交直流混联系统的最优潮流分配方法、存储介质及设备的制作流程

交直流混联系统的最优潮流分配方法、存储介质及设备的制作流程
交直流混联系统的最优潮流分配方法、存储介质及设备的制作流程

图片简介:

本技术涉及一种交直流混联系统的最优潮流分配方法,包括:建立交直流混联系统的最优潮流分配模型,以及简化模型中的交流网络的潮流方程、直流网络的潮流方程,最终将总网损表示为交直流耦合点注入的交流功率Pt的函数,求解Pt的最优值。

技术要求

1.一种交直流混联系统的最优潮流分配方法,其特征在于,包括:

获取交直流混联系统的最优潮流分配模型其中,x为所述交直流混联系统的状态变量,Ploss为总网损,包括交流网损Ploss_ac与直流网损Ploss_dc,h(x)=0为潮流方程,包括交流网络的潮流方程和直流网络的潮流方程;

获取以交直流耦合点注入的交流功率Pt表示的所述交流网损Ploss_ac的函数;

获取以交直流耦合点所连端口注入的直流功率Pd2表示的所述直流网损Ploss_dc的函数;其中,所述以所述交直流耦合点所连端口注入的直流功率Pd2表示的所述直流网损Ploss_dc的函数

中,M 为直流网络的端口数,Pdk为端口k注入的直流功率,Yij为端口导纳矩阵Y中的元素,Rij为Y-1中的元素;

根据所述交直流耦合点注入的交流功率Pt、所述交直流耦合点所连端口注入的直流功率Pd2与交直流耦合点注入的总功率Ptotal之间的关系,得到以所述交直流耦合点注入的交流功率Pt表示的所述总网损Ploss的函数;以及

求解所述交流功率Pt的最优值,根据该最优值分配交直流耦合点的交流功率和直流功率,得到所述总网损Ploss的最小值;

其中,所述以所述交直流耦合点注入的交流功率Pt表示的所述交流网损Ploss_ac的函数为Ploss_ac=

a1Pt2+b1Pt+c1;

中,N 为交流网络的节点数,Gij为节点导纳矩阵的实部G中的元素,xik为支路电抗形成节点导纳矩阵的逆矩阵中的元素,Pak为节点k注入的有功功率。

2.根据权利要求1所述的交直流混联系统的最优潮流分配方法,其特征在于,所述总网损Ploss=aPt2+bPt+c,所述交流功率Pt的最优值为-b/2a,其中,a=a1+a2,b=b1-b2-

2a2Ptotal,

3.根据权利要求1所述的交直流混联系统的最优潮流分配方法,其特征在于,所述交直流耦合点注入的交流功率Pt、所述交直流耦合点所连端口注入的直流功率Pd2与交直流耦合点注入的总功率Ptotal之间的关系,包括:

Pt+Pd2=Ptotal。

4.根据权利要求1所述的交直流混联系统的最优潮流分配方法,其特征在于,所述Ploss为总网损,包括:

其中,Vi和θij分别为交流网络的节点电压幅值和电压相角差,Ui为直流网络的端口电压。

5.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机指令,所述计算机指令被处理器执行时实现权利要求1-4任一项所述的方法。

6.一种计算机设备,包括存储器、处理器以及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1-4任一项所述的交直流混联系统的最优潮流分配方法。

技术说明书

交直流混联系统的最优潮流分配方法、存储介质及设备

技术领域

本技术涉及电力系统中的最优潮流计算,属于电力领域。

背景技术

最优潮流计算是电力系统经济运行中不可或缺的部分。传统的最优潮流计算是通过调整发电机的有功和无功出力来达到某个经济性的目标。而在含风电的交直流混联系统中,计算最优潮流分配则是为了在尽可能多的消纳风电的基础上,合理分配交流和直流线路上的输送功率,使总网损达到最小。传统的最优潮流计算方法如内点法、牛顿法等,能够较为精确地求得最优值,但上述传统的方法的复杂度高,且可能存在收敛性问题。

技术内容

基于此,有必要针对上述问题,提供一种交直流混联系统的最优潮流分配方法、存储介质及计算机设备。

一种交直流混联系统的最优潮流分配方法,包括:建立交直流混联系统的最优潮流分配模

型其中,x为所述交直流混联系统的状态变量, Ploss为总网损,包括交流网损Ploss_ac与直流网损Ploss_dc,h(x)=0为潮流方程,包括交流网络的潮流方程和直流网络的潮流方程;将所述总网损Ploss表示为交直流耦合点注入的交流功率Pt的二次函数,求解Pt的最优值。

在其中一个实施例中,通过求导求解Pt的最优值。

在其中一个实施例中,所述交流网损Ploss_ac、直流网损Ploss_dc、总网损Ploss分别

为:其中,Vi和θij分别为交流网络节点电压幅值和电压相角差,Gij为节点导纳矩阵的实部G中的元素;Ui为直流电网的端口电压,Yij为端口导纳矩阵Y中的元素。

在其中一个实施例中,所述将所述总网损Ploss表示为交直流耦合点注入的交流功率Pt的二次函数的步骤包括:将所述交流网损Ploss_ac表示为交直流耦合点注入的交流功率Pt的二次函数;将所述直流网损Ploss_dc表示为交直流耦合点所连端口注入的直流功率Pd2的二次函数;以及根据交流功率Pt、直流功率Pd2与交直流耦合点注入的总功率Ptotal之间的关系将所述总网损Ploss表示为交直流耦合点注入的交流功率Pt的二次函数。

在其中一个实施例中,所述将所述交流网损Ploss_ac表示为交直流耦合点注入的交流功率Pt的二次函数的步骤包括:将节点电压相角θi用节点注入功率Pi线性表示,以及将全网的电压幅值视为恒定;得到交流网

损其

中,N 为所述交流电网的节点数,Gij为节点导纳矩阵的实部G中的元素,xik为支路电抗形成节点导纳矩阵的逆矩阵中的元素,Pak为节点k注入的有功功率。

在其中一个实施例中,所述将所述直流网损Ploss_dc表示为交直流耦合点所连端口注入的直流功率Pd2的二次函数的步骤包括:将所述直流电网的端口电压近似为参考电压,以及用端口的注入功率线性化表示端口电压;得

到直流网损其

中 M 为所述直流电网的端口数,Pdk为端口k注入的直流功率,Yij为端口导纳矩阵 Y中的元素,Rij为Y-1中的元素。

在其中一个实施例中,所述总网损所述交流注入功率Pt的最优值为-b/2a,其中,a=a1+a2,b=b1-b2-2a2Ptotal。

一种计算机可读存储介质,其中,所述计算机可读存储介质存储有计算机指令,所述计算机指令被处理器执行时实现上述任一实施例所述的方法。

一种计算机设备,包括存储器、处理器以及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现上述任一实施例所述的交直流混联系统的最优潮流分配方法。

本技术提供的交直流混联系统的最优潮流分配方法,存储介质及计算机设备,通过将总网损的计算式被化简为求解低次函数,简化了最优值的求解过程。本方法还避免了现有方法中复杂的迭代过程,不存在收敛性问题,本方法可用于含风电的交直流混联系统最优潮流分配的计算,提高了最优潮流分配的复杂度并提高效率。

附图说明

图1为本技术实施例所涉及的交直流混联系统的结构示意图。

图2为本技术实施例提供的交直流混联系统的最优潮流分配方法流程图。

具体实施方式

为了使本技术的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本技术进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本技术,并不用于限定本技术。

