随机时间序列分析

合集下载

时间序列分析入门

时间序列分析入门

xt t t1 2t2 3t3
均值为零? 是否平稳? 方差为有限常数?
自协方差与t无关?
AR(1)平稳旳条件
xt t t1 2t2 3t3
• 均值
E(t ) 0 E(xt ) 0
成立
• 方差
Var( xt
)
2
(1
2
4
6
)
(1)t充分大时Var(
xt
)
1
2
2
自协方差函数
1
r0
1
2
(1 11)(1 1 12
1 )
2
r2 E[xt2 (1xt1 t 1t1)] 1r1
rk 1rk1 (k 2)
ARMA(1,1)旳自有关函数
k
(1 11 1 12
)(1 1 211
)
1 k 1
k 1 k2
ARMA(p,q)旳自有关函数与AR(p)一样,具有拖尾性
③ 滞后算子形式
xt 1xt1 2xt2 p xtp t 1t1 2t2 qtq
p (B)xt q (B)t
xt
1 p
(
B)
q
(
B)
t
t
1 q
(
B)
p
(
B)
xt
性质总结
模型
• 自有关 • 函数 • 偏自有
关函数
• 平稳旳 条件
• 可逆旳 条件
AR(p) 拖尾
MA(q) 截尾
ARMA(p,q) 拖尾
① 自回归模型旳定义
• 描述序列{xt}某一时刻t和前p个时刻序列 值之间旳相互关系 xt 1xt1 2 xt2 p xt p t 随机序列{εt}是白噪声且和前时刻序列xk (k<t )不有关,称为p阶自回归模型, 记为AR(p)

第四章 随机过程与时间序列分析(4)

第四章 随机过程与时间序列分析(4)

第四章 随机过程与时间序列分析§4时间序列的预测分析时间序列分析的内容之一是系统的演化预测,预测的基本思想之一是设法消除随机扰动,考察其长期趋势或者周期变化。

对于严格意义的周期变化现象,不存在预测问题,例如没有人预测明天太阳什么时候升起,因为地球自转在人生的有限时期内可以近似地看成是严格的周期现象。

前面讲过的R/S 分析,则是典型的趋势预测,它不落实未来的具体数值。

但是,在许多时候,趋势预测较之数值预测更有意义。

寻找趋势,最简单的思路是基于某种平均方法对数据进行修匀处理——本节讲述的移动平均法即其之一。

这一节我们讲述两种基本的预测方法:移动平均法和指数平滑法。

这两种方法本质上都是趋势预测。

1 移动平均法移动平均法,实际上就是数据修匀式的一种时间序列预测方法,其计算方法非常简便,关键是理解它的基本思想。

⒈ 数学模型设x i 为时序中第i 个时点的观测值,序列长度为n ,平均处理的观测值数目为m ,则第t 个时点的移动平均值可定义为∑+-=+--=+++=tn t i i m t t t t x m x x x m M 1111)(1 , (4-4-1)式中M t 为第t 个时点的移动平均值,也可当作第t +1个时点的预测值y t +1,即有t t M y =+1, (4-4-2)由上式可得)(1)(1)(1)(1)(112111m t t t m t t m t t t m t m t m t t t t x x m M x x mx x x mx x m x x x m M --------+---+=-++++=-++++=, (4-4-3) 可以看出,只要计算出M t -1,就可以通过迭代法算出M t 。

