新八年级数学PPT函数课件
合集下载
沪科版数学八年级上册12.2.2一次函数的图像与性质课件(共19张PPT)

第十二章 一次函数
12.2 一次函数12.2.2 一次函数的图像与性质
学习目标
学习重难点
重点
难点
1.掌握一次函数图像的画法并清楚b的含义.2.掌握一次函数y=kx+b(k≠0)与y=kx图像的区别与联系.
掌握一次函数图像的画法并清楚b的含义.
掌握一次函数y=kx+b(k≠0)与y=kx图像的区别与联系.
直线y=3(x-1)在y轴上的截距是 ( )A.1 B.-1 C.3 D.-3
仿例2
将函数y=-3x的图象沿y轴向上平移2个单位长度后,所得图象对应的函数关系式为 ( )A.y=-3x+2 B.y=-3x-2C.y=-3(x+2) D.y=-3(x-2)
随堂练习
对于函数y=7x , y随x的( )而增.
增大
下列函数中,y的值随x值的增大而增大的函数是( ) A. y = -2x B. y = -2x+1 C. y = x-2 D. y = -
-4
-2
0
2
4
y=2x+3
-4+3
-2+3
0+3
2+3
4+3
描点、连线:
由此可见,一次函数 y=2x+3 的图像是平行于直线 y=2x 的一条直线.
y=2x
y=2x+3
知识归纳
直线 y=kx+b与y轴交于点(0,b),b叫做 直线 y=kx+b在y轴上的截距,简称截距.直线 y=kx+b可以看作是由直线 y=kx 平移 个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移).
图象
性质
同学们再见!
12.2 一次函数12.2.2 一次函数的图像与性质
学习目标
学习重难点
重点
难点
1.掌握一次函数图像的画法并清楚b的含义.2.掌握一次函数y=kx+b(k≠0)与y=kx图像的区别与联系.
掌握一次函数图像的画法并清楚b的含义.
掌握一次函数y=kx+b(k≠0)与y=kx图像的区别与联系.
直线y=3(x-1)在y轴上的截距是 ( )A.1 B.-1 C.3 D.-3
仿例2
将函数y=-3x的图象沿y轴向上平移2个单位长度后,所得图象对应的函数关系式为 ( )A.y=-3x+2 B.y=-3x-2C.y=-3(x+2) D.y=-3(x-2)
随堂练习
对于函数y=7x , y随x的( )而增.
增大
下列函数中,y的值随x值的增大而增大的函数是( ) A. y = -2x B. y = -2x+1 C. y = x-2 D. y = -
-4
-2
0
2
4
y=2x+3
-4+3
-2+3
0+3
2+3
4+3
描点、连线:
由此可见,一次函数 y=2x+3 的图像是平行于直线 y=2x 的一条直线.
y=2x
y=2x+3
知识归纳
直线 y=kx+b与y轴交于点(0,b),b叫做 直线 y=kx+b在y轴上的截距,简称截距.直线 y=kx+b可以看作是由直线 y=kx 平移 个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移).
图象
性质
同学们再见!
人教版八年级数学下册课件函数的图像函数的图像

用图象表示为( B )
Q (升)
Q (升)
Q (升)
Q (升)
40
40
40
40
0 8 t (时) 0 8 t (时) 0 8 t (时) 0 8 t (时
A.
B.
C.
D.
2.最近中旗连降雨雪,德岭山水库水位上涨.如图 表示某一天水位变化情况,0时的水位为警戒水位. 结合图象判断下列叙述不正确的是 ( C )
(4)张强从文具店回家的平均速度是多少?
用平滑曲线去连接画出的点
(1,1) D.
AB
1注、:已函知数1点图.(1象-1可,能2是)曲是线函,数也y=可kx能的是图直象线上,的也一可点能,是则线段或射线,函数图象的形状取决于函数关系和自变量的取值范围。
请根据图象回答下列问题:
(1)在平面直角坐标系中,平面内的点可以用一对
实际问题中的函数图象
思考:下图是自动测温仪记录的图象,它反映了北 京的春季某天气温 T 如何随时间 t 的变化而变化.
你从图象中得到了哪些信息?
T/℃ 8
O4
14
-3
24 t/时
从图象中可以看出这一天中任一时刻的气温.
1、画出函数 y = x + 0.5 的图象
解:(1)从函数解析式可以看出,x的取值范围是 全体实数 . 从x的取值范围中选取一些简洁的数值, 算出y的对应值,填写在表格里:
-2
-3
-4
.