请参见图1,图1给出的交直流混联系统中,一号风电场1和二号风电场2 的风能经过交流系统7和直流系统8输送给负荷端5,水电站6充当功率调节端。其中,交流系统7的节点数为N,直流系统8的端口数为M。假定一号风电场1 的出力为确定值,只考虑二号风电场2的出力变化的情况。二号风电场2发出的功率在交直流耦合点3分为两部分,一部分通过交流系统7输送,一部分经直流换流器4由直流系统8输送。可以通过合理分配交流系统7和直流系统8 的功率,使该交直流混联系统的总输电损耗达到最小。

请参见图2,本技术实施例提供一种交直流混联系统的最优潮流分配方法,用于计算任一交直流耦合点注入的交流和直流功率的分配,使交直流混联系统的总输电损耗达到最小。该方法包括以下步骤:

S1,获取交直流混联系统的最优潮流分配模型

其中,x为交直流混联系统的状态变量,Ploss为总网损,包括交流网损Ploss_ac与直流网损Ploss_dc,h(x)=0为潮流方程,包括交流网络的潮流方程和直流网络的潮流方程;

S2,获取以交直流耦合点注入的交流功率Pt表示的所述交流网损Ploss_ac的函数;

S3,获取以交直流耦合点所连端口注入的直流功率Pd2表示的所述直流网损Ploss_dc的函数;

S4,根据所述交直流耦合点注入的交流功率Pt、所述交直流耦合点所连端口注入的直流功率Pd2与交直流耦合点注入的总功率Ptotal之间的关系,得到以所述交直流耦合点注入的交流功率Pt表示的所述总网损Ploss的函数;以及

S5,求解所述交流功率Pt的最优值,根据该最优值分配交直流耦合点的交流功率和直流功率,得到所述总网损Ploss的最小值。

步骤S1中,交直流混联系统的交流网损Ploss_ac、直流网损Ploss_dc和总网损 Ploss可由式(2)计算

式(2)中,Ploss_ac为交流网损,Vi和θij分别为交流电网的节点电压幅值和电压相角差,Gij为节点导纳矩阵的实部G中的元素。Ploss_dc为直流网损,Ui为直流电网的端口电压,Yij为端口导纳矩阵Y中的元素。Ploss为总网损,为交流网损 Ploss_ac和直流网损Ploss_dc之和。

在交流系统中,Gij为已知量。除平衡节点外,其他节点为PV节点或PQ节点,每个节点注入的有功功率Pi为已知量,节点电压相角差cosθij为未知量;PQ 节点的Vi为未知量。在多端直流系统中,Yij为已知量。第M个端口即水电站6 为定直流电压和定无功控制,其端口电压UM为参考电压Uref,其注入功率PdM是未知量;其他M-1个端口为定有功和定交流电压控制,端口注入功率Pdi是已知量,端口电压Ui是未知量。二号风电场2连接的交直流耦合点3在交流系统中是第t号节点,为PV节点;该点连接的直流端口在直流系统中为第2号端口。

步骤S2中,在交流系统中,尤其是在高电压远距离输电系统中,输电线路的电阻很小。基于有功功率和无功功率解耦,利用直流潮流模型将节点电压相角θi用节点注入有功功率Pi来线性表示,得到矩阵(3)

θ=XP (3)

式(3)中,X为支路电抗形成节点导纳矩阵的逆矩阵。

将cosθ用θ来近似表示,得到式(4)

忽略式(4)二次项以上的高次项(只保留前两项),将式(4)化简为式(5)

将式(5)代入式(2)的Ploss_ac的计算式中,再忽略二号风电场2注入的有功功率变化对全网电压幅值的影响,将全网电压Vi近似为1。只考虑交直流耦合点3 (第t号节点)注入的有功的变化,其他各节点注入的有功Pai均为确定值,得到式(6)

式(6)中,其

中,N 为所述交流电网的节点数,Gij为节点导纳矩阵的实部G中的元素,xik为支路电抗形成节点导纳矩阵的逆矩阵中的元素,Pak为节点k注入的有功功率。

步骤S3中,在线路电阻很小的情况下,线路上的压降很小,将直流系统每个端口的电压近似看作参考电压,使端口注入功率和端口电压之间的关系线性化,将直流网损表示为端口注入的有功功率的二次函数。

由多端直流系统的端口电压和端口注入功率之间的关系得到式(7)

将式(7)中等号右边第一项Ui替换为Uref,即将直流系统每个端口的电压近似看作参考电压(假设取为1),得到式(8)

除去第M个端口,将其他端口的Ui均用Pdi来表示,得到式(9)

式(9)中,Rij为Y-1中的元素。将式(9)代入式(2)中Ploss_dc的计算式中, Ploss_dc表示为直流端口注入功率Pdi(除去第M个端口)的函数。只考虑交直流耦合点3连接的端口(第2号端口)注入的有功Pd2的变化,其他各个端口的有功Pdi均为确定值,得到式(10)

式(10)

中,

步骤S4中,系统总网损Ploss为交流网损Ploss_ac和直流网损Ploss_dc的叠加。在交直流耦合点3,交流功率Pt与直流功率Pd2之和为二号风电场2的出力Ptotal (由风功率预测获得),即Pt+Pd2=Ptotal。消去Pd2后,Ploss表示为只含交流注入功率Pt的一元二次函数,即式(11)

式(11)中,a=a1+a2,b=b1-b2-2a2Ptotal。

在步骤S5中,由于式(11)为二次函数,因此可直接通过求导来计算交流注入功率Pt的最优值,为-b/2a,根据该最优值分配交直流耦合点的交流功率和直流功率,得到所述总网损Ploss的最小值。

本技术一个实施例还提供一种计算机可读存储介质,其中,所述计算机可读存储介质存储有计算机指令,所述计算机指令被处理器执行时实现上述所述的方法和步骤。其中,该计算机存储介质可以包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM (ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus) 直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。

本技术一个实施例还提供一种计算机设备,包括存储器、处理器以及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现上述任一实施例所述的交直流混联系统的最优潮流分配方法。

本技术提供的交直流混联系统的最优潮流分配方法将网络中各电气量之间的关系用线性化的式子来描述,从而使得总网损的计算式被化简为求解二次函数,简化了最优值的求解过程。本方法还避免了现有方法中复杂的迭代过程,不存在收敛性问题。本方法可用于含风电的交直流混联系统最优潮流分配的计算。

以上所述实施例仅表达了本技术的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本技术专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本技术构思的前提下,还可以做出若干变形和改进,这些都属于本技术的保护范围。因此,本技术专利的保护范围应以所附权利要求为准。

动环-交直流供电系统-通用-L3

正在作答: 动环-交直流供电系统-通用-L3 已切屏次数:2 本卷共150题,总分100分已答:0 未答:150 我要交卷单选(共50分) 待检查 1、一个电容器,当电容量一定时,电源频率越高,则容抗就( )。 A. 越小 B. 不变 C. 忽略 D. 越大 待检查 2、电流型谐振开关是由()组成 A. 电感和开关串联 B. 电感和开关并联

C. 电容和开关并联 D. 电容和开关串联 待检查 3、在停电形势较严峻的情况下,开关电源参数周期均充时间可调为()个月,蓄电池充电电流为10小时放电率的()倍。 A. 3,1.5 B. 3, 2 C. 1 ,1.5 D. 1,2 待检查 4、()是指一个输出端的负载变化时,使其他输出端电压波动大小。 A. 影响量

B. 负载调整率 C. 输出能力 D. 交叉调整量 待检查 5、在一套整流设备中,用霍尔器件检测负载电流。若霍尔器件故障误检测负载电流为无穷大。则整流器的输出电压会( )。 A. 视负载类型而定 B. 急降 C. 不变 D. 急升 待检查 6、中、大功率工频UPS的逆变器一般采取哪种拓扑结构

A. 全桥 B. 多桥 C. 半桥 D. buck-boost 待检查 7、三相变压器的短路阻抗Zk、正序阻抗Z1与负序阻抗Z2三者之间的关系() A. Zk=Z1=1/2Z2 B. Z1=Zk=√3Z2 C. Z1=Z2=1/2Zk D.

Z1=Z2=Z3 待检查 8、要使导通的可控硅截止应使用的方法是( )。 A. 给阴、阳极间加以反向电压 B. 撤掉控制极的电压 C. 给控制极加以反向电压 待检查 9、在印制板的丝印层上,Q121、D113、C14、R15分别表示()。 A. 二极管、电阻、电容、功率管 B. 功率管、二极管、电阻、电容 C. 功率管、电阻、电容、二极管 D.