从上面的公式还可以看到,m 值越大,M t 的修匀程度也就越大。

极端情况是:当m =1时,M t =x t ;当m =n ,只得一个平均值,即全体x 的均值。

⒉ 计算实例下面借助上节的数据说明移动平均法的计算方法。

随机时间序列分析

随机时间序列分析

参数模型
参数模型是指通过已知的参数来描述 时间序列的统计特性,如AR模型、 MA模型和ARMA模型等。
非参数模型
非参数模型是指通过数据本身来描述 时间序列的统计特性,如滑动平均模 型和自回归积分滑动模型等。
04 随机时间序列分析的方法 与技术
参数估计与模型选择
参数估计
利用已知数据估计模型中的未知参数,常用方法包括最小二乘法、极大似然估计法等。
的问题。
非线性过程的建模挑战
要点一
非线性动态
许多时间序列数据具有非线性动态,这意味着传统的线性 模型可能无法准确描述数据的复杂行为。因此,需要开发 更复杂的非线性模型来捕捉数据的非线性特征。
要点二
模型复杂度
为了更好地描述非线性动态,需要增加模型的复杂度。然 而,这可能导致模型过拟合和欠拟合问题,影响模型的泛 化能力和解释性。
提高数据利用效率
提高数据利用效率。
随机时间序列分析的应用场景
金融领域
气象领域
经济领域
用于股票价格、汇率等 金融时间序列的预测和
分析。
用于气温、降水等气象 时间序列的预测和分析。
用于GDP、消费、投资 等经济时间序列的预测
和分析。
交通领域
用于车流量、客流量等 交通时间序列的预测和
就业形势分析
通过分析历史就业数据,利用随机 时间序列模型预测未来就业形势, 为政府和企业的决策提供支持。
金融市场的随机时间序列分析
股票价格预测
通过对股票价格的历史数据进行随机时间序列分析,可以预测未 来股票价格的走势,有助于投资者做出更明智的投资决策。
利率变动预测
利用随机时间序列模型对利率变动进行建模,有助于金融机构制定 合理的贷款和存款利率政策。

第3讲 时间序列的随机性分析

第3讲 时间序列的随机性分析

(3.8)
特别当0=0时,称模型为中心化AR(p)模型. 非中心化 模型可以通过下面的变换:
=0/(1-0-1-„-p) ; Yt=Xt-
化成中心化模型,今后只讨论中心化模型.
第3讲 时间序列的随机性分析
3.2 平稳时间序列分析
2012年7月2日星期一
3.2.1 AR(p)模型
利用延迟算子可以将中心化AR(p)模型简写为:
第3讲 时间序列的随机性分析
3.1 时间序列的预处理
2012年7月2日星期一
3.1.1 宽平稳性检验
例3.1 若随机序列{Xt}满足以下条件则称为白噪声序 列(white noise): (1)E(Xt)=0 (2)Cov(Xt ,Xt+k)=0 显然,白噪声序列是宽平稳序列。 例3.2 由如下随机过程生成的序列{Xt}称为随机游走序 列(random walk), Xt=Xt-1+et 这里,et 是一个独立白噪声,E(Xset)=0.
数学建模培训
2012年7月2日星期一
数学建模培训内容
第1讲 回归分析
第2讲 时间序列的确定性分析 第3讲 时间序列的随机性分析
第4讲 综合评价方法
第3讲 时间序列的随机性分析
第3讲 时间序列的随机性分析
2012年7月2日星期一
时间序列的随机性分析常采用的模型是ARMA模型和 GARCH模型,而ARMA模型是针对平稳非白噪声序列进 行建模。 所以本讲首先介绍时间序列的预处理---平稳性检验和 白噪声检验,然后介绍ARMA模型,最后介绍非平稳序列 的建模方法。
第3讲 时间序列的随机性分析
3.1 时间序列的预处理
2012年7月2日星期一
3.1.1 宽平稳性检验

