建筑结构抗震设计原理第四章

合集下载

建筑结构抗震设计(第三版)习题解答1-5章

建筑结构抗震设计(第三版)习题解答1-5章

第一章的习题答案1. 震级是衡量一次地震强弱程度(即所释放能量的大小)的指标。

地震烈度是衡量一次地震时某地区地面震动强弱程度的尺度。

震级大时,烈度就高;但某地区地震烈度同时还受震中距和地质条件的影响。

2. 参见教材第10面。

3. 大烈度地震是小概率事件,小烈度地震发生概率较高,可根据地震烈度的超越概率确定小、中、大烈度地震;由统计关系:小震烈度=基本烈度-1.55度;大震烈度=基本烈度+1.00度。

4. 概念设计为结构抗震设计提出应注意的基本原则,具有指导性的意义;抗震计算为结构或构件达到抗震目的提供具体数据和要求;构造措施从结构的整体性、锚固连接等方面保证抗震计算结果的有效性以及弥补部分情况无法进行正确、简洁计算的缺陷。

5. 结构延性好意味可容许结构产生一定的弹塑性变形,通过结构一定程度的弹塑性变形耗散地震能量,从而减小截面尺寸,降低造价;同时可避免产生结构的倒塌。

第二章的习题答案1. 地震波中与土层固有周期相一致或相近的波传至地面时,其振幅被放大;与土层固有周期相差较大的波传至地面时,其振幅被衰减甚至完全过滤掉了。

因此土层固有周期与地震动的卓越周期相近,2. 考虑材料的动力下的承载力大于静力下的承载力;材料在地震下地基承载力的安全储备可低于一般情况下的安全储备,因此地基的抗震承载力高于静力承载力。

3. 土层的地质年代;土体中的粘粒含量;地下水位;上覆非液化土层厚度;地震的烈度和作用时间。

4. a 中软场地上的建筑物抗震性能比中硬场地上的建筑物抗震性能要差(建筑物条件均同)。

b. 粉土中粘粒含量百分率愈大,则愈容易液化. c .液化指数越小,地震时地面喷水冒砂现象越轻微。

d .地基的抗震承载力为承受竖向荷载的能力。

5. s m v m 5.2444208.32602.82008.51802.220=+++=因m v 小于s m 250,场地为中软场地。

6. 设计地震分组为第二组,烈度为7度,取80=N砂土的临界标贯值:[])(1.09.00w s cr d d N N -+=,其中m d w 5.1=土层厚度:第i 实测标贯点所代表的土层厚度的上界取上部非液化土层的底面或第1-i 实测标贯点所代表土层的底面;其下界取下部非液化土层的顶面或相邻实测标贯点的深度的均值。

建筑结构抗震设计第4章建筑抗震概念设计

建筑结构抗震设计第4章建筑抗震概念设计

表1 有利、一般、不利和危险地段的划分
段 一般地段 不利地段
危险地段
稳定基岩,坚硬土,开阔、平坦、密实、均匀的中硬土 等
不属于有利、不利和危险的地段
软弱土,液化土,条状突出的山嘴,高耸孤立的山丘, 陡坡,陡坎,河岸和边坡的边缘,平面分布上成因、岩 性、状态明显不均匀的土层(含故河道、疏松的断层破 碎带、暗埋的塘浜沟谷和半填半挖地基),高含水量的 可塑黄土,地表存在结构性裂缝等 地震时可能发生滑坡、崩塌、地陷、地裂、泥石流等及 发震断裂带上可能发生地表位错的部位
质量分布的不确定性;基础与上部结构的协同作用;节点的非刚性
转动;偏心、扭转及P—Δ效应;柱轴向变形。考虑或不考虑节点
非刚性转动的影响程度可达5%—10%;考虑柱轴向变形,自振周期
可能加长15%,加速度反应可能降低8%;考虑P—Δ效应可能增加位
移10%。 (3)材料的影响。混凝土的弹性模量随着时间及应变程度而改变。
在海城地震时,从位于大石桥盘龙山高差58m的两个测点 上所测得的强余震加速度峰值记录表明,位于孤突地形上 的比坡脚平地上的平均达1.84倍,这说明在孤立山顶地震波将被 放大。图1表示了这种地理位置的放大作用。
图1 不同地形的震害
天津塘沽港地区,地表下3—5m为冲填土,其下为深厚的 淤泥和淤泥质土,地下水位为-1.6m。1974年兴建的16幢 3层住宅和7幢4层住宅,均采用片筏基础。1976年唐山地 震前,累计沉降分别为200mm和300mm,地震期间沉降量突然增 大,分别增加了150mm和200mm。震后,房屋向一边倾斜,房屋 四周的外地坪地面隆起,如图2所示。
图2 房屋沉降
§4.2 把握建筑形体和结构的规则性
建筑结构的平面、立面规则与否,对建筑的抗震性能具有 重要的影响,建筑结构不规则,可能造成较大扭转,产生 严重应力集中,或形成抗震薄弱层。国内外多次震害表明,房屋形体 不规则、平面上凸出凹进、立面上高低错落,破坏程度比较严重,而 简单、对称的建筑的震害较轻。为此,《抗震规范》规定,建筑设计 应重视其平面、立面和竖向剖面的规则性对抗震性能及经济合理性的 影响,宜择优选用规则的形体,其抗侧力构件的平面布置宜规则对称、 侧向刚度沿竖向宜均匀变化、竖向抗侧力构件的截面尺寸和材料强度 宜自下而上逐渐减小、避免侧向刚度和承载力突变。 建筑平、立面布置的基本原则:对称规则,质量与刚度变化均匀。