交流传动与直流传动的比较

《电力牵引交流传动及其控制系统》报告——交流传动与直流传动优劣的比较

1.电力传动的发展 从十九世纪七十年代开始,人们就一直努力探索机车牵引动力系统的电传动技术。1879年的世界第一台电力机车和1881年的第一台城市电车都在尝试直流供电牵引方式。1891年西门子试验了三相交流直接供电、绕线式转子异步电动机牵引的机车, 1917年德国又试制了采用“劈相机”将单相交流供电进行旋转、变换为三相交流电的试验车。这些技术探索终因系统庞大、能量转换效率低、电能转换为机械能的转换能量小等因素,未能成为牵引动力的适用模式。 1955年,水银整流器机车问世,标志着牵引动力电传动技术实用化的开始。1957年,硅可控整流器( 即普通晶闸管) 的发明, 标志着电力牵引跨入了电力电子时代。大功率硅整流技术的出现,使电传动内燃机车和电力机车的传动型式从直-直传动(直流发电机或直流供电-直流电动机),很自然地被更优越的交-直传动(交流发电机或交流供电-硅整流-直流电动机)所取代。1965年,晶闸管整流器机车问世, 使牵引动力电传动系统发生了根本性的技术变革, 全球兴起了单相工频交流电网电气化的高潮。随着大功率的晶闸管特别是大功率可关断晶闸管(GTO)的出现和微机控制技术等的发展,20世纪70年代以后出现了交-直-交传动(交流发电机或交流供电-硅整流-逆变器-交流电动机),即所谓的交流传动,又很自然地取代了交-直传动。 与直流传动机车相比,交流传动机车具有启动牵引力大、恒功率范围宽、粘着系数高、电机维护简单、功率因数高、等效干扰电流小等诸多优点,是目前我国铁路发展的必然趋势。

2.交流传动与直流传动的比较 2.1 机车工作原理的比较 2.1.1 直流传动电力机车工作原理 直流传动电力机车包括直直型电力机车和交直型整流器电力机车。 直直型电力机车是由直流电源供电,直流串励牵引电机驱动,通过串并联切换加凸轮变阻或晶闸管斩波器调阻(调压)方式进行调速和控制的机车。一般工矿用4轴电力机车串并联切换加凸轮变阻的电传动装置工作过程为:机车由受电弓从接触网取得直流电,经断路器QF,启动电阻R,向4台直流牵引电动机M1-M4供电,牵引电流经钢轨流回变电所。随着4台牵引电动机接通电源即行旋转,电能转变为机械能,分别通过各自的齿轮传动装置,驱动机车动轮实现牵引运行。 交直型整流器电力机车的能量传递是将接触网供给的单相工频交流电,经机车内部的牵引变压器降压,再经整流装置将交流转换为直流,然后向直流(脉流)牵引电动机供电,从而产生牵引力牵引列车运行。如图所示。

交直流一体化电源系统技术协议

锦界北区晶登110KV升压 站工程 交直流一体化电源 技术规范书 陕西西北火电工程设计咨询有限公司 二○一五年九月

一、一般要求 1、交直流一体化电源系统(包括交流电源、直流电源、逆变电源、通信电源)宜由一家供应商提供,统一进行设计、生产、调试、服务。 2、交直流一体化电源系统宜整体使用各种功能模块进行配置,特别是所有进线、出线开关应使用智能开关模块:将开关、传感器、智能电路集成在一个可插拔式机箱模块内。直流绝缘监测功能分散到直流馈线模块内处理。要求模块外部没有二次接线,模块之间没有常规联络电缆,模块对外只有通信接线,以满足变电站上行下达信息传输的核心思想。 3、设置站用电源一体化监控模块,对全站站用电源进行统一管理。 4、取消UPS,使用逆变电源直接挂在变电站直流母线上运行。事故照明电源取自相关逆变电源输出。 5、取消通信蓄电池组配置及通信用充电设备,使用DC/DC模块直接挂在变电站直流母线上运行。 6、站用交流系统采用ATS开关并配置智能设备实现多运行方式自动投切。 7、单体蓄电池监测不宜有跨柜接线,对外只有通信接线,以满足变电站上行下达信息传输的核心思想。 8、操作用直流系统符合国家相关规定。 9、所有站用电源智能模块均采用直流作为装置电源。 二、遵从标准 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版本均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 2900.1-1993 电工术语基本术语 GB/T 2900.11-1988 蓄电池名词术语 GB/T 2900.17-1994 电工术语电气继电器 GB/T 2900.32-1992 电工术语电力半导体器件

电力交直流一体化电源解决方案

关于变电站交直流一体化电源解决方案的 探讨 背景及现状 1、背景 电力系统中变电站内的操作电源是保证变电站控制、信号、保护、自动装置可靠运行的保障,变目前隆化分公司变电站一般配置三套各自独立的操作电源系统,即直流操作电源、通信电源、交流不间断电源(UPS),每套电源系统单独配置蓄电池组和监控管理系统。为控制、信号、保护、自动装置以及操作机构等供电的直流电源系统,通常称为直流操作电源。为微机、载波、消防等设备供电的交流电源系统,通常称为交流操作电源;为交换机、光端机、远动等通信设备供电的直流电源系统,则称为通讯电源。 2、现状 1、2、1直流操作电源 直流操作电源室站用交流电源正常和事故状态下都能保持可靠供电给变电站内所有控制、保护、自动装置等控制负荷和各类直流电动机、断路器合闸机构等动力负荷的电源。直流操作电源系统电源一般选择220V或110V,采用不接地方式。隆化分公司现有35千伏变电站均装设1组蓄电池及1套充电装置,采用单母线接线。 1、2.2通信电源 通信电源提供给变电站载波机、光端机等通信设备及保护复用设备电源。系统电压为48V,采用正接地方式。 1、2.3交流不间断电源 交流不间断电源在变电站中UPS主要是给不允许短时停电的计算机监控设备供