ARMA模型

ARMA模型
随机项 ut 是相互独立的白噪声序列,且服从均值为0、
方差为 2 的正态分布.随机项与滞后变量不相关。
注2: 一般假定
X t 均值为0,否则令
X
t
Xt
1 时间序列分析模型【ARMA模型 】简介
记 Bk 为 k 步滞后算子, 即 Bk X t X tk , 则
模型【1】可表示为
Xt 1BXt 2B2 Xt pBp Xt ut
实际问题中, 常会遇到季节性和趋势性同时存在的情况, 这 时必须事先剔除序列趋势性再用上述方法识别序列的季节性, 否则季节性会被强趋势性所掩盖, 以至判断错误.
包含季节性的时间序列也不能直接建立ARMA模型, 需进 行季节差分消除序列的季节性, 差分步长应与季节周期一致.
1 时间序列分析模型【ARMA模型 】简介
式【5】称为( p, q)阶的自回归移动平均模型, 记为ARMA ( p, q)
注1: 实参数 1,2 , , p 称为自回归系数, 1,2 , ,q 为移动平均系数,
都是模型的待估参数
注2: 【1】和【3】是【5】的特殊情形 注3: 引入滞后算子,模型【5】可简记为
(B) Xt (B)ut
【6】
在实际中, 常见的时间序列多具有某种趋势, 但很多序列 通过差分可以平稳
判断时间序列的趋势是否消除, 只需考察经过差分后序列 的自相关系数
(3)季节性 时间序列的季节性是指在某一固定的时间间隔上, 序列重
复出现某种特性.比如地区降雨量、旅游收入和空调销售额等 时间序列都具有明显的季节变化. 一般地, 月度资料的时间序列, 其季节周期为12个月;
Xt 1 v1B v2B2
ut
vjB
j
ut
j0

数据分析中的时间序列分析方法

数据分析中的时间序列分析方法

数据分析中的时间序列分析方法时间序列分析是数据分析中常用的一种方法,通过对时间序列数据的分析,可以揭示出数据的趋势、周期性和随机变动等规律,从而为决策提供有力的支持。