建筑结构试验第四章结构动载试验

建筑结构试验第四章结构动载试验

疲劳试验
❖示例
本章小结
1 概述 2 动载试验仪器仪表 3 结构振动测试 4 结构抗震试验 5 结构疲劳试验
宝山壁画
❖ 宝山壁画是引人注目的昂贵文物。此壁画发现于阿鲁科 尔沁旗东沙布乡境内。1994年列为“全国十大考古新发 现”之一。宝山壁画中最引人注目的是《杨贵妃教鹦鹉 图》。该画高0.7米、宽2.3米,用于笔重彩绘制,最突 出的表现了 晚唐风格。唐代擅长绘贵妇仕女的大师周昉 绘制了《杨贵妃教鹦鹉图》,不仅享誉中原,而且还影 响全国各地。发现于阿旗宝山古墓里的这幅画,就是契 丹人聘请中原画家按照周氏风格绘制的, 技法深得周氏 画风的真传。在唐人真迹稀如星风的今天,能够从中完 整了解唐代人物画的杰出成就,堪称美术史研究的辛事。 这幅壁画现今保存在阿鲁科尔沁旗博物馆,历经千年, 恍如新绘,是该馆的镇馆之宝。
结构抗震试验——伪静力试验
❖常用的三种加载方法 ①控制位移加载法;常以屈服位移或最大层间位移
的某一百分比来控制加载 ②控制荷载加载法; ③控制荷载和位移混合加载法。
结构抗震试验——拟动力试验
❖拟动力试验,其实质就是按照某种确定性的地震 反应进行加载。
❖ 由于结构的恢复力模型未知,运动方程无法求解, 故采用“边试验、边求解”的方法分步得到实测 的结构恢复力模型,然后可完成整个试验加载过 程。
结构抗震试验——伪静力试验
❖结构低周反复加载试验的主要研究内容: ♦ 恢复力模型:相当于结构的物理方程 ♦ 抗震性能判定:强度、刚度、变形、延性、耗能 ♦ 破坏机制研究:为抗震设计提供方法和依据
❖伪静力试验的特点: 试验装置及加载设备简单、观测方便,但加载制 度是人为确定的,与真实情况差异较大,且不能 考虑应变速度及阻尼的影响。试验值偏低,一般 情况下低周反复加载静力试验结果偏于安全。