电,可靠性及稳定性较高,一般均采用一主一备串联运行方式,即正常时由主机供电,主机故障时,从机自动投入。UPS正常由交流电源供电,当交流电源消失或整流器、逆变器等元件故障,则由自带的蓄电池向逆变器供电。 隆化分公司现有变电站16座,各变电站内均配有UPS电源,由于其内置的蓄电池组容量小且没有专业的维护措施,因此造成蓄电池容量不足或损坏而无法满足自动化的要求。 1、2.4独立操作电源存在的问题 无法综合优化资源,各自独立的操作电源系统重复配置蓄电池组,使一次投资增加。 分散布置的设备增加了日常运行维护工作。 各操作电源系统的由于不同的厂家使安装、服务等协调困难。 分公司各操作电源维护班组无法统一管理。 智能一体化电源系统解决方案 2、1系统综述 基于以上各独立操作电源的现状及存在的问题,我们与有关厂家咨询提出智能一体化电源系统的解决方案,优化系统资源。智能一体化电源系统采用分层分布结构,各功能测控模块采用一体化设计、一体化配置,各功能测控模块运行状况和信息数据采用(IEC61850)标准建模并接入信息一体化平台。实行智能一体化电源各子单元分散测控和几种管理,实现对智能一体化电源系统运行状态信息的实时监测。 智能一体化电源系统应能够为全站交直流设备提供安全、可靠的工作电源,包括:380V/220V交流电源、DC220V或DC110V直流电源和DC48V通信用直

设备制造流程及制作周期

设备制造流程及制作周期 设备制造工艺流程图 (1) 材料入库 材料、零部件 材料进厂检查 材料领用 材料 切割 组对 焊接☆ 整型 表面毛刺处理 零(原)部件 检测 分组 测试 组装 调试 非标件 下料 整理 车床加工 检验 清理 喷漆☆ 成品检查 产品调试 产品整装 包装作业 铭牌、标签☆ 入库 激光打标 无损检测、理化检验☆

设备制造工艺流程表(2) NO 工程名称 作业内容 管理项目 记录 操作人员 1 材料、零部件 材料零部件入 库 先入先出 原材料入库表 仓库检验 保管员 2 材料进厂检查 实施进厂检查 N/A 外部采购合同书,输入 检验报告 3 材料入库 移动至材料仓 库保管 分规格保管 作业日志 4 材料领用 原材料工程投 入 先入先出 原材料出库表 5 材料 产品的加工 按顺序进行 作业日志 车间 技术人员 6 切割 材料切割 尺寸 生产作业指导书 7 组对 产品的精密加 工 尺寸 生产作业指导书 8 焊接 产品的加工 尺寸 生产作业指导书 9 整型 校正 尺寸 生产作业指导书 10 表面毛刺处理 表面毛刺处理 去除毛刺 生产作业指导书 11 无损、理化检验 仪器检测 焊接质量 生产作业指导书 12 喷漆 表面着色 外周检验 生产作业指导书 13 产品整装 产品整装 产品的结合 性 作业日志 14 产品调试 产品检验 产品性能 作业日志 15 成品检查 最终检查 N/A 检验报告 检验员 16 包装作业 包装作业 包装状态 作业日志 内外包装 操作工 17 铭牌、标签 打制铭牌、加贴 标签 N/A 作业日志 18 入库 包装成品 N/A 成品入库表 仓库检验保管员 注:在工艺流程图中带☆标记是主要控制项目和控制点及关键和特殊工序 有关制造工艺流程图的详细说明 ○ 将材料切割成所需的大小及形状。 ○ 利用切割机分料初步加工之后,接着利用攻螺丝机加工螺孔。 ○ 加工后的材料做为产品以成形,但为了提高表面粗度,进行抛丸清理。 ○ 抛丸清理后进行喷漆作业,该工艺属关键和特殊工序。 ○ 完成成品检查后打制铭牌、加贴标签入库。该工艺属关键和特殊工序。 ※从原料入库到成品入库,根据产品标准书的标准要求规定,全程记录及管理。

第2章 交直流供电系统

第2章交直流供电系统 2.1.1 市电供电方式的分类 2.1.2 交流高压配电系统 2.1.3 交流低压配电系统 2.1.4 交流变配电设备的维护 2.2.1 直流基础电压及供电要求 2.2.2 直流供电系统的配电方式 2.2.3 直流供电系统的主要设备 交流(Alternating Current, AC )供电系统是由主用交流电源、备用交流电源油机发电机组、高压开关柜、电力降压变压器、低压配电屏、市电油机转换屏、低压电容器屏、交流调压稳压设备以及连接馈线组成的供电总体。其中,高压开关柜内安装有高压隔离开关、高压断路器、高压熔断器、高压仪表用互感器、避雷器等高压元器件;低压配电设备则由低压开关、空气断路开关、熔断器、接触器、避雷器、监测用各种交流电表等低压元器件组成。 直流(Direct Current, DC )供电系统主要由整流设备、蓄电池组、DC/DC变换器以及直流配电屏组成。其中整流设备与蓄电池组通过

与直流配电屏并联向负载供电,以实现不间断供电和稳定供电的目的。 2.1 交流供电系统 交流供电系统包括交流高压配电系统(6kV或10kV系统)和交流低压配电系统(380/220V系统)。其中,来自国家电网的市电作为主用交流电源,通信局(站)自备的油机发电机组则作为备用交流电源。大中型通信局(站)都采用10kV高压市电,经电力变压器降为380/220V低压后,再供给整流器、不间断电源设备、通信设备、空调设备和建筑用电设备等。 2.1.1 市电供电方式的分类 依据通信局(站)所在地区的供电条件、线路引入方式及运行状态,将市电供电方式分为下述4类。 1.一类市电供电方式 一类市电供电方式为从两个稳定可靠的独立电源引入两路供电线,两路供电线不应有同时检修停电的供电情况。 两路供电方式宜配置备用电源自动投入装置。

含VSC的交直流混联系统最优潮流及其损耗分析

含VSC的交直流混联系统最优潮流及其损耗分析近年来,电力电子技术飞速发展,加上PWM控制技术的运用,以IGBT为主的全控型电力电子变换器占据了电流变换器的主导地位,其中IGBT为基础的电压源型变换器VSC的快速发展,使得两端柔性直流输电VSC-HVDC及多端柔性直流输电VSC-MTDC技术得以实现。VSC-MTDC系统可实现多端供受电,相比于VSC-HVDC系统更具安全可靠性、运行方式更具灵活性及分布式电源消纳能力更好。 因此,研究含VSC-MTDC交直流混联系统最优潮流及其损耗问题,可为电力系统安全运行、系统方案规划、建设拓展方案等提供强有力依据,具有重要的价值及意义。含VSC-MTDC的交直流混联系统潮流计算方法有别于传统纯交流系统计算,其计算更为复杂。 论文针对含VSC-MTDC交直流混联系统运用交替迭代法计算潮流 时,Newton-Raphson产生的雅可比矩阵元素在每次迭代时需重新计算,影响潮流计算收敛速度的问题,提出考虑换流站损耗及其容量约束,改进交流部分迭代的雅可比矩阵元素,即将交流侧有功无功与电压偏导与换流站损耗计算式结合,形成交替迭代法的改进算法。含VSC的网格式拓扑的交直流混联系统中,各VSC功率双向流通,其参考量对潮流及损耗的影响较常用的辐射式拓扑结构更大。 论文提出将Newton-Raphson法与改进遗传算法相结合,以曲线拟合理论计算的换流站损耗及直流电压偏移量为目标函数的最优潮流算法,通过优化VSC参考电压及参考功率,合理分配潮流,从而提高换流效率,降低换流站损耗。针对含VSC交直流混联系统多区域互联的最优潮流问题,论文考虑了由VSC-MTDC系统互联后各区域市场经济性与损耗分摊的问题。 以社会福利最大及损耗分摊最小为目标函数,考虑相应潮流约束,采用