本文将介绍几种常用的时间序列分析方法。

一、平滑法(Smoothing)平滑法是一种常见的时间序列分析方法,其主要目的是去除数据中的随机波动,揭示出数据的长期趋势。

平滑法最常用的方法包括简单移动平均法、加权移动平均法和指数平滑法等。

简单移动平均法将一段时间内的数据取平均值,加权移动平均法则对不同时间的数据进行加权计算,而指数平滑法则是根据数据的权重递推计算平滑值。

二、分解法(Decomposition)分解法是将时间序列数据分解为趋势、季节性和随机成分三个部分的方法。

通过分析趋势部分,可以了解数据的长期变化趋势;分析季节性部分,可以揭示出数据中的周期性变动;而随机成分则代表了不可预测的波动。

常用的分解法有加法分解和乘法分解两种方式。

加法分解是将时间序列数据减去趋势和季节性成分,得到的剩余部分就是随机成分;乘法分解则是将时间序列数据除以趋势和季节性成分,得到的结果同样是随机成分。

三、自回归移动平均模型(ARMA)自回归移动平均模型是一种常用的时间序列预测方法,通过对时间序列数据的自相关和移动平均相关进行建模,可以预测未来时间点的值。

ARMA模型是AR模型和MA模型的结合,AR模型用于描述数据的自相关关系,而MA模型则用于描述数据的移动平均相关关系。

ARMA模型的具体建模过程包括模型的阶数选择、参数估计和模型检验等。

四、季节性ARIMA模型(SARIMA)季节性ARIMA模型是在ARIMA模型的基础上加入季节性成分的一种模型。

季节性ARIMA模型主要用于处理具有明显季节性规律的时间序列数据。

与ARIMA模型类似,季节性ARIMA模型也包括模型阶数选择、参数估计和模型检验等步骤,不同的是在建模时需要考虑季节性的影响。

五、灰色系统模型(Grey Model)灰色系统模型是一种特殊的时间序列预测方法,主要适用于数据样本较少或者数据质量较差等情况。

随机时间序列分析

随机时间序列分析

当滞后期大于q时,Xt的自协方差系数为0。 因此:有限阶移动平均模型总是平稳的。
3、ARMA(p,q)模型的平稳性
由于ARMA (p,q)模型是AR(p)模型与MA(q)模型的组合: Xt=1Xt-1+ 2Xt-2 + … + pXt-p + t - 1t-1 - 2t-2 - - qt-q 而MA(q)模型总是平稳的,因此ARMA (p,q)模型的平 稳性取决于AR(p)部分的平稳性。 当AR(p)部分平稳时,则该ARMA(p,q)模型是平稳的, 否则,不是平稳的。
1、时间序列模型的基本概念
随机时间序列模型(time series modeling)是指仅用它的 过去值及随机扰动项所建立起来的模型,其一般形式为 Xt=F(Xt-1, Xt-2, …, t) 建立具体的时间序列模型,需解决如下三个问题: (1)模型的具体形式 (2)时序变量的滞后期 (3)随机扰动项的结构 例如,取线性方程、一期滞后以及白噪声随机扰动项( t =t),模型将是一个1阶自回归过程AR(1): Xt=Xt-1+ t 这里, t特指一白噪声。
考虑p阶自回归模型AR(p) Xt=1Xt-1+ 2Xt-2 + … + pXt-p +t • 引入滞后算子(lag operator )L: LXt=Xt-1, L2Xt=Xt-2, …, LpXt=Xt-p
(*)
(*)式变换为 (1-1L- 2L2-…-pLp)Xt=t 记(L)= (1-1L- 2L2-…-pLp),则称多项式方程
2、时间序列分析模型的适用性
• • 经典回归模型的问题: 迄今为止,对一个时间序列 Xt 的变动进行解释或预测, 是通过某个单方程回归模型或联立方程回归模型进行的, 由于它们以因果关系为基础,且具有一定的模型结构,因 此也常称为结构式模型(structural model)。 • 然而,如果Xt波动的主要原因可能是我们无法解释的因 素,如气候、消费者偏好的变化等,则利用结构式模型来 解释Xt的变动就比较困难或不可能,因为要取得相应的量 化数据,并建立令人满意的回归模型是很困难的。 • 有时,即使能估计出一个较为满意的因果关系回归方程, 但由于对某些解释变量未来值的预测本身就非常困难,甚 至比预测被解释变量的未来值更困难,这时因果关系的回 归模型及其预测技术就不适用了。

时间序列分析的基本概念

时间序列分析的基本概念

时间序列分析的基本概念时间序列分析是一种重要的统计分析方法,用于研究时间序列数据的规律和趋势。

时间序列数据是按照时间顺序排列的一系列数据点,例如股票价格、气温、销售额等。

通过时间序列分析,可以揭示数据中的周期性、趋势性和随机性,从而帮助我们预测未来的发展趋势和制定决策。

本文将介绍时间序列分析的基本概念,包括时间序列数据的特点、时间序列分析的方法和应用。

一、时间序列数据的特点时间序列数据具有以下几个特点:1. 时间依赖性:时间序列数据中的各个数据点之间存在时间上的依赖关系,即当前时刻的数据受到过去时刻数据的影响。

2. 趋势性:时间序列数据通常会呈现出一定的趋势,可以是上升、下降或保持稳定。

3. 季节性:某些时间序列数据会呈现出周期性的波动,例如销售额在节假日前后会有明显的波动。

4. 随机性:除了趋势性和季节性之外,时间序列数据还包含一定程度的随机波动,这部分波动是不可预测的。

二、时间序列分析的方法时间序列分析主要包括以下几种方法:1. 描述性分析:通过绘制时间序列图、自相关图和偏自相关图等,对时间序列数据的特点进行描述和初步分析。

2. 平稳性检验:时间序列数据在进行分析之前需要具有平稳性,即均值和方差在时间上保持不变。

可以通过单位根检验等方法来检验时间序列数据的平稳性。

3. 分解模型:将时间序列数据分解为趋势、季节性和残差三个部分,以便更好地理解数据的特点。

4. 预测方法:利用时间序列数据的历史信息,通过建立合适的模型来预测未来的发展趋势。

常用的预测方法包括移动平均法、指数平滑法和ARIMA模型等。

5. 模型诊断:对建立的时间序列模型进行诊断,检验模型的拟合效果和预测准确性,确保模型的有效性。

三、时间序列分析的应用时间序列分析在各个领域都有广泛的应用,主要包括以下几个方面:1. 经济领域:用于预测经济指标的发展趋势,如GDP增长率、通货膨胀率等,帮助政府和企业制定经济政策和经营策略。