工程结构抗震课程设计

工程结构抗震课程设计

工程结构抗震课程设计一、课程目标知识目标:1. 理解工程结构抗震的基本原理,掌握抗震设计的基本概念和方法。

2. 学习各类建筑结构的抗震特点,了解不同结构类型的抗震性能。

3. 掌握我国抗震设防标准,了解抗震设防等级的划分。

技能目标:1. 能够运用所学知识,分析建筑结构的抗震需求,提出合理的抗震设计方案。

2. 学会使用相关软件进行工程结构抗震分析,具备一定的抗震设计能力。

3. 能够针对特定工程,编制抗震设计方案,并进行简要的抗震评估。

情感态度价值观目标:1. 培养学生的安全意识,使其认识到工程结构抗震的重要性。

2. 增强学生的团队合作精神,提高沟通协调能力。

3. 激发学生对土木工程事业的热爱,培养其从事相关工作的责任感。

本课程针对高中年级学生,结合学科特点和教学要求,注重理论与实践相结合,旨在提高学生的工程结构抗震设计能力。

课程目标具体、可衡量,以便学生和教师在教学过程中明确预期成果。

通过本课程的学习,学生将掌握工程结构抗震知识,具备实际操作技能,同时培养正确的价值观和安全意识。

为实现课程目标,将分解为具体的学习成果,便于后续教学设计和评估。

二、教学内容1. 抗震原理概述:介绍地震波、地震作用、抗震设防目标等基本概念。

- 教材章节:第一章 地震与抗震基本概念2. 抗震设计方法:讲解静力法、反应谱法、时程分析法等抗震设计方法。

- 教材章节:第二章 抗震设计方法3. 建筑结构类型及抗震特点:分析框架结构、剪力墙结构、筒体结构等不同结构类型的抗震性能。

- 教材章节:第三章 建筑结构类型及抗震特点4. 抗震设防标准与等级:阐述我国抗震设防标准,介绍抗震设防等级的划分及应用。

- 教材章节:第四章 抗震设防标准与等级5. 抗震设计案例分析:选取典型工程案例,分析其抗震设计要点及措施。

- 教材章节:第五章 抗震设计案例分析6. 抗震设计软件应用:学习使用PKPM、ETABS等抗震设计软件,进行工程结构抗震分析。

- 教材章节:第六章 抗震设计软件应用7. 实践操作与团队协作:分组进行抗震设计方案编制,培养学生的实际操作能力和团队协作精神。

第四章设计要求及荷载效应组合共59页文档

第四章设计要求及荷载效应组合共59页文档

4.4 稳定和抗倾覆
4.4.2 高层钢结构的稳定验算
大部分钢结构计算需要考虑P-△效应。
《高钢规》5.2.10条 高层建筑钢结构同时符合下列条件
时,可不验算结构的整体稳定。
一、结构各层柱子平均长细比和平均轴压比满足下式要
求:
Nm m 1 N pm 80
式中,λm—楼层柱的平均长细比; Nm—楼层柱的平均轴压力设计值; Npm—楼层柱的平均全塑性轴压力;
钢结构
除框架结构外的转 换层
各种结构类型
1/120 1/50
4.2 侧移限制
4.2.2 防止倒塌层间位移限制
对框架结构,当轴压比小于0.40时,可提高10%;当柱子全 高的箍筋构造采用比本规程中框架柱最小配箍特征值大30% 时,可提高20%,但累计提高不宜超过25%。
4.3 舒适度要求
高度不小于150m的高层建筑结构应具有良好的使用条 件,满足舒适度要求。按现行国家标准《建筑结构荷载规 范》规定的10年一遇的风荷载取值计算的顺风向与横风向 结构顶点最大加速度不应超过表4-4的值。必要时,可通过 专门风洞试验结果计算确定顺风向与横风向结构顶点最大 加速度 a m a x。
Npm fyAm
fy—钢材屈服强度; Am—柱截面面积的平均值。
4.4 稳定和抗倾覆
4.4.2 高层钢结构的稳定验算
二、结构按一阶线性弹性计算所得的各楼层相对侧移值, 满足下列公式要求:
u 0.12 Fh
h
Fv
式中,Δu—按一阶线性弹性计算所得的质心处层间侧移; h—楼层层高; ∑Fh—计算楼层以上全部水平作用之和; ∑Fv—计算楼层以上全部竖向作用之和;
式中,E J d 为结构一个主轴方向的弹性等效侧向刚度,可按倒 三角形分布荷载作用下结构顶点位移相等的原则,将结构的侧

