直线电机工作原理及其驱动技术的应用
直线电机工作原理

直线电机工作原理引言概述:直线电机是一种特殊的电动机,其工作原理与传统的旋转电机有所不同。
本文将详细介绍直线电机的工作原理,包括其构造、工作过程以及应用领域。
正文内容:1. 直线电机的构造1.1 定子:直线电机的定子通常由一系列绕组组成,这些绕组被安装在一块磁性材料上,形成一个长方形的结构。
1.2 动子:直线电机的动子通常由一块磁性材料制成,其形状与定子相似。
动子上有一系列的永磁体或电磁线圈,用于产生磁场。
2. 直线电机的工作过程2.1 磁场产生:当电流通过动子上的绕组时,会产生一个磁场。
这个磁场与定子上的磁场相互作用,产生一个力,使动子开始运动。
2.2 运动控制:通过改变电流的方向和大小,可以控制动子的运动方向和速度。
这使得直线电机具有良好的运动控制性能。
2.3 反馈系统:为了实现更精确的运动控制,直线电机通常配备有反馈系统,可以实时监测动子的位置和速度,并根据需要进行调整。
3. 直线电机的应用领域3.1 工业自动化:直线电机广泛应用于工业自动化领域,用于实现精确的位置控制和快速的运动。
3.2 交通运输:直线电机可用于磁悬浮列车、磁浮飞行器等交通工具中,实现高速、平稳的运动。
3.3 医疗设备:直线电机在医疗设备中的应用越来越广泛,例如用于手术机器人、医疗床等设备中,提高了手术的精确性和效率。
4. 直线电机的优势4.1 高效率:直线电机的能量转换效率较高,能够将电能转化为机械能的比例较高。
4.2 高加速度:直线电机具有较高的加速度,能够实现快速的起停和精确的位置控制。
4.3 高精度:直线电机具有较高的精度,能够实现微米级的位置控制,满足高精度的应用需求。
5. 直线电机的发展趋势5.1 小型化:直线电机的体积越来越小,适用于更多的应用场景。
5.2 高速化:直线电机的速度越来越高,满足快速运动的需求。
5.3 集成化:直线电机与传感器、控制器等组件的集成程度越来越高,简化了系统的设计和安装。
总结:综上所述,直线电机是一种具有高效率、高加速度和高精度的电动机。
直线电机工作原理

直线机电工作原理引言概述:直线机电是一种特殊类型的机电,其工作原理基于电磁感应和洛伦兹力的作用。
它具有高效率、高精度和高速度的特点,被广泛应用于自动化设备、机器人技术和精密仪器等领域。
本文将详细介绍直线机电的工作原理和其应用。
一、电磁感应原理1.1 磁场产生直线机电中的磁场通常由永磁体或者电磁线圈产生。
永磁体产生的磁场稳定且不需要外部电源,而电磁线圈则需要外部电源供电。
1.2 电流激励电磁线圈通常通过外部电源供电,产生电流激励。
电流经过线圈时,会在线圈周围产生磁场,与永磁体的磁场相互作用,从而产生力。
1.3 磁场交互作用当电流通过电磁线圈时,线圈内的电流与永磁体的磁场相互作用,产生洛伦兹力。
洛伦兹力的大小和方向取决于电流的方向和磁场的极性,从而推动直线机电的运动。
二、运动原理2.1 电流控制直线机电的运动主要通过控制电流来实现。
改变电流的大小和方向,可以改变洛伦兹力的大小和方向,从而控制直线机电的运动方向和速度。
2.2 磁场分布直线机电通常采用多个线圈组成的电磁阵列,通过改变线圈的电流,可以改变磁场的分布。
通过合理的线圈布置和电流控制,可以实现直线机电的精确定位和运动控制。
2.3 传动机构直线机电通常与传动机构结合使用,如滑块、导轨等。
通过传动机构的作用,直线机电的运动可以转化为线性运动,从而实现工作目标。
三、应用领域3.1 自动化设备直线机电广泛应用于自动化设备中,如自动装配线、输送带等。
其高速度和高精度的特点,可以提高生产效率和产品质量。