图象上的点与函数关系式的关系:
(1)函数图象上的任意点(x,y)中的x、y满足 函数关系式;
(2)满足函数关系式的任意一对(x,y)的值, 所对应的点一定在函数图象上。
判断下列各点是否在函数 y=x+0.5 的图象上?
Q (升)
Q (升)
Q (升)
Q (升)
40
40
40
40
0 8 t (时) 0 8 t (时) 0 8 t (时) 0 8 t (时
A.
B.
C.
D.
2.最近中旗连降雨雪,德岭山水库水位上涨.如图 表示某一天水位变化情况,0时的水位为警戒水位. 结合图象判断下列叙述不正确的是 ( C )
(4)张强从文具店回家的平均速度是多少?
用平滑曲线去连接画出的点
(1,1) D.
AB
1注、:已函知数1点图.(1象-1可,能2是)曲是线函,数也y=可kx能的是图直象线上,的也一可点能,是则线段或射线,函数图象的形状取决于函数关系和自变量的取值范围。
请根据图象回答下列问题:
(1)在平面直角坐标系中,平面内的点可以用一对
实际问题中的函数图象
思考:下图是自动测温仪记录的图象,它反映了北 京的春季某天气温 T 如何随时间 t 的变化而变化.
你从图象中得到了哪些信息?
T/℃ 8
O4
14
-3
24 t/时
从图象中可以看出这一天中任一时刻的气温.
1、画出函数 y = x + 0.5 的图象
解:(1)从函数解析式可以看出,x的取值范围是 全体实数 . 从x的取值范围中选取一些简洁的数值, 算出y的对应值,填写在表格里:
-2
-3
-4
.
图象上的点与函数关系式的关系:
(1)函数图象上的任意点(x,y)中的x、y满足 函数关系式;
(2)满足函数关系式的任意一对(x,y)的值, 所对应的点一定在函数图象上。
判断下列各点是否在函数 y=x+0.5 的图象上?
八年级数学下册第19章一次函数19.1变量与函数19.1.1变量与函数课件(新版)新人教版

例2 下列变量间的关系是函数关系的是
.
①长方形的长与面积;②圆的面积与半径;
③y=± x ;④S= 1 ah中的S与h.
2
解析 ①因为长方形的长、宽、面积都不确定,有三个变量,所以长方
形的长与面积不是函数关系.②因为圆的面积公式为S=πr2,当半径r取一
个确定的值时,面积S就唯一确定,所以圆的面积与半径是函数关系.③当
解析 (1)根据函数的定义可知,对于底面半径的每个值,都有一个确定 的体积的值按照一定的法则与之相对应,所以自变量是底面半径,因变 量是体积. (2)体积增加了(π×102-π×12)×3=297π cm3.
2.(2018湖北咸宁咸安模拟)若函数y=
x
2
2(
x
2),
则当函数值y=8时,自
答案 B 把h=2代入T=21-6h,得T=21-6×2=9.故选B.
5.在函数y=3x+4中,当x=1时,函数值为 为10.
,当x=
时,函数值
答案 7;2
解析 当x=1时,y=3x+4=3×1+4=7.当函数值为10时,3x+4=10,解得x=2.
知识点三 自变量的取值范围
6.(2018江苏宿迁中考)函数y= 1 中,自变量x的取值范围是( )
知识点一 常量与变量 1.(2017河北唐山乐亭期中)一辆汽车以50 km/h的速度行驶,行驶的路程 s(km)与行驶的时间t(h)之间的关系式为s=50t,其中变量是 ( ) A.速度与路程 B.速度与时间 C.路程与时间 D.三者均为变量
答案 C 在s=50t中路程随时间的变化而变化,所以行驶时间是自变 量,行驶路程是因变量,速度为50 km/h,是常量.故选C.
冀教版数学八年级下册数学21.4 一次函数的应用课件(共24张PPT)

(1)旅客最多可免费携带多少千 克行李? 30千克
(2)超过30千克后,每千克需付 多少元? 0.2元
30
2.某手机的电板剩余电量y毫安是使用天数x的一次函数x和y
关系如图 : 此种手机的电板最大带电量是多少?
y/毫安
1 000毫安
x/天
小结
通过这节课的学习,你有什么收获? 1.知识方面:通过一次函数的图像获取相关的信息; 2.数学思维:①数形结合,函数与方程的思想
车每行驶100千米消耗2升汽油. (3)当y=1时,x=450,因此行驶了450千米后,摩托车将 自动报警.
