直观的图示或实物操作来帮助他们理解这些概念。
在实践活动和小组讨论环节,学生们表现得相当积极。他们通过讨论和实验操作,不仅加深了对一元一次方程的理解,还学会了如何与他人合作、交流思想。这一点让我感到非常欣慰。但同时,我也注意到有些小组在讨论时可能会偏离主题,今后我需要适时引导,确保讨论的效率和质量。
3.重点难点解析:在讲授过程中,我会特别强调速度、时间和路程的关系,以及如何从实际问题中抽象出一元一次方程这两个重点。对于难点部分,我会通过具体的行程问题实例和图示来帮助大家理解。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.6 应用一元一次方程——追赶小明教学目标:1.能利用行程中的速度、路程、时间之间的关系列方程解应用题,感知数学在生活中的作用.2.通过观察、抽象、探索、理解与运用,学生进一步体会到方程的模型作用,提高应用数学的意识.借助“线段图”分析复杂问题中的数量关系,从而建立方程,解决实际问题,发展分析问题、解决问题的能力.3.通过师生间、学生间的探索与交流以及情境的创设,激发学生的学习热情和求知欲望.从而进一步提高学习数学、应用数学解决实际问题的意识,养成良好的学习习惯.教学重点与难点:重点:分析题意,寻找等量关系,列方程解决行程问题.难点:利用线段图分析行程问题,寻找等量关系,建立数学模型.教法与学法指导:本节课主要是通过学生亲身的生活体验来展开,再加以延伸,从中抽象出数学问题,再通过建立模型解决实际问题.通过练习来巩固所学知识.消除了学生对新课、新知识的抵触情绪和畏惧心理,各个环节的过渡都非常自然.让学生在不知不觉中学完本节课.同时也体现出了从生活发现数学,让数学回归生活的设计理念.课前准备:制作课件,检查学生预习稿的完成情况,收集学生预习中遇到的问题信息.教学过程:一、创设情境,导入新课师:我们来看两张图片.(教师出示课件)生(热情洋溢地):是博尔特百米比赛,我们学校刚刚举行的运动会.师:看来同学们对这两张图片很熟悉,你知道其中蕴含着什么数学问题吗?生:路程、速度、时间.师:这三个量之间有怎样的关系呢?速度=路程÷时间路程=速度时间时间=路程÷速度行程问题中速度、路程、时间之间的关系?s=vt v=s/t t=s/v生:路程=速度⨯时间;速度=时间路程;时间=速度路程. 师:(展示课件)师:很好!那就用你的知识完成下面的问题吧.1.若小亮每秒跑4米,那么他10秒能跑多少____米.(路程=速度⨯时间)2.小亮用4分钟绕学校操场跑了两圈(每圈400米),那么他的速度为_____米/分. (速度=时间路程) 3.已知小亮家距离学校1000米,他以5米/秒的速度骑车到达学校需要_____分钟. (时间=速度路程) 师:好,看来同学们对这三个量的关系掌握的很好,请想一想生活中的行程问题都有那些?生:相遇问题、追及问题.(学生之间互相补充并说明特点)师:这节课我们就来共同研究有关相遇、追及等方面的问题.【教师板书课题:5.6 应用一元一次方程—追赶小明】【设计意图】通过图片的形式揭示生活中蕴含着我们数学的一个常见问题——追及问题,激发学生的好奇心,引起每位同学的兴趣,唤醒学生的思维和问题意识,进而轻松地引入本节所要探讨的主要问题.二、合作探究,获取新知师:(多媒体展示例题)例1 小明早晨要在7:20以前赶到距家1000米的学校上学,一天,小明以80米/分的速度出发.5分钟后,小明的爸爸发现他忘了带历史作业,于是,爸爸立即以180米/分的速度去追小明,并且在途中追上了他.(1)爸爸追上小明用了多长时间?(2)追上小明时,距离学校还有多远?(学生读题)师:同学们,你是否遇到过类似小明的经历呢.生(很兴奋,七嘴八舌):有的说有,有的说没有.师:家人要追上你与什么因素有关呢?生:绝大数学生都可能会说与速度有关,少数学生可能会说与距离有关等等.(学生仔细审题,理清题目中的数量关系,提高阅读能力.根据自己的理解口述题目中的内容.)师:在这个问题里已知条件是什么?求的是什么?生:小明家到学校距离1000m,小明的速度是80米/分,爸爸的速度是80米/分,小明提前5分钟出发.