3.2 机器人技术直线机电在机器人技术中的应用越来越广泛。
它可以用于机器人的关节驱动、手臂伸缩等部位,实现精确的运动控制。
3.3 精密仪器直线机电的高精度和高速度使其成为精密仪器的理想驱动器。
例如在光刻机、激光切割机等设备中,直线机电可以提供精确的位置控制和运动平稳性。
四、优势和局限性4.1 优势直线机电具有高效率、高精度和高速度的特点,可以实现精确的运动控制。
2024年直线电机的工作原理结构特点深度总结范文

2024年直线电机的工作原理结构特点深度总结范文____年直线电机是一种新型的电机技术,具有许多创新的工作原理和结构特点。
本文将对____年直线电机的工作原理和结构特点进行深度总结。
一、工作原理____年直线电机的工作原理基于电磁力的作用原理。
它利用电流通过导线时产生的电磁力来驱动直线运动。
直线电机的工作原理可以总结为以下几点:1. 电磁力作用原理:直线电机通过电磁力作用来实现直线运动。
当电流通过导线时,会形成一个磁场,并与永久磁体产生相互作用,从而产生一个力,推动导线运动。
2. 磁场产生原理:____年直线电机采用了新型的磁场产生技术。
它使用了高性能的永久磁体和电磁线圈,通过合理的排列和控制,产生一个强大且稳定的磁场,使得电磁力能够有效地驱动导线的运动。
3. 导线运动原理:直线电机的导线与磁场的相互作用会导致导线发生力和运动。
导线中的电流会受到磁场的作用力,产生一个方向与电流和磁场垂直的力,从而推动导线沿着直线方向做直线运动。
4. 控制原理:____年直线电机还采用了先进的控制技术,可以通过改变电流的大小和方向来控制导线的运动。
通过精确的电流控制,可以实现导线的高速、高精度的直线运动。
二、结构特点为了实现更高速度、更高精度的直线运动,____年直线电机在结构上进行了创新和改进。
以下是____年直线电机的主要结构特点:1. 导线结构优化:直线电机的导线采用了新型的材料和结构设计,以提高导线的导电性和机械性能。
导线的导电性能决定了直线电机的传导能力,而机械性能决定了直线电机的耐久性和可靠性。
2. 磁场结构优化:____年直线电机的磁场结构经过优化设计,以提高磁场的稳定性和均匀性。
通过优化磁场结构,可以减小磁场的波动和不均匀性,从而提高直线电机的运动平稳性和精度。
3. 传动结构优化:为了实现更高速度的直线运动,____年直线电机采用了新型的传动结构。
传动结构包括传动部件和传动系统,通过改进和优化传动部件和传动系统,可以提高直线电机的传动效率和可靠性。
直线电机工作原理

直线电机工作原理直线电机是一种将电能转化为机械运动的设备,其工作原理基于电磁感应和洛伦兹力的作用。
本文将详细介绍直线电机的工作原理及其相关知识。
一、直线电机的基本结构直线电机由定子和滑块组成。
定子包含固定在机械结构上的线圈,而滑块则是通过磁场与定子相互作用而产生运动的部分。
直线电机的结构可以分为两种类型:传统型和磁浮型。
传统型直线电机的定子线圈通常布置在一个铁心上,而滑块则是通过导轨与定子相连。
滑块上有一组永磁体,当定子线圈通电时,产生的磁场与永磁体相互作用,从而产生推动力。
磁浮型直线电机的定子线圈通常布置在导轨上,而滑块则是通过磁悬浮技术悬浮在导轨上。
滑块上同样有一组永磁体,当定子线圈通电时,产生的磁场与永磁体相互作用,从而产生推动力。
二、直线电机的工作原理直线电机的工作原理基于洛伦兹力和电磁感应定律。
当直线电机的定子线圈通电时,会产生一个磁场。
根据洛伦兹力的作用,当滑块上的永磁体与定子线圈的磁场相互作用时,会产生一个力,使滑块开始运动。