上题中摩托车行至加油站加完油后,摩托车油箱的剩余油量y(升)和摩 托车行驶路程x(千米)之间 的关系变为图1:
( ,6)
图1
( ,2)
图1为加油后的图象 试问: ⑴加油站在多少千米处?
400千米
用了4 升,,因此摩托车每行驶100千米消耗 2 升汽油.
上题中摩托车行至加油站加完油后,摩托车油箱的剩余油量
y(升)和摩托车行驶路程x(千米)之间 的关系变为图1:
图1
原图
⑶若乙地与加油站之间还有250千米,要到达乙地所加的油是否够用?
答:够
理由:由图像上观察的:400千米处设加油站,到700米处油用
21.4 一次函数的应用
1.能根据实际问题中变量之间的关系, 确定一次函数关系式.
2.能将简单的实际问题转化为数学问题 (建立一次函数),从而解决实际问题.
一次函数图像可获得哪些信息?
1. 由一次函数的图像可确定k 和 b 的符号; 2.由一次函数的图像可估计函数的变化趋势; 3.可直接观察出x与y 的对应值; 4.由一次函数的图像与y 轴的交点的坐标可确定b值,
(2)超过30千克后,每千克需付 多少元? 0.2元
30
2.某手机的电板剩余电量y毫安是使用天数x的一次函数x和y
关系如图 : 此种手机的电板最大带电量是多少?
y/毫安
1 000毫安
x/天
小结
通过这节课的学习,你有什么收获? 1.知识方面:通过一次函数的图像获取相关的信息; 2.数学思维:①数形结合,函数与方程的思想
车每行驶100千米消耗2升汽油. (3)当y=1时,x=450,因此行驶了450千米后,摩托车将 自动报警.
上题中摩托车行至加油站加完油后,摩托车油箱的剩余油量y(升)和摩 托车行驶路程x(千米)之间 的关系变为图1:
( ,6)
图1
( ,2)
图1为加油后的图象 试问: ⑴加油站在多少千米处?
400千米
用了4 升,,因此摩托车每行驶100千米消耗 2 升汽油.
上题中摩托车行至加油站加完油后,摩托车油箱的剩余油量
y(升)和摩托车行驶路程x(千米)之间 的关系变为图1:
图1
原图
⑶若乙地与加油站之间还有250千米,要到达乙地所加的油是否够用?
答:够
理由:由图像上观察的:400千米处设加油站,到700米处油用
21.4 一次函数的应用
1.能根据实际问题中变量之间的关系, 确定一次函数关系式.
2.能将简单的实际问题转化为数学问题 (建立一次函数),从而解决实际问题.
一次函数图像可获得哪些信息?
1. 由一次函数的图像可确定k 和 b 的符号; 2.由一次函数的图像可估计函数的变化趋势; 3.可直接观察出x与y 的对应值; 4.由一次函数的图像与y 轴的交点的坐标可确定b值,
义务教育人教版数学八年级下册《函数》PPT课件

一确定的值与其对应;(3)中,y不是x的函数,因为对于x的每一个
确定的值,y都有两个确定的值与其对应.将关系式改为 y x 2
或 y x 2 ,都能使y是x的函数.
问题3:变量x与y的对应关系如下表所示:
x 1 4 9 16 25 … y ±1 ±2 ±3 ±4 ±5 …
问:变量y是x的函数吗?为什么?若要使y是x的 函数,可以怎样改动表格?
(1)这天的8时的气温是 (2)这一天中,最高气温 是 10 ℃,最低气温是 -2 ℃;
图一
与函数有关的概念
一般地,在一个变化过程中, 如果有两个变量x和y,并且 对于x的每一个确定的值,y 都有唯一确定的值与其对应 , 那么我们就说x是自变 量,y是 x的函数.如果当x=a时y=b,那 么b叫做当自变量的值为a时 的函数值
练一练
1.购买一些签字笔,单价3元,总价为y元,签字笔为x支,根 据题意填表:
x
1
2
y
3
6
3…
9
(1) y随 x变化的关系式
, 是自变量, 是 的函数;
(2)当购买8支签字笔时,总价为 元.