工程结构抗震与防灾_东南大学_4 第四章建筑结构基础隔震和消能减震设计_2 第2讲建筑结构隔震设计

工程结构抗震与防灾_东南大学_4  第四章建筑结构基础隔震和消能减震设计_2  第2讲建筑结构隔震设计

图 隔震结构计算简图
分析对比结构隔震与非隔震两种情况下各层最大层 间剪力,宜采用多遇地震下的时程分析。
弹性计算时,简化计算和反应谱分析时宜按隔震支 座水平剪切应变为100%时的性能参数进行计算;当采 用时程分析法时按设计基本地震加速度输入进行计算。
4.2
建筑结构消能减震设计
(3)上部结构水平地震作用计算-水平向减震系数应用
c.当橡胶支座的第二形状系数小于5.0时,应降低平均压应力限值;小于5不 小于4时,降低20%;小于4但不小于3时,降低40%;
d.外径小于300mm的橡胶支座,丙类建筑的平均压应力限值为10MPa。
4.2
建筑结构消能减震设计
(3)隔震支座水平剪力计算
隔震支座的水平剪力应根据隔震层在罕遇地震下的水平剪力按各隔
② 隔震层以上结构的抗震措施
当水平向减震系数为大于0.40时(设置阻尼器为0.38)不应
降低非隔震时的要求;水平向减震系数不大于0.40 (设置阻尼器 为0.38)时,可适当降低抗震规范对非隔震建筑的要求,但烈度 降低不得超过1度,与抵抗竖向地震作用有关的抗震构造措施不 应降低。
4.2
建筑结构消能减震设计
隔震层在罕遇地震下应保持稳定,不宜出现不可恢复变形。 隔震层橡胶支座在罕遇地震的水平和竖向地震同时作用下,拉应力
不应大于1Mpa。 隔震层的平面布置应力求具有良好的对称性。
4.2
建筑结构消能减震设计
(2) 隔震支座竖向承载力验算
抗震规范规定:隔震支座在重力荷载代表值作用下的竖向压应力 设计值不应超过下表列出的限值。
经历相应设计基准期的耐久试验后,刚度、阻尼特性变化不超过初期 值的±20%;徐变量不超过支座橡胶总厚度的0.05倍;

《建筑结构抗震设计》全套课件

《建筑结构抗震设计》全套课件

《建筑结构抗震设计》全套课件第一部分:建筑抗震设计概述一、引言随着城市化进程的加快,高层建筑和大型公共设施日益增多,建筑结构抗震设计显得尤为重要。

地震是一种破坏性极强的自然灾害,对建筑结构的影响巨大。

因此,如何设计出能够抵御地震影响的建筑结构,是建筑设计师和工程师们必须面对的挑战。

二、抗震设计的基本概念抗震设计是指根据建筑所在地区的地震烈度、地质条件、建筑类型和用途等因素,通过合理的结构设计、材料选择和施工工艺,使建筑结构在地震发生时能够保持稳定,避免或减少人员伤亡和财产损失。