具体来说,当定子线圈通电时,会产生一个磁场,该磁场与滑块上的永磁体相互作用,根据洛伦兹力的方向,会产生一个推动力,使滑块运动。
当定子线圈的电流方向改变时,推动力的方向也会改变,从而实现滑块的正反向运动。
直线电机的速度和加速度可以通过改变定子线圈的电流大小和方向来控制。
通过改变电流的大小可以调节推动力的大小,从而控制滑块的速度。
而通过改变电流的方向可以改变推动力的方向,从而实现滑块的正反向运动。
这使得直线电机在自动化系统中具有广泛的应用前景。
三、直线电机的应用领域直线电机在工业和科技领域有着广泛的应用。
以下是一些典型的应用领域:1. 机床:直线电机可以用于数控机床中,实现高精度和高速的运动控制,提高生产效率。
2. 电梯:直线电机可以用于电梯系统中,提供平稳、高效的垂直运输。
3. 磁悬浮列车:直线电机可以用于磁悬浮列车中,提供强大的推动力和高速运动。
4. 电动汽车:直线电机可以用于电动汽车中,提供高效、环保的动力系统。
直线电机的基本结构工作原理优点应用领域

直线电机的基本结构/工作原理/优点/应用领域来源:创丰精工直线(电机)是由电能直接转化为直线运动能的电磁装置,其结构由传统圆筒型旋转电机演变而来,而且(工作原理)也与旋转电机相似。
设想将一台旋转电机沿径向剖开,并将电机的圆周展开成直线,这样就得到了原始的直线电机。
原来旋转电机中的定子和动子分别演变为直线电机中的初级和次级,旋转电机中的径向、周向和轴向,在直线电机中对应地称为法向、纵向和横向。
01直线电机的基本结构与工作原理直线电机的初子绕组通入(电流)后,产生沿纵向方向正弦分布的气隙磁场,当三相电流随时间变化时,气隙磁场将按交流电的相序沿直线定向移动,这个平移的磁场称为行波磁场。
次级导体在行波磁场的切割下产生电动势形并形成定向感应电流,次级中的感应电流和磁场的共同作用下产生纵向电磁推力,如果初级是固定不定的,那么次级就沿行波磁场的运动方向做直线运动,这就是直线电机工作的基本原理。
02电机模组优点1、没有(机械)接触,传动力是在气隙中产生的,除了直线电机导轨以外没有任何其它的摩擦;2、结构简单,体积小,通过以最少的零部件数量来实现我们的直线驱动,而且这仅仅是只存在一个运动的部件;3、运行的行程在理论上是不受任何限制的,而且其性能不会因为其行程的大小改变而受到影响;4、其运转可以提供很宽的转速运行范围,其涵盖包括从每秒几微米到数米,特别是在高速状态下是其一个突出的优点;5、加速度很大,标准负荷为加速1G;6、运动平稳,这是因为除了起支撑作用的直线导轨或气浮轴承外,没有其它机械连接或转换装置的缘故;7、精度和重复精度高,因为消除了影响精度的中间环节,系统的精度取决于位置(检测)元件,有合适的反馈装置可达亚微米级;8、维护简单,由于部件少,运动时无机械接触,从而大大降低了零部件的磨损,只需很少甚至无需维护,使用寿命更长。
直线电动机与“旋转电动机,滚珠丝杠”传动性能比较表性能旋转电动机+滚珠丝杠直线电动机。
直线电机驱动原理

直线电机驱动原理直线电机是一种将电能转换为机械能的装置,它通过电磁作用力使运动部件在直线轨道上做往复运动。
其中,直线电机驱动原理是实现直线电机运动的基本原理,其核心是利用电流在磁场中产生力的作用。
直线电机驱动原理主要包括电磁力原理和电流控制原理。
下面将详细介绍这两部分。
一、电磁力原理在直线电机中,通过施加电流于定子线圈上产生磁场,利用磁场与反电动势之间的关系产生作用力。
直线电机通常由定子和活动子两个部分组成。
定子即定子线圈,是直线电机定位的固定部分,通常安装在机械结构的外圈上。