设备生产流程

设备生产流程 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

设备生产流程图 合 格 成 品 根据购买计划购进的原材料和外协加工件,经质检实验室检测合格后办理入库手续。检测配件质量、外形尺寸、材质达到生产设备配件要求。 二、装配部流程 (一)按照生产计划填写领料单,领用配件有装配工保管安装使用。 (二)打开机箱盖进行设备组装 1、电磁阀的组装:将840电磁阀与210mm 波纹管连接、波纹管要用橡胶密封垫、锥形橡胶密封垫、用15/24外丝对接、用16变24的对丝对接、安装喷嘴 。 注意各部件连接时的先后顺序,喷嘴安装时要滴加螺纹胶密封。 2、电磁阀与机箱的连接: 电磁阀用M4*6的不锈钢螺丝连接,注意波纹管的弯曲角度。(注意;锥形密封垫要卡入中间隔板,保证机箱燃烧室与控制室隔离)

3、燃烧杯的组装:注意弹垫的位置,组装时避免波纹管扭曲受力。 4、风压测压口宝塔件的安装(确保螺纹处滴有5071密封胶,螺纹上到底) 5、指示灯的安装,注:螺纹为塑料材质,注意用力不要过猛,橡胶密封圈要加在机箱外延。 6、隔热陶瓷垫与观火孔的安装,观火孔安装时要注意从一边慢慢的往机箱观火孔槽上卡,确保安装的牢固和美观。隔热陶瓷垫在安装时要提前折好,注意用力不要过大,以免对陶瓷垫产生破损。 7、点火针的安装。采用M4的不锈钢螺丝安装,机壳与点火针之间加装陶瓷隔热垫,注意点火针的安装方向。 8、风压开关的安装。采用M4*10的不锈钢螺丝连接,注意安装的方向,风压开关一般调至40pa。 9、风压测压管的安装。长度不宜过长,长度控制在风压管不受力,不打结为准。 10、橡胶密封垫的粘贴。保证机箱盖与机箱接触的部位都要黏贴上,以保证燃烧控制室的密封环境。 11、机箱下侧盖的安装,用M4的不锈钢螺丝连接,确保螺丝上紧。 12、机箱组线的连接,注意每根线的接法和位置,注意接线方式按接线图 13、控制板的安装,将控制板放人注塑方盒内,将组线与控制板连接,注意插口的方向,确保地线连接良好,用螺丝固定好盒盖后安装在机箱内。 14、机箱上盖的安装,用M4的不锈钢螺丝连接,确保螺丝上紧。 (三)设备组装完成的检测 外观检查 1、机箱外壳表面涂层应光滑,色泽均匀,不应有斑痕,划痕及凹陷。 2、各焊接螺帽无松动,连接尺寸符合设计要求。 启动设备检验 1、不开燃气阀进行启动检验:

特高压交直流混联电网稳定控制探讨

特高压交直流混联电网稳定控制探讨 发表时间:2019-05-05T09:39:50.337Z 来源:《基层建设》2019年第5期作者:亢煜王嘉薇 [导读] 摘要:十三五规划后,我国政府对特高压交直流混联电网运行稳定性提出了更高的要求。 国网山西省电力公司检修分公司山西太原 030000 摘要:十三五规划后,我国政府对特高压交直流混联电网运行稳定性提出了更高的要求。依据电力系统安全运行原则,对特高压交直流混联电网安全稳定现状进行了简单分析。并依据关键安全稳定风险,提出了几点特高压交直流混联电网稳定控制措施。以期为特高压交直流混联电网稳定性控制方案的制定及电网安全运行提供有效的参考。 关键词:特高压;交直流混联电网;稳定控制 1特高压交直流混联电网特性探究 (一)受端电网电压调节功能下降特高压电网直流密集投运的特性,在一定程度上为受端常规火电机组提供了支撑。而直流电网大范围馈入机组,极易致使系统电压调节特性恶化,进而导致混联电网电压稳定性风险突出。如××电网受电比例在 46%以下,发生 500kV 线路 N-1 故障,导致××地区出现电压崩溃风险。(二)电网频率性稳定故障频发交流系统转动惯量、机组调频能力是电网频率调节的主要依据。但是随着特高压交直流电网的建设,系统转动惯量不断增加,其需要承受频率波动效能也需要逐步增加。而直流转动特性的缺失,极易导致送受端电网转动惯量下降。如××电网仿真分析数据表明,70GW 负荷水平下,损失 4.0GW 发电功率时,若电网内无风电,则电力系统频率将下跌 0.70Hz。(三)交直流、送受端间全局性故障突出从理论层面进行分析,特高压交直流混联电网的建设,促使交直流及送受端间联系不断紧密。而发生频率较高的单相短路故障,就可能导致多回直流同时换相异常,进而对交流断面造成大规模冲击。如 ××电网某 500kV 线路 A 相故障跳闸,导致该区域特高压直流连续三次换相失败,最终致使送端特高压交流长线产生高达 1800MW 的有功冲击。 2特高压交直流混联电网稳定控制措施 2.1电压稳定 电压稳定是指受到小的或大的扰动后,系统电压能够保持或恢复到允许的范围内,不发生电压崩溃的能力。受扰后,系统中发电机和调相机、静止电容器、动态无功补偿器、以及线路充电功率等构成的无功电源,以及线路和变压器等设备无功损耗、感应电动机无功消耗等构成的无功负荷,两者间供需平衡能力决定了电压稳定的维持能力。交流长距离供电、多直流馈人、高马达比例等受端电网,电压稳定问题较为突出。 2.2完善电网稳定控制目标体系 一方面,在《国家电网安全稳定计算技术规范》的基础上, 依据特高压交直流混联电网威胁电网安全运行故障特点,电网维护人员可进一步完善电网稳定控制目标体系。同时综合考虑直流系统单、双击闭锁故障等因素,将不同形态故障因素纳入电网稳定控制目标体系中。如直流连续换相失败、直流功率突降、再启动、受端多回直流同时换相失败等。另一方面,依据特高压交直流混联电网运行特点,为进一步完善交直流混联电网运行控制目标体系,电网维护人员可综合利用直接法、时域仿真等方法,对特高压交直流混联电网运行稳定性进行全方位分析。其中直接法主要是依据函数变化,通过故障对比分析,在初始时间刻能量、临界能量的基础上,构建高维度电网运行模型,以便直接判定电网稳定性;而时域仿真法则是针对干扰源头,利用微分方程,对获得电气运行数据进行分析。常用的时域仿真法主要为电磁暂态仿真、机电暂态仿真等。依据特高压电网规模,可选择合理的仿真分析模型,进而确定仿真控制基准。 2.3构建合理的电网结构 构建合理的拓扑互联结构,是提升输电能力的重要保障。为此,依据电网功能的不同定位,选用送端电源分散接人、受端合理分区的差异化设计原则;综合区域电网不同互联模式的技术特点,选择适用的交流互联、直流互联、交直流混联方案;统筹电网整体性能要求,兼顾网源协调发展、多电压等级有序发展、省级电网与区域电网协同发展以及一二次系统同步发展。 2.4优化电力系统运行控制方案 首先,在特高压交直流混联电网运行期间,针对电网功率输送不均匀的情况,可以直流紧急功率控制为核心,针对电网交流分担功率超标问题,构建完善的特高压交直流混联电网功率应急控制方案。通过对直流系统传输功率的控制,可以适当强化交直流混联电网中直流传输功率及负载能力,从而提高特高压交直流混联电网运行稳定性。需要注意的是,在直流功率应急控制方案中,为保证电网短路能量的有效释放,特高压交直流混联电网维护人员可将局部潮流故障问题较严重交流电网作为维护重点。在直流系统控制的前提下,设置回降控制直流功率、紧急控制直流功率提升等附加措施。其次,依据修订后《国家电网安全稳定计算技术规范》的相关要求,特高压电网运行系统维护人员可以新一代数模混合仿真平台为依据,进一步拓展电磁暂态仿真分析范围。结合实际稳定性控制装置的设置,对特高压混联电网交直流特性进行全方位分析。如针对单回特高压直流连续换相失败情况,可以主动闭锁直流、联切送端机组为要点,从根本上切断直流换相联锁反应。同时优化直流再启动速切交流滤波方案。结合受端电网交流线路重合闸时间的延长,可有效降低直流扰动现象对混联电网交流系统的不利影响。最后,针对大规模交直流并网导致的同步频率提升问题,电网维护人员可以新能源主要应用地区为管理要点,开展全方位实时同步谐波监测。同时依据新能源次同步振荡原理,制定完善的次同步振荡安全控制方案。结合系统性新能源场站调频调压,可从源头解决电网调节能力不足导致的稳定性故障。 2.5强化特高压交直流主网架结构 依据特高压运行理论,只有交流电网、直流容量一致,才可以保证特高压交直流混联电网具有足够的抗频率冲击能力。据此,在特高压交直流混联电网建设阶段,国家电网应以交流电网建设为要点,依据现有特高压混联电网直流电规模及容量,构建坚强交直流同步电网。同时以国家清洁能源发展战略为依据,驱动特高压交直流混联电网全面优化完善,为“强直弱交”问题的彻底解决提供依据。 结束语 综上所述,在特高压交直流混联电网迅速发展进程中,特高压直流输电规模呈阶跃式提升,导致特高压交直流混联电网出现严重的“强直弱交”问题。这种情况下,依据特高压交直流混联电网运行特性,相关人员可以特高压交直流主网架结构为要点,对特高压交直流主网架结构进行优化完善。同时在完善的电网运行控制目标体系的指导下,进一步优化电网运行控制方案,为特高压交直流混联电网稳定性控制