求的是爸爸追上小明的时间.师:这个问题中涉及了哪个数量关系?生:路程、速度、时间.师:你能将他们的行走过程用图形表示出来吗?(学生先自己画图但不够完整,教师适当点拨补充完善.)小明先走的路程小明又走的路程追及点家学校师:结合图形,你找到有几个等量关系?生:①小明走的路程=爸爸走的路程;②小明所用时间=5+爸爸所用时间.(对于第一个关系学生很容易得出,第二个关系需要教师提示.)师:你将用哪一个等量关系建立方程?生:小明走的路程=爸爸走的路程.师:如果设爸爸追上小明用了x分钟,你能将数量关系用线段图表示出来吗?生:生:80×5+80x=180x.师:好!根据我们的分析,你能将这题的步骤整理出来吗?(师生一起规范整理步骤)生:解:设爸爸追上小明用了x分钟,根据题意,得80×5+80x=180x.解得x=4.答:爸爸追上小明用了4分钟.师:你能独立完成问题(2)吗?生:(在前面的基础上学生比较容易得出结果.)180×4=720(米),1000-720=280(米).答:追上小明时,距离学校还有280米.(师生小结:追及问题若甲先走,乙后走则等量关系有:甲的路程=乙的路程;甲的时间=乙的时间+时间差.)【设计意图】从学生熟悉的生活经历出发,选择学生身边感兴趣的事件给学生提出有关的数学问题,唤起学生的思维和问题意识.三、变式训练,巩固提高变式训练(一):师:(多媒体展示问题)在前面的问题中如果小明的爸爸要赶时间上班,他必须在5分钟之内追上小明,那么爸爸的速度至少应是多少?生:表现出浓厚的兴趣,互相讨论.一部分同学借助上题的经验与方法,开始思考本道题的解题思路.师:这个问题与上面的问题有什么不同?生:本题限制了时间,所要解决的问题是爸爸的速度.师:(根据学生的讨论情况,进行适当的提示).1.如爸爸5分钟追上小明,这时小明共走了几分钟?2.追上小明时,小明走过的路程是多少?3.爸爸走的路程与小明所走的路程有什么关系?4.那么,爸爸的速度呢?生:在练习本上画出线段图,并完成书写步骤.(学生类比上题画出本题的线段图,互相交流改进补充完整.)小明前5分钟走的路程 小明后5分钟走的路程家生:解:设爸爸的速度为x 米/分,根据题意,得 5x=80×10.解这个方程,得 x=160.答:爸爸的速度至少应是160米/分.【设计意图】通过问题情境的转换,让学生在探索和教师的引导中进一步掌握用画线段图解决行程问题中的追赶问题,启发学生的思维,锻炼学生的解决问题能力.变式训练(二):师:(多媒体展示问题)在前面的问题中若当小明到校后才发现忘带语文课本,赶紧打电话给爸爸,爸爸立即以180米/分的速度从家出发,同时小明从学校以100米/分的速度从学校返回,两人几分钟后相遇?生:(阅读题目,理清题目中的逻辑关系)师:这个问题与上面的问题有什么区别?生:从两个地点相向而行.师:你能正确画出线段图并完成书写步骤吗?(教师进行点拨,规范.)生:(在练习本上画出线段图,并完成书写步骤.)生:解:设经过x 分钟相遇,根据题意,得 180x +100x =1000.解得x=257.答:经过257分钟相遇.(师生小结:相向而行,等量关系:甲所用时间=乙所用时间;甲的路程+乙的路程=总路程.)【设计意图】分析相遇问题,由于已有对上一个问题的理解故而学生能比较正确地画出线段图,并得出其中的等量关系,正确列出方程,解决问题,最终能规范写出解题过程.四、学以致用,解决问题师:(多媒体展示问题)育红学校七年级学生步行到郊外旅行.七(1)班学生组成前队,步行速度为4千米/时,七(2)班学生组成后队,速度为6千米/时.前队出发一小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12千米/时.生:(积极的合作探究,根据上面的事实分组提出问题、讨论、交流,并尝试解答.)师:(在学生仔细读题后提问)这个问题与我们的例题有什么异同?生:(小组讨论,分析比较后得出)相同之处是有两个“人”一前一后,且后面的速度比前面的快,不同的是这个问题中有个联络员.师:提示学生从速度、时间、路程三个角度进行挖掘.生:通过小组讨论、交流比较容易得出:问题1:后队追上前队用了多长时间?