活动子则是直线电机的运动部件,通过与定子的磁场相互作用,产生线性运动。
当通电时,定子线圈内产生磁场,其磁场的方向由电流方向决定(根据符点定则)。
活动子通过与定子磁场相互作用,受到电磁力的作用,沿着轨道方向发生直线运动。
当电流反向时,磁场方向也反向,活动子的运动方向也相反。
活动子的位移与定子线圈中电流的大小和方向有关。
电流越大,产生的磁场力也越大,活动子的位移也越大。
当电流方向改变时,活动子也会反向运动。
二、电流控制原理直线电机的运动通过电流的变化来实现。
电流控制的核心是根据需要控制电流大小和方向。
通常,直线电机采用PWM(脉宽调制)控制模式来控制电流大小和方向。
PWM 控制是通过控制占空比来实现的,即控制高电平的时间与周期的比值。
在控制电流方向时,利用H桥电路来实现。
H桥电路有四个开关,通过开关的组合可以实现电流的正向或反向流动。
通过改变开关的状态,可以控制电流方向。
电流控制还需要考虑加速度和减速度的问题。
在运动的起始和结束阶段,需要控制电流的斜率来实现平滑运动。
加速度控制时,电流逐渐增大,直到到达设定速度。
减速度控制时,电流逐渐减小,直到停止运动。
除了电流控制,直线电机还需要考虑位置控制。
位置控制是通过反馈系统来实现的,通常直线电机内部装有编码器来检测活动子的位置。
根据编码器的反馈信号,可以实时调整电流控制,以实现精确的位置控制。
直线电机简介范文
直线电机简介范文直线电机是一种将电能转换为机械能的设备,可以直接产生直线运动。
与传统的旋转电机不同,直线电机具有更高的有效力和速度,并且更加紧凑、高效和精确。
直线电机广泛应用于工业生产、交通运输、医疗设备和机器人等领域。
直线电机的工作原理是利用电磁原理产生直线运动。
直线电机通常由两个主要元素组成:定子和滑块。
定子是由一组线圈组成的,通过通电产生磁场。
滑块是在磁场中移动的磁铁,通过与磁场互作用来产生力和运动。
当电流通过定子线圈时,滑块会受到磁力的作用而运动。
直线电机有几种不同的类型,包括传统的感应直线电机、直线同步电机和直线步进电机。
感应直线电机是最常见的类型,它利用感应原理来产生磁场。
直线同步电机则利用同步原理,与外部磁场保持同步运动。
直线步进电机通过细分定位来实现非常精确的运动控制。
直线电机具有许多优点,使其成为很多应用中的理想选择。
首先,直线电机具有极高的加速度和速度,可以实现快速和精确的运动。
其次,直线电机没有传统旋转电机的机械传动部件,因此无需润滑和维护,并且可以避免机械传动中的摩擦和磨损问题。
此外,直线电机具有较高的效率和能量利用率,可以节约能源和降低成本。
直线电机在各个领域具有广泛的应用。
在工业生产中,直线电机可以用于自动化生产线上的物料搬运、装配和包装等任务。
在交通运输领域,直线电机可用于高速列车的磁悬浮系统和电动汽车的驱动系统,以实现更高的速度和能源效率。
在医疗设备中,直线电机可用于手术机器人、医疗成像设备和高精度治疗设备等。
在机器人领域,直线电机可用于各种类型的机器人,如工业机器人、服务机器人和医疗机器人等。
尽管直线电机具有许多优点,但也存在一些挑战和限制。
首先,直线电机的制造和维护成本较高,因为它们需要较大的线圈和磁体,并且通常需要精确的控制系统。
其次,直线电机需要较大的电源和电流,因此在一些应用中可能需要专门的电源和电路。
此外,直线电机的使用寿命可能受到材料耐久性、热量积累和磨损等因素的影响。
直线电机工作原理
直线机电工作原理直线机电是一种将电能转化为机械能的装置,它通过电磁力的作用实现直线运动。
直线机电由定子和滑块组成,定子上有一组线圈,滑块上装有永磁体。