三、抗震设计的原则1. 以预防为主:在设计阶段就应充分考虑地震因素的影响,采取有效的抗震措施,而不是等到地震发生后才进行补救。

3. 材料选择:应选择具有良好抗震性能的材料,如钢筋、混凝土等。

4. 施工质量:施工质量直接影响到建筑结构的抗震性能,必须严格按照设计要求和施工规范进行施工。

四、抗震设计的步骤1. 地震烈度评估:根据建筑所在地区的地震活动历史和地质条件,评估地震烈度。

2. 结构设计:根据地震烈度、建筑类型和用途等因素,进行结构设计,包括结构体系、构件截面尺寸、材料选择等。

3. 抗震措施:采取有效的抗震措施,如设置防震缝、增加支撑体系、采用减震隔震技术等。

4. 施工质量控制:严格控制施工质量,确保结构设计的实现。

五、抗震设计的未来发展通过本课件的学习,希望同学们能够掌握建筑结构抗震设计的基本概念、原则和步骤,为未来的建筑设计工作打下坚实的基础。

六、抗震设计的具体方法1. 静力设计法:这是一种传统的抗震设计方法,主要考虑建筑结构在地震作用下的静力平衡。

设计时,需要计算结构在地震作用下的内力和变形,并确保结构具有足够的强度和刚度。

2. 动力设计法:这种方法考虑了地震作用的动力效应,通过计算结构的动力响应来评估其抗震性能。

动力设计法需要考虑地震动的频谱特性、结构的自振频率和阻尼比等因素。

3. 基于性能的抗震设计:这种方法以建筑结构的性能目标为导向,通过选择合适的性能指标和抗震措施,确保结构在地震发生时能够达到预定的性能要求。

抗震设计第四章

抗震设计第四章

第 4 章 钢筋砼框架与框架-抗震墙房屋
4-4 框架、框架-抗震墙结构和抗震墙结构水平地震作用的计算 高度不超过 40m, 以剪切变形为主,且质量和刚度沿高度分布比较均匀的框架、框架-剪力墙结构,可采用底部剪力法计算水平地震作用标准值。 剪力墙结构,宜采用振型分解反应谱法计算水平地震作用标准值。也可近似采用底部剪力法。
第 4 章 钢筋砼框架与框架-抗震墙房屋
框架结构单独基础系梁的设置: 框架结构单独基础有下列情况之一时,宜沿两个主轴方向设置基础连系梁: 一级框架和Ⅳ类场地的二级框架: 各柱基承受的重力荷载代表值差别较大。 基础埋置较深,或各基础埋置深度差别较大, 地基主要受力层范围内存在软弱粘土层、液化土层和严重不均匀土层。 桩基承台之间。
二、填充墙的震害
第 4 章 钢筋砼框架与框架-抗震墙房屋
第 4 章 钢筋砼框架与框架-抗震墙房屋
三、地基和其他原因造成的震害
第 4 章 钢筋砼框架与框架-抗震墙房屋
第 4 章 钢筋砼框架与框架-抗震墙房屋
第 4 章 钢筋砼框架与框架-抗震墙房屋
§ 4-3 抗震设计一般规定 一、房屋适用的最大高度 根据震害经验和经济合理的要求,“规范”规定了乙、丙和丁类建筑的框架结构和框架-抗震墙结构适用的最大高度,不应超过表4-1的规定:
第 4 章 钢筋砼框架与框架-抗震墙房屋
两端固定柱产生 侧移时 , 柱端剪力为:
第 4 章 钢筋砼框架与框架-抗震墙房屋
第 4 章 钢筋砼框架与框架-抗震墙房屋
五、结构的布置 1. 框架结构和框架-抗震墙结构中,框架和抗震墙均应双向设置,柱中线与抗震墙中线、梁中线与柱中线之间偏心距不宜大于柱宽的 1/4。 2. 框架-抗震墙和板柱-抗震墙结构中,抗震墙之间无大洞口的楼、屋盖的长宽比,不宜超过表4-5的规定;超过时,应计入楼盖平面内变形的影响。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

27.0
19.0
17.0
19.0
0.0
0.0
横墙间距大震害严重。
第四章 多层砌体房屋和底部框架、内框架房屋§4.3抗震设计的一般规定
§4.3 抗震设计的一般规定
一、平立面布置要规则 房屋平面最好为矩形。
二、房屋高度、层数、层高要限制
1.一般情况下,层数和总高度不应超过下表
房屋类别
烈度
最小
(mm)
6
3、受施工质量的影响较大;如砂浆不饱满,易出现裂缝,减弱抗震性能。
第四章 多层砌体房屋和底部框架、内框架房屋§4.1概述
若能针对砌体结构的弱点进行合理设计,采用适当的构 造措施,确保施工质量,砌体结构的抗震性能是能够得到改 善的。
天津市8度区经7度设防的74年通用住宅震害统计(%)
基本完好ห้องสมุดไป่ตู้轻微破坏 中等破坏 严重破坏 倒塌
第四章 多层砌体房屋和底部框架、内框架房屋§4.2震害及其分析
第四章 多层砌体房屋和底部框架、内框架房屋§4.2震害及其分析
第四章 多层砌体房屋和底部框架、内框架房屋§4.2震害及其分析
第四章 多层砌体房屋和底部框架、内框架房屋§4.2震害及其分析
第四章 多层砌体房屋和底部框架、内框架房屋§4.2震害及其分析
传统的砌体结构多采用粘土实心砖和混合砂浆砌筑, 通过内外墙的咬砌达到具有一定整体性连接。楼板多采用 预制钢筋混凝土空心板,梁和其他构件亦多用预制装配构 件。
第四章 多层砌体房屋和底部框架、内框架房屋§4.1概述
大量震害表明传统的砌体结构抗震性能较差:
1923年日本关东大地震,东京约有砖石结构房屋7000栋,几乎全部 遭到不同程度的破坏。
第四章 多层砌体房屋和底部框架、内框架房屋§4.1概述
第四章 多层砌体房屋和底部框架、内框架房屋
§4.1 概述
多层砌体房屋:由粘土砖、烧结多孔粘土砖、粉煤灰中型 实心砌块和混凝土中小型砌块砌体通过砂 浆砌筑而成的房屋。
多层砌体房屋是我国当前建筑业中使用最广泛的一种 建筑形式。在民用建筑中约占90%以上,在整个建筑业中约 占80%。
楼板和屋盖是地震时传递水平地震作用的主要构件。
对于预制板楼板、楼盖,由于整体性较差、板缝偏小混凝土 灌缝不够密实,地震时易于拉裂。9度以上地区,由于墙体开裂、 错位、倒塌引起楼板、楼盖掉落。预制板端部搁置长度过短或无 可靠的板与板及板与墙的拉接措施,也造成震害。
第四章 多层砌体房屋和底部框架、内框架房屋§4.2震害及其分析
一、倒塌
1、全部倒塌 房屋整体性好,而底层强度不足时; 房屋整体性不好,而上层墙体过于弱时;
2、上部倒塌 房屋上层自重大,刚度差; 上层砌体强度过弱,整体性差时;
3、局部倒塌
个别部位的整体性特别差,纵墙与横墙间联系不好,平 面或立面有显著的局部突出,抗震缝处理不当等;
坍 塌 是外 较纵 常墙 见全 的部 震脱 害开 。横
第四章 多层砌体房屋和底部框架、内框架房屋§4.3抗震设计的一般规定
三、其它破坏
1、楼梯间破坏 楼梯间的墙体一般震害较重。
原因是:横墙间距小,抗剪刚度大; 空间刚度较小; 墙体有削弱等;
2、房屋附属物
突出屋面的屋顶间(电梯机房、水箱间等)、烟囱、女儿墙, 由于“鞭端效应”引起破坏。
房屋附属物的破坏比下部主体结构破坏严重。6度区有所破坏, 7度区普遍破坏,8-9度区几乎全部破坏或倒塌。 5、楼板和屋盖
墙 而
第四章 多层砌体房屋和底部框架、内框架房屋§4.2震害及其分析
二、裂缝
抗剪承载力不足,产生裂缝,主要有“X”形、水平和竖向三种类型。 1、 “X”形裂缝 墙体在竖向压力和反复水平剪力作用产生的裂缝。
常出现“X”形裂缝的位置: 与主震方向平行的墙体; 在横向,房屋两端的山墙; 在纵向,窗间墙。
第四章 多层砌体房屋和底部框架、内框架房屋§4.2震害及其分析
五、不同用途多层砖房的震害
天津市8度区住宅、医院、中小学教学楼震害统计(%)
破坏程度
基本完好 轻微破坏 中等破坏 严重破坏 倒塌
住宅 70.7 19.5 9.8 0.0 0.0
建筑用途
医 院 中小学教学楼
46.0
40.0
10.0
22.0
四、不同烈度地震作用下多层砖房的震害
破坏程度
基本完好 轻微破坏 中等破坏 严重破坏 倒塌
唐山地区多层砖房的震害统计(%)