解:设后队追上前队用了x小时,根据题意,得6x = 4x + 4×1.解这个方程,得x =2.答:后队追上前队时用了2小时.问题2:联络员第一次追上前队时用了多长时间?解:设联络员第一次追上前队时用了x小时.由题意,得12x = 4x + 4.解这个方程,得x =0.5.答:联络员第一次追上前队时用了0.5小时.问题3:后队追上前队时联络员行了多少路程?问题4:当后队追上前队时,他们已经行进了多少路程?问题5:联络员在前队出发多少时间后第一次追上前队?对于问题3、4、5学生不容易得出,教师适当引导提出问题,并鼓励学生课下利用方程解决问题.【设计意图】这是一个开放性的问题,答案不唯一,旨在拓展学生思维,寻求个性发展.教师应鼓励学生交流、讨论,结合例题大胆提出问题,如后队追上前队用了多少时间;后队追上前队时联络员行了多少路程;通讯员第一次追上前队时,用了多少时间;当后队追上前队时,他们已经行进了多少路程;联系员在前队出发多少时间后,第一次追上前队等,教师还应鼓励学生尝试利用方程去解决这些问题,并与同伴交流自己的问题和解决问题的过程.五、巩固训练,提升能力1.小兵每秒跑6米,小明每秒跑7米,小兵先跑4秒,小明几秒钟追上小兵.2.甲骑摩托车,乙骑自行车同时从相距150千米的两地相向而行,经过5小时相遇,已知甲每小时行驶的路程是乙每小时行驶的路程的3倍少6千米,求乙骑自行车的速度.3.七年级一班列队以每小时6千米的速度去甲地.王明从队尾以每小时10千米的速度赶到队伍的排头后又以同样的速度返回排尾,一共用了7.5分钟,求队伍的长.4.甲、乙两人相距280米,相向而行,甲从A地每秒走8米,乙从B地每秒走6米,那么甲出发几秒与乙相遇?【设计意图】进一步强化本节的内容,通过题目的练习让学生真正理解和掌握用画线段图来解决行程问题中的相遇和追赶问题.六、课堂小结,反思归纳师:今天你们学到了什么知识?是怎样学到的?还有什么疑问?(让学生自己总结,可以加深印象,提高学生学习的积极性.师适时点拨.)生1:借助“线段图”能帮助我们分析复杂问题中的数量关系,从而建立方程解决实际问题.生2:相遇问题:甲走的路程+乙走的路程=总路程.生3:追及问题:前者走的路程+两者间的距离=追者走的路程.生4:路程=速度×时间;时间=路程÷速度;速度=路程÷时间.【设计意图】强调本课的重点内容是要学会借线段图来分析行程问题,并能掌握各种行程问题中的规律及等量关系.引导学生自己对所学知识和思想方法进行归纳和总结,从而形成自己对数学知识的理解和解决问题的方法策略.七、达标检测,反馈矫正多媒体出示:1.A,B两地相距480千米,一列慢车从A地开出,每小时行60千米,一列快车从B 地开出,每小时行65千米,若两车同时开出,相向而行,x小时相遇,则由条件列出的方程为.2.甲乙两站相距450千米,一列慢车从甲站开出速度是52千米/时,一列快车从乙站开出速度是70千米/时,慢车开出0.5小时后快车开出,两车相向而行,问快车经过几小时与慢车相遇?设快车经过x小时与慢车相遇则可列方程()A、52x+70x=450B、70x=52x+52×0.5C、70x=52x+450D、52×0.5+52x+70x=4503.一架飞机飞行于两城市之间,顺风需要5小时30分,逆风需要6小时,已知风速每小时24千米,则顺风中飞机的速度为多少?逆风中飞机的速度为多少?【设计意图】通过达标检测及时反馈学生对本节课的知识点的掌握程度,以便有的放矢进行后续教学.七、布置作业,拓展延伸必做题:一个自行车队进行训练,训练时所有队员都以35千米/小时的速度前进.突然,1号队员一45千米/小时的速度独自行进,行进10千米后掉转车头,仍以45千米/小时的速度往回骑,直到与其他队员会合.1号队员从离队开始到与队员重新会合,经过了多长时间?选做题:给定方程2.5x+2.5(x+2)=55,你能联系生活实际编写一道数学问题吗?与同学探讨,并负责讲解.【设计意图】作业分层体现分层教学思想,让不同学生得到不同程度的发展.板书设计:教学反思:励志名言: 1、学习从来无捷径,循序渐进登高峰。

相关文档
最新文档