当电流通过定子线圈时,会产生磁场,磁场与滑块上的永磁体相互作用,产生电磁力,从而驱动滑块在直线轨道上运动。
直线机电的工作原理可以分为两种类型:传统直线机电和磁悬浮直线机电。
传统直线机电的工作原理是基于洛伦兹力的作用。
当电流通过定子线圈时,会在定子上产生磁场,而滑块上的永磁体味受到磁场的作用,产生电磁力。
根据洛伦兹力的方向,滑块会向磁场强度较大的地方挪移,从而实现直线运动。
通过改变电流的方向和大小,可以控制直线机电的速度和加速度。
磁悬浮直线机电则是利用磁悬浮技术实现直线运动。
它通过在滑块上安装磁悬浮装置,使滑块能够悬浮在定子上,减少了磨擦和机械损耗,提高了运动效率和精度。
磁悬浮直线机电的工作原理是通过定子线圈和滑块上的永磁体之间的磁场相互作用,产生电磁力,从而实现直线运动。
直线机电具有许多优点,如高速度、高精度、高加速度、高效率等。
它们广泛应用于自动化设备、机器人、工业生产线、医疗设备等领域。
直线机电的工作原理和应用领域不仅能满足现代工业的需求,而且具有较低的噪音、可靠性高、维护成本低等优势,因此在工业自动化领域有着广阔的应用前景。
总结起来,直线机电是一种通过电磁力实现直线运动的装置。
它的工作原理可以分为传统直线机电和磁悬浮直线机电两种类型,分别基于洛伦兹力和磁悬浮技术。
直线机电具有高速度、高精度、高加速度、高效率等优点,广泛应用于自动化设备、机器人、工业生产线、医疗设备等领域。
直线机电的工作原理和应用领域为现代工业提供了重要的技术支持。
直线电机简介演示
旋转电机+丝杠传动方式需要定期更换润滑油,清洗丝杠 等维护工作。而直线电机结构简洁,维护相对方便。
与旋转电机+同步带传动方式的比较
传动效率
01
同步带传动在传递动力时会有一定的滑动,导致传动效率降低
。而直线电机直接产生直线运动,传动效率高。
寿命
02
同步带在长时间使用后容易老化,影响传动效果。直线电机的
点。它在各个领域都有广泛的应用前景,是未来电力传动技术的重要发展方向之一。
CHAPTER 02
直线电机的特点与优势
高速度与高加速度
高速度
直线电机能够实现高速运动,适用于需要快速响应和高速运 动的应用场景。由于直线电机的结构紧凑,电磁力直接作用 于运动部分,减少了传统机械传动系统中的摩擦和惯性,因 此能够达到更高的速度。
传统机械传动部件在运动过程中会产生磨损和噪音,而直线电机的无机械传动部件设计减少了这些不利因素,提 高了系统的可靠性和使用寿命。同时,也降低了噪音污染,改善了工作环境。
CHAPTER 03
直线电机的应用领域
半导体设备
精准控制
在半导体制造过程中,直线电机 的高精度定位能力使得设备能够 精确控制晶圆的位置和移动,确 保制造过程的准确性和稳定性。
直线电机与其他传动方式的 比较
与旋转电机+丝杠传动方式的比较
精度
旋转电机+丝杠传动方式在长时间使用后,丝杠可能会出 现磨损,导致定位精度下降。而直线电机则具有更高的定 位精度,并且在使用过程中精度保持稳定。
速度
由于丝杠传动的限制,旋转电机+丝杠传动方式在高速运 动时可能会出现振动和噪音。直线电机则能够以更高的速 度平稳运行,且噪音较小。
直线电机简介演示
由于其结构简单,平板型直线电机 的维护也相对方便,只需对电磁板 进行定期检查和清洁即可。
U型直线电机
01
02
03
结构紧凑
U型直线电机结构紧凑, 初级和次级均采用U型结 构,使得电机体积较小, 适合于空间有限的应用场 景。
高推力
由于采用了U型结构,U 型直线电机具有较高的推 力,适用于需要较大推力 的应用场景。
在医疗器械领域,直线电 机可用于精密手术器械和 设备,以提高手术的准确 性和安全性。
02