变电站交直流系统运行及故障处理

变电站交直流系统运行及故障处理 直流系统 变电站的强电直流电压为110V 或220V ;弱电直流电压为48V 。 电力系统中直流操作系统采用对地绝缘运行方式。 一.直流系统在变电站中的作用: 1.直流系统的主要作用是在正常情况下为继电保护、自动装置、控制信号、断路器跳合闸操作回路等提供可靠的直流电源。当发生交流电源消失时,为事故照明、交流不间断电源提供直流电源。 2.在生产设备发生故障的关键时刻,直流系统故障,特别是全站控制直流消失,必将造成主设备严重损坏或火灾、爆炸、电力系统大面积停电等极其严重的后果和巨大经济损失。 直流系统由智能高频开关电源模块、蓄电池、集中监控器、绝缘监测仪二.直流系统的任务

和直流配电装置等组成。 三.在变电运行中应注意的几个问题 a、直流母线在正常运行和改变运行方式中,严禁脱开蓄电池组。 b、分裂运行的两条直流母线并列前,应检查两条母线的电压基本一致(有效值差小于1V); c、整流装置在检修结束恢复运行时,应先合交流侧开关,再带直流负荷。 d、两组蓄电池的直流系统,不得长期并列并列运行。由一组蓄电池通过并解裂接带另一组蓄电池的直流负荷时,禁止在两系统都存在接地故障下进行。 e、分裂运行的两条直流母线并列后,应将其中一个直流绝缘监察装置的固定接地点断开。 四.直流系统缺陷定性: 1. 严重缺陷 ?充电装置停止工作; ?运行中蓄电池组温度异常; ?蓄电池室加热通风设备故障; ?蓄电池电解液不合格; ?直流绝缘监测装置工作异常。 2.一般缺陷 ?蓄电池接线接头轻微生盐; ?蓄电池容量下降。

五.直流接地的危害: 1.直流系统一点接地一般不影响直流系统的正常工作,长期运行易发展形成两点接地,造成保护误动、拒动等。 2.直流系统两点接地短路,虽然一次系统并没有故障,但由于直流系统某两点接地短接了有关元件,可能将造成信号装置误动,或继电保护和开关的“误动作”或“拒动”。 1.两点接地可能造成开关误跳闸:当直流接地发生在A 、B 两点时,将电流继电器1LJ 、2LJ 接点短接,而将ZJ 启动,ZJ 接点闭合而跳闸。A 、C 两点短接时短接ZJ 接点而跳闸。在A 、D 两点,D 、F 两点等同样都能造成开关误跳闸。 2.可能造成开关拒动:接地发生在B 、E 两点,D 、E 两点或C 、E 两点,开关可能造成拒动。 L+ B A D F E C *两点接地分析: Ⅰ:A —B A —D D —F Ⅱ:B —E D —E C —E Ⅲ:A —E

电力交直流一体化电源解决方案

电力交直流一体化电源解决方案 关于变电站交直流一体化电源解决方案的 探讨 背景及现状 1、背景 电力系统中变电站内的操作电源是保证变电站控制、信号、保护、自动装置可靠运行的保障~变目前隆化分公司变电站一般配置三套各自独立的操作电源系统~即直流操作电源、通信电源、交流不间断电源,UPS,~每套电源系统单独配置蓄电池组和监控管理系统。为控制、信号、保护、自动装置以及操作机构等供电的直流电源系统~通常称为直流操作电源。为微机、载波、消防等设备供电的交流电源系统~通常称为交流操作电源,为交换机、光端机、远动等通信设备供电的直流电源系统~则称为通讯电源。 2、现状 1、2、1直流操作电源 直流操作电源室站用交流电源正常和事故状态下都能保持可靠供电给变电站内所有控制、保护、自动装置等控制负荷和各类直流电动机、断路器合闸机构等动力负荷的电源。直流操作电源系统电源一般选择220V或110V,采用不接地方式。隆化分公司现有35千伏变电站均装设1组蓄电池及1套充电装置~采用单母线接线。 1、2.2通信电源 通信电源提供给变电站载波机、光端机等通信设备及保护复用设备电源。系统电压为48V~采用正接地方式。 1、2.3交流不间断电源

交流不间断电源在变电站中UPS主要是给不允许短时停电的计算机监控设备供电~可靠性及稳定性较高~一般均采用一主一备串联运行方式~即正常时由主机供电~主机故障时~从机自动投入。UPS正常由交流电源供电~当交流电源消失或整流器、逆变器等元件故障~则由自带的蓄电池向逆变器供电。 隆化分公司现有变电站16座~各变电站内均配有UPS电源~由于其内置的蓄电池组容量小且没有专业的维护措施~因此造成蓄电池容量不足或损坏而无法满足自动化的要求。 1、2.4独立操作电源存在的问题 无法综合优化资源~各自独立的操作电源系统重复配置蓄电池组~使一次投资增加。 分散布置的设备增加了日常运行维护工作。 各操作电源系统的由于不同的厂家使安装、服务等协调困难。分公司各操作电源维护班组无法统一管理。 智能一体化电源系统解决方案 2、1系统综述 基于以上各独立操作电源的现状及存在的问题~我们与有关厂家咨询提出智能一体化电源系统的解决方案~优化系统资源。智能一体化电源系统采用分层分布结构~各功能测控模块采用一体化设计、一体化配置~各功能测控模块运行状况和信息数据采用,IEC61850,标准建模并接入信息一体化平台。实行智能一体化电源各子单元分散测控和几种管理~实现对智能一体化电源系统运行状态信息的实时监测。 智能一体化电源系统应能够为全站交直流设备提供安全、可靠的工作电源~包括:380V/220V交流电源、DC220V或DC110V直流电源和DC48V通信用直流电源及电力用逆变电源。直流电源、电力用交流,UPS,和电力用逆变电源,INV,、通信用直流