2. 金融领域:用于股票价格、汇率、利率等金融数据的预测和分析,帮助投资者做出投资决策。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7 随机时间序列分析一. 随机时间序列随机过程与随机序列时间序列的性质(1) 随机过程与随机序列随机序列的现实对于一个随机序列,一般只能通过记录或统计得到一个它的样本序列x1,x2,??????, xn,称它为随机序列{ xt }的一个现实随机序列的现实是一族非随机的普通数列(2) 时间序列的统计性质(特征量) 均值函数:某个时刻t 的性质时间序列的统计性质自协方差函数:两个时刻t 和s 的统计性质时间序列的统计性质自相关函数二. 平稳时间序列模型所谓平稳时间序列是指时间序列{ xt, t=0,±1,±2,?????? } 对任意整数t,,且满足以下条件:对任意t,均值恒为常数对任意整数t 和k,r t,t+k 只和k 有关随机序列的特征量随时间而变化,称为非平稳序列平稳序列的特性方差自相关函数:自相关函数的估计平稳序列的判断一类特殊的平稳序列――白噪声序列随机序列{ xt }对任何xt 和xt 都不相关,且均值为零,方差为有限常数正态白噪声序列:白噪声序列,且服从正态分布2. 随机时间序列模型自回归模型(AR)移动平均模型(MA)自回归―移动平均模型(ARMA)(1) 自回归模型及其性质定义平稳条件自相关函数偏自相关函数滞后算子形式①自回归模型的定义描述序列{ xt }某一时刻t 和前p 个时刻序列值之间的相互关系随机序列{ εt }是白噪声且和前时刻序列xk (k<t )不相关,称为p 阶自回归模型,记为AR(p) ②(一阶)自回归序列平稳的条件AR(1) 平稳的条件均值方差AR(1) 平稳的条件自协方差③AR(p) 的自相关函数自协方差函数自相关函数AR(p) 的自相关函数例:求AR(1) 的自相关函数例:AR(2) 的自
相关函数AR(p) 自相关函数的拖尾性对AR(p) 模型,其自相关函数不能在某一步之后为零(截尾),而是按指数衰减,称其具有拖尾性举例④偏自相关函数⑤AR(p) 的滞后算子形式引进滞后算子B:一般有:(2) 移动平均模型及其性质定义自相关函数滞后算子形式①移动平均模型的定义在序列{ xt }中,xt 表示为若干个白噪声的加权平均和其中{ εt }是白噪声序列,这样的模型称为q 阶移动平均模型,计为MA(q) ②MA(1) 的自相关函数MA(q) 的自相关函数举例③滞后算子形式AR(p) 与MR(q) 的比较(3) 自回归移动平均模型定义性质滞后算子形式①自回归移动平均模型自回归模型与移动平均模型的综合②ARMA(p,q) 的性质ARMA(p,q) 兼有AR (p) 和ARMA(q) 的性质平稳条件:与AR (p) 相同,与MA 无关ARMA(1,1) 平稳条件ARMA(1,1) 的自相关函数ARMA(1,1) 的自相关函数③滞后算子形式性质总结三. 时间序列模型的估计和预测模型识别与参数估计时间序列预测1.模型识别与参数估计模型识别参数估计阶数的确定模型检验(1) 模型识别自相关函数截尾――MA(q) 自相关函数拖尾偏自相关函数截尾――AR(p) 偏自相关函数拖尾――ARMA(p,q) (2) 模型参数估计AR(p) 的最小二乘估计ARMA(p,q) 的最小二乘估计①AR(p) 的最小二乘估计②ARMA(p,q) 的最小二乘估计(3) 模型阶数的确定――MA(q) 或AR(p) 自相关函数的截尾偏自相关函数的截尾模型阶数的确定――ARMA(p,q) AIC 准则( Akaike info criterion) ARMA(n,n-1) 模型在确定平稳随机时间序列的阶数时,可以优先考虑ARMA(n,n-1) 模型,比如从ARMA(2,1) 试起,若拟合不好,考
虑用ARMA(3,2) ,以此类推原因:用Hilbert 空间算子形式的基本原理可以证明,对于任何平稳随机系统,可以用一个ARMA(n,n-1) 近似到想要表达的程度用差分方程的理论也可以证明,对于n 阶自回归,MA 的阶数为n-1 (4) 模型的检验2. 时间序列模型预测AR(1) 时间序列模型预测MA(1) 时间序列模型预测ARMA(1,1) 四. 非平稳时间序列与协整单整虚假回归协整误差修正模型非平稳时间序列举例随机游走随机游走序列的方差无穷大(1)单整差分:用变量的当期值减去其滞后值而得到新序列的方法单整:若一个非平稳的时间序列必须经过d 次差分之后才能变换成一个平稳的ARMA 时间序列,则称具有 d 阶单整性。