直线电机的种类和特点
平板型直线电机
结构简单
平板型直线电机结构相对简单, 主要由初级和次级组成,初级通 常由导轨组成,次级则是一个可
移动的电磁板。
高速高精度
由于其结构简单,平板型直线电机 具有较高的速度和精度,适用于高 速、高精度的应用场景。
直线电机的应用领域
直线电机在许多领域都有 广泛的应用,如交通运输 、工业自动化、医疗器械 、娱乐设备等。
在交通运输领域,直线电 机被用于高速列车、磁悬 浮列车等,以提高速度和 减少噪音。
在工业自动化领域,直线 电机可用于实现高精度、 高效率的加工和装配。
在娱乐设备领域,直线电 机可用于实现各种创新的 游乐设施,如过山车、碰 碰车等。
高速化
随着技术的发展,直线电机的 速度不断提高,目前已经可以
实现高速度运行。
小型化
随着电子技术和制造工艺的发 展,直线电机的体积不断缩小 ,使得其更加适合于空间受限 的应用场景。
智能化
随着物联网和人工智能技术的 发展,直线电机的智能化程度 不断提高,可以实现远程监控 和控制。
低成本化
随着制造工艺的改进和规模效 应的实现,直线电机的成本不 断降低,使得其更加具有市场
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线电机工作原理及其驱动技术的应用 摘要:简述了直线电机工作原理及其驱动技术,并且举例说明了直线电机直接驱动与传统数控机床“旋转伺服电机+滚珠丝杠”的传动方式对比具有的巨大优势。介绍了直线电机进给驱动技术在数控机床上的几个应用实例,指出直线电机进给驱动技术将是高速数控机床未来发展的方向。 引言
随着航空航天、汽车制造、模具加工、电子制造行业等领域对高效率地进行加工的要求越来越高,需要大量高速数控机床。机床进给系统是高速机床的主要功能部件。而直线电机进给系统彻底改变了传统的滚珠丝杠传动方式存在的弹性变形大、响应速度慢、存在反向间隙、易磨损等先天性的缺点,并具有速度高、加速度大、定位精度高、行程长度不受限制等优点,令其在数控机床高速进给系统领域逐渐发展为主导方向。
1 直线电机及其驱动技术 现代先进的驱动技术主要分为两大类:一类为电磁式的,另一类则为非电磁式的。 电磁类的现代先进的驱动技术主要由现代电磁类驱动器与现代控制系统组成,它的驱动器包括传统改进型的电磁驱动器与新发展型的电磁驱动器。它们中有旋转的、直线的、磁浮的、电磁发射的等等。除了在一般通用电机技术基础上改进获得的电机技术外,还有更多的是在通用电机技术基础上进一步发展的新型电机技术,如直线电机技术、无刷直流电机技术、开关磁阻电机技术和各种新型永磁电机技术等。 直线电机是一种将电能直接转换成直线运动机械能而不需通过中问任何转换装置的新颖电机,它具有系统结构简单、磨损少、噪声低、组合性强、维护方便等优点。旋转电机所 具有的品种,直线电机几乎都有相对应的品种,其应用范围正在不断扩大,并在一些它所能独特发挥作用的地方取得了令人满意的效果。 直线电机结构示意图如下图所示。直线电机是将传统圆筒型电机的初级展开拉直,变初级的封闭磁场为开放磁场,而旋转电机的定子部分变为直线电机的初级,旋转电机的转子部分变为直线电机的次级。在电机的三相绕组中通入三相对称正弦电流后,在初级和次级间产生气隙磁场,气隙磁场的分布情况与旋转电机相似,沿展开的直线方向呈正弦分布。当三相电流随时问变化时,使气隙磁场按定向相序沿直线移动,这个气隙磁场称为行波磁场。当次级的感应电流和气隙磁场相互作用便产生了电磁推力,如果初级是固定不动的,次级就能沿着行波磁场运动的方向做直线运动。即可实现高速机床的直线电机直接驱动的进给方式,把直线电机的初级和次级分别直接安装在高速机床的工作台与床身上。由于这种进给传动方式的传动链缩短为0,被称为机床进给系统的“零传动”。