交直流混联系统无功规划研究

目录 摘要 ................................................................................................................... I ABSTRACT ........................................................................................................... V 目录 ................................................................................................................... I 第一章绪论 (1) 1.1选题背景和研究意义 (1) 1.1.1 选题背景 (1) 1.1.2 研究意义 (3) 1.2 国内外研究现状综述 (3) 1.2.1 电压稳定评估方法 (3) 1.2.2 无功规划方法 (7) 1.2.3 无功优化算法 (8) 1.3本文的主要工作和创新点 (9) 第二章考虑静态电压稳定性的交直流混联系统无功规划选址研究 (11) 2.1 引言 (11) 2.2 考虑动态无功源的扩展电压灵敏因子 (12) 2.2.1 扩展电压灵敏因子指标定义 (12) 2.2.2 无功电压灵敏度 (15) 2.3 考虑静态电压稳定性的无功规划选址求解流程 (22) 2.4 算例分析 (24) 2.4.1 经典直流输电系统 (24) 2.4.2 IEEE9扩展算例 (25) 2.4.3 IEEE39扩展算例 (28) 2.4.4 某地区实际电网算例 (30) 2.5本章小结 (32) 第三章考虑静态电压稳定性的交直流混联系统无功规划方法 (33) 3.1引言 (33) 3.2 直流输电控制模型 (34) 3.2.1 直流输电运行特性 (34) 3.2.2 直流输电数学模型 (35) 3.3 直流输电电压交互影响因子 (36) 3.3.1 指标定义 (36) 3.3.2 直流输电电压交互影响因子灵敏度 (38)

特高压交直流混联电网特点、挑战及未来方向分析

特高压交直流混联格局呈现出哪些特点?需要应对哪些挑战?未来发展方向在哪?本文从浙江电网入手进行了分析。 刚刚过去的G20 峰会见证了杭州乃至整个浙江的繁荣辉煌。 毫无疑问,浙江的经济发展令人瞩目,而特高压正是支撑浙江腾飞的重要保障。 由于一次能源资源的匮乏、地理条件的限制以及本省燃煤装机减排压力的加大,浙江省内发电装机容量难以支撑日益增长的负荷需求,建设特高压是浙江绿色发展的必然选择。也正因如此,浙江成为目前我国特高压落点最为密集的省份之一,浙江电网也是最早进入特高压交直流混联运行的省级电网之一。从浙江电网的运行可以窥见到特高压交直流混联格局所呈现出的特点、需要应对的挑战,以及未来发展的方向。 浙江样本 特高压入境给浙江带来了巨大的发展动力。同时,保障特高压安全稳定运行也需要配备相应的技术手段。 过去,浙江500 千伏主网架主要承载本省及华东区域的电力,随着宾金、浙福、灵绍等特高压交直流工程相继投运,浙江电网结构发生了质的变化:跨区输电规模进一步扩大、省外来电大幅提升、电网交直流混联运行安全稳定特性发生重大改变,交直流耦合关系更趋紧密,电源与电网间交互影响更复杂。 目前浙江电网的结构清晰呈现出特高压网架建设过渡时期所面临的新情况。“一个足够坚强的电网结构应分层分区合理,各级电网协调发展,电网结构清晰,大容量直流工程输电到受端电网,要送得出、落得下、用得上。”中国电科院原总工程师印永华这样描述科学的坚强电网。目前在特高压建设发展的过渡阶段,直流强而交流弱,在这样的形势下,需要针对特高压交直流混联电网运行特性进行深入研究,不断提升驾驭大电网运行的能力。 为了保障特高压电网安全,国网浙江省电力公司深入研究大电网运行新特性,加强大电网运行管控,并通过“三强化,三提升”,推动大电网运行水平上新台阶。 “三强化”即强化分级分区电力平衡,有效应对发用电平衡复杂局面;强化运行风险预警管控,实现电网运行风险预警预控闭环管理;强化应急预案编制落实,确保应急全面精准、响应及时。“三提升”即提升快速反应技术手段,发电侧创新部署机组AGC 快速群控功能,用电侧创新部署负荷“群控、顺控”功能;提升电网应急处置能力,建立宾金直流应急响应工作机制,常态化开展调度应急演练,切实提升应急协同处置能力;提升网厂协同机制,落实电源开机方式优化、研究燃气机组快速启停,确保日常安全生产管理和应急响应网源协同。 这些手段的实施有效保障了浙江电网安全稳定运行。在今年迎峰度夏中,浙江电网应用负荷批量控制功能为全省电网的安全运行增添了一层保护屏障,提升了技术人员对电网调度的预防控制能力,这正是“三提升”的重要组成部分。“事故拉限电序列表植入负荷批量控制系统后,只要输入需要拉掉的量,系统就可自动操作,大大提升了事故处理的响应速度。”国

交直流调速系统

攀钢职教中心2005?2006学年度第2学期期末考试试题 评卷人 得分 一、填空题:(每小题1分,共20分,) 1、 直流电机的机械特性是指电机的( )和( )之间的关系。 2、 电流截止负反馈是在电动机( )或( )时才起作用。当系统正常运行时 是不起作用的。含有电流截止负反馈的调速系统具有“挖土机特性”,可起( ) 作用。 3、 根据交流异步电动机的转速公式 n = 60 f1 (1-s ) / p 可归纳出交流电动机的三种 调速方法:( ),( ),( )。 4、 三相方波交-交变频器的变频靠调节六个整流组的( )频率,变压靠调 节晶闸管的( )来完成。 5、 转速开环的晶闸管变频调速系统中主要包括 ( 压-频转换器,( ),脉冲输出极,( 变频调速特有的环节。 &为了保证整流组开放时晶闸管的正常触发,交 -交变频器的输出周期 T 必须 ( )电网的周期,其输出交流电频率只能在电网频率的( )以下 调节。 7、 电力拖动控制技术是一门以被控电动机的( )为研究对象,根 据生产工艺的各种要求,应用( )建立交直流调速控制系统,是 生产过程实现自动化的( )学科。 8、 在晶闸管三相调压电路中,当负载阻抗角?工 0。,且晶闸管控制角a > ?,则 180°,此时电流波形是( )的。 评卷人 得分 二、单项选择题:(每题2分,共20分) 探 说明:本题答案全部填在下表中: ),绝对值运算器, 注意事项:1、请首先按要求在试卷的标封处填写您的姓名、考号和所在单位的名称。 2、 请仔细阅读各种题目的回答要求,在规定的位置填写您的答案。 3、 不要在试卷上乱写乱画,不要在标封区填写无关内容