练一练
2.周末,小李8时骑自行车从家里出发,到野外郊游,16时
回到家里.他离开家后的距离 (千米)与时间 (时)的关
y
-1,1 5,-5 -8,8 无
y是x的函数吗?为什么?
难点质疑
问题1:下列式子中的y是x的函数吗?为什么?若
y不是x的函数,怎样改变,才能使y是x的函数?
(1) y 2x 3
(2) y 1 x 1
(3) y x 2
(1)、(2)中y是x的函数,因为对于x的每一个确定的值,y都有唯
则y= 10x
《一次函数》_PPT课件

当k>0时,直线y=kx+b从左向右上升; 当k<0时,直线y=kx+b从左向右下降. 一次函数y=kx+b(k≠0)具有如下性质: 当k>0时,y随x的增大而增大; 当k<0时,y随x的增大而减小.
【获奖课件ppt】《一次函数》_ppt课 件1-课 件分析 下载
【获奖课件ppt】《一次函数》_ppt课 件1-课 件分析 下载
解:经过点(0,1),(-1,0) 画出直 线y=x+1;经过点(0,-1),(1,1)画出 直线y=2x-1;
经过点(0,1),(1,0)画出直线 y=-x+1;经过点(0,-1),(-1,1)画出 直线y=-2x-1.
【获奖课件ppt】《一次函数》_ppt课 件1-课 件分析 下载
【获奖课件ppt】《一次函数》_ppt课 件1-课 件分析 下载
例:(教材例3)画出函数y=2x-1 与y=-0.5x+1的图象.
学习新知
〔解析〕由于一次函数的图象是直线, 因 此只要确定两个点就能画出它.
解:列表表示x=0,x=1时两个函数的对应值.
过点(0,-1),(1,1)画出直线 y=2x-1,过点(0,1),(1,0.5)画出 直线y=-0.5x+1.
(4)直线y=-2x-1经过 一、三、四 象限;y随x的
增大而 减小 ,函数的图象从左到右 下降 .
【获奖课件ppt】《一次函数》_ppt课 件1-课 件分析 下载
【获奖课件ppt】《一次函数》_ppt课 件1-课 件分析 下载
思考:
一次函数y=kx+b(k≠0)中,k的正负对函数图 象有什么影响?
【获奖课件ppt】《一次函数》_ppt课 件1-课 件分析 下载
【获奖课件ppt】《一次函数》_ppt课 件1-课 件分析 下载
【获奖课件ppt】《一次函数》_ppt课 件1-课 件分析 下载
解:经过点(0,1),(-1,0) 画出直 线y=x+1;经过点(0,-1),(1,1)画出 直线y=2x-1;
经过点(0,1),(1,0)画出直线 y=-x+1;经过点(0,-1),(-1,1)画出 直线y=-2x-1.
【获奖课件ppt】《一次函数》_ppt课 件1-课 件分析 下载
【获奖课件ppt】《一次函数》_ppt课 件1-课 件分析 下载
例:(教材例3)画出函数y=2x-1 与y=-0.5x+1的图象.
学习新知
〔解析〕由于一次函数的图象是直线, 因 此只要确定两个点就能画出它.
解:列表表示x=0,x=1时两个函数的对应值.
过点(0,-1),(1,1)画出直线 y=2x-1,过点(0,1),(1,0.5)画出 直线y=-0.5x+1.
(4)直线y=-2x-1经过 一、三、四 象限;y随x的
增大而 减小 ,函数的图象从左到右 下降 .
【获奖课件ppt】《一次函数》_ppt课 件1-课 件分析 下载
【获奖课件ppt】《一次函数》_ppt课 件1-课 件分析 下载
思考:
一次函数y=kx+b(k≠0)中,k的正负对函数图 象有什么影响?
【获奖课件ppt】《一次函数》_ppt课 件1-课 件分析 下载
函数的图象第2课时(画函数图象)八年级数学下册课件(人教版)

速度是 90 km/h. 4 ×90=6(km), 60
所以在这段时间内,它走了6 km.
(1) y=x+0.5
(2)
y 6 x
(x>0).
(1) y=x+0.5
解:第一步:列表
x … -3 -2 -1 0 1 2 y … -5 -3 -1 1 3 5
第二步描点:根据表中数值描点(x,y);
第三步连线:用平滑曲线连接这些点.
从函数图象可以看出,直线从左向右上升,即当 x 由小变大时,y = 2x + 1 随之增大.