记作单整性也称齐次非平稳性单整自回归移动平均模型随机时间序列经过d 次差分后变换成一个p 阶自回归、q 阶移动平均的平稳序列,则称为单整自回归移动平均序列,记作ARIMA(p,d,q) 也称为d 阶齐次非平稳时间序列,求和自回归移动平均序列,或综合自回归移动平均序列,或单积自回归移动平均序列(2)虚假回归两个相互独立的非平稳序列,如对和的一个现实,作如下一元线性回归:和相互独立,因此应该有但如果假设检验的结果是,即T 检验显著,这就是虚假回归问题。

虚假回归的原因当两个相互独立的I(1) 序列进行回归时,回归系数的t 统计量不服从通常意义的t 分布,而是发散的(服从维纳Wiener 过程函数分布)(3)协整若时间序列一般来说,若但如果的单整阶数小于d,则称和存在协整关系协整的经济含义是什么?协整是对非平稳的经济变量长期均衡关系的统计描述均衡是一种状态,当一个经济系统达到均衡时将不存在破
坏均衡的内在机制当系统偏离均衡点时,平均来说,系统将在下一期移向均衡点(4)误差修正模型0 5 10 15 -15 -10 -5 t 分布k=0 k=1,2,??????,q k>q 1 0 ρk k 0.5 1 2 3 的序列yt -1 1 3 5 t 其中AR(1) MR(1) 计为ARMA(p,q) 自协方差函数ARMA(p,q) 的自相关函数与AR(p) 一样,具有拖尾性特征根在单位圆外无条件平稳特征根在单位圆外平稳的条件拖尾截尾拖尾自相关函数可逆的条件偏自相关函数模型特征根在单位圆外特征根在单位圆外无条件可逆拖尾拖尾截尾ARMA(p,q) MA(q) AR(p) 模型识别参数估计模型检验确定模型具体形式判断模型是否可取是否普通最小二乘法非线性最小二乘估计选择使AIC 最小的( p,q) 组合目的与标准:残差项是否为白噪声序列K 是自相关函数的个数* * t xt t xt k ρk k ρk 0 0 1 1 平稳序列的自相关函数非平稳序列的自相关函数迅速下降到零缓慢下降是否平稳?均值为零?方差为有限常数?自协方差与t 无关?成立满足这两个条件成立仅与k 有关,与t 无关结论:时,一阶自回归序列渐进平稳两边同除以r0 耶尔-瓦克尔( Yule-Walker) 方程取k=1 取k=2 取k=3 1 0 ρk k 的序列t yt 20 耶尔-瓦克尔( Yule-Walker) 方程AR(p) 的偏自相关函数具有截尾性AR(p) 记或。

相关文档
最新文档