智能电网站用交直流一体化电源系统简介

智能电网站用交直流一体化电源系统简介 近年来,高中压开关电器、综自系统在电力系统受到高度重视,变电站综合技术与智能化水平得到了极大的提升。然而,针对站用电源的技术研究与产品创新却相对滞后,传统站用电源设计方案已难以适应新型变电站的发展需要。 本文针对传统站用电源分散设计存在的问题,阐述了站用交直流一体化电源系统的设计方案及其技术特点,并对其所产生的经济效益与社会效益等方面进行了综合分析。 1、传统站用电源分散设计存在的问题 一直以来,变电站站用电源分为交流电源系统、直流电源系统、UPS不间断电源系统、通信电源系统等,各子系统采用分散设计,独立组屏,设备由不同的供应商生产、安装、调试,供电系统也分配不同的专业人员进行管理。站用电源的分散设计与管理,存在着诸多问题: 1)站用电源难以实现系统管理 由不同供应商提供的交流系统与直流系统通信规约一般不兼容,难以实现网络化系统管理,自动化程度低。由于没有统一的监控设备对整个站用电源进行管理,不能实现系统数据共享,无法进行站用电源协调联动、状态检修等深层次开发应用。 2)可靠性受到影响 由于站用电源信息不能网络共享,针对故障或告警信息不具备进行综合分析的基础平台,不同专业的巡检人员分别管理各个电源子系统,难以进行系统分析判断、及时发现事故隐患。 对于涉及需站用电源各子系统协调才能解决的问题难以统一处理。如:防雷配置,避雷器参数选择,安装位置只有将整个站用电源交直流系统统一考虑才能解决;由于充电模块均流对于直流母线上纹波较敏感,需要对母线所接负荷,如逆变电源等反灌电流进行统一治理等。 3)经济性较差

由不同供应商分别设计各个子系统,资源不能综合考虑,造成配置重复,一次性投资显著增加。如:直流电源,UPS不间断电源、通讯电源分别配置独立的蓄电池,浪费用严重;交流系统配置电源自动切换设备,充电模块前又重复配置,既浪费又使设备之间难于协调运行。 4)长期维护不方便,增加成本 各个供应商由于利益差异使安装、服务协调困难,站用电源一旦出现故障需向多个厂家进行沟通协调,造成沟通困难与效率低下。 现有变电站站用电源分配不同专业人员进行管理:交流系统与直流系统由变电人员进行运行维护,UPS由自动化人员进行维护,通信电源由通信人员维护。人力资源不能总体调配,通信电源、UPS等也没有纳入变电严格的巡检范围,可靠性得不到保障。 2、交直一体化电源系统设计方案及特点 通过分析与研究传统站用电源分散设计存在的问题,针对性提出了站用交直流一体化的设计思路,以实现:第一、建立站用电源统一网络智能平台;第二、消除站用电源隐患;第三、提高站用电源管理水平;第四、进行深层次开发,提高站用电源安全与智能化水平。 1)交直流一体电源系统的定义 站用交直流一体化电源系统是指:将站用交流电源系统、直流电源系统、逆变电源系统、通信电源系统统一设计、监控、生产、调试、服务,通过网络通信、设计优化、系统联动方法,实现站用电源安全化、网络智能化设计,实现站用电源交钥匙工程,实现效益最大化目标。 智能站用电源交直流一体化系统包括:智能交流电源子系统、智能直流电源子系统、智能逆变电源子系统、智能通信电源子系统、一体化监控子系统。 2)主要技术特征 站用交直流一体化电源系并不是对交流、直流电源系统的简单混装,其主要技术特征表现在: (1)网络智能化设计:通过一体化监控器对站用交流电源、直流电源、逆变 电源、通信电源进行统一监控,建立统一的信息共享平台,实现网络智 能化。支持61850通讯规约。

设备生产制造工艺流程图

设备生产制造工艺流程图 主要部件制造要求和生产工艺见生产流程图: 1)箱形主梁工艺流程图 原材料预处理划线下料清理 材质单与喷涂划划数半剪清割坡 钢材上炉丸富出出控自除渣口 号批号一除锌拱外自动焊等打 一对应油底度形动气切区打磨 锈线线气割 割 校正对接拼焊无损探伤装配焊接清理 达度埋超X 确垂内工清焊到要弧声光保直部电除渣平求自波拍隔度先焊内杂直动片板用接腔物 焊手 检验装配点焊四条主缝焊接清理校正 内焊装成用Φ清磨修修振腔缝配箱埋HJ431 除光正正动检质下形弧直焊焊拱旁消验量盖主自流渣疤度弯除板梁动反应 焊接力自检打钢印专检待装配 操专质 作检量 者,控 代填制 号写表

2)小车架工艺流和 原材料预处理划线下料清理 材质单与喷涂划划数半剪清割坡 钢材上炉丸富出出控自除渣口 号批号一除锌拱外自动焊等打 一对应油底度形动气切区磨 锈线线气割 校正对接拼焊无损探伤装配焊接清理 达度埋超X 确垂内工清焊 到要弧声光保直部电除渣 平求自波拍隔度先焊内杂 直动片板用接腔物 焊手 检验装配点焊主缝焊接清理校正 内焊清磨修修振应腔缝除光正正动力检质焊焊拱旁消验量渣疤度弯除 自检划线整体加工清理 A表A表 行车行车 适用适用 自检打钢印专检待装配 操专质

作检量 者,控 代填制 号写表 3)车轮组装配工艺流程图 清洗检测润滑装配 煤清轮确尺轴部 油洗孔认寸承位 或轴等各及等加 洗承部种公工润 涤,位规差作滑 剂轴格剂 自检打钢印专检待装配 操 作 者 代 号 4)小车装配工艺流程图 准备清洗检测润滑 场按领煤清轴确尺轴加最注 地技取于油洗及认寸承油后油 清术各或轴孔各及内减 理文件洗承等件公、速件涤齿部规差齿箱 剂轮位格面内 装配自检空载运行检测标识入库 螺手起行噪 钉工升走音 松盘机机震 紧动构构动

交直流系统技术规范书

绥阳供电局35变电站交直流系统 技术规范书 绥阳供电局

站用交直流一体化系统电源柜配置参见下表:

一、通用部分 一、概述 1.总则 工程各方经过友好协商和讨论共同编制本协议书,本协议书提出了一体化电源设备的功能规范、技术要求和设备要求,主要内容包括:系统设备配置、设备技术要求、包装运输、供电及环境技术标准、安装督导、调试及验收要求、技术培训、售后服务、测试工具、仪器及技术资料文档等。 本协议书、本项目招投标文件和来往函件是甲方购货合同的一部分,适用于一体化电源设备采购,是该项目执行和工程化实施的技术服务依据,双方必须严格执行。 一切技术协议未尽事宜均以招标文件及厂家澄清函为准。 本协议所有条款最终解释权由甲方行使。 2.甲方职责 确认乙方提供的设备技术文件和图纸、工程进度、培训计划和验收、试验计划及其他的相关资料。 1)负责提供现场安装的条件及必要的支持。 2)参加系统的设计联络会、软硬件培训、工厂试验验收。 3)为乙方设备现场安装提供必要的配合。 4)组织系统现场验收及试运行和最终验收。 5)负责提供本工程涉及的相关技术资料和参数。 3.乙方职责 1)负责整个项目的设备技术督导及测试,同时负责完成乙方对《一体化电源设备招标 技术规范书》及《一体化电源设备招标商务文件》中所规定要求并应答承诺的所有 本工程项目建设内容以及设备维保、培训、服务等。 2)工程督导内容包括且不限于指导本期设备安装、电源连线、电缆连接等相关督导工 作内容,以保障本期工程最终验收为条件。 3)乙方负责指导该工程项目的单站设备调试和系统联调,与原有系统的互联互通调 试,乙方配合甲方完成对业务的割接,并提供相关的技术支持。 4)负责提供合同供货范围所要求的硬件设备及相应设备之间的连接线缆。 5)负责提供合同所需的软件,包括系统软件、支撑软件及应用软件。 6)保证所提供的所有设备(包括软件)的质量、性能、功能均满足要求。 7)在系统调试和试运行期间,如发现由于乙方所提供的设备因为配置不合理,造成系 统功能性能不能满足本协议书要求,乙方负完全责任。 8)负责所有合同内设备的包装、运输到甲方指定的到货地点。

相关文档
最新文档