与“旋转伺服电机+滚珠丝杠”传动方式相比较,直线电机直接驱动有以下优点:(1)高速度,目前最大进给速度可达100~200m/min。(2)高加速度,可高达2g~10g。(3)
定位精度高,由于只能采用闭环控制,其理论定位精度可以为0,但由于存在检测元件安装、测量误差,实际定位精度不可能为0。最高定位精度可达0.1~0.01m。(4)行程不受限制,由于直线电机的次级(定子)可以一段一段地铺在机床床身上,不论有多远,对系统的刚度不会产生影响。例如,美国CincinnatiMilacron公司为航空工业生产了一台HyperMach大型高速加工中心,主轴转速为60000r/min,主电机功率为80kW。直线进给采用了直线电机,其轴行程长达46m,工作台快速行程为100m/min,加速度达2g。在这种机床上加工一个大型薄壁飞机零件只需30min;而同样的零件在一般高速铣床上加工,费时3h;在普通数控铣床上加工,则需8h,优势相当明显[1]。 2 直线电机在数控机床的应用 现代数控机床经过半个世纪的发展,其加工速度和加工精度得到极大提高。其加工精度从最初的0.01mm到现在的1μm,提高了10000倍,加工速度则从每分钟几十毫米提高到每分钟几十米,提高了1000倍。机床技术水平的高速发展是机床自动化技术发展的结果,也是以CNC为代表的先进制造技术对传统机械制造业的渗透,从而形成的机电一体化产品的结果[2]。 数控机床采用直线电机驱动技术,克服了传统驱动方式的许多缺陷,获得了极高的性能指标和优点。国外在高速加工中心上已广泛应用直线电机驱动,同时也应用到机床装备的各个领域,使机床的各项性能大为提高。1993年德国Ex—cell—O公司在汉诺威国际机床博览会上展出了世界上第一台应用直线电机驱动技术的HSC一240型超高速加工中心,该机床最大快移速度为60m/min。日本机床装备发展迅猛,高档机床大量采用直线电机驱动技术。早在1998年第十九届JIMTOF上,就展出了8台直线电机作进给驱动的机床。在2002年日本东京第二十一届JIMTOF机床展上23家公司展出了41台装有直线电机的数控机床,包括加工中心11台[3]。目前,采用直线电机驱动技术的机床是日本机床生产商供应的主流实用机床。欧美西方工业大国的机床制造厂商也大量应用直线电机驱动技术,著名的有DMG、Sodiek、Kings—bury、Anorad、Jobs和ForestLine等公司。在2003年的意大利米兰EMO2003国际机床展上,直接驱动已经成为高性能机床的重要技术手段,会展中德国DMG公司展品多为直线电机驱动。大批高性能加工中心采用了直线电机直接驱动技术。使用直线电机比用滚珠丝杆传动的成本已从l0年前的高30%,降低到目前只高15%~20%,而且参展商普遍认为用户可以节省运行成本20%以上,从而可以及时收回附加投资。JOBS公司认为有一半以上的机床采用直线电机在技术上和经济上都是值得的[4]。 国内直线电机技术的研究始于20世纪7O年代,上海电机厂、宁波大学、沈阳工业大 学、清华大学、国防科技大学、浙江大学、广东工业大学等高校都做了相关研究[5-6],但未能实现真正应用到高速机床上,大推力、长行程的进给,不是真正意义上的应用在高速机床上的直线电机进给单元。清华大学机械学系制造工程研究所研究的长行程永磁直线伺服单元额定推力1 500N,最高速度60m/min,行程600mm[7]。