8
9
10
11
11.8
1.3
0.6
0.3
35.3
6.8
5.0
1.5
29.4
34.3
6.5
4.7
23.5
32.5
19.9
11.7
0.0
25.1
68.0
81.8
未经抗震设防的多层砖房在高烈度区的倒塌率非常高。
1948年原苏联阿什哈巴德地震,砖石结构房屋的破坏和倒塌率达到 70%-80%。
1976年唐山地震,对烈度为10度、11度区的123栋2-8层砖混结构房 屋调查,倒塌率为63.2%,严重破坏为23.6%,尚能修复使用的4.2%,实 际破坏率达95.8%。
抗震性能差的原因:
1、刚度大、自重大,地震作用也大; 2、砌体材料质脆,抗剪、抗拉、抗弯强度低,地震作用下极易出现裂缝;
7
8
9
高度 层数 高度 层数 高度 层数 高度 层数
普通粘土砖 240 24 8 21 78 18 6 12 4
多孔粘土砖 240 21 7 190 21 7
21 7 18 6
18 6 15 5
12 4 --- ---
混凝土小砌块 190 21 7 21 7 18 6 --- ---
2.对医院、教学楼等及横墙较少的多层砌体房屋,总高度应比前表 的规定降低3m,层数相应减少一层;各层横墙很少的多层砌体房屋, 还应根据具体情况再适当降低总高度和减少层数。
若主震方向与横纵墙成某一角度时,常在房屋的角部出现局部倒塌。
第四章 多层砌体房屋和底部框架、内框架房屋§4.2震害及其分析
2、 水平裂缝
大都发生于外纵墙窗口的上下皮处。 当房屋纵向承重,横墙间距大而屋盖刚度弱时,纵墙出平面受 弯产生水平裂缝。
3、 竖向裂缝 大都发生于横纵墙交接处或变化较大的两部体系的交接处。
70.7
19.5
9.8
0.0
0.0
唐山地区8度区多层砖房的震害统计(%)
基本完好 轻微破坏 中等破坏 严重破坏 倒塌
11.8
35.3
29.4
23.5
0.0
从震害调查可见:经抗震设防可减轻砌体结构的震 害,减少严重破坏和倒塌率。
第四章 多层砌体房屋和底部框架、内框架房屋§4.2震害及其分析
§4.2 震害及其分析
相关文档
最新文档