已知点A (-1,1),B (1,1),C (2,4)在同一个函数的图象上,这个函 数图象可能是( B )
下列四个函数图象中,当x>0时,y 随x 的增大而减小的是( B )
已知某一函数的图象如图所示,根据图象回答下列问题: (1)确定自变量的取值范围. (2)当x=-4,-2,4时,y 的值分别是多少? (3)当y=0,4时,x 的值分别是多少? (4)当x 取何值时,y 的值最大?当x 取何值时,y 的值最小? (5)当x 的值在什么范围内时,y 随x 的增大而增大?当 x 的值
19.1.2 函数的图象
第十九章 一次函数
画函数图象
| 第2课时|
情景引入
怎样画函数图象
问题:正方形面积 S 与边长 x 之间的函数解析式为 S = x2. (1) 填表:计算并填写下表:
x 0.5 S 0.25
1 1.5 1 2.25
2 2.5 4 6.25
3
3.5
9 12.25
(2) 描点:画出上面表格中各对数值所对应的点.
解:(2)∵点P (m,9)在函数 y=2x-1的图象上, ∴2m-1=9, 解得m=5.
所以在这段时间内,它走了6 km.
(1) y=x+0.5
(2)
y 6 x
(x>0).
(1) y=x+0.5
解:第一步:列表
x … -3 -2 -1 0 1 2 y … -5 -3 -1 1 3 5
第二步描点:根据表中数值描点(x,y);
第三步连线:用平滑曲线连接这些点.
从函数图象可以看出,直线从左向右上升,即当 x 由小变大时,y = 2x + 1 随之增大.
已知点A (-1,1),B (1,1),C (2,4)在同一个函数的图象上,这个函 数图象可能是( B )
下列四个函数图象中,当x>0时,y 随x 的增大而减小的是( B )
已知某一函数的图象如图所示,根据图象回答下列问题: (1)确定自变量的取值范围. (2)当x=-4,-2,4时,y 的值分别是多少? (3)当y=0,4时,x 的值分别是多少? (4)当x 取何值时,y 的值最大?当x 取何值时,y 的值最小? (5)当x 的值在什么范围内时,y 随x 的增大而增大?当 x 的值
19.1.2 函数的图象
第十九章 一次函数
画函数图象
| 第2课时|
情景引入
怎样画函数图象
问题:正方形面积 S 与边长 x 之间的函数解析式为 S = x2. (1) 填表:计算并填写下表:
x 0.5 S 0.25
1 1.5 1 2.25
2 2.5 4 6.25
3
3.5
9 12.25
(2) 描点:画出上面表格中各对数值所对应的点.
解:(2)∵点P (m,9)在函数 y=2x-1的图象上, ∴2m-1=9, 解得m=5.
人教版八年级数学下册 第十九章 19.2.3 一次函数与方程、不等式 第一课时 课件 (共26张PPT)

(1)途中乙发生了什么事,
P
(2)他们是相遇还是追击; 12
(3)他们几时相遇。
10
8
D E
AB
0
0.5
1 1.2
t
1.右图中的两直线l1 、l2 的交点坐标可以看作
y 2x 1
y 4
l1
3
2
l2 1
-1 0 -1
1 2 3 4x
x 2y 2 2.解方程组 2x y 2
问 经过多长时间两人相遇 ?
你明白他的想法吗?
设同时出发后t 时相遇, 则 20 t 30 t 150
用他的方法做一做,看 看和你的结果一致吗?
t=3
求出s与t之间的关系式,联立解方程组
A、B 两地相距150千米,甲、
对于乙,s 是t
乙两人骑自行车分别从A、B 两地相
的一次函数,
向而行。假设他们都保持匀速行驶, 则他们各自到A 地的距离s (千米) 都
120千米,即乙的
B 两地同时相向而行。假设他 小彬 速度是 30千米/时,
们都保持匀速行驶,则他们各
自到A地的距离s(千米)都是骑 车时间t(时)的一次函数.
1 时后乙距A地120千米, 2 时后甲距A地 40千米.
2 时后甲距A 地 40千米, 故甲的速度是 20千米/时,
由此可求出甲、乙两人的 速度, 以及 ……
2
4
6
所以方程
x 2 y 2 2x y 2
-6
的解是 x 2 。
y
2
一、二元一次方程的解与相应的一次函数图象上点 对应。
以方程 x+y=3 的解为坐标的所有点组成的图形
就是 一次函数 y=3-x 的图象.