沈阳工业大学研究的重点摆在了永磁同步直线电动机的控制方式及伺服系统[8];在CIM T2003(中国国际机床展览会)上,北京机电院高技术股份公司、江苏多棱数控机床股份有限公司展出了国产首批直线电机驱动的立式加工中心(VS1250),其X、Y轴采用了直线电机,最大进给速度60m/s。采用直线光栅尺反馈,全闭环控制,定位精度高,稳定性好。该加工中心采用了西门子840D系统,具有很高的可靠性与稳定性[9]。这些研究工作为直线电机技术在高速机床上的应用发挥了积极作用。目前在我国机床行业中,应用直线电机进给系统的产品越来越多。在CIMT2005上,作为全球最大的切削机床制造商之一的DWG公司,其产品中有1/3的采用了直线电机驱动技术,展出的DMC 75V linear精密立式加工中心所有进给轴都采用高动力性能直线电机驱动,良好动态特性的基础是采用了高度稳定的龙门结构和经优化的高刚度床身,加速度高达2g,快移速度90m/min,从而可使生产率提高20% ,该系列加工中心特别适合于模具加工[10]。2006年,德国Zimmermann公司推出了直线驱动龙门铣床FZ38,直线电机驱动通过高 因素获得高水平的标准控制,使得即便是在高进给率的情况下仍能保持非常小的拖曳距离和高定位精度[11]。DMG推出了Sprint 65直线驱动机床,在置轴上加速度达到g,快移速度40m/min[12] 。在2007年4月的中国国际机床展(CIMT2007)上,直线电机的应用越来越广泛,杭州机床集团有限公司推出了国内首次使用直线电机的平面磨床(MUGK7120X5)。全球领先的运动控制解决方案提供商丹纳赫传动,在现场的研讨会中提到直接驱动电机近年来在国内外都得到了客户的广泛认可,它改变了原有旋转电机加丝杠的结构,大大简化了机械的设计,提高了工作效率。 3 总结与展望 直线电机驱动技术与数控机床制造的结合大大促进了世界制造业的发展,大大提高了加工精度和加工效率。直线电机进给系统是一种能把电能直接转换成直线运动的机械能,且不需要任何中间传动环节的驱动装置。它将传统的回转运动转变为直接的直线运动,因此机床的速度、加速度、刚度、动态性能得到完全改观。通过采用直线电机驱动技术使得在高速移动中获得高的定位精度成为现实,有效克服通过传统旋转电机进行驱动时,机械传动机构传动链较长、体积大、效率低、能耗高、精度差等缺点。所以,直线电机驱动技术将是高速数控机床未来发展的方向。
直线电机基础 直线电机也称线性电机,线性马达,直线马达 在实际工业应用中的稳定增长,证明直线电机可以放心的使用。下面简单介绍直线电机类型和他们与旋转电机的不同. 最常用的直线电机类型是平板式和U 型槽式,和管式。 线圈的典型组成是三相,有霍尔元件实现无刷换相.图示直线电机用HALL换相的相序和相电流. 该图直线电机明确显示动子(forcer, rotor)的内部绕组.磁鉄和磁轨.动子是用环氧材料把线圈压成的。而且,磁轨是把磁铁固定在钢上。 直线电机在过去的10年,经实践上引人注目的增长和工业应用的显著受益才真正成熟。 直线电机经常简单描述为旋转电机被展平,而工作原理相同。动子(forcer, rotor) 是用环氧材料把线圈压缩在一起制成的.而且,磁轨是把磁铁(通常是高能量的稀土磁铁)固定在钢上.电机的动子包括线圈绕组,霍尔元件电路板,电热调节器(温度传感器监控温度)和电子接口。在旋转电机中,动子和定子需要旋转轴承支撑动子以保证相对运动部分的气隙(air gap)。同样的,直线电机需要直线导轨来保持动子在磁轨产生的磁场中的位置。和旋转伺服电机的编码器安装在轴上反馈位置一样,直线电机需要反馈直线位置的反馈装置--直线编码器,它可以直接测量负载的位置从而提高负载的位置精度。